
Under review as a conference paper at ICLR 2024

OFFLINE REWARD INFERENCE ON GRAPH: A NEW
THINKING

Anonymous authors
Paper under double-blind review

ABSTRACT

In offline reinforcement learning, reward inference is the key to learning effective
policies in practical scenarios. Due to the expensive or unethical nature of environ-
mental interactions in domains such as healthcare and robotics, reward functions
are rarely accessible, and the task of inferring rewards becomes challenging. To ad-
dress this issue, our research focuses on developing a reward inference method that
capitalizes on a constrained number of human reward annotations to infer rewards
for unlabelled data. Initially, we leverage both the available data and limited reward
annotations to construct a reward propagation graph, wherein the edge weights
incorporate various influential factors pertaining to the rewards. Subsequently, we
employ the constructed graph for transductive reward inference, thereby estimating
rewards for unlabelled data. Furthermore, we establish the existence of a fixed point
during several iterations of the transductive inference process and demonstrate its
at least convergence to a local optimum. Empirical evaluations on locomotion and
robotic manipulation tasks substantiate the efficacy of our approach, wherein the
utilization of our inferred rewards yields substantial performance enhancements
within the offline reinforcement learning framework, particularly when confronted
with limited reward annotations.

1 INTRODUCTION

The offline reinforcement learning (RL) problem can be defined as a data-driven formulation of
the reinforcement learning problem, that is, learning a policy from a fixed dataset without further
environmental input (Lange et al., 2012; Levine et al., 2020; Prudencio et al., 2022). Reliable and
effective offline RL methods would significantly affect various fields, including robots (Cabi et al.,
2019; Dasari et al., 2019), autonomous driving (Yu et al., 2018), recommendation systems (Strehl
et al., 2010; Bottou et al., 2013), and healthcare (Shortreed et al., 2011). Rewards are typically
necessary for learning policies in offline RL, but they are rarely accessible in practice, and the
rewards for state-action pairs need to be manually annotated, which is difficult and time-consuming.
Meanwhile, real-world offline RL datasets always have a small amount with reward and a large
amount always without reward. Thus, learning a model from limited data with rewards to label
unrewarded data is critical for learning effective policies to apply offline RL to various applications.

Typical methods have attempted various types of supervision for reward learning. The method
proposed by Cabi et al. (2020) and ORIL (Zolna et al., 2020) learn reward functions and use them
in offline RL. Cabi et al. (2020) employs a reward sketching interface to elicit human preferences
and use them as a signal for learning. In reward sketching, the annotator draws a curve where higher
values correspond to higher rewards. ORIL (Zolna et al., 2020) relies on demonstrated trajectories
to obtain reward functions both from labelled and unlabelled data at the same time as training an
agent. Konyushkova et al. (2020) propose the timestep annotations are binary and treat the reward
prediction as a classification problem to focus on sample efficiency with limited human supervision.

Reward learning for offline RL is roughly divided into two categories: timestep-level (e.g., state-
action pair reward annotations for the entire episode produced by humans (Cabi et al., 2020)) and
episode-level supervision (e.g., annotations of success for the whole episode (Konyushkova et al.,
2020; Zolna et al., 2020)). For episode-level supervision, Konyushkova et al. (2020) assumes rewards
are binary, and it indicates if the task is solved. Episode annotations provide only limited information
about the reward. They indicate that some of the state-action pairs from the episodes show successful

1

Under review as a conference paper at ICLR 2024

Represent state-action pairs as nodes

replay buffer
rollout data

{s,a,𝒔’}
represent data

as nodes

state

a

s

ro
llo

u
t(s)

Enviroment Agent

node

ç√≈ç√
action

ç√≈ç√ ⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

The state and action sequences of the MDP form a chain

chain 1

chain 2

chain n

⋅⋅⋅

Multiple chains of multiple MDPs constitute a graph

Figure 1: We first represent each state-action pair within a Markov decision process (MDP) as an
individual graph node. Then, we establish a foundation for modeling the state-action sequences across
multiple MDPs as interconnected chains. Finally, these chains collectively form a comprehensive
graph that encapsulates the dynamics of multiple MDPs. The graph structure is characterized by
connectivity, where each node is connected to multiple other nodes. We leverage this feature to
propagate reward-related information within the graph.

behavior but do not indicate when the success occurs. So the episode-level supervision method is not
adaptation to any value reward learning question. For timestep-level annotations, Konyushkova et al.
(2020) and Yu et al. (2022) need first to annotate demonstrated trajectories that are the successful
trajectories (e.g., expert demonstrations). Cabi et al. (2020) employs a reward sketching interface to
elicit human preferences and use them as a signal for learning, but the method is hard to solve tasks
where variable speed is important or with cycles as in walking. Accordingly, existing methods are
unsuitable for timestep-level reward learning with arbitrary values in offline reinforcement learning
without any expert trajectories. The manual annotation of rewards for state-action pairs is costly,
making it challenging to learn effective policies with limited reward labelled data. This makes it
challenging to apply offline reinforcement learning to a variety of scenarios.

In a general sense, offline RL addresses the problem of learning to control a dynamic system, which
is fully defined by a Markov decision process (MDP). An MDP is a sequential decision process for
state-to-state transitions, which could be formed as a chain, and multiple chains of multiple MDPs
can be combined to form a graph. In the graph, each node represents a state-action pair, and each
edge is labelled with the probability of transitioning from one state to another state, given a particular
action. The graph structure is characterized by connectivity, where each node is connected to multiple
other nodes. It is convenient to perform inference through a message passing mechanism, and the
inference procedure essentially propagates information from the state-action pairs with rewards to the
state-action pairs without rewards and results in a reward function over state-action pairs, as shown in
Figure 1. Meanwhile, the label-efficiency problem has been successfully addressed through label
propagation (LPA) approaches (Zhu & Ghahramani, 2002; Zhu, 2005; Zhou et al., 2003; Zhang &
Lee, 2006; Wang & Zhang, 2006; Karasuyama & Mamitsuka, 2013; Gong et al., 2016; Liu et al.,
2018) which is based on graph models and plays a significant role in leveraging unlabelled dataset
to improve the model performance with low cost. Label propagation approaches formulate labelled
and unlabelled data as a graph structure, where nodes represent sample data and edges represent
relationships between nodes, and the node labels are propagated and aggregated along the edges.

Inspired by the label propagation approaches, we present TRAIN: Transductive RewArds INference
with Propagation Graph for Offline Reinforcement Learning. Transduction is reasoning from observed
training cases to test cases. We learn from the already observed state-action pairs with rewards and
then predict the state-action pairs without rewards. Even though we do not know the rewards of most
state-action pairs, we can leverage the graph structure established by MDPs to propagate limited
reward information. To be specific, TRAIN consists of the following key ingredients:

(a) Reward Propagation Graph: We represent each state-action pair as a graph node and leverage
the similarities and relationships between them to learn the edge weights of the nodes. It is
worth noting that rewards are influenced by many factors, and all of the factors should be
considered when learning the reward propagation graph.

(b) Transductive Reward Inference: We employ the reward propagation graph to infer rewards
for state-action pairs that are without rewards and then utilize them for doing offline RL.
The reward inference technique propagates rewards on the graph from state-action pairs
with rewards to state-action pairs without rewards and will converge to a unique fixed point
after a few iterations.

2

Under review as a conference paper at ICLR 2024

We remark that TRAIN is not a naïve application of the LPA technique but a novel scalable method
of learning propagation graphs that integrates multiple influence reward factors to edge weights. The
graph sufficiently leverages various relationship information between nodes, which can make reward
inference more accurate. This has not been considered or evaluated in the context of offline RL
reward learning. We also prove that the transductive inferred reward has a fixed point and at least can
converge to a local optimum.

Our experiments demonstrate that the state-action pairs labeled by TRAIN significantly improve
the offline reinforcement learning method when learning policy with limited reward annotations
on complex locomotion and robotic manipulation tasks from DeepMind Control Suite (Tassa et al.,
2018) and Meta-World (Yu et al., 2020). In particular, our method inherits the smooth characteristics
of the LPA method (Wang & Leskovec, 2020), which can make the state-action pairs with smooth
rewards and further make the process of offline RL algorithm learning policy more stable.

2 RELATED WORK

Offline RL The offline reinforcement learning problem, which enables learning policies from
the logged data instead of collecting it online, can be defined as a data-driven formulation of the
reinforcement learning problem (Lange et al., 2012; Levine et al., 2020; Prudencio et al., 2022). It is
a promising approach for many real-world applications. Offline RL is an active area of research and
many algorithms have been proposed recently, e.g., BCQ (Fujimoto et al., 2019), MARWIL (Wang
et al., 2018), BAIL (Chen et al., 2020), ABM (Siegel et al., 2020), AWR (Peng et al., 2019), CRR
(Wang et al., 2020), F-BRC (Kostrikov et al., 2021). In this paper, we adopt CRR as our backbone
algorithm due to its efficiency and simplicity.

Reward learning It is possible to learn the reward signal even when it is not constantly available
in the environment. The reward can be learned if demonstrations are provided either directly with
inverse RL (Abbeel & Ng, 2004; Ng et al., 2000) or indirectly with generative adversarial imitation
learning (GAIL) (Ho & Ermon, 2016). The end goal (Edwards et al., 2016; Singh et al., 2019) or
reward values (Cabi et al., 2020) for a subset of state-action pairs can be known, in which case reward
functions can be learned by supervised learning. A significant instance of learning via limited reward
supervision (Cabi et al., 2020) is studied in some works. Rewards are commonly learned for online
RL (Klissarov & Precup, 2020). While learning from built or pre-trained state representations (Baram
et al., 2017; Edwards et al., 2016; Finn et al., 2016; Fu et al., 2017; Li et al., 2017; Merel et al., 2017;
Sermanet et al., 2016; Zhu et al., 2018) has achieved a lot of success, learning directly from pixel
input is known to be difficult (Zolna et al., 2021) and the quantity of supervision needed may become
a bottleneck (Cabi et al., 2020). Unlike many other reward learning approaches for offline RL, we
focus on learning rewards with multi-factors that influenced rewards from limited annotations.

Transduction The setting of transductive inference was first introduced by Vapnik (Vapnik, 1999).
Transductive Support Vector Machines (TSVMs) (Joachims et al., 1999) is a margin-based catego-
rization technique that reduces test set mistakes. Particularly for short training sets, it demonstrates
considerable advantages over inductive techniques. Another classification of transduction methods
involves graph-based methods (Zhu & Ghahramani, 2002; Zhou et al., 2003; Wang & Zhang, 2006;
Rohrbach et al., 2013; Fu et al., 2015). Labels are transferred from labelled to unlabelled data
instances through a process called label propagation, which is driven by the weighted graph. In prior
works, the graph construction is done on a pre-defined feature space using only a single influence
factor between nodes so that it is not possible to learn multi-factors influenced graph edge weights.

3 PROBLEM FORMULATION

The key to the TRAIN method is the prior assumption of consistency, which means: (1) nearby states
and actions are likely to have similar or the same reward, and (2) state-action pairs on the same
structure (typically referred to as a cluster or a manifold) are likely to have the similar or the same
reward. This argument is akin to semi-supervised learning problems that in (Belkin & Niyogi, 2002;
Blum & Chawla, 2001; Chapelle et al., 2002; Zhou et al., 2003; Zhu et al., 2003; Wang & Leskovec,
2020; Iscen et al., 2019) and often called the cluster assumption (Zhou et al., 2003; Chapelle et al.,
2002). Orthodox supervised learning algorithms, such as k-NN, in general, depend only on the first

3

Under review as a conference paper at ICLR 2024

assumption of local consistency (Zhou et al., 2003), that is, k-NN makes every data point be similar
to data points in its local neighborhood. Our method leverages the relation information between
states and actions to formalize the intrinsic structure revealed by state-action pairs with reward and
state-action pairs without reward and construct a reward inference function.

We assume that the training samples (both with reward and without reward) are given as D :=
[DL,DU] = [(s1, a1), ..., (sL, aL), (sL+1, aL+1), ..., (sU, aU)], where (si, ai) denotes the state-action
pair. The first L samples (si, ai) for i ∈ L := 1, ..., L, denoted by DL, are with reward. The remaining
U samples for i ∈ U := L+ 1, ..., U , denoted by DU, are without reward. A = |L|+ |U | is the total
number of training samples. The rewards are denoted by R := [RL, RU] = [r1, ..., rL, rL+1, ..., rU].
Suppose that we are given a small set DL of the state-action pairs with reward. The rest of the
state-action pairs DU = D \DL is without reward. TRAIN utilize all samples and known rewards to
learn a reward propagation graph and infer rewards for state-action pairs that are without reward.

4 METHODOLOGY

4.1 OVERVIEW

Figure 2: TRAIN workflow: We first learn a reward propagation graph on a pre-recorded dataset.
Then, we employ the graph and state-action pairs with rewards to infer rewards for state-action pairs
without rewards. Finally, we leverage all state-action pairs to do offline RL.

We take advantage of the property of the Markov Decision Process (MDP) that the reward function
on an MDP depends only on the current state and action. Therefore, we leverage the relationship
between states and actions to learn the reward propagation graph and realize reward labeling for
state-action pairs without rewards. As in offline Reinforcement Learning, such state-action pairs are
logged in a dataset D. In practice, D includes diverse state-action pairs produced for various tasks by
scripted, random, or learned policies as well as human demonstrations (Cabi et al., 2020).

4.2 CONSTRUCT REWARD PROPAGATION GRAPH

The graph structure is characterized by connectivity and can model the interrelationships between
entities. In a graph, edges connect nodes, and the information of nodes can be transmitted to other
nodes through the connection relationship of edges. We need to use the limited state-action pairs with
rewards to learn rewards for the state-action pairs without rewards. Therefore, we model state-action
pairs as nodes and learn a reward propagation graph using the relationships between nodes, which
transfers information from labelled reward nodes to unlabelled reward nodes.

Graph construction For most reinforcement learning tasks, rewards are influenced by many factors.
For instance, in task Humanoid, which is part of the DeepMind Control Suite (Tassa et al., 2018;
Tunyasuvunakool et al., 2020), the state consists of six parts: joint angles, the height of the torso,
extremity positions, torso vertical orientation, the velocity of the center of mass, and the generalized
velocity, and action also consists of several parts that represent the torques applied at the hinge joints.
The reward is related to the upright state of the robot, the control operation of the actuator, and the
moving speed, etc., which are closely related to each part of the above state and action, so we regard
each part of the state and action as a factor that influences the reward.

4

Under review as a conference paper at ICLR 2024

Specifically, we denote si = [si1 , si2 , si3 , ..., siM], where sim is a sub-state with any given dimension,
and si consists of M sub-states. Correspondingly, we denote ai = [ai1 , ai2 , ai3 , ..., aiN], where ai is
all of the actions performed given state si, and composed of N specific sub-actions of ain .

We design a reward propagation graph construction method integrating multi-factors influencing the
reward to tune the edge weights. To be specific, we employ a distance function Ds(sim , sjm),∀ i ̸= j
to measure the similarity of the sub-states, and also employ a distance function Da(ain , ajn),∀ i ̸= j
to measure the similarity of the sub-actions, the two distance function could be Euclidean distance or
others. Then, we define the multi-factor measure for state-action pairs as:

D((si, ai), (sj , aj)) = [Ds(si1 , sj1), ...,Ds(siM , sjM),Da(ai1 , aj1), ...,Da(aiN , ajN)] ∈ RM+N .
(1)

Further, we employ a reward shaping function fΘ with the parameters Θ to tune multi-factors’
contribution to the rewards and integrate them into the edge weight:

Wij =
exp(−fΘ(D((si, ai), (sj , aj))))∑
j ̸=i exp(−fΘ(D((si, ai), (sj , aj))))

,∀ i ̸= j. (2)

where Wij is an element in matrix W , which is a (L+U)× (L+U) weight matrix. We let Wii = 0
and we also have

∑
j Wij = 1,∀i. We define each state-action pair as a node in the graph and define

the weight between every two nodes in the graph, thus completing the construction of the reward
propagation graph G with weight matrix W .

Graph training In different tasks, the number of factors influencing reward is different, and the
degree of influence of different factors on reward is also different. Therefore, we need to tune
the weight of graph edges so that optimizing the function fΘ to make the multi-factors efficiently
integrate to rewards. Intuitively, for the state-action pair (si, ai), a larger edge weight Wij means that
state-action pair (sj , aj) will transfer more information to the reward for state-action pair (si, ai).
Specifically, we use the relationship between labelled data to train fΘ to make it suitable for the
current task. We design a predicted reward ξl:

ξl =
∑
k ̸=l

Wlkrk, k, l ∈ [1, ..., L], (3)

where rk is a label (reward) for a state-action pair (node). We use other labelled state-action pairs to
predict the label of the current state-action pair (have a ground truth label) and then minimize the
difference between the predicted label and the ground truth label.

Then, the goal of training the graph G is to optimize the parameters Θ for the function fΘ, that is,
minimize the difference between the predicted labels and their corresponding ground truth labels, the
objective function H(G) is given as:

argmin
Θ

{
H(G) =

1

2L

L∑
l=1

||ξl − rl||2
}
. (4)

There does not exist a closed-form solution, and we use the gradient descent method to seek the
solution, details are in the appendix A.1.

It should be noted that: the unlabelled data are not included in Equation (4), since the number of the
unlabelled data is often much larger than that of the labelled data, the term on the unlabelled data
may dominate the objective function, which in turn may degrade the algorithmic performance.

4.3 TRANSDUCTIVE REWARD INFERENCE

In Section 4.2, we constructed the graph and trained the weights of the graph edges. In this section,
we propagate reward-related information on the graph to infer the rewards for unlabelled state-action
pairs based on the rewards of other state-action pairs.

We separate the weights associated with nodes without rewards from the weight matrix W of graph G
formed by Equation (2), and representing them as two submatrices WUL and WUU . WUL represents

5

Under review as a conference paper at ICLR 2024

the weights between nodes with rewards and nodes without rewards, and WUU represents the weights
between nodes without rewards. We also split the reward set R into 2-sub-block R = [RL, RU],
where RL denotes the subset of known rewards and RU denotes the subset of unknown rewards.

The inference of rewards for unlabelled nodes requires considering the information transfer between
labelled and unlabelled nodes, we use WULRL for this calculation, while also taking into account
the relationships between unlabeled nodes themselves, computed using WUURU . Since unknown
rewards RU are a variable to be learned, we provide an iterative computation formula by:

RU ←−WUURU +WULRL. (5)

After t-th iterations, we obtain the following formula:

Rt
U ←−W t

UUR
0
U + (W t−1

UU + ...+WUU + 1)WULRL. (6)

The detailed derivation process is in Appendix A.2. Based on the weights calculated by Equation (2),
the values in WUU are all less than 1. Therefore, as t approaches infinity, W t

UU tends to infinitesimal
values, leading W t

UUR
0 converges to 0. Meanwhile, (W t−1

UU + ...+WUU + 1) forms a geometric
series, and after applying the formula for the sum of a geometric series, we obtain the solution:

RU = (I −WUU)
(−1)WULRL, (7)

which is a fixed point, and I is the identity matrix (Zhu & Ghahramani, 2002; Zhou et al., 2003).
TRAIN converges to a fixed point means that the reward inference error is within a certain range.

4.4 POLICY LEARNING

We remark that TRAIN can be combined with any offline RL algorithm by learning rewards for
state-action pairs without reward. For learning a policy, we use a pre-recorded dataset D. Dataset D
contains some state-action pairs with reward DL, and most of the rest are state-action pairs without
reward DU. We use TRAIN to predict rewards for DU as D̃U, and form D̃ with D and D̃U, then do
offline RL with D̃L. In the paper, we employ Critic-Regularized Regression (CRR) (Wang et al.,
2020), a simple and efficient offline reinforcement learning algorithm, to train an offline reinforcement
learning policy on the dataset with predicted rewards.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

(a) Hammer (b) Button Press

(c) Sweep Into (d) Open Drawer

Figure 3: Meta-World is a set
of robotic manipulation tasks.

Environment and tasks We conduct the experiments with a va-
riety of complex robotic manipulation and locomotion tasks from
Meta-World (Yu et al., 2020) and DeepMind Control Suite (Tassa
et al., 2018; Tunyasuvunakool et al., 2020), respectively. Many
factors influence the reward function of these two series of tasks.
Meta-World consists of a variety of manipulation tasks designed for
learning diverse manipulation skills. The second environment is the
DeepMind Control Suite, which contains many continuous control
tasks involving locomotion and simple manipulation. To investigate
the performance of TRAIN with a small amount of annotated state-
action pairs. We conduct experiments on more than 40 tasks in the
Meta-World environment, and we select four tasks (Hammer, Button
Press, Sweep Into, Open Drawer) (see Figure 3) of them to show
their learning curves. We also choose five complex environments from DeepMind Control Suite:
Cheetah Run, Walker Walk, Fish Swim, Humanoid Run, and Cartpole Swingup (see Figure 4) to
evaluate the performance of TRAIN in another environment different from the Meta-World, to verify
whether the algorithm works only in one environment. On each task, we leverage different algorithms
to predict the rewards for the same dataset and employ the CRR algorithm (except Behavior cloning)
to perform policy learning on the dataset after predicting the rewards. The learned policies are used

6

Under review as a conference paper at ICLR 2024

to evaluate the performance of TRAIN and other baselines. We report the results on all tasks of 5
random seeds, and results are shown in Section 5.2.

(a) Cheetah (b) Walker (c) Fish (d) Humanoid (e) Cartpole

Figure 4: DeepMind Control Suite is a set of popular contin-
uous control environments with tasks of varying difficulty,
including locomotion and simple object manipulation.

Datasets Given a set of logged state-
action pairs (dataset D), we random
extract a small subset of state-action
pairs and leverage them as labelled
data DL, and others as DU. The la-
bels of DL are the ground truth re-
wards. Meta-World domain has been
used to evaluate online RL agents, we
create an ad hoc dataset suitable for
offline learning. To do so, we train
Soft Actor-Critic (Haarnoja et al., 2018) from full states on each of the tasks, and save the resulting
replay buffer, which forms the dataset D. For DeepMind Control Suite, we use the open source
RL Unplugged datasets (Gulcehre et al., 2020) to form the dataset D for each task, the dataset also
contains both successful and unsuccessful episodes. The total numbers of state-action pairs and the
proportion of state-action pairs with ground truth rewards for each task are shown in Appendix A.3.

Baselines Behavior cloning (BC) is a popular algorithm in the field of imitation learning and also
an alternative way to learn a policy when the reward values are not available. BC agent does not
require reward values as it attempts to directly imitate the demonstrated state-action pairs. Time-
guided reward (TGR) (Konyushkova et al., 2020) adopts a two-step approach by initially annotating
demonstrated trajectories and a flat zero synthetic reward is assigned to the unlabelled subset. The
reward function is then trained using a loss function that is optimized jointly over timestep-level
annotations and synthetic flat labels. We also combined TGR with CRR (Wang et al., 2020) to learn
policies. Unlabelled data sharing (UDS) (Yu et al., 2022) assigns the lowest possible reward (usually
assumed to be 0) to all transitions in the unlabelled data. Subsequently, the unlabelled transitions are
reweighted to change the distribution of unlabelled data, aiming to mitigate reward bias.

5.2 EXPERIMENTS RESULTS

Meta-world We show the evaluation results on more than 40 tasks in the Meta-World environment
in Table 1. Apart from the five tasks (button-press, drawer-close, handle-press, reach, reach-wall), the
performance of the algorithm TRAIN exhibits greater superiority compared to others. This indicates
that TRAIN achieves more accurate reward learning on these tasks. Additionally, due to its inherent
smoothness, the learned rewards in TRAIN are smoother, leading to more stable policy performance.
UDS emphasizes the need for high-quality labeled data. Since the data in our environment consists
of SAC training data, and the labeled data is randomly selected, UDS performs well in relatively
easy-to-learn tasks, specifically those with a higher proportion of high-quality data in the dataset, with
particularly outstanding performance in the tasks of button-press, drawer-close, and handle-press.
But, its performance is subpar in many other tasks.

Regarding the two tasks where the TGR algorithm outperforms others, we conducted a detailed
analysis to identify the reasons. These tasks involve relatively simple action trajectories that are
easily explored. The TGR algorithm annotates the demonstrated trajectories and assigns a flat zero
synthetic reward to the unlabelled subset, which amplifies the rewards annotated as one along the
action trajectories, encouraging the policy to learn these trajectories more actively. Therefore, TGR
achieves better performance on such tasks. However, in other relatively complex tasks where the
action trajectories for task completion are diverse, the method fails to provide accurate rewards for
some procedural actions, resulting in mediocre policy performance. On the other hand, the poor
performance of the Behavioral Cloning (BC) algorithm in many tasks can be attributed to its reliance
on training with the entire dataset. The dataset comprises both successful and unsuccessful episodes,
causing BC to be significantly affected by data quality. In tasks with relatively simple actions,
algorithms that collect data can quickly learn the action trajectories for task completion, leading to a
higher proportion of high-quality data in the dataset and thus better performance of BC. Conversely,
in relatively complex tasks, data collection algorithms require a longer exploration process to learn
the action trajectories for task completion, resulting in a lower proportion of high-quality data and
consequently poor performance of BC.

7

Under review as a conference paper at ICLR 2024

Table 1: Evaluation returns on more than 40 Meta-World tasks. The average ± standard deviation is
shown for five random seeds. Italic numbers indicate the highest average return for each task. Bold
numbers indicate the statistically significant highest average return for each task, in which the average
return is the highest, and there is not a clear overlap in the standard deviation among the baselines.

Tasks BC TGR UDS TRAIN

basketball 3019± 439.6 978± 122.7 3661± 406.9 4165± 315.9
box-close 1081± 106.4 1568± 119.8 1371± 134.5 3897± 412.3
button-press 1911± 356 3301± 291 3508± 213.4 3435± 106.4
button-press-topdown 3190± 310.7 3401± 415.7 3496± 229.2 3587± 75.4
button-press-topdown-wall 1892± 50.2 2085± 61.6 2069± 48.7 2115 ± 70.4
coffee-button 3531± 710.6 3631± 610.8 3923± 352.4 4128± 210.9
coffee-pull 517± 16.3 372± 11.5 314.2± 7.9 637± 35.2
dial-turn 1871± 262.7 4217± 395.4 4236± 162.1 4428± 185.9
disassemble 215± 10.9 217± 18.1 239.7± 21.5 889± 10.5
door-close 3862± 167.1 4328± 212.0 4451± 184.2 4512± 217.3
door-lock 3156± 306.9 3536± 285.1 3312± 182.8 3753± 195.2
door-open 1082± 46.7 3985± 306.9 1949± 66.1 4451± 197.1
door-unlock 1947± 216.1 4011± 75.3 2052± 101.6 4189± 118.9
drawer-close 4697± 64.3 4839± 102.1 4881± 79.8 4797± 20.3
drawer-open 1769± 247 2890± 86 1895± 40.1 4466± 41.3
faucet-close 4143± 170.6 4687± 821.6 4338± 102.1 4712± 147.1
faucet-open 3660± 316.4 4702± 1503.5 4671± 361.8 4715± 361.3
hammer 2205± 268 3898± 163 2692± 101.5 4532± 95.1
hand-insert 56± 16.1 443± 8.4 409± 10.8 4016± 598.6
handle-press 4598± 137.9 4522± 136.4 4651± 82.4 4618± 102.8
handle-press-side 4241± 1353.4 4764± 243.7 4734± 185.2 4785± 458.1
handle-pull 3892± 986.8 4348± 894.1 4138± 147.6 4592± 125.7
handle-pull-side 3678± 1006.2 4095± 572.6 3958± 114.9 4551± 92.8
lever-pull 3864± 190.8 4184± 175.1 4008± 81.7 4307± 135.7
pick-out-of-hole 11± 0.4 209± 3.5 117± 12.2 1035± 234.9
pick-place 1879± 411.6 2975± 495.6 3228± 283.2 4106± 589.4
plate-slide 3984± 101.7 3674± 748.3 4064± 151.8 4459± 171.4
plate-slide-back 3017± 331.6 3158± 958.4 3089± 163.1 4658± 165.3
plate-slide-back-side 4087± 887.5 4678± 172.6 4703± 136.8 4734± 198.4
plate-slide-side 2698± 538.8 3002± 365.3 2928± 289.1 3010 ± 429.5
push 1983± 381.9 2097± 261.4 2248± 175.2 4268± 210.7
push-back 9± 0.4 137± 1.5 79± 8.7 201.3± 21.7
push-wall 3642± 597.8 4347± 187.4 4182± 155.8 4501± 204.6
reach 3209± 397.2 4761± 476.6 4581± 181.2 4668± 215.6
reach-wall 4626± 91.8 4816± 51.1 4672± 30.4 4810± 36.3
stick-pull 592± 10.8 442± 7.2 408± 7.8 4128± 121.5
stick-push 362± 16.2 887± 5.3 1065± 21.7 2745± 514.3
sweep 879± 145.6 3214± 412.7 3708± 237.1 4106± 312.7
sweep-into 962± 137 1838± 149 2115± 176.5 2257± 323.9
window-close 3846± 98.3 4104± 106.1 4354± 86.4 4458± 88.4
window-open 3217± 193.2 2897± 954.5 3141± 105.5 3829± 208.4

We select four tasks of the Meta-World (Hammer, Button Press, Sweep Into, Open Drawer) to show
their learning curves as measured on the success rate, as shown in Figure 5. TRAIN outperforms the
baselines on all four tasks, showing that TRAIN is well suited to make effective use of the unlabelled,
mixed quality, state-action pairs. In the two tasks of Hammer and Sweep Into, TRAIN has always
shown a greater performance advantage compared to other baselines. In the two tasks of Button
Press and Open Drawer, in the early stage of training, the performance of the three algorithms is
equivalent, and the follow-up TRAIN gradually stands out. Especially in the Open Drawer task, a
greater performance advantage has been achieved, while in the Button Press task, the training process
of other baselines fluctuates greatly, and TRAIN has less fluctuation and achieves better performance.
The conclusions drawn from the results in Figure 5 are consistent with the conclusions drawn from
the results in Table 1, and TRAIN has an excellent performance in the success rate showing that

8

Under review as a conference paper at ICLR 2024

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0

2 5

5 0

7 5

1 0 0

Suc
ces

s R
ate

 (%
)

 E n v i r o n m e n t S t e p s 1 e 6

 H a m m e r

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 5

5 0

7 5

1 0 0

Suc
ces

s R
ate

 (%
)

E n v i r o n m e n t S t e p s 1 e 6

B u t t o n P r e s s

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 5

5 0

7 5

1 0 0

Suc
ces

s R
ate

 (%
)

 E n v i r o n m e n t S t e p s 1 e 6

 S w e e p I n t o

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 5

5 0

7 5

1 0 0

Suc
ces

s R
ate

 (%
)

 E n v i r o n m e n t S t e p s 1 e 6

O p e n D r a w e r

Figure 5: Learning curves on the four Meta-World tasks as measured on the success rate. The solid
line and shaded regions represent the mean and standard deviation, respectively, across five seeds.

our algorithm TRAIN can effectively label rewards for state-action pairs without rewards, and the
smoothness of the algorithm can make the labelled data also have smooth characteristics. The policies
trained using these data have more stable performance.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Epi
sod

e R
etu

rn

 E n v i r o n m e n t S t e p s 1 e 6

 C h e e t a h R u n

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Epi
sod

e R
etu

rn

 E n v i r o n m e n t S t e p s 1 e 6

 W a l k e r W a l k

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0
Epi

sod
e R

etu
rn

 E n v i r o n m e n t S t e p s 1 e 6

F i s h S w i m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Epi
sod

e R
etu

rn

 E n v i r o n m e n t S t e p s 1 e 6

 H u m a n o i d

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Epi
sod

e R
etu

rn

 E n v i r o n m e n t S t e p s 1 e 6

C a r t p o l e S w i n g u p

Figure 6: Learning curves on the five DM Control tasks as measured on the episode return. The solid
line and shaded regions represent the mean and standard deviation, respectively, across five seeds.

DeepMind Control Suite We show the learning curves of the five DeepMind Control Suite tasks
(Cheetah Run, Walker Walk, Fish Swim, Humanoid, Cartpole Swingup) in Figure 6. Our method
TRAIN achieves better performance than baselines in five tasks. It has achieved a great performance
advantage in the Walker Walk task, and also performed well in the Fish Swim task. In the Cheetah
Run and Cartpole Swingup tasks, it also showed a certain performance advantage compared to TGR,
although the advantage is not very large, but it can still reflect the ability of the TRAIN algorithm.
In the Humanoid task, TRAIN, UDS and TGR are evenly matched during the training process, but
the final performance of TRAIN is still better than other baselines, reflecting the stability of the
state-action pairs with rewards provided by the TRAIN algorithm.

The action spaces of these five tasks are continuous, and the reward is also continuous. It is difficult
to give a clear boundary to distinguish good actions and bad actions. Therefore, the performance of
TRAIN and baselines are both very steady. However, the TRAIN algorithm has smooth characteristics,
which can make the labelled data also have smooth characteristics. Using these state-action pairs with
smooth rewards makes the process of offline RL algorithm learning policy more stable. Since the
TGR algorithm annotates the demonstrated trajectories and assigns a flat zero synthetic reward to the
unlabelled subset, it shows a large shock in the process of learning some tasks. UDS emphasizes the
need for high-quality labeled data, resulting in slightly poorer performance. BC performed the worst
among the five tasks, and hardly worked in the two tasks of Fish Swim and Cheetah Run. Because
BC uses a complete data set for training, it cannot distinguish the quality of the data, and cannot
obtain a policy with excellent performance.

6 CONCLUSION

In conclusion, our research propose TRAIN method to addresses a critical challenge in offline
reinforcement learning by developing a reward inference method that leverages a constrained number
of human reward annotations to estimate rewards for unlabelled data. TRAIN model MDPs as a graph
and leverage the connectivity of the graph structure to constructs a reward propagation graph that
incorporates various influential factors, facilitating transductive reward inference. We have shown the
existence of a fixed point during the iterative inference process, and our method converges at least to
a local optimum. Empirical evaluations on locomotion and robotic manipulation tasks demonstrate
the effectiveness of TRAIN, especially when dealing with limited reward annotations. This work has
significant implications for practical scenarios where reward functions are challenging to access.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differentiable adversarial
imitation learning. In International Conference on Machine Learning, pp. 390–399. PMLR, 2017.

Mikhail Belkin and Partha Niyogi. Semi-supervised learning on manifolds. Machine Learning
Journal, 1, 2002.

Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts.
2001.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon
Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning Research, 14
(11), 2013.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed, Rae
Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. A framework for data-driven
robotics. arXiv preprint arXiv:1909.12200, 2019.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. In Robotics: Science and Systems
Conference, 2020.

Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-supervised
learning. Advances in neural information processing systems, 15, 2002.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
arXiv preprint arXiv:1910.11215, 2019.

Ashley Edwards, Charles Isbell, and Atsuo Takanishi. Perceptual reward functions. arXiv preprint
arXiv:1608.03824, 2016.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong. Transductive multi-view zero-
shot learning. IEEE transactions on pattern analysis and machine intelligence, 37(11):2332–2345,
2015.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, and Jie Yang. Label propagation via teaching-to-
learn and learning-to-teach. IEEE transactions on neural networks and learning systems, 28(6):
1452–1465, 2016.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
Benchmarks for offline reinforcement learning. arXiv preprint arXiv:2006.13888, 394, 2020.

10

Under review as a conference paper at ICLR 2024

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semi-
supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5070–5079, 2019.

Thorsten Joachims et al. Transductive inference for text classification using support vector machines.
In Icml, volume 99, pp. 200–209, 1999.

Masayuki Karasuyama and Hiroshi Mamitsuka. Manifold-based similarity adaptation for label
propagation. Advances in neural information processing systems, 26, 2013.

Martin Klissarov and Doina Precup. Reward propagation using graph convolutional networks.
Advances in Neural Information Processing Systems, 33:12895–12908, 2020.

Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan Cabi,
and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning. arXiv
preprint arXiv:2012.06899, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. Advances in Neural Information Processing Systems, 30, 2017.

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, and Yi Yang. Transductive propagation network
for few-shot learning. 2018.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and
Nicolas Heess. Learning human behaviors from motion capture by adversarial imitation. arXiv
preprint arXiv:1707.02201, 2017.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. arXiv preprint arXiv:2203.01387,
2022.

Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a transductive setting.
Advances in neural information processing systems, 26, 2013.

Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards for imitation
learning. arXiv preprint arXiv:1612.06699, 2016.

Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle Pineau, and Susan A Murphy.
Informing sequential clinical decision-making through reinforcement learning: an empirical study.
Machine learning, 84(1):109–136, 2011.

11

Under review as a conference paper at ICLR 2024

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from logged implicit
exploration data. Advances in neural information processing systems, 23, 2010.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,
10(5):988–999, 1999.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Proceedings of
the 23rd international conference on Machine learning, pp. 985–992, 2006.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propaga-
tion. arXiv preprint arXiv:2002.06755, 2020.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv
preprint arXiv:1805.04687, 2(5):6, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611–25635. PMLR, 2022.

Xinhua Zhang and Wee Lee. Hyperparameter learning for graph based semi-supervised learning
algorithms. Advances in neural information processing systems, 19, 2006.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. 2002.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
János Kramár, Raia Hadsell, Nando de Freitas, et al. Reinforcement and imitation learning for
diverse visuomotor skills. arXiv preprint arXiv:1802.09564, 2018.

12

Under review as a conference paper at ICLR 2024

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarejo, David Budden, Serkan
Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation learning.
In Conference on Robot Learning, pp. 247–263. PMLR, 2021.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 GRADIENT

For the graph G, we design the training loss function H(G) in Equation (4), there does not exist a
closed-form solution, and we use the gradient descent method to seek the solution. The gradient with
respect to Θ is given in Equation (8),

∂H

∂Θ
= − 1

L

∑
l

(rl − ξl)
∂ξl
∂Θ

= − 1

L

∑
l

(rl − ξl)(−2Θ)

[
∑
k ̸=l

rkξlk(Ds(sl, sk) +Da(al, ak))
2]

− [
∑
k ̸=l

rkξlk][
∑
k ̸=l

ξlk(Ds(sl, sk) +Da(al, ak))
2]
}

=
2Θ

L

∑
l

(rl − ξl)

[
∑
k ̸=l

rkξlk(Ds(sl, sk) +Da(al, ak))
2]

−[ξl][
∑
k ̸=l

ξlk(Ds(sl, sk) +Da(al, ak))
2]

=

2Θ

L

∑
l

(rl − ξl)

[
∑
k ̸=l

rkξlk(Ds(sl, sk) +Da(al, ak))
2]

−[
∑
k ̸=l

ξlξlk(Ds(sl, sk) +Da(al, ak))
2]

=

2C

L

∑
k,l

(rl − ξl)(rk − ξl)ξlk(Ds(sl, sk) +Da(al, ak))
2,

(8)

where Θ is the parameters of the function fΘ, rl is a label (reward) for a state-action pair (node), ξl
is a predicted label, and we attribute the constant term to C, the goal of training the graph G is to
minimize the difference between the predicted labels and their corresponding ground truth labels.

The primary objective is to minimize the difference between the predicted labels ξl and their cor-
responding ground truth labels rl for state-action pairs (nodes) within the graph G. The equation
calculates how changes in the model parameters Θ affect the loss. It starts with a summation symbol,
which implies that the gradient is computed by summing up certain terms for all possible l values.
Difference between predicted and true labels: The term (rl−ξl) represents the difference between the
true label rl and the predicted label ξl for a specific state-action pair l. The next part, ∂ξl

∂Θ , represents
the derivative of the predicted label ξl with respect to the model parameters Θ. This part shows how
small changes in the parameters affect the predicted label. These terms are based on the relationships
between labels, the differences between them, and various distance metrics (Ds and Da) applied
to state and action pairs. The final expression for the gradient involves further calculations and
summations over different combinations of state-action pairs (k and l), as well as the products of
reward differences, predicted labels, and the distances between state-action pairs. The equation
introduces a constant term C which is attributed to the goal of training the graph G to minimize the
difference between predicted and true labels.

A.2 THE PROOF OF REWARD INFERENCE

In this section, we present the proof process for Formula (7). The inference of rewards for unlabelled
nodes requires considering the information transfer between labelled and unlabelled nodes, we use

14

Under review as a conference paper at ICLR 2024

WULRL for this calculation, while also taking into account the relationships between unlabeled
nodes themselves, computed using WUURU . Since unknown rewards RU are a variable to be learned,
we provide an iterative computation formula by:

RU ←−WUURU +WULRL. (9)

Proof. Let WULRL = α, then we have

R1
U ←−WUUR

0
U + α, (10)

where R0
U is the initial RU , and R1

U is the result of first iteration. Given the second iteration,

R2
U ←−WUU (WUUR

0
U + α) + α, (11)

R2
U ←−WUU

2R0
U +WUUα+ α. (12)

Given the third iteration,

R3
U ←−WUU (WUU

2R0
U +WUUα+ α) + α, (13)

R3
U ←−WUU

3R0
U +WUU

2α+WUUα+ α. (14)

Given the fourth iteration,

R4
U ←−W 4

UUR
0
U +W 3

UUα+W 2
UUα+WUUα+ α. (15)

......

Given the t-th iteration,

Rt
U ←−W t

UUR
0
U +W t−1

UU α+ ...+WUUα+ α, (16)

Rt
U ←−W t

UUR
0
U + (W t−1

UU + ...+WUU + 1)α. (17)

Based on the weights calculated by Equation (2), the values in WUU are all less than 1. Therefore, as
t approaches infinity, W t

UU tends to infinitesimal values, leading W t
UUR

0 converges to 0.

Meanwhile, (W t−1
UU + ...+WUU + 1) forms a geometric series, and after applying the formula for

the sum of a geometric series, we obtain the solution to TRAIN:

RU = (I −WUU)
(−1)WULRL, (18)

which is a fixed point, and I is the identity matrix (Zhu & Ghahramani, 2002; Zhou et al., 2003).

A.3 ADDITIONAL EXPERIMENTS

A.3.1 ABLATION STUDY

We conducted a comprehensive set of ablation studies aimed at thoroughly evaluating the effectiveness
of our reward shaping function, denoted as fΘ. These experiments were meticulously designed and
carried out across a diverse set of environments, including four Meta-World environments and five
DeepMind Control Suite environments.

In our investigation, we delved into the intricate interplay of various factors that influence the rewards
associated with nine distinct tasks. To provide a detailed assessment, we employed four distinct
composition methods, each shedding light on the role of factors related to both states and actions:

15

Under review as a conference paper at ICLR 2024

(1) Method 1: In this approach, both states and actions underwent decomposition into multiple
factors, allowing us to scrutinize the combined impact of these nuanced elements.

(2) Method 2: Here, we selectively decomposed states into multiple factors while treating
actions as a unified entity. This method offered insights into how states, in isolation,
contribute to the shaping of rewards.

(3) Method 3: Conversely, we kept states as a single, undivided factor but decomposed actions
into multiple components. This experiment assessed the significance of dissecting actions in
the reward-shaping process.

(4) Method 4: As a contrast, we simplified the scenario by considering both states and actions
as single, undifferentiated factors. This method served as a baseline for evaluating the
performance of more complex factorization approaches.

The experimental results are shown in Table 2.

Table 2: Evaluation returns on four different composition methods for the multiple factors that
influence the rewards. The average ± standard deviation is shown for five random seeds. Italic
numbers indicate the highest average return for each task. Bold numbers indicate the statistically
significant highest average return for each task, in which the average return is the highest, and there
is not a clear overlap in the standard deviation among the baselines.

Tasks Method 1 Method 2 Method 3 Method 4

Hammer 4532± 95 3158± 242 2185± 262 1034± 147
Sweep Into 2257± 324 1971± 243 1734± 276 665± 185
Button Press 3435± 106 3145± 227 2576± 85 1089± 290
Open Drawer 4466± 41 2998± 64 2514± 54 1727± 75

Cheetah Run 430± 55 361± 138 255± 126 183± 74
Walker Walk 950± 155 714± 83 463± 76 262± 38
Fish Swim 576± 155 453± 26 296± 89 198± 29
Humanoid Run 359± 57 201± 31 154± 38 26± 4
Cartpole Swingup 642± 68 441± 29 349± 18 208± 17

The compelling results that emerged from our extensive experimentation affirmed the superiority
of Method 1, where both states and actions were decomposed into multiple factors. This approach
consistently demonstrated the most favorable outcomes across the range of tasks we examined.

On the other hand, Method 2, which decomposed states while treating actions as single entities,
produced results that, while respectable, fell short of the peak performance achieved by Method 1.

A noteworthy revelation emerged when we explored Method 4, where both states and actions were
considered as single factors. This approach exhibited a stark drop in performance, and in some slightly
complex environments, it led to outright failures. This finding underscores the critical importance of
factorization and highlights the perils of oversimplifying the reward-shaping process.

In light of these insights, we conclude that decomposing both states and actions into multiple factors
and seamlessly integrating them using fΘ stands as the most effective strategy. This sophisticated
approach enables a finer level of granularity in reward learning and significantly enhances the overall
efficacy of policies trained on datasets subjected to such comprehensive factorization.

A.3.2 IMAGE-BASED EXPERIMENTS

Our novel approach, TRAIN, showcases a remarkable degree of adaptability that extends beyond
conventional full-state tasks, seamlessly accommodating image-based tasks with equal prowess.
In our quest to assess TRAIN’s performance in the realm of image-based tasks, we ingeniously
conditioned the environment’s output to generate images, thus opening up exciting possibilities for
visual-based learning scenarios.

Furthermore, we integrated a widely endorsed strategy employed in diverse task domains, wherein
we treated multiple frames as a single time-step state. These frames underwent a meticulous process

16

Under review as a conference paper at ICLR 2024

of decomposition into interdependent frames, and each frame was subsequently subjected to further
dissection into RGB channels, effectively treating each single image as an individual factor.

Our experimentation with TRAIN spanned a diverse set of environments, encompassing four distinct
Meta-World environments and an additional five environments sourced from the esteemed DeepMind
Control Suite. The breadth of this evaluation allowed us to gain comprehensive insights into TRAIN’s
capabilities in a variety of settings. The results are shown in Figure 7.

0

2 0 0

4 0 0

C h e e t a h R u n

T R A I N T G R B CU D C
0

5 0 0

1 0 0 0
W a l k e r W a l k

T R A I N T G R B CU D C
0

3 0 0

6 0 0
F i s h S w i m

T R A I N T G R B CU D C

0

2 0 0

4 0 0

H u m a n o i d

T R A I N T G R B CU D C
0

5 0 0

C a r t p o l e S w i n g u p

T R A I N T G R B CU D C
0

1 5 0 0

3 0 0 0

4 5 0 0

H a m m e r

T R A I N T G R B CU D C

0

1 0 0 0

2 0 0 0

S w e e p I n t o

T R A I N T G R B CU D C
0

1 5 0 0

3 0 0 0

B u t t o n P r e s s

T R A I N T G R B CU D C
0

1 5 0 0

3 0 0 0

4 5 0 0

O p e n D r a w e r

T R A I N T G R B CU D C

Figure 7: Evaluation returns on the nine image-based tasks. The vertical lines depict the standard
deviation across five random seeds of each experiment.

The experimental results that emerged from these rigorous trials underscored TRAIN’s robust
performance in image-based experiments. This underscores the effectiveness of our approach in
seamlessly integrating multiple images within a single time step, each image serving as a distinct
factor. This multi-faceted approach capitalizes on the richness of information inherent in each image,
ultimately enhancing the depth and quality of the learning process. TRAIN’s ability to harness the
unique information contained within each image not only expands its versatility but also positions
it as a promising candidate for a wide array of image-driven applications in the realm of artificial
intelligence.

A.4 ACCURATE OF PREDICTED LABELS ON DIFFERENT LABELLED DATA PROPORTION

To rigorously assess the predictive accuracy of our innovative approach, TRAIN, across varying
ratios of labeled data, we embarked on a comprehensive evaluation campaign. Our experiments
spanned a diverse range of environments, encompassing four challenging Meta-World scenarios and
an additional five environments sourced from the prestigious DeepMind Control Suite.

In Figure 8, we present a vivid representation of our findings, utilizing the mean squared error (MSE)
as our primary evaluation metric. This heatmap graphically depicts the relationship between multiple
tasks (on the horizontal axis) and the ratio of reward-labeled data in the dataset (on the vertical axis).

17

Under review as a conference paper at ICLR 2024

Each value in the figure reflects the MSE associated with a specific task under the corresponding
labeled data ratio. To ensure the robustness of our findings, we partitioned the dataset into multiple
batches, with the calculated result representing the average MSE value across these batches.

Ha
m

m
er

Bu
tto

n
Pr

es
s

Sw
ee

p
In

to

Op
en

 D
ra

we
r

Ch
ee

ta
h

Ru
n

W
al

ke
r W

al
k

Fis
h

Sw
im

Hu
m

an
oi

d

Ca
rtp

ol
e

Sw
in

gu
p

Tasks

10
%

15
%

20
%

25
%

30
%

La
be

lle
d

Da
ta

 R
at

io

6.8 7.2 7.4 6.9 7.1 7.3 7.6 8.3 6.9

5.1 5.4 5.7 5.8 5.6 5.2 5.8 6.1 4.9

3.6 4.1 3.9 4.7 4.1 3.9 4.3 5.2 3.8

2.4 2.6 2.8 3.1 2.1 2.2 2.9 4.1 2.2

1.7 1.5 2 1.9 1.7 1.8 2.1 2.8 1.5

Mean Squared Error

2

3

4

5

6

7

8

Figure 8: The accuracy between predicted labels and ground truth labels of TRAIN under different
labelled data ratios on four Meta-World and five DeepMind Control Suite environments, respectively.
The evaluation metric is the mean squared error (MSE).

The compelling insights derived from our experiments reveal a clear trend: as the ratio of reward-
labeled data in the dataset increases, the corresponding MSE values decrease, indicating a higher
degree of predictive accuracy. Conversely, a lower ratio of labeled reward data in the dataset is
associated with higher MSE values, signifying a relatively lower predictive accuracy. Furthermore,
our observations indicate that tasks characterized by higher-dimensional states and actions tend to
exhibit elevated MSE values, suggesting that predictive challenges are more pronounced in these
complex settings.

These findings offer valuable insights into the performance of TRAIN across a spectrum of labeled
data ratios and task complexities, shedding light on its capabilities and areas for potential refinement.
Such detailed evaluations are instrumental in understanding the nuances of our approach’s predictive
accuracy and provide a roadmap for its application in real-world scenarios across various domains.

A.5 ACCURATE OF PREDICTED LABELS ON DIFFERENT NORMS

To assess the accuracy of our proposed method, TRAIN, in relation to different norms, we conducted
experiments using four Meta-World and five DeepMind Control Suite environments. Figure 8
illustrates the results, utilizing the mean squared error (MSE) as the evaluation metric.

It’s important to note that the 1.5 norm and the 2.5 norm were introduced purely for experimentation
purposes and lack specific physical interpretations. These two norms were included to investigate the
impact of norm selection on our method.

In the heatmap of the experimental outcomes, the horizontal axis represents various tasks, the vertical
axis corresponds to different norms, and the values within the figure indicate the MSE for each task

18

Under review as a conference paper at ICLR 2024

Ha
m

m
er

Bu
tto

n
Pr

es
s

Sw
ee

p
In

to

Op
en

 D
ra

we
r

Ch
ee

ta
h

Ru
n

W
al

ke
r W

al
k

Fi
sh

 S
wi

m

Hu
m

an
oi

d

Ca
rtp

ol
e

Sw
in

gu
p

Tasks

no
rm

 1
no

rm
 1

.5
no

rm
 2

no
rm

 2
.5

No
rm

1.5 1.7 2.7 2.8 2.2 2.3 3.1 3.3 1.9

1.9 1.6 2.1 2 1.6 1.9 2.3 2.7 1.8

2.1 2.4 2.6 2.5 2.1 2.2 2.9 4.1 2.2

1.8 1.6 2 1.9 1.7 1.8 2.1 2.8 1.5

Mean Squared Error

1.5

2.0

2.5

3.0

3.5

4.0

Figure 9: The accuracy between predicted labels and ground truth labels of TRAIN under different
norms on four Meta-World and five DeepMind Control Suite environments, respectively. The
evaluation metric is the mean squared error (MSE).

under a specific norm. The dataset was partitioned into multiple batches, and the calculated result
represents the average MSE across these batches.

From the experimental results, it is evident that different norms have minimal influence on the MSE,
indicating that our method TRAIN is not sensitive to the choice of norm, underscoring its robustness
in various scenarios.

A.6 DIFFERENT TOTAL PAIRS AND LABELLED PROPORTION FOR EACH TASK

In Table 3, we show, for each task, the total number (total) of state-action pairs used to train policies
and the ratio of state-action pairs labelled rewards. From the data presented in the table, we can
observe that for the majority of tasks, using 10% to 15% of data with rewards is sufficient to achieve
completion. Only a small number of complex tasks require 20% of data with rewards to accomplish
the task.

A.7 DISCUSSION

A.7.1 COMPUTATIONAL COST

In this section, we choose to evaluate the computational costs of our method in several experimental
environments, including both training time and memory consumption.

Most of our datasets consist of 1× 106 state-action pairs, equivalent to 1× 106 nodes in the graph.
For computational convenience, we segment the dataset. Our dataset comprises training data from
classical reinforcement learning algorithms, such as SAC (Soft Actor-Critic). As the policy learns,
different "regions" of the dataset exhibit diversity, with "similar" data typically found within the same
segment. Therefore, we have reason to believe that slicing the dataset sequentially is a reasonable
approach.

19

Under review as a conference paper at ICLR 2024

Table 3: For each task, the total number (total) of state-action pairs used to train policies and the ratio
of state-action pairs labelled rewards.

Tasks Total pairs Labelled data ratio

basketball 1× 106 15%
box-close 1× 106 10%
button-press 1× 106 15%
button-press-topdown 1× 106 15%
button-press-topdown-wall 2× 106 15%
coffee-button 1× 106 10%
coffee-pull 1× 106 15%
dial-turn 1× 106 15%
disassemble 2× 106 15%
door-close 1× 106 10%
door-lock 1× 106 10%
door-open 1× 106 15%
door-unlock 1× 106 15%
drawer-close 1× 106 10%
drawer-open 1× 106 10%
faucet-close 1× 106 10%
faucet-open 1× 106 10%
hammer 2× 106 10%
hand-insert 2× 106 15%
handle-press 1× 106 15%
handle-press-side 1× 106 10%
handle-pull 1× 106 10%
handle-pull-side 1× 106 10%
lever-pull 1× 106 10%
pick-out-of-hole 2× 106 20%
pick-place 2× 106 15%
plate-slide 1× 106 10%
plate-slide-back 1× 106 10%
plate-slide-back-side 1× 106 10%
plate-slide-side 1× 106 10%
push 1× 106 15%
push-back 1× 106 15%
push-wall 1× 106 15%
reach 1× 106 10%
reach-wall 1× 106 10%
stick-pull 2× 106 20%
stick-push 2× 106 20%
sweep 1× 106 15%
sweep-into 1× 106 15%
window-close 1× 106 10%
window-open 1× 106 10%

Cheetah Run 1× 106 10%
Walker Walk 1× 106 10%
Fish Swim 1× 106 15%
Humanoid Run 1× 106 20%
Cartpole Swingup 1× 106 10%

We conducted tests for dataset slices containing 10000 state-action pairs and for dataset slices contain-
ing 20000 state-action pairs on a computer with the following specifications: CPU: Intel i9-9900KF

20

Under review as a conference paper at ICLR 2024

3.6GHz, GPU: RTX 2070 SUPER (8GB VRAM). The training time and memory consumption for
the environments are presented in Table 4 and Table 5.

Table 4: Computational cost for dataset slices containing 10000 state-action pairs.

Env Cheetah Run Walker Walk Hammer Door Pick-place

Training time 12.68s 12.67s 2.67s 2.7s 2.62s
Memory consumption 2351MB 2351MB 2377MB 2377M 2377MB

Table 5: Computational cost for dataset slices containing 20000 state-action pairs.

Env Cheetah Run Walker Walk Hammer Door Pick-place

Training time 14.8s 13.7s 13.07s 13.9s 13.52s
Memory consumption 5869MB 5869MB 5886MB 5886M 5886MB

We also conducted tests for dataset slices containing 30000 state-action pairs and for dataset slices
containing 40000 state-action pairs on a server with the following specifications for larger dataset
slices: CPU: Intel Xeon Gold 6230 2.10GHz, GPU: RTX 3090 (24GB VRAM). The training time
and memory consumption for the environments are presented in Table 6 and Table 7.

Table 6: Computational cost for dataset slices containing 30000 state-action pairs.

Env Cheetah Run Walker Walk Hammer Door Pick-place

Training time 37.61s 38.07s 23.12s 24.34s 26.72s
Memory consumption 11511MB 11511MB 11583MB 11583M 11583MB

Table 7: Computational cost for dataset slices containing 40000 state-action pairs.

Env Cheetah Run Walker Walk Hammer Door Pick-place

Training time 39.1s 40.09s 28.34s 29.21s 29.86s
Memory consumption 19577MB 19577MB 19691MB 19691MB 19691MB

We anticipate significantly faster computation on server-grade hardware and the ability to use larger
slices on GPUs with greater VRAM.

A.7.2 TREND IN THE CHANGES OF REWARD INFERENCE VALUES

We examine the changes in the maximum value of RU to verify whether the learned rewards are
bounded by the annotated data. Since RU is calculated through Formula (7), we design an illustration
to demonstrate this issue concerning the formula. We fix RL as a 3× 1 matrix with values {1, 2, 3}.
Meanwhile, for demonstration purposes, we treat (I − WUU) and WUL in Formula (7) as two
variables, with values ranging from 0.01 to 0.09. The trend of the maximum value in RU with the
variation of (I −WUU) and WUL is illustrated in Figure 10.

From the graph, it can be observed that within certain ranges of (I −WUU) and WUL values, the
maximum value in RU can exceed the maximum value in RL, that is the learned rewards are not
bounded by the annotated data.

A.7.3 ANOTHER BASELINE

In the preceding sections, we compared our method with reward learning baselines in the field of
offline reinforcement learning. The primary concept of ΦGCN (Klissarov & Precup, 2020) in online
reinforcement learning reward learning can also be applied to this scenario.

21

Under review as a conference paper at ICLR 2024

1/(I-Wuu)

0.0
0.2

0.4
0.6

0.8
1.0

Wul

0.0
0.2

0.4
0.6

0.8
1.0

Ru
(m

ax
)

2
4
6
8
10

Figure 10: Trend in the changes of reward inference values.

Upon this baseline, we conducted experimental validations on selected environments. In the exper-
iments, we utilized the same data annotation ratio as our approach for ΦGCN . We performed five
random seed experiments for each environment, calculating the average and standard deviation of the
results. The experimental results are presented in Table 8 and Table 9:

Table 8: Evaluation returns on the 4 DeepMind Control Suite tasks. The average± standard deviation
is shown for five random seeds.

Env Cheetah Run Walker Walk Fish Swim Cartpole Swingup

TRAIN 430 ± 55.9 952.7 ± 155.2 567.6 ± 155.2 642.4 ± 68.9
ΦGCN 274 ± 71.1 634 ± 172.3 181 ± 93.2 396 ± 132.1

Table 9: Evaluation returns on the 5 Meta-World tasks. The average ± standard deviation is shown
for five random seeds.

Env Coffee Button Push Wall Hammer Open Drawer Window-open

TRAIN 4128 ± 210.9 4501 ± 204.6 4532 ± 59.1 4466 ± 41.3 3829 ± 208.4
ΦGCN 2845 ± 303.8 3238 ± 192.1 2933 ± 81.8 2989 ± 79.3 2921 ± 234.1

ΦGCN considers information derived from the state, and therefore performs well in environments
where the state contributes significantly to the reward. For the environments where the action has a
substantial impact on the reward, the performance of ΦGCN is slightly inferior.

22

Under review as a conference paper at ICLR 2024

A.7.4 BASELINE DETAILS

The Time-guided reward (TGR) workflow, as outlined in (Konyushkova et al., 2020), involves several
key steps. Initially, it infers a reward function based on limited supervision, utilizing timestep-level
annotations expressed as reward values on a subset of trajectories. Subsequently, it retroactively
annotates all trajectories using the obtained reward function. Finally, the trajectories, now equipped
with predicted rewards, are employed for offline reinforcement learning. Additionally, we integrated
TGR with CRR (Critic Regularized Regression) (Wang et al., 2020) to learn policies as a baseline of
our efforts. Specifically, TGR employs a two-step process for reward function inference. It starts
by annotating demonstrated trajectories, assigning a flat zero synthetic reward to the unlabelled
subset. The reward function is then trained using a loss function that jointly optimizes timestep-level
annotations and synthetic flat labels. This comprehensive approach contributes to the effectiveness of
TGR in the context of offline reinforcement learning.

The prevailing characteristic of most offline reinforcement learning datasets is the prevalence of a
small fraction of labeled data alongside a more substantial proportion of unlabeled data. Unlabeled
data sharing (UDS) (Yu et al., 2022) addresses this scenario by treating the unlabeled dataset as if it
has zero reward, followed by the incorporation of reweighting techniques. This reweighting process
is designed to adjust the distribution of interspersed zero-reward data. The primary objective is to
synchronize the distribution of this external data with that of reward-containing data pertinent to
the original task, thereby alleviating the bias introduced by inaccurate reward data. In particular,
UDS initially assigns the minimum feasible reward (typically assumed to be 0) to all transitions
within the unlabeled data. Subsequently, these unlabeled transitions undergo reweighting, altering the
distribution of unlabeled data to mitigate reward bias. This strategy contributes to the overall goal
of enhancing the alignment between labeled and unlabeled data distributions in UDS. Finally, train
offline reinforcement learning policies using the reweighted reward distribution dataset.

23

	Introduction
	Related Work
	Problem formulation
	Methodology
	Overview
	Construct Reward Propagation Graph
	Transductive Reward Inference
	Policy Learning

	Experiments
	Experiments setup
	Experiments results

	Conclusion
	Appendix
	Gradient
	The Proof of Reward Inference
	Additional Experiments
	Ablation study
	Image-based experiments

	Accurate of predicted labels on different labelled data proportion
	Accurate of predicted labels on different norms
	Different total pairs and labelled proportion for each task
	Discussion
	computational cost
	Trend in the changes of reward inference values
	Another Baseline
	Baseline details

