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Abstract
Recent causal probing literature reveals when001
language models and syntactic probes use simi-002
lar representations. Such techniques may yield003
“false negative” causality results: models may004
use representations of syntax, but probes may005
have learned to use redundant encodings of the006
same syntactic information. We demonstrate007
that models do encode syntactic information008
redundantly and introduce a new probe design009
that guides probes to consider all syntactic in-010
formation present in embeddings. Using these011
probes, we find evidence for the use of syntax012
in models where prior methods did not, allow-013
ing us to boost model performance by injecting014
syntactic information into representations.015

1 Introduction016

Recent large neural models like BERT and GPT-017

3 exhibit impressive performance on a large va-018

riety of linguistic tasks, from sentiment analysis019

to question-answering (Devlin et al., 2019; Brown020

et al., 2020). Given the models’ impressive perfor-021

mance, but also their complexity, researchers have022

developed tools to understand what patterns mod-023

els have learned. In probing literature, researchers024

develop “probes:” models designed to extract infor-025

mation from the representations of trained mod-026

els (Linzen et al., 2016; Conneau et al., 2018;027

Hall Maudslay et al., 2020). For example, He-028

witt and Manning (2019) demonstrated that one029

can train accurate linear classifiers to predict syn-030

tactic structure from BERT or ELMO embeddings.031

These probes reveal what information is present in032

model embeddings but not how or if models use033

that information (Belinkov, 2021).034

To address this gap, new research in causal anal-035

ysis seeks to understand how aspects of models’036

representations affect their behavior (Elazar et al.,037

2020; Ravfogel et al., 2020; Giulianelli et al., 2018;038

Tucker et al., 2021; Feder et al., 2021). Typically,039

these techniques create counterfactual representa-040

tions that differ from the original according to some041

Figure 1: In a 2D embedding space, a model might re-
dundantly encode syntactic representations of a sentence
like “the girl saw the boy with the telescope.” Redun-
dant encodings could cause misalignment between the
model’s decision boundary (blue) and a probe’s (red).
We introduce dropout probes (green) to use all informa-
tive dimensions.

property (e.g., syntactic interpretation of the sen- 042

tence). Researchers then compare outputs when 043

using original and counterfactual embeddings to 044

assess whether a property encoded in the represen- 045

tation is causally related to model behavior. 046

Unfortunately, negative results — wherein re- 047

searchers report that models do not appear to use a 048

property causally — are difficult to interpret. Such 049

failures can be attributed to a model truly not us- 050

ing the property (true negatives), or to a failure of 051

the technique (false negatives). For example, as de- 052

picted in Figure 1, if a language model encodes syn- 053

tactic information redundantly (here illustrated in 054

two-dimensions), the model and probe may differ- 055

entiate among parses along orthogonal dimensions. 056

When creating counterfactual representations with 057

such probes, researchers could incorrectly conclude 058

that the model does not use syntactic information. 059

In this work, we present new evidence for the 060

causal use of syntactic representations on task per- 061

formance in BERT, using newly-designed probes 062

that take into account the potential redundancy in 063

a model’s internal representation. First, we find 064

evidence for representational redundancy in BERT- 065

based models. Based on these findings, we propose 066
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a new probe design that encourages the probe to067

use all relevant representations of syntax in model068

embeddings. These probes are then used to assess069

if language models use representations of syntax070

causally, and, unlike prior art, we find that some071

fine-tuned models do exhibit signatures of causal072

use of syntactic information. Lastly, having found073

that these models causally use representations of074

syntax, we used our probes to boost a question-075

answering model’s performance by “injecting” syn-076

tactic information at test time.1077

2 Related Work078

2.1 Language Model Probing079

Probing literature seeks to expose learned patterns080

of a neural language model by training small neu-081

ral networks to map from model representations082

to human-interpretable properties (Alain and Ben-083

gio, 2017; Conneau et al., 2018; Coenen et al.,084

2019). For example, Hewitt and Manning (2019)085

propose single-layered neural nets that map from086

embeddings to syntactic representations of sen-087

tences. Such probing methods are correlative rather088

than causal because they depict what information is089

present in representations instead of how that infor-090

mation is used (Hall Maudslay et al., 2020; Pearl091

and Mackenzie, 2018). Understanding when lan-092

guage models use structural information causally is093

an important question given the central role struc-094

ture appears to play in human understanding of095

natural language (Chomsky, 2014). In this work,096

we perform causal analysis by combining causal097

methods with a new probe design.098

2.2 Causal Analysis of Language Models099

Recently, researchers have begun applying causal100

analysis to language models to understand if and101

how they use human-interpretable properties in102

their decision making. While direct text manip-103

ulations are sometimes possible (e.g., modifying104

“The man works as a...” to “The woman works as a105

...”), several methods rely on constructing counter-106

factual representations to measure model behavior107

(Kaushik et al., 2020; Ravfogel et al., 2020). Prior108

art has often found that standard models learn unde-109

sirable causal relationships by encoding unwanted110

biases or by not learning to rely upon syntactic111

principles (Feder et al., 2021; Elazar et al., 2020).112

Our work is most closely related to Tucker et al.113

(2021), so we explain their technical approach114

1Anonymized code at https://bit.ly/3zuGmTf

here. Tucker et al. (2021) train non-linear struc- 115

tural probes (based on those designed by Hewitt 116

and Manning (2019)) to predict aspects of a sen- 117

tence’s syntactic structure from model embeddings. 118

That is, a probe p maps from an embedding, z, to 119

a representation of syntax, s. Trained probes are 120

used to create counterfactual embeddings, z′, by 121

updating z′ from z via gradient descent to minimize 122

a loss function, L, evaluated on the probe’s output 123

and a desired output based on an alternative syntac- 124

tic interpretation, s′: ∇z′L(p(z
′), s′). Intuitively, 125

these z′ are meant to represent “what z would have 126

been if the structure of the sentence were s′.” Us- 127

ing suites of syntactically ambiguous sentences, the 128

authors measured how a model’s outputs differed 129

when using z′ generated from different syntactic 130

interpretations. 131

While Tucker et al. (2021) find that a pretrained 132

BERT model does use representations of syntax 133

causally (i.e., model outputs change when us- 134

ing different syntactic interpretations), the authors 135

find that a BERT model fine-tuned on a question- 136

answering task does not show similar behavior. 137

Identifying causal mechanisms in models is impor- 138

tant not only for fairness and robustness measures, 139

but also for improving model performance. In spe- 140

cific cases of subject-verb agreement, Giulianelli 141

et al. (2018) found that changing representations of 142

a subject’s plurality affected the plurality of verbs 143

predicted by an LSTM. 144

In this work, we use the gradient-descent method 145

proposed by Tucker et al. (2021), but we use a new 146

probe design. We identify several cases in which 147

their method fails to uncover a causal relationship, 148

whereas ours does. Furthermore, compared to Giu- 149

lianelli et al. (2018), we use more general represen- 150

tations of syntax instead of only plurality. 151

3 Technical Approach 152

Here, we identify a limitation of prior causal prob- 153

ing art in which redundant information in embed- 154

dings could lead to probes and models using differ- 155

ent representations of the same information, which 156

in turn could lead to uninformative causal analysis 157

results. We propose a new probe architecture that 158

addresses this limitation by encouraging probes to 159

use all sources of information in embeddings. 160

3.1 Limitations from Redundancy 161

We show by example how prior art in causal prob- 162

ing may fail to reveal causal uses of syntactic infor- 163
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(a) (b) (c)

Figure 2: If a model encodes the dependency structure of a sentence twice its embedding, a probe, p, may learn to
ignore one copy of the information (indicated by learned weight 0) and only use the other (via learned weight 1) to
predict s (a). In such cases, the gradient of s with respect to the embedding (dashed orange) only flows from one of
the copies, so only that copy will be updated in counterfactual embeddings (b). However, by introducing a dropout
layer that masks random inputs to the probe, dropout probes learn to use all informative parts of embeddings, which
distributes the gradient across the whole embedding (c).

mation in language models. Here, we use a simpli-164

fied example; in later experiments we demonstrate165

that trained models exhibit similar phenomena.166

In neural network probing literature, a probe, pθ,167

is a neural network parametrized by weights, θ, that168

maps from representations, z, to a predicted prop-169

erty, ŝ: ŝ = pθ(z). Hewitt and Manning (2019)170

define two types of structural probes that map from171

z to representations of a sentence’s syntax. The172

“depth” probe predicts words’ depths in a parse173

tree; the “distance” probe predicts the distance be-174

tween pairs of words in a parse tree. In this paper,175

we assume s refers to syntactic information, but176

probing techniques are general. Given a corpus177

comprising (z, s) pairs, probes are trained using178

supervised learning to minimize some loss.179

Suppose that there exists a trained model, M ;180

Mk− (the first k layers of M ) encodes an input,181

x, into an embedding z. The layers of M after182

k, dubbed Mk+, produce a prediction, ŷ, from z.183

For the purposes of this example, we state that M184

uses syntactic information, and specifically that z185

is informative of the syntactic structure of x.186

Let us assume that the dependency structure of187

x may be represented by within a vector, zdep,188

and that Mk− produces embeddings, z, which189

are two identical copies of zdep. Using pythonic190

notation, z = [zdep] + [zdep]. Thus, z contains191

syntactic information and, when we state that M192

“uses” syntactic information, we formally mean that193

∇zdepMk+(z) ̸= 0.194

Building upon this example, let us label the two195

copies of zdep as zdep1 and zdep2 , although the two196

vectors remain identical. If we train a probe to197

predict syntactic forms from z, it may arbitrarily198

learn to use any aspects of z that are informative199

of its prediction, s. Let us say that the probe learns200

to use only zdep2 , again defined as ∇zdep2
p(z) ̸= 0.201

However, Mk+ may only use zdep1 : the copy that 202

the probe does not use. 203

We claim that this example, while simplified, 204

demonstrates a potential scenario in which causal 205

probing techniques could return a false negative. 206

Specifically, if one generates counterfactual embed- 207

dings, z′, by changing z according to the activa- 208

tions that change the probe’s outputs, only zdep2 209

will change. Because Mk+ uses only zdep1 for 210

predictions, the model’s output will not change. 211

This example is depicted in Figure 2. Ultimately, 212

without considering the redundancy in a model’s 213

internal representation, prior methods will fail to 214

uncover the fact that M actually does use represen- 215

tations of syntax causally. 216

3.2 Dropout Probes 217

In this section, we propose a neural probe archi- 218

tecture to address the limitations of prior art by 219

encouraging probes to use all syntactic information 220

present in z. The desired behavior is depicted in 221

Figure 2c: if the probe uses all activations that are 222

informative of syntax, that will necessarily be a 223

superset of the activations that the model uses for 224

downstream processing (if the model uses syntax). 225

Therefore, when generating counterfactual embed- 226

dings using such probes, every activation encoding 227

syntactic information would be updated, which in 228

turn would change the model’s output. 229

Our approach was inspired by an idea of creating 230

a mixture of probes, each trained to use a differ- 231

ent masked subset of activations in z. The full set 232

of such probes would have to learn to use all ac- 233

tivations in z that are informative of s. One may 234

approximate creating such a set by introducing a 235

dropout layer as the first layer to a single probe. At 236

training time, the dropout layer masks a random 237

subset of the input; the mask itself changes with 238
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every training batch. We dub such probes “dropout239

probes.” This probe design, and our resulting find-240

ings when using them, are the main contributions241

of our work. We note that adding a dropout layer to242

probes introduces a new hyperparameter but, in ex-243

periments, we found consistent results over a wide244

range of positive dropout values.245

4 Experiments246

Here, we report the results from three experiments247

establishing the benefits of dropout probes. First,248

we found evidence supporting our hypothesis of249

redundantly-encoded syntactic information by cal-250

culating the mutual information between various251

activations in trained networks. Second, we com-252

pared dropout probes to standard probes in a set of253

syntactically-ambiguous test domains. We found254

that our method revealed evidence supporting the255

causal use of syntax in models where other meth-256

ods did not (Tucker et al., 2021). Lastly, given257

our findings that models used syntax causally, we258

demonstrated how one could “inject” syntactic in-259

formation into models to improve performance in260

syntactically-challenging tasks.261

Experiments were conducted on four models, all262

based on huggingface’s bert-base-uncased263

(Wolf et al., 2019). The Mask model was the origi-264

nal model, trained on a masked language modeling265

task and next-sentence prediction (Devlin et al.,266

2019). The QA model was fine-tuned on the Stan-267

ford Question Answering Dataset 2.0 (Rajpurkar268

et al., 2016).2 Lastly, we trained two models,269

dubbed NLI and NLI-HANS, that were finetuned270

on the Multi-Genre Natural Language Inference271

dataset or that dataset augmented with the Heuristic272

Analysis for NLI Systems (HANS) dataset, respec-273

tively (Williams et al., 2018; McCoy et al., 2019).274

The Mask model was used to compare our275

method to Tucker et al. (2021), who found that276

such models used syntactic information causally.277

The QA model was used to study a finetuned model;278

prior art did not find evidence of causal use. Lastly,279

the NLI models were used because Natural Lan-280

guage Inference is recognized as a difficult linguis-281

tic task that models appear to “cheat” on by leverag-282

ing spurious correlations in datasets (McCoy et al.,283

2019; Naik et al., 2018; Sanchez et al., 2018).284

2The QA model was downloaded from huggingface model
repository under “twmkn9/bert-base-uncased-squad2”

I(Z1, D) I(Z2, D) I(Z,D)

Mask 2.2 2.6 2.7
QA 2.7 2.8 2.8
NLI 2.3 2.7 2.8

Table 1: The mean in nats of I(Z,D) is less than
I(Z1, D)+ I(Z2, D), indicating that information about
D is redundantly encoded in embeddings. Standard de-
viation under 0.2 for all values over 5 trials.

4.1 Measuring Redundancy in Embeddings 285

First, we found that language models redundantly 286

encoded syntactic information in their embeddings, 287

which motivated using dropout probes. 288

We used a technique from prior art, Mutual In- 289

formation Neural Estimator (MINE), which is a 290

neural-network based approach for estimating the 291

mutual information between two random variables 292

(Belghazi et al., 2018). It does so by computing a 293

lower bound of mutual information and training a 294

neural network to maximize that value. This pro- 295

vides a conservative but tight estimate of mutual 296

information. We refer readers to Appendix A for 297

further details of our implementation. 298

We defined four random variables of interest. 299

The first, D, was the depth of each word in a sen- 300

tence’s parse tree; in other words, the labels used 301

to train depth probes in prior literature (Hewitt 302

and Manning, 2019). The second random vari- 303

able, Z, was the 768-dimensional embeddings gen- 304

erated by a language model for each token in an 305

input sentence. Lastly, the third and fourth ran- 306

dom variables (Z1 and Z2) corresponded to the 307

first and second halves of Z for each token. That 308

is, these variables comprised the starting and end- 309

ing 384 units for each token’s embedding. By 310

measuring the mutual information between differ- 311

ent pairs of these variables, one may formalize 312

our redundancy hypothesis into the following test: 313

I(Z,D) < I(Z1, D) + I(Z2, D). Intuitively, if 314

the test holds, there is shared syntactic information 315

between Z1 and Z2. 316

We trained a MINE neural network on the first 317

5000 examples from the Penn TreeBank to esti- 318

mate mutual information between random variables 319

(Marcus et al., 1993). Embeddings were taken from 320

the fourth layer of the MASK, QA, and NLI mod- 321

els, although they may be generated elsewhere. Our 322

results are presented in Table 1. For all models, 323

I(D,Z) < I(D,Z1) + I(D,Z2); i.e., one gains 324

little to no information for predicting D from the 325
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Figure 3: Mean and standard deviation probabilities over 5 trials for plural candidates using the original embeddings
(green) or counterfactual embeddings favoring plural (dashed red) or singular (solid blue) parses. Counterfactual
embeddings generated by both depth- and distance-based probes caused the greatest shift in model predictions.

full Z instead of from just Z1 or just Z2. This is326

evidence of redundant syntactic information in Z.327

In these experiments using MINE, we demon-328

strated how Z1 and Z2 could be defined as the sub-329

sets of redundant activations depicted in Figure 2.330

One could define other Z1 and Z2 to better char-331

acterize redundancy; here, we merely claim that332

at least some redundancy is present in the model333

embeddings.334

4.2 Ambiguity Suite Experiments335

The prior section established that language mod-336

els encode syntactic information redundantly; here,337

we showed that dropout probes overcame the chal-338

lenges introduced by this redundancy by better339

aligning with models’ true causal usage of syntax.340

We compared dropout probes to the probes used in341

prior art via counterfactual experiments inspired by342

those used by Tucker et al. (2021).343

We trained both distance- and depth-based344

probes, the two types of syntactic probes proposed345

by Hewitt and Manning (2019). We trained a new346

probe for each layer of each model, conducting 5347

trials with random seeds 0 through 4. All probes348

were implemented as 3-layer, non-linear neural nets349

that mapped from model embeddings (of dimen-350

sion 768) through 2 ReLU layers of dimension351

1024, to a final layer to predict a word’s depth or352

distance in the parse tree from other words. Probes353

were trained for up to 100 epochs, with early stop-354

ping based on validation set loss, using the Penn355

TreeBank dataset (Marcus et al., 1993). We found356

that this produced more accurate probes than prior357

art, which capped training at 30 epochs, and that358

these resulting probes did better than prior reported359

results, even without using dropout. Each probe360

was prefixed by a dropout layer with a parameter,361

α, that specified the proportion of inputs that were362

masked before being fed to the probe. By setting 363

α = 0, we recreated prior art of standard probes. 364

We additionally investigated positive values of α to 365

measure the benefit of dropout. Counterfactual em- 366

beddings were created via gradient descent through 367

trained probes (with dropout disabled), as in prior 368

art (Tucker et al., 2021). That is, new embeddings, 369

z′, were generated to decrease the loss between 370

p(z′) and a desired parse. We called this loss the 371

counterfactual loss. 372

In these experiments, we reported two types of 373

results. First, we visualized the effect of interven- 374

tions, by layer, for a particular dropout rate and 375

counterfactual loss. This revealed that, typically, 376

earlier layers in models were more susceptible to 377

interventions. Second, we devised an aggregate 378

metric for the average difference, across all layers, 379

in model outputs for counterfactuals generated with 380

different parses. This showed how lower counter- 381

factual losses (i.e., more interventions) and higher 382

dropout typically revealed larger effects. 383

Additionally, we note that the probes were 384

trained to parse single sentences, but two of the 385

models (QA and NLI) accepted two sentences as in- 386

puts. For both models, counterfactual embeddings 387

were creating by only updating the syntactically- 388

ambiguous sentence and then concatenating it to 389

the unaltered other embeddings. 390

4.2.1 Masked Language Model 391

In testing the Mask model, we largely reproduced 392

patterns in prior results that such models use rep- 393

resentations of syntax causally, although we found 394

new results with dropout depth probes. We tested 395

the model with ambiguity test suites inspired by the 396

Coordination and NP/Z suites from Tucker et al. 397

(2021). For example, in the Coordination suite, 398

one sentence reads, “The man saw the girl and 399
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Figure 4: For the Coordination (left) and NP/Z (right) suites, interventions to a lower counterfactual loss (x axis)
and with higher-dropout probes (different curves) revealed the greatest causal effects. Means and standard errors.

the dog [MASK] tall.” One may plausibly insert400

either a plural or singular noun in the masked lo-401

cation, depending upon the syntactic interpretation402

of the sentence. We generated sentences using403

a template-based method; details of the prompts404

(and all prompts in this work) are included in Ap-405

pendix B.406

The results of passing z′ generated from differ-407

ent parses in the Coordination suite through the408

rest of the Mask model are plotted in Figure 3. The409

three plotted lines correspond to the model output410

using the normal embeddings (green), using z′ gen-411

erated according to a parse favoring plural verbs412

(red dashed), or using z′ generated using parses413

implying singular verbs (blue solid). The y axis414

corresponds to the probability the model assigned415

to words implying a plural interpretation (“were,”416

“are,” and “as”) fitting in the masked location, nor-417

malized by the sum of probabilities assigned to418

those plural words or singular words (“was” and419

“is”). If the Mask model uses syntactic representa-420

tions correctly, counterfactuals from plural parses421

should increase the probability of plural words.422

We indeed found that effect, although it is clear-423

est when using dropout probes. The causal effects424

using standard probes are plotted in the left col-425

umn; we reproduced the findings from prior art426

that distance-based probes create the desired effect,427

but depth-based probes had little to no effect. Con-428

versely, when using dropout probes with α = 0.4429

(right column), we found much larger effects.430

Averaging across all layers, we also measured431

the mean difference in output when using counter-432

factual embeddings generated according to differ-433

ent parses. Intuitively, this generated a single num-434

ber that captured the average difference between435

the red and blue lines in the plots in Figure 3.436

For a range of dropout values and counterfactual437

losses, we plotted the mean causal effect for the 438

Coordination and NP/Z suites in Figure 4, using dis- 439

tance probes. For a given counterfactual loss, using 440

higher dropout probes produced larger effects. In 441

addition, lower counterfactual losses (correspond- 442

ing to more gradient steps) induced greater effects. 443

These trends also held true for depth-based probes 444

(Appendix D). Overall, using the Mask model, we 445

recreated prior art and found new evidence that 446

models also use a depth-based representation of 447

syntax. 448

4.2.2 QA Model 449

We also found that the QA model used representa- 450

tions of syntax causally, contrary to prior findings, 451

through a series of similar causal analysis experi- 452

ments using syntactically-ambiguous inputs. The 453

QA model is a BERT-based model fine-tuned on a 454

question-answering task to map from context and 455

a question to a continuous span of the context that 456

answered the question (Rajpurkar et al., 2016). 457

We performed experiments using depth- and 458

distance-based probes, using dropout values at in- 459

crements of 0.1 from 0 to 0.9. We used three test 460

suites for analyzing the causal use of syntax in 461

the QA model: “Coordination”, “Relative Clause” 462

(RC), and a “Noun Phrase/Verb Phrase” (NP/VP) 463

suite. The Coordination suite consisted of 256 464

prompts with coordination ambiguity like, “I saw 465

the men and the women were tall. Who was tall?” 466

The RC suite consisted of 193 prompts with attach- 467

ment ambiguity of a relative clause like, “I saw the 468

women and the men who were tall. Who was tall?” 469

The NP/VP suite consisted of 256 prompts like, 470

“The girl saw the boy with the telescope. Who had 471

the telescope?” Prompts were designed such that 472

answers were dictated by syntactic interpretations. 473

Findings for the Coordination suite are plotted 474

in Figure 5. On the y axis, we plotted the model’s 475

6



QA Model Causal Effect on Coordination Suite by Layer
Dropout 0 Dropout 0.4

D
ep

th
D

is
ta

nc
e

Figure 5: Causal effects for the QA model using depth- (top row) and distance- (bottom row) based probes with
dropout of 0 (left column) or 0.4 (right column) on the Coordination corpus to counterfactual loss 0.05. Dropout
probes produce more stable and larger effect sizes. Means and standard deviations over 5 trials plotted.
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Figure 6: Mean causal effects when using depth-based probes for the QA test suites. Smaller counterfactual losses
and higher dropout rates typically induced greater effects, although the scale of the effects varied by suite (note
different axis scales). Means and standard deviations over 5 trials.

prediction of words in the first noun phrase (NP1)476

starting the answer. Correct causal use of repre-477

sentations of syntax would move the red line (cor-478

responding to parses indicating NP1) above the479

original outputs, in green, and the blue line (for the480

other parse) below.481

Unlike prior art, we found evidence that QA482

models use representations of syntax causally. In483

the left column of Figure 5, we found similar results484

to prior art: using standard depth-based probes pro-485

duced noisy results, and distance-based probes had486

a small effect. (In fact, this effect size shrank if we487

only trained the distance probe for 30 epochs, as in488

prior art, instead of the 100 epochs we used, indi-489

cating the importance of well-trained probes.) In490

contrast to the standard probes, the dropout probes,491

plotted in the right column, revealed much larger492

effects of syntactic interventions.493

More systematic analysis for all dropout rates,494

using distance and depth-based probes for all 3495

test suites confirmed these trends. We plotted the496

aggregate metrics for all suites using depth probes497

in Figure 6. The causal effects were smaller in498

the RC and NP/VP suites than in the Coordination 499

suite, indicating that the model may have learned 500

a weaker causal link for these syntactic relations. 501

Nevertheless, all suites demonstrate the importance 502

of using dropout in probes: without dropout (solid 503

black curve), the causal effects were smaller than 504

for any positive dropout rate. 505

We note briefly that the causal effects uncovered 506

by dropout probes may not be solely attributed to 507

dropout probes performing better at their parsing 508

task. In fact, adding dropout worsened probe per- 509

formance according to typical probe performance 510

metrics (Appendix E). 511

4.2.3 NLI Model 512

Lastly, we performed similar causal analysis on the 513

NLI and NLI-HANS models and, in contrast to the 514

Mask and QA models, we found no evidence for 515

the causal use of syntax using any of our probes for 516

either model. The NLI model was finetuned on just 517

the MNLI corpus, and the NLI-HANS model was 518

finetuned with both the MNLI and HANS corpora, 519

based on code from Gao et al. (2021). The NLI 520

7



QA F1 via Interventions

Figure 7: Using dropout probes over a range of dropout
values (different curves) and counterfactual stopping
losses improved model performance, and dropout typ-
ically improved performance. Medians and quartiles
plotted over 5 trials.

model had a test set accuracy of 86%, and the NLI-521

HANS model had test set accuracy of 93%.522

We used a test suite based on the Coordination523

suite already introduced in this work: an example524

prompt was “The person saw the keys in the cab-525

inets which are green. The keys are green.” The526

models had to classify these inputs among three527

classes of entailment, contradiction, or neutrality.528

Ultimately, we failed to find any evidence that529

either the NLI or the NLI-HANS model used syn-530

tactic information causally. The models always531

predicted entailment for all prompts, whether using532

original embeddings or counterfactuals generated533

for different parses. We used distance probes with534

dropout values from 0 to 0.9 and created counterfac-535

tuals for losses from 0.05 to 0.3 and never observed536

a shift in predicted probability mass of more than537

1% when using counterfactuals. Unfortunately, this538

suggests that simply augmenting the MNLI dataset539

with HANS may not be enough to produce a model540

that uses syntactic information causally.541

4.3 Boosting Performance with Probes542

Earlier, we demonstrated that the QA model543

causally used representations of syntax for pre-544

dictions; here, we showed that we could improve545

QA model performance at test time by “injecting”546

syntactic information into embeddings. Because547

prior art had not found that QA models used syntax548

causally, such interventions were not previously549

pursued, as far as we are aware.550

We designed a new, syntactically challenging551

“Intervene” test suite of 288 prompts for the QA552

model. Example prompts are “The person saw553

the keys by the cabinet which was green. What554

was green?” and “The person saw the keys by the555

cabinet which were green. What was green?” An-556

swering correctly (“the cabinet” first and “the keys”557

second) depends upon using noun-verb agreement. 558

We used template-generated parse trees for each 559

sentence and distance probes to create counterfac- 560

tual embeddings for each sentence at layer 4 of the 561

QA model. Layer 4 was chosen based on perfor- 562

mance on a validation dataset (Appendix C). 563

We passed the original and counterfactual em- 564

beddings through the QA model and measured per- 565

formance on a test suite. F1 performance is plot- 566

ted in Figure 7; exact match metrics had similar 567

trends. Typically, higher-dropout probes improved 568

performance more, although the highest-dropout 569

probes deteriorated for the lowest counterfactual 570

losses. We hypothesize that this deterioration cor- 571

responded to generating out-of-distribution embed- 572

dings, but this topic warrants further study. 573

Lastly, we performed a similar experiment us- 574

ing the NLI and NLI-HANS models using 486 575

prompts drawn from the HANS dataset like “The 576

doctor near the actor danced. The actor danced” 577

(McCoy et al., 2019). The NLI model achieved 578

50% accuracy (always predicting entailment) and 579

the NLI-HANS model achieved 99% accuracy. Nei- 580

ther model’s accuracy changed significantly when 581

using counterfactuals with the correct parse for the 582

first sentence, yet again indicating that these mod- 583

els may not use representations of syntax causally. 584

5 Contributions and Conclusion 585

In this work, we designed and evaluated “dropout 586

probes,” a new neural probing architecture for gen- 587

erating useful causal analysis of trained language 588

models. Our technical contribution — adding a 589

dropout layer before probes — was inspired by a 590

theory of redundant syntactic encodings in mod- 591

els. Our results fit within three categories: we 592

showed that 1) models encoded syntactic informa- 593

tion redundantly, 2) dropout probes, unlike stan- 594

dard probes, revealed that QA models used syn- 595

tactic representations causally, and 3) by injecting 596

syntactic information at test time in syntactically- 597

challenging domains, we could increase model per- 598

formance without retraining. 599

Despite our step towards better understanding of 600

pretrained models, future work remains. Natural 601

extensions include studying pretrained models be- 602

yond those considered in this work, further research 603

into redundancy in embeddings, more investigation 604

into inserting symbolic knowledge into neural rep- 605

resentations, and new methods for training models 606

to respond appropriately to interventions. 607
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6 Ethical and Broader Impacts608

While the majority of this paper details the tech-609

nical contributions of our work, here, we briefly610

consider some of the possible consequences of our611

findings based on transparency and causal model-612

ing.613

Fundamentally, we believe that causal analysis614

of models is a powerful tool towards more ethical615

AI. Our dropout probes enable better inspection of616

models, providing possible mechanisms for regula-617

tors, ethicists, and even the general public to better618

understand AI systems with which they interact.619

By injecting information into models at test time,620

as demonstrated in Section 4.3, we provide another621

mechanism for people to control model behavior.622

Thus, our tool may reinforce values of transparency623

and value-alignment in AI, contingent upon access624

to the model for probing.625

While we hope that our probing mechanism will626

be used for good, misuse of the tool is certainly627

possible. In particular, the very causal rules that628

our tool uncovers may be used to reinforce biases.629

For example, people may attempt to argue that a630

gender bias exhibited by a model are evidence of631

the “correctness” of that bias. We urge readers to632

remember that models likely reflect biases present633

in human-generated data and certainly not “true”634

stereotypes.635

We also note that the transparency benefits of our636

technique are not universally accessible. Training a637

single probe on a single layer took approximately 2638

minutes on an NVIDIA GeForce 3080; generating639

counterfactuals took approximately 1 second per640

counterfactul on similar hardware. Although these641

operations individually are relatively lightweight642

(and certainly less computationally intensive than643

finetuning a whole model), systematic evaluation of644

models for many layers, multiple probes, and many645

counterfactuals is more challenging. Furthermore,646

all analysis assumes access to the internals of the647

pretrained model itself.648

Lastly, while our work is limited to diagnosis of649

existing models, we hope that it will enable impor-650

tant future research in causally-motivated models.651

We hope to ultimately develop models that blend652

causal rules based on human guidance with emer-653

gent learned patterns from data. Our work can654

complement such research by certifying that mod-655

els have indeed learned the desired rules.656
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the product of the marginals as Q. Let us further821

state that P and Q define outputs that are jointly in822

RD.823

A lower-bound for the KL divergence is as fol-824

lows, setting F as any class of functions that maps825

from RD to R:826

DKL(P ||Q) ≥ supT∈F EP [T ]− (EQ[e
T ]) (1)827

In other words, one can lower bound the mutual828

information by finding a function, T , that max-829

imizes the difference between the two terms in830

Equation 1. Belghazi et al. (2018) do so with func-831

tions parametrized as a neural net that maps from832

the concatenation of two inputs (one for each ran-833

dom variable) to a single-valued output. Training834

the neural net is conducted to maximize the value835

described by Equation 1.836

In our experiments, we create neural networks837

with separate, linear layers of size 64 for each input.838

The embeddings from those two layers are concate-839

nated, passed through two 1024-dimensional layers840

with ReLU activations, and then passed through a841

linear layer with a single output. We thus mapedp842

from the two inputs to a single, real-valued output.843

Training was performed using batch size 32 over844

50 epochs, at which point the mutual information845

estimates appeared to have converged.846

B Test Suite Creation847

Here, we specify the details of the test suites used848

to evaluate models for reproducibility.849

The Mask model Coordination test suite com-850

prised sentences like “The man saw the girl and851

the dog [MASK] tall.” More generally, sentences852

followed the following template: “The NN1 V the853

NN2 and the NN3 [MASK] ADJ.” We created all854

sentences by iterating through the combinations855

of the words described in Table 2. This generated856

243 sentences, and each sentence was associated857

with 2 parses: one described as a conjunction of858

sentences (e.g., “(The man saw the girl) and (the859

dog [MASK] tall.)”) and one as a single sentence860

with a conjunction of noun phrases (e.g., “The man861

saw (the girl and the dog) [MASK] tall.”).862

The mask model NP/Z test suite comprised863

sentences like, “When the dog scratched the vet864

[MASK] ran.” More generally, sentences followed865

the following template: “When the NN1 V1 the866

NN2 [MASK] V2.” Each sentence was associ-867

ated with two parses, favoring either adverbs (e.g.,868

Category Words
NN1 man, woman, child
NN2 boy, building, cat
NN3 dog, girl, truck

V saw, feared, heard
ADJ tall, falling, orange

Table 2: Words used for sentence generation in the Mask
Coordination test suite.

”When the dog scratched the vet quickly ran” or 869

nouns, “When the dog scratch the vet she ran”). 870

We used the word tuples described in Table 3, in- 871

spired by prior art, to generate 150 sentences. 872

The QA model Coordination test suite comprised 873

prompts like “Who was tall? The happy stranger 874

saw the angry men and the angry women were tall.” 875

More generally, the prompts followed the following 876

template: “Who was ADJ1? The ADJ2 NN1 V the 877

ADJ3 NN3 and the ADJ4 NN4 were ADJ1.” We 878

created 256 prompts by iterating through combina- 879

tions of the words in Table 4. “None” adjectives 880

were excluded from the text. 881

The QA model NP/VP suite comprised prompts 882

like “Who had the telescope? The girl saw the 883

boy with the telescope.” The prompts followed 884

the following template: “Who had the NN1? The 885

ADJ1 NN2 ADV V the ADJ2 NN3 with the ADJ3 886

NN4.” In this suite, the choice of V and NN4 was 887

tightly coupled - one may see with a telescope but 888

not see with a stick, for example. Table 5 details the 889

combinations of words used to fill out the template, 890

including V-NN4 pairs. Overall, we generated 256 891

prompts. 892

The QA model RC suite comprised prompts like 893

“Who was desperate? The women and the men 894

who were desperate bribed the politician.” The 895

prompts followed the following template: “Who 896

was ADJ1? The ADJ2 NN1 and the ADJ3 NN2 897

who were ADJ1 V the NN3.” We generated 192 898

example prompts by iterating over combinations 899

of the words listed in Table 6, excluding sentences 900

in which NN1 and NN2 or ADJ2 and ADJ3 would 901

have been the same. 902

The Intervention suite for the QA model com- 903

prised prompts like “What was green? The human 904

saw the keys by the cabinet which were green.” 905

More generally, prompts were created via the fol- 906

lowing template: “What was ADJ1? The NN1 V 907

the NN2 by the NN3 which was/were ADJ1.” By 908

changing the plurality of NN2 or NN3 and replac- 909
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NN1 V1 NN2 V2
(dog/child) (scratched/bit) (vet/girl/boy) (ran/screamed/smiled)
author wrote book grew
(doctor/professor) lectured student listened
(girls/boys) raced (kids/children) (watched/cheered)
(people/spectators) watched (show/movie) (stopped/paused)
(lawyers/judges) (studied/considered) case (languished/proceeded)
(people/viewers) (notice/spot) actor (departs/stays)
(band/conventions) left (hotel/stalls) closed

Table 3: Words used for sentence generation in the Mask NP/Z test suite.

Category Words
ADJ1 tall, short
ADJ2 happy, None
ADJ3 angry, None
ADJ4 angry, None
NN1 stranger, child
NN2 men, women
NN3 women, men

V saw, believed

Table 4: Words used for sentence generation in the QA
Coordination test suite.

Category Words
V - NN4 (saw, telescope), (poked, stick)

ADJ1 tall, None
ADJ2 short, None
ADJ3 special, None
NN1 man, woman
NN2 boy, girl

Table 5: Words used for sentence generation in the QA
NP/VP test suite.

ing “was” with “were,” the correct answer should910

change. Overall, we generated 288 sentences by911

iterating over all combinations of the words listed912

in Table 7, such that exactly one of NN1 and NN2913

was plural at a time.914

C Hyperparameter Selection915

In the intervention experiments in Section 4.3, we916

performed interventions at layer 4, based on results917

of a validation study shown below. We reported918

the results for probes with different dropout rates919

and for varying counterfactual losses, but we had920

to choose the layer of the QA model at which to921

perform interventions.922

Therefore, we created a validation suite based on923

the Intervention template, using new nouns, verbs,924

Category Words
ADJ1 corrupt, desperate
ADJ2 tall, smart, rich
ADJ3 tall, smart, rich
NN1 men, women
NN2 men, women
NN3 judge, politician

Table 6: Words used for sentence generation in the QA
RC test suite.

Category Words
ADJ1 green, large, dirty
NN1 human, stranger, child
NN2 key, keys, gadget, gadgets
NN3 cabinet, cabinets, vase, vases

Table 7: Words used for sentence generation in the QA
intervention experiments.

and adjectives. For dropout rates from 0.0 to 0.3, 925

ranging over counterfactual losses, and layers from 926

1 to 7, we computed the QA model’s F1 and Exact 927

Match scores on the validation suite. These results 928

are included in Table 8, and strongly suggested that 929

performance, for all probes, was most increased 930

via interventions at layer 4. 931

D Varying Dropout Rates 932

In the main paper, we reported included only some 933

of the results for distance- and depth-based probe 934

interventions. Here, we first show, in more detail, 935

how increasing the dropout rate grows the causal 936

effect with the QA attachment suite and distance 937

probes of varying α. Next, we include the mean 938

causal effect plots for Mask and QA models using 939

both types of probes on the 5 total suites. 940

First, we plotted an example of how increas- 941

ing the dropout rate grew the causal effect in the 942

QA attachment quite in Figure 8. We found that 943
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α/Loss Layer 0.05 0.1 0.2 0.3

Dist. 0.0

1 71.9/59.4 72.7/60.9 73.4/60.9 73.4/60.9
2 69.5/56.3 71.9/60.9 71.9/60.9 71.9/59.4
3 71.1/60.9 71.1/59.4 71.9/59.4 71.9/59.4
4 71.9/62.5 72.6/60.4 71.9/59.4 73.4/60.9
5 68.8/57.8 68.8/56.3 72.7/60.9 73.4/62.5
6 68.8/57.8 69.5/59.4 71.9/60.9 72.7/62.5
7 70.3/60.9 70.3/60.9 72.6/62.5 72.6/62.5

Dist. 0.1

1 69.5/56.3 71.1/59.4 71.9/59.4 71.9/59.4
2 68.8/60.9 70.3/60.9 69.3/59.4 71.1/59.4
3 67.2/56.4 69.5/60.9 72.7/60.9 73.4/62.5
4 75.8/64.1 72.7/60.9 72.7/60.9 72.7/60.9
5 68.8/56.3 70.3/59.4 71.9/57.8 71.1/56.3
6 75.0/59.4 72.7/60.9 73.4/62.5 73.4/62.5
7 72.7/60.9 72.7/62.5 72.7/62.5 72.7/60.9

Dist. 0.2

1 69.5/54.7 70.3/56.3 72.7/59.4 73.4/60.9
2 73.4/60.9 74.2/59.4 74.2/62.5 74.2/62.5
3 70.3/59.4 69.5/56.3 71.1/57.8 71.9/57.8
4 74.2/65.6 75.0/65.6 75.8/65.6 75.0/64.1
5 71.1/62.5 71.9/64.1 71.1/62.5 71.9/60.9
6 73.4/62.5 71.8/59.4 74.2/62.5 74.2/62.5
7 71.9/59.4 73.4/62.5 72.7/62.5 72.7/60.9

Dist. 0.3

1 67.2/54.7 70.3/59.4 73.4/62.5 72.7/60.9
2 68.8/60.9 71.1/60.9 72.7/62.5 71.9/60.9
3 61.7/53.1 64.8/56.3 71.9/64.1 72.3/65.6
4 67.2/59.4 71.9/64.1 75.0/65.6 75.8/65.6
5 62.5/56.3 68.8/59.4 70.3/62.5 70.3/62.5
6 71.1/62.5 711/64.1 70.3/60.9 71.1/60.9
7 75.0/64.1 72.7/62.5 71.9/62.5 73.4/62.5

Table 8: Validation Coord. suite results (F1/Exact Match) using distance probes. For each probe type, we iterated
over intervention layer and counterfactual loss value. The small validation suite was useful for rapid identification
of good hyperparameter settings. All probes had the best performance at layer 4 (in bold).

positive dropout values consistently outperformed944

probes with no dropout. Furthermore, for α rang-945

ing from 0.1 to 0.4, increasing the dropout rate946

seemed to increase the effect size. Considering947

only interventions at layer 2, for example, vanilla948

probes shifted model predictions by at most 2%949

for different parses; for probes with dropout 0.5,950

probabilities shifted by roughly 20%.951

Finally, we included results for all dropout rates952

and counterfactual losses in Figures 9 and 10.953

E Probe Performance Metrics954

In the main paper, we demonstrated the benefits955

of using dropout probes for creating counterfac-956

tual embeddings. One could hypothesize that the957

dropout enables better counterfactuals because the958

probes are prevented from overfitting to the training959

data. We found that that was not the case. 960

In Figure 11, we plotted probe performance met- 961

rics for the distance- and depth-based probes. For 962

the distance probe, we reported the spearman cor- 963

relation coefficient between predicted and actual 964

pairwise distances between words in a sentence’s 965

parse tree. For the depth probe, we reported the 966

accuracy of the probe in predicting the word at the 967

root of the syntax tree. Both metrics were used 968

in prior probing literature (Hewitt and Manning, 969

2019). 970

We found that, while using non-linear probes 971

boosted probe performance compared to linear 972

probes, adding dropout actually worsened probe 973

performance. This suggests that the benefits from 974

dropout in counterfactual generation arose from a 975

phenomenon other than higher-performing probes. 976
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Figure 8: Dropout distance probes with dropout rates from 0.0 to 0.5 showed how, to a point, increasing the dropout
rate increased the effect size for QA models on the Coord. suite.

F Scientific Artifacts 977

In this work, we built upon pre-existing scientific 978

artifacts, including datasets and publicly-avaible 979
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Figure 9: Mask mean causal effects using depth- (top) or distance-based (bottom) probes. Depth probes revealed
smaller effects than distance-based probes, but a similar pattern of benefiting from lower counterfactual loss and
higher dropout.
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Figure 10: QA mean causal effects using depth-based (top) or distance-based (bottom) probes.

code. Here, we briefly list their licenses and in-980

tended use cases. We used all artifacts for purely981

academic purposes.982

The Penn TreeBank is licensed under the “LDC983

User Agreement for Non-Members” (Marcus et al.,984

1993). The dataset is commonly used in many aca-985

demic settings (e.g., Hewitt and Manning (2019);986

Tucker et al. (2021)). 987

The Stanford Question Answering Dataset 2.0 is 988

under a creative commons license and is commonly 989

used in academic settings (Rajpurkar et al., 2016). 990

The MNLI dataset is under an OANC license, 991

“which allows all content to be freely used, modi- 992

fied, and shared under permissive terms” (Williams 993
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Figure 11: Metrics for the distance (left) and depth (right) probes showed that introducing dropout worsened probe
performance as measured on the probe prediction tasks. Means over 5 trials plotted. All standard deviations less
than 0.01.

et al., 2018). The HANS dataset is under an MIT994

license (McCoy et al., 2019). Both datasets are995

commonly used in academic settings (McCoy et al.,996

2019).997

The code we used to train the NLI and NLI-998

HANS models is under an Apache License 2.0999

(Gao et al., 2021) and was developed for academic1000

use.1001
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