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Abstract—It has been a long-standing research goal to endow
robot hands with human-level dexterity. Bimanual robot piano
playing constitutes a task that combines challenges from dynamic
tasks, such as generating fast and precise motions, with slower
but contact-rich manipulation problems. Although reinforcement
learning-based approaches have shown promising results in single-
task performance, these methods struggle in a multi-song setting.
Our work aims to close this gap and, thereby, enable imitation
learning approaches for robot piano playing at scale. To this
end, we introduce the Robot Piano 1 Million (RP1M) dataset,
containing bimanual robot piano playing motion data of more than
one million trajectories. We formulate finger placements as an
optimal transport problem, thus enabling automatic annotation of
vast amounts of unlabeled songs. With RP1M, we train a multi-
song piano playing policy with imitation learning approaches
at scale, leveraging flow matching as the policy representation.
Experiments show that our method obtains promising results.

I. INTRODUCTION

Empowering robots with human-level dexterity is notoriously
challenging. Robot piano playing combines various aspects
of dynamic and manipulation tasks: the agent is required to
coordinate multiple fingers to precisely press keys, which is a
high-dimensional and rich control task. RoboPianist [14] is a
simulated piano-playing environment that features two Shadow
robot hands. Sheet music is represented by Musical Instrument
Digital Interface (MIDI) transcription. Each time step in the
MIDI file specifies which piano keys to press. RoboPianist uses
human-annotated fingering information, telling which finger is
supposed to press a particular piano key at each time step, to
form a dense reward function for training RL agents. Since
asking human pianists to annotate the fingering for each musical
note is very expensive, Pianomime [8] replaces the human-
annotated fingering with extracted hand motions from collected
human piano playing videos on YouTube. To obtain high quality
human hand motion data, FürElise [13] builds a data capture
setup with five GoPro cameras placed around the piano to
provide multi-view recordings of elite pianists’ performances,
reconstructs the motions with vision-based methods, and refines
the reconstructed motions with inverse kinematics. However,
relying on human annotations or demonstrations to train a
piano-playing agent with RL restricts it to reproducing only
human-labeled or demonstrated music pieces, yet many songs
lack annotated fingerings or performance videos. Besides, those
annotations may be infeasible for robots with morphologies
different from human hands, such as different numbers of
fingers or distinct hand dimensions. In addition, although RL-
based approaches have shown promising results in single-task
performance, they struggle in the multi-song setting [14]. The

advent of scalable imitation learning (IL) techniques [2] enables
representing complex and multi-modal distributions. So far,
creating large datasets for robot piano playing is problematic
due to the time-consuming fingering annotations. We propose
an automatic fingering method that formulates the fingering
problem as an optimal transportation problem [15]. It enables
robots with different hand morphologies to play the piano
given only MIDI files without any human demonstrations
or annotations. The automatic fingering also allows learning
piano playing with different embodiments, such as robots with
four fingers only. We then collect Robot Piano 1 Million
dataset (RP1M), which comprises the motion data of high-
quality bi-manual robot piano play, by training RL agents for
each of the 2k songs and rolling out each policy 500 times with
different random seeds. With RP1M, we train a multi-song
piano robotic playing policy for bi-manual dexterous robot
hands using imitation learning at scale.

II. METHOD

Task setup. The simulated piano-playing environment is
built upon RoboPianist [14]. The piano playing environment
features a full-size keyboard with 88 keys driven by linear
springs, two Shadow robot hands [9], and a pseudo sustain
pedal. Sheet music is represented by Musical Instrument Digital
Interface (MIDI) transcription. Each time step in the MIDI
file specifies which piano keys to press (active keys). The
goal of a piano-playing agent is to press active keys and avoid
inactive keys under space and time constraints. The observation
includes the state of robot hands, fingertip positions, piano
sustain state, piano key states, and a goal vector. The action
space consists of the robot hands’ joint positions, forearms’
positions, and a sustain pedal. We evaluate the performance
of the trained agent with an average F1 score calculated by
F1 = 2 · precision·recall

precision+recall . For piano playing, recall and precision
measure the agent’s performance on pressing the active keys
and avoiding inactive keys respectively [14].

Piano Playing with RL. We use RL to train specialist agents
per song to control the bimanual dexterous robot hands to play
the piano, without any human fingering labels or demonstra-
tions. We frame the piano playing task as a finite MDP. At
time step t, the agent πθ(at|st), parameterized by θ, receives
state st and takes action at to interact with the environment
and receives new state st+1 and reward rt. The agent’s goal is
to maximize the expected cumulative rewards over an episode
of length H , defined as J = Eπθ

[∑H
t=0 γ

trt(st, at)
]
, where

γ is a discount factor ranging from 0 to 1.
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Fig. 1. Overview of RP1M. (Left) RP1M is a large-scale motion dataset for piano playing with bi-manual dexterous robot hands. The dataset includes
∼1M expert trajectories collected by ∼2k RL specialist agents. (Right) To collect a diverse motion dataset of playing sheet music, we lift the requirement of
human-annotated fingering by formulating the finger placement as an optimal transport problem such that the robot hands play piano in an energy-efficient way.

Fingering Generation with Optimal Transport. Fingering
is the assignment of fingers to notes, mapping which finger
is supposed to press a particular piano key at each time step.
Although fingering is highly personalized, generally speaking, it
helps pianists to press keys timely and efficiently. Motivated by
this, apart from maximizing the key pressing rewards, we also
aim to minimize the moving distances of fingers. Specifically,
at time step t, for the i-th key ki to press, we use the j-th
finger f j to press this key such that the overall moving cost
is minimized. We define the minimized cumulative moving
distance as dOT

t ∈ R+:

dOT
t = min

wt

∑
(i,j)∈Kt×F

wt(k
i, f j) · ct(ki, f j),

s.t., i)
∑
j∈F

wt(k
i, f j) = 1, for i ∈ Kt,

ii)
∑
i∈Kt

wt(k
i, f j) ≤ 1, for j ∈ F,

iii) wt(k
i, f j) ∈ {0, 1}, for (i, j) ∈ Kt × F.

(1)

Kt represents the set of keys to press at time step t and
F represents the fingers of robot hands. ct(ki, f j) represents
the cost of moving finger f j to piano key ki at time step t
calculated by their Euclidean distance. wt(k

i, f j) is a boolean
weight. It enforces that each key in Kt will be pressed by
only one finger in F , and each finger presses at most one key.
The constrained optimization problem in Eq. (1) is an optimal
transport problem. Intuitively, it tries to find the best ”transport”
strategy such that the overall cost of moving (a subset of)
fingers F to keys Kt is minimized. We solve this optimization
problem with a modified Jonker-Volgenant algorithm [3] and
use the optimal combinations (i∗, j∗) as the fingering for the
agent. The fingering is calculated on the fly based on the hands’
state, so during the RL training, the fingering adjusts according
to the robot hands’ state. We define a reward rOT

t based on
dOT
t to encourage the agent to move the fingers close to the

keys Kt:

rOT
t =

{
exp(c · (dOT

t − 0.01)2) if dOT
t ≥ 0.01,

1.0 if dOT
t < 0.01.

(2)

c is a constant scale value, and we use the same value as Tassa
et al. [12]. The overall reward function is defined as:

rt = rOT
t + rPress

t + rSustain
t + α1 · rCollision

t + α2 · rEnergy
t (3)

rPress and rSustain
t represent the reward for correctly pressing

the target keys and the sustain pedal. rCollision
t encourages the

agent to avoid collision between forearms and rEnergy
t prefers

energy-saving behaviors.
Large-Scale Motion Dataset Collection. Removing the

requirement of human fingering labels allows the agent to
play any sheet music available on the Internet (under copyright
license). We collect and release a large-scale motion dataset for
piano playing, called Robot Piano 1 Million (RP1M) dataset.
Our dataset includes ∼1M expert trajectories covering ∼2k
musical pieces. For each musical piece, we train an individual
RL agent with our method for 8 million environment steps
and collect 500 expert trajectories with the trained agent. We
chunk each sheet music every 550 time steps, corresponding
to 27.5 seconds, so that each run has the same episode length.
The sheet music used for training is from the PIG dataset [7]
and a subset (1788 pieces) of the GiantMIDI-Piano dataset [5].
In Fig. 2, we show the statistics of our collected motion dataset.
The top plot shows the histogram of the pressed keys. We found
that keys close to the center are more frequently pressed than
keys at the corner. Also, white keys, taking 65.7%, are more
likely to be pressed than black keys. In the bottom left plot,
we show the distribution of the number of active keys over
all time steps. It roughly follows a Gaussian distribution, and
90.70% musical pieces in our dataset include 1000-4000 active
keys. We also include the distribution of F1 scores of trained
agents used for collecting data. We found most agents (79.00%)
achieve F1 scores larger than 0.75, and 99.89% of the agents’
F1 scores are larger than 0.5. The distribution of F1 scores
reflects the quality of the collected dataset. We empirically
found agents with F1 score ≥ 0.75 are capable of playing sheet
music reasonably well with only minor errors. Agents with ≤
0.5 F1 scores usually have notable errors due to the difficulty
of songs or the mechanical limitations.

Training a Multi-song Policy with IL. With RP1M, we can
train a multi-song piano playing policy with imitation learning
approaches at scale. Considering the difficulty of piano playing
and the multimodality in the data distribution, we need a
policy representation that is expressive enough to capture the
complexity in the dataset. We formulate the robot behavioral
cloning policy as a generative process using flow matching [6].
It constructs a flow vector that continuously transforms a source
probability distribution into a target distribution. Instead of
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Fig. 2. Statistics of our RP1M dataset. (Top) Histogram of pressed keys in our RP1M dataset. (Bottom Left) Distribution of the number of active keys over
all time steps. (Bottom Right) Distribution of F1 scores in our dataset.

relying on stochastic differential equations by introducing noise
like DDPM [4], flow matching uses an ordinary differential
equation to deterministically shape the data distribution. Sim-
ilar to Diffusion Policy [2], we model the flow estimation
conditioned on input observations and output the robot hand
actions. We compare it with a simple MLP-based BC, and the
Diffusion Policy with DDIM [11].

III. EXPERIMENTS

A. Single-song Policy Learning

We compare our method to baselines with human fingering
(RoboPianist-RL) and without human fingering (No Fingering).
RoboPianist-RL includes human fingering in its inputs, and
the fingering information is also used in the reward function to
force the agent to follow this fingering. Our method, marked
as OT, removes the fingering from the observation space and
uses OT-based finger placement to guide the agent to discover
its own fingering. The first two columns of Fig. 3 show that
our method matches RoboPianist-RL’s performance on two
different songs. Our method outperforms the baseline without
human fingering by a large margin, showing that the proposed
OT-based finger placement boosts agent learning. The proposed
method works well even on challenging songs. We test our
method on Flight of the Bumblebee and achieve a 0.79 F1
score after 3M training steps.

Analysis of the Learned Fingering. We compare the finger-
ing discovered by the agent itself and the human annotations.
In Fig. 4, we visualize the sample trajectory of playing French
Suite No.5 Sarabande and the corresponding fingering. We
found that although the agent achieves strong performance
for this song (the second plot in Fig. 3), our agent discovers
different fingering compared to humans. For example, for the
right hand, humans mainly use the middle and ring fingers,
while our agent uses the thumb and first finger. Furthermore,
in some cases, human annotations are not suitable for the robot
hand due to different morphologies. For example, in the second
time step of Fig. 4, the human uses the first finger and ring
finger. However, due to the mechanical limitation of the robot

hand, it can not press keys that far apart with these two fingers,
thus mimicking human fingering will miss one key. Instead,
our agent discovered to use the thumb and little finger, which
satisfies the hardware limitation and accurately presses the
target keys.

Cross Emboidments. Labs usually have different robot
platforms, thus having a method that works for different
embodiments is highly desirable. We test our method on a
different embodiment. To simplify the experiment, we disable
the little finger of the Shadow robot hand and obtain a
four-finger robot hand, which has a similar morphology to
Allegro [1] and LEAP Hand [10]. We evaluate the modified
robot hand on the song French Suite No.5 Sarabande (first
550 time steps), where our method achieves a 0.95 F1 score,
similar to the 0.96 achieved with the original robot hands. In
the bottom row of Fig. 4, we visualize the learned fingering
with four-finger hands. The agent discovers different fingering
compared to humans and the original hands but still accurately
presses active keys, meaning our method is compatible with
different embodiments.

B. Multi-song Policy Learning

The objective here is to train a single multi-task policy
capable of playing various music pieces on the piano.

Design Choices of Input Observation. We try different
options for input observation. We trained several MLP-based
policies on 12 songs with different designs of observation and
evaluated their in-distribution performance (F1 scores on songs
included in the training data). As shown in Fig. 5, when we
only include the goal, piano state, and hand joints of the current
step in the observation, the agent performs the worst. After
we add fingertip positions in the observation, we obtain an
improvement on the average F1 score. We additionally add 3
steps of future goals in the observation and the performance
improves again, showing that it is reasonable to give the agent
some lookahead information. We then increase the number of
steps of future goals to 10 and obtain the best performance.

Comparing Different Policy Representations. We first
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Fig. 3. Comparison of the RL performance with our OT fingering, human-annotated fingering, and no fingering. Our method matches the performance of
RoboPianist-RL, which is trained with human fingering. We also outperforms the baseline without any fingering information by a large margin. The plots show
the mean over 3 random seeds and the shaded areas represent the 95% confidence interval.
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TABLE I
COMPARING DIFFERENT POLICY REPRESENTATIONS ON 150 SONGS.

In-Distribution Out-of-Distribution
MLP 0.3377 0.2372

DDIM 0.6649 0.2934
FM 0.6839 0.3221

take 12 songs from the RP1M dataset to train the policies and
evaluate their in-distribution performance. As shown in Fig. 6,
flow matching policy works the best compared with Diffusion
Policy with DDIM. The MLP-based method performs the worst
since it is not expressive enough. We then evaluate them with a
larger scale of data. We take 150 songs from the RP1M dataset,
randomly sample 20% trajectories from each song, and use
them to train the multi-song policy with imitation learning. We
evaluate its in-distribution performance (on 20 songs) and its
generalization ability (F1 scores on 5 out-of-distribution songs).
From Table I we can see that flow matching policy works the
best on both in-distribution and out-of-distribution songs. The
performance of Diffusion policy with DDIM is close to flow
matching policy, while the MLP-based method is much worse.

IV. CONCLUSION

We propose a novel automatic fingering annotation approach
based on optimal transport, with which we can train specialist
agents with RL on any music piece given only the MIDI file. It
allows us to scale up the number of expert policies and collect
a large-scale motion dataset named RP1M for piano playing
with bimanual dexterous robot hands. With RP1M, we train

Fig. 5. Different design choices of observation.

Fig. 6. Comparing different policy representations on 12 songs.

a multi-song piano playing policy with imitation learning at
scale, leveraging flow matching as the policy representation.
Experiments show that our method obtains promising results
on both in-distribution and out-of-distribution evaluations.
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