
Under review as a conference paper at ICLR 2024

KNOWLEDGE FUSION BY EVOLVING WEIGHTS OF
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The process of fine-tuning pre-trained language models to aid in downstream NLP
tasks is a prevalent technique in NLP research. However, in complex training en-
vironments characterized by diverse data domains and tasks, fine-tuned models
display varying performance outcomes. The fusion of knowledge across individ-
ual models plays a pivotal role in enhancing the performance of a single model.
This paper examines the approach of integrating multiple models from diverse
training scenarios into a unified model. This unified model excels across various
data domains and exhibits the ability to generalize well on out-of-domain data.
We propose a knowledge fusion method named model evolving inspired by evo-
lutionary algorithms, which does not need additional training or training data. Our
approach involves aggregating the weights of language models into a population
and subsequently generating offspring models through mutation and crossover op-
erations. Subsequently, we evaluate the performance of these offspring models in
comparison with their parents, thus we can retain the models exhibiting superior
performance on the development dataset. Notably, our proposed model evolving
strategy can be employed in conjunction with existing model merging techniques,
such as fisher-weighted averaging and regmean. Through a series of rigorous
evaluation experiments, we provide empirical evidence that our proposed method
significantly outperforms previous approaches.

1 INTRODUCTION

In natural language processing (NLP) tasks, due to the high training costs of large language models,
it is common practice to directly utilize pre-trained language models and fine-tune them for specific
task scenarios. This fine-tuning approach often allows us to achieve excellent performance in spe-
cific data domains or tasks at a relatively lower cost (Chen et al., 2021). However, the challenge lies
in the fact that fine-tuning (Dodge et al., 2020) the same model in different task scenarios may result
in performance variations, meaning that the results may not be satisfactory when testing the same
model in different contexts. Therefore, our objective is to integrate knowledge from models trained
in different scenarios to enhance the model’s performance in cross-domain or cross-task scenarios
(Wortsman et al., 2022b).

At present, mainstream knowledge fusion methods can be categorized into two primary groups. The
first group involves extensive training on large datasets from several tasks to acquire new model
parameters with shared representations. One prominent example within this category is multi-task
learning. The second group of methods does not require extensive data but relies on the fusion of
existing models from specific scenarios. Generally, multi-task learning methods tend to be more
effective in improving overall performance. However, they face two major limitations: the require-
ment for abundant annotated data for all the tasks simultaneously and the relatively complex and
time-consuming nature of multi-task learning algorithms during the training phase (Ruder, 2017),
particularly when dealing with dataset combinations. In contrast, model merging methods do not
require retraining models and do not raise concerns about data privacy. In this paper, we primarily
delve into the second category of methods and introduce an innovative model evolution approach
inspired by Darwinian evolution theory (Shafiee et al., 2018). Additionally, we compare model evo-
lution with other prevalent knowledge fusion methods and summarize their characteristics in detail
in Table 1.

1



Under review as a conference paper at ICLR 2024

Ensemble Model Merging Multitask Learning Faderated Learning Model Soups Model Evolution
Retraining ✗ ✗ ✓ ✓ ✗ ✗

High Memory Cost ✓ ✗ ✗ ✗ ✗ ✗
Round(s) Single Single Single Multiple Greedy Greedy

Data No A Few Examples Train Datasets Private Dev Datasets Dev Datasets
Key Technique Inference Matrices Computing Distribution Back-Propagation Search Evolution

Peak GPU Memory ✗ ✓ ✓ ✓ ✗ ✗

Table 1: Comparison of different knowledge fusion methods. Dev datasets means development
dataset for validation. Round means the number of times the models are edited when implementing
a certain knowledge fusion method. The key technique highlights the difference between knowl-
edge fusion methods. Peak GPU memory is considered low for search or evolution step since only
inference is needed. We do not include simple weight averaging method into model merging here.
In fact, the problem of model merging can be reformulated as an optimization problem that aims
to find the best strategy to merge or combine these models to achieve better results than any indi-
vidual model alone. For instance, Jin et al. (2022) employed a simple linear regression approach
for optimization, while model soups (Wortsman et al., 2022a) implemented a greedy search method.
In this paper, we consider the adoption of a more robust evolutionary algorithm for optimization.
Evolutionary algorithms offer several advantages, including their outstanding performance in han-
dling complex, high-dimensional, and nonlinear problems, as well as their relative insensitivity to
local optima. In current deep learning research, evolutionary algorithms are primarily used in neural
architecture search (NAS) (Awad et al., 2020). However, in this paper, we pioneer their application
to the optimization problem of language models for knowledge fusion.

Our approach first processes models fine-tuned in different environments as an initial population.
We then generate a new population through mutations and recombination among different individ-
uals within the population. Subsequently, we validate the performance of the new population on
development environment datasets and preserve elite individuals for updating. After evolving with
enough generations, we select individuals with the best performance as the evolved model. An
overview of the entire process is illustrated in Figure 1.

Data 
Domain

Tasks

Hyperparameters

Environment

Environment 
E!

…

Model 𝐹! …

Generalized Model

Knowledge Fusion

Model 𝐹" Model 𝐹#

Unsupervised …

Self-
supervised

Multi-Modility

F1

F2

FN

…

Merged
Model

Merging 
Function

Model Merging (Previous Method)

Initial 
Population Evolver Updated 

Population g<G? Evolved 
Model

Best 
Individual

Yes

FN

…

F2

No
F1

Model Evolver (Proposed Method)
Environment 

E"
Environment 

E#

Metrics Computing …

g: generation of evolution

Figure 1: The key step in our proposed model evolution method is to aggregate models f1..N from
various environments as a population and updating it through greedy evolutionary rounds. We then
compare this to model ensembling and model merging method.
We conduct knowledge fusion experiments across various difficulty levels, employing different types
of models, such as RoBERTa and DeBERTa. These experiments encompassed sentiment classifica-
tion tasks in diverse data domains and benchmark tasks from the GLUE dataset. The experimental
results consistently demonstrate that our proposed method effectively enhances performance across
all experimental settings. Furthermore, our approach can be synergistically combined with previous
model merging methods (e.g., fisher (Matena & Raffel, 2022), regmean (Jin et al., 2022)), resulting
in further improvements in knowledge fusion performance. This combined approach significantly
outperforms baseline methods and previous techniques. Notably, our method also exhibits superior
generalization performance when applied to data domains beyond the scope of multiple datasets. To
summarize, our research contributions include:

• Innovative model evolution algorithm: we propose a novel model evolution algorithm
(Model Evolution) for knowledge fusion.

• Improved knowledge fusion performance: our method consistently enhances knowledge
fusion performance across various data domains and tasks.

• Effective integration with existing model merging methods: our approach can comple-
ment and enhance other model merging techniques.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORKS

2.1 KNOWLEDGE FUSION

Numerous studies have shown that aggregating knowledge from multiple datasets can enhance the
performance of a single model across various data domains and different tasks (Poth et al., 2021).
This approach is also applicable to out-of-domain data (Wang et al., 2020b). Frankle et al. (2020)
demonstrated the effectiveness of simple weight averaging in model fusion, exhibiting better per-
formance than pre-training methods. Matena & Raffel (2022) proposed fisher-weighted averaging
to merge models with different architectures, taking into account the importance of each parameter.
Jin et al. (2022) investigated model fusion using regression mean, re-weighting, and linearly com-
bining rows within the weight matrix. Wortsman et al. (2022a) introduced greedy soup, a technique
to obtain robust results by searching for different average weights from multiple fine-tuned mod-
els. Ilharco et al. (2022) proposed the concepts of task vectors to improve pre-trained models on
multi-tasks. In addition to these knowledge fusion methods that do not require training, there are
many knowledge fusion strategies that require complex training environments. Multi-task learning,
as explored by Ruder (2017), improves performance across various tasks by sharing knowledge.
Federated learning (Wang et al., 2020a) is a collaborative decentralized privacy-preserving technol-
ogy designed to overcome the challenges of data silos and data sensitivity. In this paper, we propose
model evolution as a knowledge fusion method that is easy to deploy and maintain without the need
for retraining.

2.2 EVOLUTIONARY ALGORITHMS

Of particular relevance to our work is evolving algorithms (EAs), which provide an alternative path
for addressing optimization problems in deep neural networks (DNNs) without relying on gradient
information. The fundamental idea behind EAs is to combine the structures and weights of a group
of neural networks and continually evolve them in the direction of improved global fitness to enhance
model performance. These methods encompass genetic algorithms (Montana et al., 1989), genetic
programming (Suganuma et al., 2017), differential evolution (DE) (Pant et al., 2020), and evolu-
tionary strategies (Salimans et al., 2017), among others. Neuro-evolution techniques, such as NEAT
(NeuroEvolution of Augmenting Topologies) (Stanley & Miikkulainen, 2002), have demonstrated
the ability to design simpler neural network architectures for improved performance, particularly
in reinforcement learning tasks. However, it’s important to note that EA methods typically per-
form well on small datasets and small-scale DNNs (Piotrowski, 2014). When applied to large-scale
datasets, these methods tend to converge slowly and may even fail to converge (Piotrowski, 2014).
In our research, we approach the problem of merging multiple fine-tuned models as an optimiza-
tion problem. Our proposed model evolution method is motivated by the fact that our problem is
neither amenable to traditional gradient-based optimization methods, nor are simple techniques like
regression mean sufficient. Therefore, we turn to evolutionary algorithms, which show promise for
effectively addressing the model fusion problem.

2.3 EXISTING NON-TRAINING-BASED KNOWLEDGE MERGING METHODS

Fisher-weighted averaging (fisher) examines the importance of each weight Fi associated with
each label by computing the norm of the logarithmic likelihood gradient. Specifically, the posterior
probabilities of each model are interpreted as gaussian distributions p(θ|θi, Fi), where the parame-
ters θ for model i correspond to the Fisher information matrix Fθ. Finally, the fisher information for
each parameter is used to perform a weighted average of the parameters, integrating the parameters
of different models into a single model.

Regression mean (regmean) expands the solution of a linear optimization problem to K models
where Wi, i ∈ K, denoted as WM = (

∑i∈K
i XT

i Xi)
−1

∑i∈K
i (XT

i XiWi). Each transformer model
f (j) linear layer’s corresponding X

(j)
i is captured along with per-weights and its input inner product

matrix, to compute the merged weights and produced merged model fM (x) = WT
Mx. The scale of

XT
i Xi exhibits substantial variation across different models. Additionally, a control mechanism is

applied by multiplying XT
i Xi by α = 1

1+γ .

Model soups (greedy soup) Initially, models are ranked based on their development dataset scores.
Subsequently, model parameters θi are chosen through a greedy search, and their inclusion in the
gradient is determined by comparing the average validation set accuracy before and after their addi-
tion. The merged model’s parameters can be represented as θS = average(ingredients).

3



Under review as a conference paper at ICLR 2024

3 EVOLVING WEIGHTS OF MODELS FOR KNOWLEDGE FUSION

This section presents our proposed model evolution strategy. The goal of model evolution is to
combine multiple fine-tuned language models into a more powerful single model. We achieve this
by simulating the evolution process of a neural network population, as shown in Figure 2. We use the
same pre-trained checkpoint and fine-tune it in different environments to create the initial population.
As all individuals share the same model architecture, this enables our evolution algorithm to perform
mutations and recombinations among individuals within the parameter space.

3.1 EVOLUTIONARY STRATEGY

Figure 2: The process of evolving weights of language model.

Population Initialization For the optimization problem of model merging, an original set of in-
dividuals (population) is initialized. The parameters of each of N models are flattened into a one-
dimensional vector, forming a set of candidate solutions. In this way, we obtain a set of candidate
individuals represented by θ = θi, i = 1, ..., N . Here, N denotes the size of the population, and
θi = (θi,1, θi,2, ..., θi,d) represents each candidate individual, where d is the dimension of the solu-
tion space.

Evolution Process In this phase, we simulate the evolution process of a population of neural net-
works using the differential evolution algorithm (Pant et al., 2020). Each generation consists of three
main steps: mutation, crossover, and updating.

Mutation: For each candidate individual θi, we randomly select two other candidate individual θr1
and θr2 , where r1 and r2 are two distinct random integers less than or equal to m. We use a scaling
factor F to adjust the differences between θr1 and θr2 , and then add them to θi to obtain the mutated
solution θ⋆i = θi + F × (θr1 − θr2), where F is used to control the weights of the difference vector
in the new parameter set.

Crossover: The computation for crossover is as follows:

θ⋆i,j =

{
θ⋆i,j if rand(0, 1) ≤ Cr,

θi,j otherwise.
(1)

where Cr is the pre-set crossover degree threshold between the new individual and the parent so-
lution, and the setting of the threshold Cr can impact the ratio of elements selected in a mutated
solution.

Updating: Throughout the process, we convert the offspring population vectors into models and
conduct inference to get performance scores for these models on the development dataset. As
demonstrated in the equation below, We sequentially evaluate the performance scores of offspring
individuals in comparison to their parent one by one. If an offspring performs better, we then replace
the corresponding parent individual with it, thereby updating the parent population.

θi =

{
θ⋆i score(θ⋆g

i ) > score(θg
i )

θi otherwise.
(2)

4



Under review as a conference paper at ICLR 2024

3.2 COMPUTATION EFFICIENCY

Memory Analysis: The memory expanse during our model evolution is mainly related to the size
of the population:

∑N
i=1 d, where N represents the number of populations, d is the dimension of

the model parameter space. Since we avoid inner product matrices computing as in previous model
merging methods such as fisher and regmean, and the parameters is updated mainly through forward
propagation of greedy models, the peak GPU memory consumption is consequently lower.

Time Consumption: We hereby provide the formula and key definitions required to calculate the
runtime. The total evolving time can be calculated as T = G×N×(t1+L×t2) ≈ G×N×L×t2,
where t1 ≪ t2 in practice. Here, G is the total generations for updating, N is the population
size, t1 is the time for mutation and crossover for each individual, L is the number of samples of
development datasets, t2 is the time for inference of a sample on one model.

4 EXPERIMENTAL SETUP

4.1 EVALUATION SETTINGS

Problems. We primarily consider the following three main advantages when testing our proposed
model evolution method: Firstly, we anticipate that our evolved model fM , created by integrating
knowledge from individual models f1..N finetuned on diverse datasets D1..N , will have competitive
performance across various data sources without necessitating separate models for each domain
or task. Then, by evolving different models excelling in various tasks Dt

1..Nt
, we aim to enhance

multi-task handling capacity, avoiding the complexity of retraining as in MTL, while enabling cross-
task inferencing within a single model. Lastly, our goal is for the evolved model fM to excel in
generalizing to OOD test sets Do

1..No
, thereby enabling it to effectively handle new and unforeseen

data from domains or tasks not encountered during training. D1..N .

Datasets. We chose to employ the GLUE datasets (Wang et al., 2018) as the cornerstone of our in-
vestigation into the performance of evolved models. This inquiry encompasses two key dimensions:
training for non-i.i.d. partitions and training for disparate tasks. We utilize the emotion classification
task as a springboard to explore merged models trained across diverse domains within the same task.
For emotion classification, we employ a carefully selected collection of pre-processed datasets ob-
tained from Oberländer & Klinger (2018). Our methodology involves selecting five high-resource
datasets for individual model training, alongside the inclusion of five low-resource datasets to eval-
uate their potential for out-of-domain generalization. Detailed dataset information and additional
experimental results are available in Appendix C.

4.2 COMPARED METHODS

We mainly compare our proposed model evolution with existing merging methods that do not need
retraining, including simple, fisher, and regmean. To gain a better grasp of the advantages of model
merging, we show the performance prior to model evolution, the average performance of the popula-
tion (Avg.f1..N ) and the best-performing individual (Best.f1..N ), more details is shown in Appendix
C.2. Moreover, we provide the performance for the model trained on a specific task domain-specific.
We also compare with model ensembling, where the logits from predictions are extracted, averaged,
and then subjected to the argmax operation. In addition, the greedy soup approach requires a held-
out dataset for selecting individual models, which is similar to our model evolution method. By
greedily identifying new individual models to merge, it can preserve valuable ingredients for weight
averaging. However, this method is not suitable for pairwise models merging. Lastly, we use multi-
task learning (MTL) as a benchmark for model merging techniques.

4.3 EXPERIMENT DETAILS

Implementation We make use of Hugging Face’s transformer library (Wolf et al., 2019) to access
pre-trained language models and conduct fine-tuning. All our models, denoted as fi, follow the
same architecture and employ identical pre-trained model weights θ for initialization, as described
in McMahan et al. (2017). Our experiments include various pre-trained models as starting points,
such as RoBERTa-base (Liu et al., 2019), the lightweight DistilBert (Khanuja et al., 2021) and

5



Under review as a conference paper at ICLR 2024

well-established model DeBERTa-large-v3 (He et al., 2021). Besides the models with encoder-
only architecture, to establish more generality, we also conduct experiments with encoder-decoder
architecture, T5-base-v1.1 (Raffel et al., 2020) and decoder-only architecture, GPT2 (Radford et al.,
2019).

Population Initialization The initial population for model evolution is created through fine-tuning a
model with the same initialization but on different data domains or various tasks. While fine-tuning
DistilBERT-base, RoBERTa-base, and DeBERTa-large, we maintained a constant initial learning
rate of 1e-5. Throughout our experiments, we consistently utilized the AdamW optimizer with a
warm up learning rate during the initial 6% of training. Our model training utilized a batch size of
16 and encompassed 10 epochs for the GLUE task and 30 epochs for the emotion classification task.

5 RESULTS

Our primary objective is to evaluate the performance of various training-free knowledge fusion
methods (e.g., model merging, greedy soup, ensemble) and compare them to the performance of
individual models before fusion. Additionally, we compare these methods with approaches that
have higher upper bounds, such as domain-specific techniques and multi-task learning.

We assess the performance dynamics of the model evolution method across a range of scenarios
with varying levels of complexity. These scenarios include: (1) performance across different data
domains used for fine-tuning individual models. (2) performance across different tasks, when in-
dividual models are specialized in only one task. (3) OOD generalization performance on datasets
from previously unseen domains. Furthermore, we conduct a series of comparative experiments to
analyze the roles of different components in the model evolution process, such as mutation factor,
crossover ratio and so on.

5.1 MODEL EVOLVING ACROSS DATA DOMAINS

5.1.1 EVOLVING ALL DOMAIN-SPECIFIC MODELS.

We conduct experiments of involving five domain-specific models for emotion classification, and the
results are recorded in Table 2. Notably, there is a significant gap between the average performance
represented by Avg.f1..N and the best performance indicated by Best.f1..N . This is attributed to
substantial variations and differences among the f1..N models. Multi-task learning (MTL) achieves
performance similar to that of domain-specific models, suggesting that a single model has the ca-
pability to acquire knowledge from multiple domains. Additionally, model soup approach, which
greedily selects fusion objects, leads to some improvements over Best.f1..N ; However, these im-
provements are relatively marginal compared to model merging methods.

Encoder-Decoder Encoder-only Decoder-only

Method T5-base RoBERTa-base
Same / Diff Head Init.

DistilBERT-base
Same / Diff Head Init.

DeBERTa-large
Same / Diff Head Init. GPT2

Avg. f1..N 32.07 26.08 24.55 27.68 23.35
Best. f1..N 34.08 29.27 29.91 31.93 26.76
Ensemble 33.95 38.77 / 27.73 26.51 / 25.43 29.88 / 29.27 26.82

Greedy Soup 34.10 30.34 30.11 31.93 26.76

Simple 39.47 23.18 23.70 3.75 21.54
Evolver 41.25 33.27 / 30.04 28.95 / 26.29 23.90 / 21.55 23.41

Fisher 39.12 26.09 / 22.43 26.39 / 22.61 12.83 / 20.42 24.93
Fisher Evolver 40.36 28.41 / 25.71 27.63 / 24.75 17.22 / 22.95 25.66

RegMean 40.24 38.74 / 32.58 33.37 / 28.29 38.33 / 18.92 30.14
RegMean Evolver 41.83 39.87 / 34.28 35.67 / 31.11 39.58 / 21.79 32.26

Domain-Specific 49.31 51.38 48.79 52.81 47.62
MTL 48.98 47.73 45.23 51.77 44.31

Table 2: In-domain performance when merging emotion classification models. The initial population are all
5 domain specific models or pairwise models. Simple, Fisher and RegMean are model merging algorithms for
comparison. Bold numbers indicate the best performance across different model merging algorithms. All the
results we reported are averages of trials conducted with 5 different random seeds.

We compare model evolution with three other knowledge merging methods. The basic version of
model evolution outperformed fisher method and achieved performance that is comparable to reg-

6



Under review as a conference paper at ICLR 2024

mean on some tasks. Furthermore, we explore the combined use of model evolution and model
merging methods, demonstrating that our approach further enhances existing model merging meth-
ods and consistently yields improvements across different models. Also, we demonstrate results
with shared and different classification head initialization (Same Head Init/Diff Head Init). It can
be observed that fisher and regmean produce unstable and highly variable results with different
initialization, while the performance of the model evolution method is less affected by this factor.
Therefore, our proposed model evolution method shows more stable performance when deploying
and maintaining a single model across multiple domains.

Model Simple Evolver Fisher Fisher Evolver RegMean RegMean Evolver
RoBERTa-base 37.78 39.13 37.11 40.34 46.56 46.89

DistillBERT-base 36.76 38.85 34.52 40.37 43.09 43.22
T5-base 38.82 40.21 38.08 41.46 47.35 47.92

Table 3: In-domain performance when merging pairwise domain-specific emotion classification models. All
the results we reported are averages of 10 (C2

5 ) runs after paring models from a set of 5.

5.1.2 EVOLVING PAIRWISE DOMAIN-SPECIFIC MODELS

In addition to the fusion experiment involving all the models, we also consider pairwise domain-
specific models for knowledge fusion in the context of the emotion classification task. After pairing
models from a set of 5, we conduct 10 (C25 ) runs with all the same methods described in section
5.1.1. The result of these 10 runs are averaged and recorded in Table 3. We observe clear differences
between model evolution and model merging methods, with the regmean-evolver achieving the best
performance when combining pairwise models finetuned from different domains.

5.1.3 EVOLVING MODELS TRAINED ON NON-I.I.D. PARTITIONS.

We adopt synthetic data divisions to simulate non-i.i.d. partitions of the same dataset, across the
8 tasks included in the GLUE benchmark. Given the inconsistency in the performance of regmean
and fisher methods under different seeds, we choose to average the result of eight different random
seeds. The results in Figure 3 indicate that the implementation of model evolution outperformed
previous methods on all tasks, with clear improvements observed particularly on cola and mnli
datasets. Details of this section are shown in Appendix C.1.

Figure 3: Result of model evolution on non-i.i.d.
partitions of GLUE benchmark datasets.

Figure 4: Result of model evolution across dif-
ferent pairwise tasks on GLUE benchmark.

5.2 EVOLVING MODELS ACROSS DIFFERENT TASKS

Here we examine the effectiveness of model evolution in merging models finetuned on different
tasks. We use the RoBERTa-base model and train individual models with the complete training data
for each task in the GLUE benchmark. Following this, we randomly select two task-biased individ-
uals to conduct pairwise model evolution. Specifically, we exclude the parameters in task-specific
headers due to their potential dimension variance depending on tasks. We summarize the results
of eight different task pairs in Figure 4, which show that our model evolution strategy performs
effectively when fusing knowledge from diverse tasks.

7



Under review as a conference paper at ICLR 2024

5.3 MODEL EVOLVING FOR OUT-OF-DOMAIN GENERALIZATION

Regarding Out-of-Domain (OOD) generalization performance, we can obtain the same conclusion
as our in-domain experiments, indicating that model evolving leads to improvements in OOD gen-
eralization performance, as summarized in Table 7. We notice that in the case of RoBERTa-base
and DistilBERT models initialized with different heads, the basic model evolver has outperformed
fisher-evolver and regmean-evolver. A plausible explanation for this is that previous model merging
methods may suffer from the negative impact of extremely poor-performing individual models. In
the in-domain experiments, this influence is marginal, but it becomes more pronounced in OOD sce-
narios. In contrast, model evolution possesses an elimination mechanism that effectively removes
poorly-performed individual models during the competition process. This ensures that only models
with superior performance are retained and merged. Consequently, model evolution can reduce the
negative impact of under-performing models on the merged results.

Encoder-Decoder Encoder-only Decoder-only

Method T5-base RoBERTa-base
Same / Diff Head Init.

DistilBERT-base
Same / Diff Head Init.

DeBERTa-large
Same / Diff Head Init. GPT2

Avg. f1..N 30.12 20.92 19.69 21.17 18.63
Best. f1..N 37.41 29.46 29.55 31.07 27.88
Ensemble 27.92 11.36 / 10.90 9.60 / 9.19 11.09 / 9.26 8.77

Greedy Soup 15.42 13.43 15.26 4.67 11.61

Simple 38.61 11.56 13.21 0.24 10.25
Evolver 39.26 17.53 / 17.16 19.02 / 18.42 13.33 / 12.78 15.87

Fisher 37.72 16.21 / 14.28 17.77 / 15.69 5.57 / 27.61 15.16
Fisher Evolver 38.87 16.98 / 15.44 18.85 / 17.36 15.46 / 30.41 16.34

RegMean 39.46 21.09 / 14.12 18.97 / 16.21 15.92 / 4.88 20.33
RegMean Evolver 41.13 23.41 / 16.45 21.44 / 18.31 18.49 / 11.27 22.07

MTL 37.64 27.41 25.63 30.43 25.26

Table 4: Performance evaluation of model evolution in out-of-domain context.

5.4 ABLATION STUDY

Combination with Other Methods We demonstrate the evolutionary process when combined with
other model fusion methods. From Figure 5, it can be observed that when model evolver is combined
with fisher or regmean method, the upper bounds of the evolutionary approach can be enhanced.
Additionally, we present the test results of the evolutionary algorithm on the development dataset. It
is evident that as individual models are trained on the development dataset, their performance on the
test set gradually improves. This indicates that our model evolution method indeed has the ability
to optimize and learn. In addition, regmean method requires decreasing the non-diagonal items of
the inner product matrices by multiplying a scalar α. Since the effectiveness of the regmean-evolver
method can be influenced by the hyperparameter α, we also test the performance of regmean-evolver
under different α parameters, as shown in Figure 6.

Init 10 20 30 40 50 60
Generation

0.20

0.25

0.30

0.35

0.40
Test Score of RoBERTa-base

reg-evolver test
fisher-evolver test
evolver test
reg-evolver dev
fisher-evolver dev
evolver dev

Init 10 20 30 40 50 60
Generation

0.20

0.25

0.30

0.35
Test Score of DistilBERTa-base

Figure 5: In-domain score of model evolution
on emotion dataset with all domain specific
models. The results on both the development
and test dataset are displayed.

* 0.050.1 0.2 0.3 0.50

10

20

30

40
Test Score of RoBERTa-base

In Domain regmean
In Domain reg_evolver
OOD regmean
OOD reg_evolver

* 0.050.1 0.2 0.3 0.5

15

20

25

30

35
Test Score of DistilBERTa-base

Figure 6: The improvement of regmean-evolver
with different scale α on emotion dataset when
evolving all domain specific models. ∗ means
the result of simple and evolver.

Mutation and Crossover We also test the impact of different values of scale factor F for mutation
and crossover ratio Cr, as shown in Figure 7. Due to the inherent randomness in the search process
of evolutionary algorithms, we conducted each experiment using four different random seeds and

8



Under review as a conference paper at ICLR 2024

then calculated the average results. In general, the study findings indicate that the performance of
the evolutionary algorithm improves as the parameters F or Cr increase until reaching 0.5. However,
when F or Cr exceeds 0.5, there is minimal improvement in performance, and no clear pattern is
observed. Therefore, in all experiments conducted in this paper, we have consistently used F =
0.5 and Cr = 0.5. Furthermore, it is worth noting that the regmean-evolver algorithm exhibits a
faster convergence rate compared to the simple evolver, typically converging in approximately 20
generations.

0 10 20 30 40 50 60 70
Generation

0.24

0.26

0.28

0.30

0.32

Test Score vs Generations

f = 0.01
f = 0.05
f = 0.1
f = 0.15
f = 0.2
f = 0.3
f = 0.4
f = 0.5
f = 0.6
f = 0.7
f = 0.8
f = 0.9

(a) evolver with different
F when Cr=0.5.

0 10 20 30 40 50 60 70
Generation

0.350

0.355

0.360

0.365

0.370

0.375

0.380

Test Score vs Generations

f = 0.01
f = 0.05
f = 0.1
f = 0.15
f = 0.2
f = 0.3
f = 0.4
f = 0.5
f = 0.6
f = 0.7
f = 0.8
f = 0.9

(b) regmean-evolver with
different F when Cr=0.5.

0 10 20 30 40 50 60 70
Generation

0.24

0.26

0.28

0.30

0.32
Test Score vs Generations

cr = 0.01
cr = 0.05
cr = 0.1
cr = 0.15
cr = 0.2
cr = 0.3
cr = 0.4
cr = 0.5
cr = 0.6
cr = 0.7
cr = 0.8
cr = 0.9

(c) evolver with different
Cr when F=0.5.

0 10 20 30 40 50 60 70
Generation

0.350

0.355

0.360

0.365

0.370

0.375

0.380

Test Score vs Generations

cr = 0.01
cr = 0.05
cr = 0.1
cr = 0.15
cr = 0.2
cr = 0.3
cr = 0.4
cr = 0.5
cr = 0.6
cr = 0.7
cr = 0.8
cr = 0.9

(d) regmean-evolver with
different Cr when F=0.5.

Figure 7: Result of RoBERTa-base when evolving all domain specific models on emotion datasets
with different with different scale factor F and crossover ratio Cr.

5.5 ANALYSIS

In this section, we analyze the advantages and limitations of model evolution.

Advantages. Actually, the advantages of model evolution are quite prominent. (1) Model evo-
lution can leverage the benefits of a larger population size without being significantly affected by
individuals with extremely poor performance. This advantage is a result of the survival of the fittest
mechanism in the model evolution process. (2) Model evolution method can effectively maintain
low peak GPU memory usage. This is primarily attributed to its sequential forward inference of
individual models, as opposed to previous model merging techniques that require additional GPU
memory for computing inner product matrices in the model parameter space. This advantage signifi-
cantly reduces GPU memory consumption and extends the range of feasible solutions for large-scale
language models.

Limitation. The limitations of the model evolution method can be summarized in three main
aspects: (1) the necessity for a high-quality development dataset with consideration for data privacy,
(2) the requirement for a cautious selection of hyperparameters F and Cr, (for a sensitivity analysis
concerning the quality and quantity of the development dataset, please refer to Appendix B) (3) and
the significance of conducting further theoretical analysis of evolutionary algorithm principles.

6 CONCLUSIONS AND FUTURE WORK

We introduce a novel knowledge fusion method, called model evolution, inspired by evolutionary
algorithms. This approach significantly boosts the performance of model merging in diverse NLP
contexts. Model evolution stands out by aggregating model weights into a population and updating it
with superior offspring models, all without requiring extra training data. Our extensive experiments
validate its superiority over previous techniques.

Future research offers several promising directions. Firstly, exploring advanced optimization strate-
gies within evolutionary algorithms, including adaptive approaches and hyperparameter selection
based on historical performance, holds the potential for enhancing the method’s effectiveness. Sec-
ondly, extending knowledge fusion to a more complex training environment by considering hyper-
parameters, multimodal and exploring different training methods like unsupervised or supervised
learning can provide a comprehensive understanding of its applicability. Thirdly, arithmetic oper-
ations in Ilharco et al. (2022) for model edit can be analyzed. Lastly, evaluating the approach on
larger language models can provide insights into its scalability.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat. Emotions from text: machine learning for
text-based emotion prediction. In Proceedings of human language technology conference and
conference on empirical methods in natural language processing, pp. 579–586, 2005.

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Differential evolution for neural architecture
search. arXiv preprint arXiv:2012.06400, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Ben Chen, Bin Chen, Dehong Gao, Qijin Chen, Chengfu Huo, Xiaonan Meng, Weijun Ren, and
Yang Zhou. Transformer-based language model fine-tuning methods for covid-19 fake news de-
tection. In Combating Online Hostile Posts in Regional Languages during Emergency Situation:
First International Workshop, CONSTRAINT 2021, Collocated with AAAI 2021, Virtual Event,
February 8, 2021, Revised Selected Papers 1, pp. 83–92. Springer, 2021.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal rec-
ognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9, 2007.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Simran Khanuja, Melvin Johnson, and Partha Talukdar. Mergedistill: Merging language models
using pre-trained distillation. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 2874–2887, 2021.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually
labelled multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

Vicki Liu, Carmen Banea, and Rada Mihalcea. Grounded emotions. In 2017 Seventh International
Conference on Affective Computing and Intelligent Interaction (ACII), pp. 477–483. IEEE, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

10



Under review as a conference paper at ICLR 2024

Saif Mohammad. # emotional tweets. In * SEM 2012: The First Joint Conference on Lexical
and Computational Semantics–Volume 1: Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pp. 246–255, 2012.

Saif Mohammad and Felipe Bravo-Marquez. Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, pp. 34–49, 2017.

Saif M Mohammad, Xiaodan Zhu, Svetlana Kiritchenko, and Joel Martin. Sentiment, emotion,
purpose, and style in electoral tweets. Information Processing & Management, 51(4):480–499,
2015.

David J Montana, Lawrence Davis, et al. Training feedforward neural networks using genetic algo-
rithms. In IJCAI, volume 89, pp. 762–767, 1989.

Laura Ana Maria Oberländer and Roman Klinger. An analysis of annotated corpora for emotion
classification in text. In Proceedings of the 27th International Conference on Computational
Linguistics, pp. 2104–2119, 2018.

Millie Pant, Hira Zaheer, Laura Garcia-Hernandez, Ajith Abraham, et al. Differential evolution: A
review of more than two decades of research. Engineering Applications of Artificial Intelligence,
90:103479, 2020.

Adam P Piotrowski. Differential evolution algorithms applied to neural network training suffer from
stagnation. Applied Soft Computing, 21:382–406, 2014.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna Gurevych. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 10585–10605, Online and Punta Cana, Dominican Republic,
November 2021.

A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algorithm for numeri-
cal optimization. In 2005 IEEE congress on evolutionary computation, volume 2, pp. 1785–1791.
IEEE, 2005.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Klaus R Scherer and Harald G Wallbott. Evidence for universality and cultural variation of dif-
ferential emotion response patterning. Journal of personality and social psychology, 66(2):310,
1994.

Hendrik Schuff, Jeremy Barnes, Julian Mohme, Sebastian Padó, and Roman Klinger. Annotation,
modelling and analysis of fine-grained emotions on a stance and sentiment detection corpus. In
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, pp. 13–23, 2017.

Mohammad Javad Shafiee, Akshaya Mishra, and Alexander Wong. Deep learning with darwin:
Evolutionary synthesis of deep neural networks. Neural Processing Letters, 48(1):603–613, 2018.

11



Under review as a conference paper at ICLR 2024

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evaluations (SemEval-2007), pp. 70–74, 2007.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach
to designing convolutional neural network architectures. In Proceedings of the genetic and evo-
lutionary computation conference, pp. 497–504, 2017.

Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adaptation for differential evo-
lution. In 2013 IEEE congress on evolutionary computation, pp. 71–78. IEEE, 2013.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In International Conference on Learning Represen-
tations, 2020a.

Jing Wang, Mayank Kulkarni, and Daniel Preoţiuc-Pietro. Multi-domain named entity recogni-
tion with genre-aware and agnostic inference. In Proceedings of the 58th annual meeting of the
association for computational linguistics, pp. 8476–8488, 2020b.

Alex Warstadt, Amanpreet Singh, and Samuel Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In NAACL-HLT, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7959–7971, 2022b.

12



Under review as a conference paper at ICLR 2024

A EXPLANATION OF MODEL EVOLUTION

Figure 8: An illustration of the muta-
tion process in difference evolution.

In this section, we provide a more comprehensive expla-
nation of the principles underlying the Differential Evo-
lution algorithm, furthermore, we offer an in-depth eluci-
dation of the mutation process, providing a visual repre-
sentation in Figure 8 to enhance clarity and understand-
ing. Overall, the fundamental principle of the differen-
tial evolution algorithm involves randomly selecting three
distinct individuals, performing a mutation operation to
create a new candidate solution, using a crossover opera-
tion to refine the solution, and replacing the original solu-
tion if the new one performs better. This iterative process
continues until certain stopping criteria are met.

To better illustrate our model evolution method, we have
created a flowchart as shown in algorithm 1. The details
of combining our proposed method with other models are
provided in Step 3. The approach involves calculating an
overall score by using model merging on the mutated individuals along with the non-mutated indi-
viduals in the current evolution. In contrast, the simple evolver determines the success of mutation
based on the score of individual entities, while the combined approach assesses it based on the score
of the entire population after individual mutation.

Algorithm 1 Model Evolution

1: Step 1 - Initializing the Population
2: Initialize population Θ ▷ A population of candidate solutions
3: generation← 0 ▷ Initialize generation counter
4: converged← False ▷ Convergence flag
5: while not converged do
6: Step 2 - Evolution Process: Mutation and Recombination
7: for each candidate solution θi in Θ do
8: Randomly select θr1 and θr2 ▷ Select random solutions
9: F ← Random scaling factor ▷ Control parameter for mutation

10: Cr ← Random crossover rate ▷ Control parameter for recombination
11: Compute mutated solution θ⋆i using θi, θr1, θr2, and F
12: Perform recombination of θ⋆i based on Cr and θi
13: Step 3 - Model Inference
14: if not combined with other model merging methods then
15: Evaluate the performance of θ⋆i on development data
16: else
17: Merging θ⋆i with other models
18: Evaluate the performance of merged model on development data
19: end if
20: end for
21: Step 4 - Updating the Population
22: converged← True ▷ Assume convergence
23: for each candidate solution θi in Θ do
24: if θ⋆i outperforms θi then ▷ Comparing performance
25: Replace θi with θ⋆i ▷ Update population
26: converged← False ▷ Reset convergence flag
27: end if
28: end for
29: generation← generation+ 1 ▷ Increment generation counter
30: end while

13



Under review as a conference paper at ICLR 2024

B IMPACT OF DEVELOPMENT DATASET

The availability of development datasets directly impacts the effectiveness of our model evolution
approach. However, many publicly available datasets either do not provide development sets or
widely use them as test sets. In our case, the development set of the GLUE dataset is used as a test
set, so we utilize a small portion of the training dataset (approximately 5%) for model evolution.
For non-i.i.d. partition methods, we also use only a subset of the same training data samples. In
the case of the unified emotion dataset, we separately extract 10% of data from each of the five
high-resource datasets for model evolution, following the same partitioning method as employed in
Jin et al. (2022).

For our model evolution approach, the quality of the development dataset can significantly impact
performance, making the selection of a high-quality development dataset a crucial consideration.
To address this, we conducted experiments on the emotion dataset using different lengths of model
evolution methods. We performed experiments with both the simple evolver and regmean evolver,
evolving all five domain-specific models. The experimental results are shown in Table 5, indicating
that even with a short development dataset, model evolution can still be effective. However, as the
length of the development dataset increases, the performance of model evolution tends to improve.
Additionally, we included the test scores of simple methods as baselines for comparison.

Length None 1/4 1/2 1

Evolver 23.18 30.14 32.03 33.27

Regmean Evolver 38.74 39.43 39.57 39.87

Table 5: The performance of model evolution with different length of development dataset. None
means evolver is not conduct and the test score of simple averaging and regmean method is recorded.

C METRICS, DATASET AND TRAINING DETAILS

C.1 MERGING MODELS TRAINED ON NON-I.I.D. PARTITIONS.

Merging models initially trained on non-i.i.d. partitions of the same dataset is started, which is
achieved by simulating synthetic data splits across the 8 tasks within the GLUE benchmark. Each
task involves dividing the training data into two partitions, each containing 1,000 training examples
with distinct label distributions. Following this, we perform fine-tuning on these two partitions for
8 pairs of individual models and merge each pair of models. The evaluation of these merged models
takes place on the official validation sets, which portray a joint distribution of both partitions.

C.2 METRICS AND COMPARED METHODS

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Table 6: Statistics of emotion classification datasets.

In evaluating merged models trained for non-
i.i.d. partitions of the same dataset, we assessed
their performance using a unified test set char-
acterized by a joint distribution of all partitions.
For merged models trained across different do-
mains or tasks, we measured their performance
across individual domains or tasks incorpo-
rated into the merger and derived their macro-
average. Similarly, when evaluating out-of-
domain performance, we computed the macro-
average of their performance across the out-of-
domain test set.

The performance of individual models involved
in merging are reported: (1) the average perfor-
mance of all individual models (Avg. f1..N );
(2) the performance of the best single individual model (Best. f1..N ), as determined by using the

14



Under review as a conference paper at ICLR 2024

validation set; (3) the performance of the individual models corresponding to the training data set
for each test set (Domain-Specific).

C.3 EMOTION CLASSIFICATION

In order to investigate the performance of the sentiment classification task, we selected a diverse and
challenging set of datasets. Among them, DailyDialogs (Li et al., 2017), CrowdFlower, TEC (Mo-
hammad, 2012), Tales-Emotion (Alm et al., 2005), and ISEAR (Scherer & Wallbott, 1994) is utilized
to train domain-specific model. For acessing OOD generalization performance, we use Emoint (Mo-
hammad & Bravo-Marquez, 2017), SSEC (Schuff et al., 2017), ElectoralTweets (Mohammad et al.,
2015), GroundedEmotions (Liu et al., 2017), and AffectiveText (Strapparava & Mihalcea, 2007).
For OOD evaluation, we focus exclusively on the fundamental emotions: anger, disgust, fear, joy,
sadness, and surprise. A detailed overview of the datasets and statistics is provided in Table 6.

C.4 GLUE BENCHMARK

In the GLUE dataset experiments, we utilized multiple tasks, including CoLA (Warstadt et al.,
2019), SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017),
MNLI (Williams et al., 2018),QNLI (Rajpurkar et al., 2016), QQP, and RTE (Giampiccolo et al.,
2007). These tasks cover various natural language understanding problems such as text classifica-
tion, text similarity, and natural language inference. To assess our merged models, we tested them
on the official development sets. We performed experiments by training models on non-i.i.d. par-
titions, creating various partition scenarios through random sampling. Each partition is uniformly
sub-sampled to yield a total of 1,000 training examples per partition.

C.5 TIME COST

Initial Population for Evolving T5-base RoBERTa-base DistilBERT-base DeBERTa-large GPT2

All Domain Specifis Models on Emotion Datasets 24.5 19.2 18.7 21.3 20.1
Pairwise Models on Emotion Datasets 9.3 7.3 7.1 8.1 7.6
None-iid Pairwise Models on GLUE Benchmark 7.2 5.7 5.5 6.2 5.9
Cross Tasks Pairwise Models on GLUE Benchmark 8.7 7.1 6.8 7.8 7.5

Table 7: Time cost (in the unit of minutes) of RegMean Evolver on different experiments with 20 generations.
T5-base is tested on single A800 GPU and other models are tested on single A6000 GPU. The time cost is
mainly related to the size of model and the length of development dataset when conducting model evolution.

We report the time cost of the scheme of model evolution. T5-base is tested on single NVIDIA
A800 80G GPU and other models are tested on single RTX A6000 48G GPU. We find that all task
of model evolution can be completed within half an hour, which is very cost-efficient in improving
the model performance without further training.

D INTEGRATION WITH COEFFICIENT SEARCH

Model Simple
(coefficient search)

Evolver
(scale factor search)

Fisher
(coefficient search)

Fisher Evolver
(scale factor search)

RegMean
(coefficient search)

RegMean Evolver
(scale factor search)

RoBERTa-base 37.78 (38.83) 39.13 (39.98) 37.11 (38.96) 40.34 (41.23) 46.56 (46.82) 46.89 (47.03)
DistillBERT-base 36.76 (37.63) 38.85 (39.67) 34.52 (37.54) 40.37 (41.31) 43.09 (43.14) 43.22 (43.31)

T5-base 38.82 (39.91) 40.21 (41.11) 38.08 (39.22) 41.46 (42.55) 47.35 (47.84) 47.92 (48.06)

Table 8: Coefficient Search Result when merging pairwise emotion classification models. Simple, Fisher and
RegMean are model merging algorithms for comparison. All the results we reported are averages of 10 (C2

5 )
runs after paring models from a set of 5.

The coefficient search is a promising scheme to improve the model merging performance, by search-
ing the optimal α. The proposed model evolution can also be integrated with the coefficient search
method by searching the optimal scale factor f . We have performed the grid search of α and f with
intervals of 0.05 from 0.1 to 0.9. We present the result in Table 8. In the setting of Simple, Fisher
and RegMean, the results show that a default version of evolver (with scale factor f = 0.5, cr = 0.5)
outperforms the coefficient search results. Notably, the integration with scale factor search further

15



Under review as a conference paper at ICLR 2024

boosts the performance of the evolver, which is worth further investigation. Especially, the crossover
ratio Cr in model evolution could also be the subject of coefficient search. Many adaptive schemes
are also available in the realm of evolution algorithms, like SADE (Qin & Suganthan, 2005) and
SHADE (Tanabe & Fukunaga, 2013), providing a possibility of future algorithmic development.

16


	Introduction
	Related Works
	Knowledge Fusion
	Evolutionary algorithms
	Existing non-training-based knowledge merging methods

	Evolving Weights of Models for Knowledge Fusion
	Evolutionary Strategy
	Computation Efficiency

	Experimental Setup
	Evaluation Settings
	Compared Methods
	Experiment Details

	Results
	Model Evolving Across Data Domains
	Evolving All Domain-Specific Models.
	Evolving Pairwise Domain-Specific Models
	Evolving Models Trained on Non-i.i.d. Partitions.

	Evolving Models Across Different Tasks
	Model Evolving for Out-of-Domain Generalization
	Ablation Study
	Analysis

	Conclusions and Future Work
	Explanation of Model Evolution
	Impact of Development Dataset
	Metrics, Dataset and Training Details
	Merging Models Trained on Non-i.i.d. Partitions.
	Metrics and Compared Methods
	Emotion Classification
	GLUE Benchmark
	Time Cost

	Integration with Coefficient search

