
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCRUTINIZE WHAT WE IGNORE: REINING IN TASK
REPRESENTATION SHIFT OF CONTEXT-BASED OFFLINE
META REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline meta reinforcement learning (OMRL) has emerged as a promising approach
for interaction avoidance and strong generalization performance by leveraging pre-
collected data and meta-learning techniques. Previous context-based approaches
predominantly rely on the intuition that alternating optimization between the con-
text encoder and the policy can lead to performance improvements, as long as
the context encoder follows the principle of maximizing the mutual information
between the task variable M and its latent representation Z (I(Z;M)) while the
policy adopts the standard offline reinforcement learning (RL) algorithms condition-
ing on the learned task representation. Despite promising results, the theoretical
justification of performance improvements for such intuition remains underex-
plored. Inspired by the return discrepancy scheme in the model-based RL field,
we find that the previous optimization framework can be linked with the general
RL objective of maximizing the expected return, thereby explaining performance
improvements. Furthermore, after scrutinizing this optimization framework, we
observe that the condition for monotonic performance improvements does not
consider the variation of the task representation. When these variations are con-
sidered, the previously established condition may no longer be sufficient to ensure
monotonicity, thereby impairing the optimization process. We name this issue
task representation shift and theoretically prove that the monotonic performance
improvements can be guaranteed with appropriate context encoder updates. We
use different settings to rein in the task representation shift on four widely adopted
training objectives concerning maximizing I(Z;M) across different data qualities.
Empirical results show that reining in the task representation shift can indeed im-
prove performance. Our work opens up a new avenue for OMRL, leading to a better
understanding between the task representation and performance improvements.

1 INTRODUCTION

RL has driven impressive advances in many complex decision-making problems in recent years (Silver
et al., 2018; Schrittwieser et al., 2020; Zhang et al., 2023b), primarily through online RL methods.
However, the extensive interactions required by online RL entail high costs and safety concerns,
posing significant challenges for real-world applications. Offline RL (Wu et al., 2019; Levine et al.,
2020) offers an appealing alternative by efficiently leveraging pre-collected data for policy learning,
thereby circumventing the need for online interaction with the environment. This advantage extends
the application of RL, covering healthcare (Fatemi et al., 2022; Tang et al., 2022), robotics (Sinha
et al., 2022; Kumar et al., 2022) and games (Schrittwieser et al., 2021; Mathieu et al., 2023). Though
demonstrating its superiority, offline RL holds a notable drawback towards generalizing to the
unknown (Ghosh et al., 2021).

As a remedy, by combining the meta-learning techniques, OMRL (Li et al., 2020; Mitchell et al.,
2021; Xu et al., 2022) has emerged as an effective training scheme toward strong generalization
performance and fast adaptation capability while maintaining the merits of offline RL. Among the
OMRL research, context-based OMRL (COMRL) algorithms (Li et al., 2020; 2024) hold a popular
paradigm that seeks optimal meta-policy conditioning on the context of Markov Decision Processes
(MDPs). Specifically, these methods (Li et al., 2020; Gao et al., 2024; Li et al., 2024) propose to train

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a context encoder via maximizing I(Z;M) to learn the task representation from the collected context
(e.g. trajectories) and train the downstream policy with standard offline RL algorithms conditioning
on the task representation, as shown in Figure 1 left. The context encoder and policy are trained
in an alternating manner, with each being updated once per cycle. Despite promising results, the
theoretical justification of performance improvements for such intuition remains underexplored.

ours

Tasks

z

Replay
Buffer

Context Encoder
z

Update
 Policy②

I(Z,M)
Maximize

offline RL
algorithm

Update Z

Condition①

Update Z

met not
met

original

Alternating update process：①->②->①->②->...->①->②

Tasks

z

Replay
Buffer

Context Encoder
z

Update Z①

Update
 Policy②

I(Z,M)
Maximize

offline RL
algorithm

Figure 1: Our training framework compared to the previous training framework. They both
adopt the alternating optimization framework to train the context encoder and the policy. However, our
training framework considers the previously ignored variation of task representation by introducing
an extra condition to decide whether the context encoder should be updated.

Intriguingly, we formalize this training framework as an alternating two-stage optimization framework
and then link it with the general RL objective of maximizing the expected return. To be specific,
maximizing I(Z;M) and adopting standard offline RL algorithms can be interpreted as consistently
raising the lower bound of the expected return conditioning on the optimal task representation
distribution (See Section 4.1). This is achieved by extending the return discrepancy scheme (Janner
et al., 2019) to the COMRL framework. Thus, this analysis provides a feasible explanation for the
performance improvement guarantee.

More importantly, after scrutinizing this optimization framework, we find it ignores the impacts
stemming from the variation of the task representation in the alternating process. This would cause
the optimization framework to incorrectly conclude that the monotonic performance improvement
can be guaranteed with a better approximation to the optimal task representation distribution. By
explicitly modeling the variation of task representation, we prove that it is a critical part of mono-
tonic performance improvement. Without this, the monotonicity can be violated. To highlight the
characteristic, we name this issue task representation shift and theoretically prove that it is possible to
achieve monotonic performance improvement with appropriate updates (See Section 4.2).

To show the impacts of this issue, we use different settings to rein in the task representation shift
on four widely adopted objectives concerning maximizing I(Z;M), covering the upper bound, the
lower bound, linear interpolation between the lower bound and the upper bound, and the direct
approximation. Empirical results show that reining in the task representation shift can indeed improve
performance. Our work opens up a new avenue for OMRL, leading to a better understanding between
the task representation and performance improvements.

2 RELATED WORKS

Context-Based Offline Meta RL. As the marriage between context-based meta RL and offline RL,
COMRL combines the merits of both sides. Specifically, COMRL methods (Li et al., 2020; Yuan &
Lu, 2022; Gao et al., 2024; Li et al., 2024) leverage the offline dataset to train a context encoder to
learn robust task representations, and then pass the representation to the policy and value function
as input. At test time, COMRL methods leverage the generalization ability of the learned context

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

encoder to perform meta-adaptation. Acknowledging the theoretical insights from (Li et al., 2024),
prior COMRL works (Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024) mainly focus
on how to design a context encoder learning algorithm to better approximate I(Z;M). However, our
work moves the focus on how to refine the condition of monotonic performance improvements based
on a given context encoder learning algorithm. Centering around this motivation, we identify a new
issue called task representation shift, which is ignored by the previous COMRL endeavors.

Performance Improvement Guarantee. Ensuring performance improvement is a key concern in
both online and offline reinforcement learning settings. In online RL, performance improvement guar-
antees are often established through methods such as performance difference bounds (Schulman et al.,
2015; Kakade & Langford, 2002; Ji et al., 2022; Zhang et al., 2023a), return discrepancy (Janner et al.,
2019; Luo et al., 2018), and regret bounds (Osband & Van Roy, 2014; Curi et al., 2020). In offline RL,
CQL-based methods (Kumar et al., 2020; Yu et al., 2021) also enjoy safe policy improvement guaran-
tees. However, most works focus on the single-task setting, leaving the performance improvement
guarantees in the context-based meta-RL settings largely unexplored. While ContrBAR (Choshen
& Tamar, 2023) also benefits from the performance improvement guarantee, the theoretical insight
focuses on the online setting. Additionally, it is tailored to one particular approximation of I(Z;M)
as it makes assumptions specific to this approximation. In contrast, our work focuses on the offline
setting, addressing a broader class of algorithms that maximize various bounds of I(Z;M).

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

A task in RL is generally formalized as a fully observed MDP (Puterman, 2014), which is represented
by a tuple (S,A, P, ρ0, R, γ) with state space S, action space A, transition function P (s′|s, a),
reward function R(s, a), initial state distribution ρ0(s) and discount factor γ ∈ [0, 1]. For arbitrary
policy π(a|s), we denote the state-action distribution at timestep t as dπ,t(s, a) ≜ Pr(st = s, at =
a|s0 ∼ ρ0, at ∼ π, st+1 ∼ P,∀t ≥ 0). The discounted state-action distribution of given π(a|s) is
denoted as dπ(s, a) ≜ (1 − γ)

∑∞
t=0 γ

tdπ,t(s, a). The ultimate goal is to find an optimal policy
π(a|s) to maximize the expected return E(s,a)∼dπ

[R(s, a)].

Given a distribution of tasks p(M), every task m sampled from p(M) is an MDP sharing the same
state space and action space but differing from transition dynamics and reward functions. It is widely
assumed that the tasks in the meta RL setting are randomly sampled from p(M) (Li et al., 2020;
Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024). We denote the number of training tasks as N .
For each task i ∈ [0, 1, ..., N − 1], an offline dataset Di = {(si,j , ai,j , s′i,j , ri,j)}Kj=1 is collected in
advance, where K denotes the number of transitions. The learning algorithm is required to train a
meta-policy πmeta with access only to the given offline datasets. At test time, given an unseen task,
the meta policy πmeta performs task adaptation to get a task-specific policy and then will be evaluated
in the environment.

3.2 CONTEXT-BASED OMRL

Previous COMRL endeavors hold that the variation over different tasks can be represented by a
compact representation z (Yuan & Lu, 2022). In practice, they choose to train a context encoder
Z(·|x;ϕ) to extract the task information (Li et al., 2020; Dorfman et al., 2021), where x denotes the
given context and ϕ denotes the parameters of the context encoder. Then, the policy is learned by
conditioning on the task representation as π(a|s, Z(·|x;ϕ); θ). Naturally, there exists an optimal task
representation distribution Z(·|x;ϕ∗) that meets the optimal expected return for any policy parameter
θ is determined by π(a|s, Z(·|x;ϕ∗); θ). Hence, the objective of COMRL is formalized as:

max
θ

J∗(θ) = Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]] (1)

where Rm(s, a) denotes the ground-truth reward function of the task m.

Previous COMRL works (Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024) are
proven to optimize the context encoder by maximizing the approximate bounds of I(Z;M), as
shown in Theorem 3.1. They hold the intuition that using such kind of approach to optimize the
context encoder and adopting the standard offline RL algorithms to optimize the policy can lead

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to performance improvements. However, the theoretical justification of performance improvement
for such intuition has been less explored. For later use, we denote Z(·|x;ϕmutual) as the optimal
solution for maximizing I(Z;M). Whether Z(·|x;ϕmutual) is equivalent to Z(·|x;ϕ∗) is still an
open problem. Hence, we introduce an extra notation here to avoid confusion.
Theorem 3.1 ((Li et al., 2024)). Denote Xb and Xt are the behavior-related (s, a)-component and
task-related (s′, r)-component of the context X , with X = (Xb, Xt). We have:

I(Z;Xt|Xb) ≤ I(Z;M) ≤ I(Z;X) (2)

where 1) LFOCAL ≡ −I(Z;X) = −I(Z;Xt|Xb)− I(Z;Xb); 2) LCORRO ≡ −I(Z;Xt|Xb); 3)
LCSRO ≥ (λ− 1)I(Z;X)− λI(Z;Xt|Xb)

4 METHODS

We first introduce a Lipschitz assumption, a widely used technique in both model-free (Song & Sun,
2019; Ghosh et al., 2022) and model-based (Ji et al., 2022; Zhang et al., 2023a) RL frameworks.
Assumption 4.1. The policy function is Lz− Lipschitz w.r.t some norm || · || in the sense that

∀Z(·|x;ϕ1), Z(·|x;ϕ2) ∈ Z, |π(·|s, Z(·|x;ϕ1); θ)− π(·|s, Z(·|x;ϕ2); θ)| ≤ Lz · |Z(·|x;ϕ1)− Z(·|x;ϕ2)|
(3)

4.1 A PERFORMANCE IMPROVEMENT PERSPECTIVE TOWARDS PRIOR WORKS

Our goal is to arrive at an optimization objective for COMRL to get the performance improvement
guarantee. Motivated by the return discrepancy scheme (Janner et al., 2019) in the model-based RL
field, we can similarly build a tractable lower bound for J∗(θ).
Definition 4.2 (Return discrepancy in COMRL). The return discrepancy in the COMRL setting can
be defined as

J∗(θ)− J(θ) ≥ −|J(θ)− J∗(θ)| (4)

where J(θ) = Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]] is the expected return of the policy π condi-

tioning on the learned task representation Z(·|x;ϕ).

From Definition 4.2, we know that if the estimation error |J∗(θ) − J(θ)| can be upper-bounded,
the lower bound for J∗(θ) can be established simultaneously. Then, Eq. (4) can be interpreted as a
unified training objective for both the context encoder and the policy. Specifically, we can alternate
the optimization target to lift the lower bound for J∗(θ), where the holistic optimization process can
be seen as a two-stage alternating framework with the first stage updating the context encoder to
minimize |J∗(θ)−J(θ)| and the second stage updating the policy to maximize J(θ)−|J∗(θ)−J(θ)|
as J∗(θ) ≥ J(θ)− |J∗(θ)− J(θ)|. Hence, the performance improvement guarantee can be achieved.

The following theorem induces a tractable upper bound for |J∗(θ)− J(θ)|, connecting the bridge
between the intuition of previous works and the theoretical justification concerning the performance
improvement guarantee.
Theorem 4.3 (Return bound in COMRL). Assume the reward function is upper-bounded by Rmax.
For an arbitrary policy parameter θ, when meeting Assumption 4.1, the return bound in COMRL can
be formalized as:

|J∗(θ)− J(θ)| ≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(5)

Proof: See Section 8.2 in the Appendix.

By directly unrolling the Theorem 4.3, we can establish the lower bound of J∗(θ) as:

J∗(θ) ≥ J(θ)− 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note that |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)| is a constant w.r.t the learned task representation Z(·|x;ϕ).
Hence, this term can be ignored when optimizing Z(·|x;ϕ). Admittedly, there may exist a smarter
algorithm to further reduce the gap of |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|, but this is not our main focus
and we leave this to future work.

Theorem 4.3 and Eq. (6) indicate the following two principles for the context encoder and the
policy. For the context encoder learning, we should minimize the return bound, namely minimizing
Em,x|Z(·|x;ϕ) − Z(·|x;ϕmutual)|. For the policy learning, we should lift the lower bound of
J∗(θ), namely maximizing J(θ)− 2RmaxLz

(1−γ)2 Em,x(|Z(·|x;ϕ)−Z(·|x;ϕmutual)|+|Z(·|x;ϕmutual)−
Z(·|x;ϕ∗)|) ≡ J(θ), as the task representation related terms are constants for policy optimization.
To maximize J(θ), we can adopt standard offline RL algorithms (Wu et al., 2019; Fujimoto & Gu,
2021; Kumar et al., 2020) similar to (Yang et al., 2022).

Recall that previous COMRL works adopt alternatively training the context encoder by maximizing
I(Z;M), which can be approximately seen as minimizing Em,x|Z(·|x;ϕ)− Z(·|x;ϕmutual)| and
training the policy by conditioning on the learned task representation as well as applying the standard
offline RL algorithms. Therefore, we argue that previous COMRL works can be interpreted by this
framework, thus providing an explanation concerning performance improvement guarantee.

However, this optimization framework only considers the discrepancy between Z(·|x;ϕ) and
Z(·|x;ϕmutual), without considering the variation of Z(·|x;ϕ). In the next section, we will show
that this may violate the monotonicity of the performance improvements.

4.2 MONOTONIC PERFORMANCE IMPROVEMENT CONCERNING TASK REPRESENTATION
SHIFT

In this section, we aim to demonstrate that as the previous optimization framework in Section
4.1 doesn’t model the variation of task representation explicitly, this framework would provide
an insufficient condition for monotonic performance improvement. We first show conditions for
monotonic performance improvement of this framework.
Corollary 4.4 (Monotonic performance improvement condition for previous COMRL works). When
meeting Assumption 4.1, the condition for monotonic performance improvement of previous COMRL
works is:

ϵ∗12 ≜ J∗(θ2)− J∗(θ1) ≥
4RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕ∗)|) (7)

Proof: See Section 8.2 in the Appendix.

As shown in Corollary 4.4, Z(·|x;ϕ) should be close to Z(·|x;ϕ∗) such that the lower bound is small
enough for finding a policy to achieve monotonic performance improvement. Next, we will introduce
the performance difference bound framework to model variation of task representation.
Definition 4.5 (Performance difference bound in COMRL). For an alternating update process,
we denote J1(θ1) = Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)

[Rm(s, a)] as the expected return of the policy
π(·|s, Z(·|x;ϕ1); θ1) before update of the context encoder and the policy. Similarly, denote J2(θ2) =
Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)] as the expected return of the policy π(·|s, Z(·|x;ϕ2); θ2)
after update of the context encoder and the policy. The performance difference bound in the COMRL
setting can be defined as

J2(θ2)− J1(θ1) ≥ C (8)

when C is non-negative, the algorithm allows a monotonic performance improvement.

According to Definition 4.5, we need to find a positive C to improve the performance monotonically.
To achieve this, we can derive the lower bound of the performance difference.
Theorem 4.6 (Lower bound of performance difference in COMRL). Assume the reward function
is upper-bounded by Rmax. When meeting Assumption 4.1, the lower bound of the performance
difference in COMRL can be formalized as:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof: See Section 8.2 in the Appendix.

For the need of the monotonic performance improvement guarantee, we further let the right-hand
side of Eq. (9) be positive. Then, we would have the following condition to achieve monotonicity.

ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|] ≥ 0 (10)

Compared to the condition in Corollary 4.4, Eq. 10 presents an additional term |Z(·|x;ϕ2) −
Z(·|x;ϕ1)| to achieve monotonic performance improvement, which corresponds exactly to the previ-
ous ignored impacts stemming from the variation of the task representation. To achieve monotonic
performance improvements, the optimization of task representation should consider not only the
approximation to Z(·|x;ϕ∗), but also the magnitude of the update. For example, if we assume
that Z(·|x;ϕ1) is trained from scratch and the update process from Z(·|x;ϕ1) to Z(·|x;ϕ2) brings
Z(·|x;ϕ2) close to Z(·|x;ϕ∗), then with the condition in Corollary 4.4, the monotonic performance
improvement can be easily achieved with small ϵ∗12. However, for the condition in Eq. (10), small ϵ∗12
may cause the violation of monotonicity as |Z(·|x;ϕ1)− Z(·|x;ϕ2)| remains large.

To highlight the impacts of |Z(·|x;ϕ2)− Z(·|x;ϕ1)|, we name this issue Task Representation Shift.
Under some mild assumptions, we can conclude that it is possible to achieve monotonic performance
improvement with sufficient policy improvement ϵ∗12 on the condition of appropriate encoder updates,
as shown in Theorem 4.10.
Assumption 4.7. The impacts of task representation shift are upper-bounded by β and less than the
policy improvement ϵ∗12 with a certain coefficient.
Assumption 4.8. The space of the task representation is discrete and limited.

Assumption 4.9. There exists an α for any given Z(·|x;ϕ1), |Z(·|x;ϕ2)− Z(·|x; ϕ̃2)|2 ≤ α
b , where

Z(·|x;ϕ2) denotes the context encoder updated by maximizing I(Z;M) with the data size b randomly
sampled from the training dataset based on Z(·|x;ϕ1) and Z(·|x; ϕ̃2) denotes the context encoder
updated by fitting the empirical distribution on b i.i.d samples from Z(·|x;ϕ∗) based on Z(·|x;ϕ1)

1.
Theorem 4.10 (Monotonic performance improvement guarantee on training process). Denote κ as
(1−γ)2

4RmaxLz
ϵ∗12 − 1

2β and |Z| as the cardinality of the task representation space. Given that the context
encoder has already been trained by maximizing I(Z;M) to some extent. When meeting Assumption
4.1, 4.7, 4.8 and 4.9, with a probability greater than 1− ξ, we can get the monotonic performance
improvement guarantee by updating the context encoder via maximizing I(Z;M) from at least extra
k samples, where:

k =
1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (11)

Here, ξ ∈ [0, 1] is a constant.

Proof: See Section 8.2 in the Appendix.

Theorem 4.10 shows the connection between the needed update data size k and the performance
improvement brought only by the policy update ϵ∗12. If the calculated k is larger than the given
batch size, the context encoder should avoid this update and wait for the accumulation of ϵ∗12. As
ϵ∗12 increases, k decreases. When k is smaller than the given batch size, the monotonic performance
improvement can be achieved by updating the context encoder. Notice that this updating process
can be performed multiple times, as long as satisfying Assumption 4.7. The updating process is
visualized in Figure 1 right. Compared to the original alternating framework, Theorem 4.10 unveils
that the core part for better performance improvement is to adjust the update of the context encoder
to rein in the task representation shift, thereby showcasing the advantage over the previous works.
The general algorithmic framework is shown in Algorithm 1, where the way to adjust the update of
the context encoder is colored by red.

4.3 PRACTICAL IMPLEMENTATION

As outlined in Algorithm 1, the way to rein in the task representation shift can be seen as two aspects,
namely 1) when to update the context encoder determined by k and 2) how many times to update

1For more details to justify these assumptions, please refer to Appendix 8.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 General Algorithmic Framework Towards Reining In The Task Representation Shift
Input: Offline training datasets X , initialized policy πθ, context encoder Zϕ, given task representa-

tion shift threshold β and given training batch size for context encoder Nbs.
1: for iter in alternating iterations do
2: // Update the context encoder
3: Estimate the conditions (e.g.use Eq. (11) to approximate k)
4: if Conditions for updating the context encoder are met (e.g. k <= Nbs) then
5: while Accumulated task representation shift is less than β do
6: Sample context from X
7: Obtain task representations from Zϕ with inputting the sampled context
8: Compute Lencoder concerning maximizing I(Z;M)
9: Update ϕ to minimize Lencoder

10: end while
11: end if
12: // Update the policy
13: Detach the task representations
14: Sample training data from X
15: Compute Lpolicy via standard offline RL algorithms
16: Update θ to minimize Lpolicy
17: end for

the context encoder determined by β. To cover these two aspects, we introduce two parameters Nk
and Nacc. Here, Nk = n denotes that the context encoder needs to be updated every n updates of
the policy, and Nacc = n denotes when the context encoder needs to be updated, it is updated n
times. Our settings include 1) Nk = 2, Nacc = 1, 2) Nk = 3, Nacc = 1, 3) Nk = 1, Nacc = 2, and
4) Nk = 1, Nacc = 3. All settings as well as the original setting, namely Nk = 1, Nacc = 1, are
performed for 8 different random seeds.

With respect to the specific context encoder learning algorithms concerning maximizing I(Z;M),
we choose 4 representative algorithms that have been widely adopted in previous COMRL endeavors.
The details of these algorithms are shown in Appendix Section 8.4.

Contrastive-based is applied in (Li et al., 2020; Gao et al., 2024; Li et al., 2024) and it is proven to
be the upper bound of I(Z;M).

Reconstruction-based is applied in (Zintgraf et al., 2019; Dorfman et al., 2021; Li et al., 2024) and
it is proven to be the lower bound of I(Z;M), which is equivalent to CORRO (Yuan & Lu, 2022).

CSRO-based is applied in (Gao et al., 2024) and it is proven to be a better approximation w.r.t
I(Z;M) through linear interpolation between the lower bound and the upper bound.

Cross-entropy-based is proposed in our work and it is a direct approximation w.r.t I(Z;M).

With respect to the policy learning algorithm, to maintain the consistency of previous COMRL works,
we directly adopt BRAC (Wu et al., 2019) to train the policy.

5 EXPERIMENT

Our experiments are conducted to show that the previous optimization framework that ignores the
impacts of task representation shift is not sufficient. We hope to illustrate the potential of reining in
the task representation shift, laying the foundation for further research towards better performance
improvement of COMRL.

5.1 ENVIRONMENTS SETTINGS

We adopt MuJoCo (Todorov et al., 2012) and MetaWorld (Yu et al., 2020) benchmarks to evaluate
the algorithms. Following the protocol of UNICORN (Li et al., 2024), we randomly sample 20
training tasks and 20 testing tasks from the task distribution. We train the SAC (Haarnoja et al., 2018)
agent from scratch for each task and use the collected replay buffer as the offline dataset. During the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

meta-testing phase, we adopt a fully offline setting in a few-shot manner like (Li et al., 2020) that
randomly samples a trajectory from the dataset as the context to obtain the task representation and
then passes it to the meta-policy to complete the testing in the true environments.

5.2 MAIN RESULTS

Ant-Dir Walker-Param Reach Dial-Turn Button-Press Push

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

cr
os
s-
en

tro
py

co
nt
ra
st
iv
e

re
co
ns
tru

ct
io
n

cs
ro

Figure 2: Testing returns of different settings to rein in the task representation shift against the
original setting. Solid curves refer to the mean performance of trials over 8 random seeds, and the
shaded areas characterize the standard deviation of these trials.

Figure 2 and Table 3 illustrate the performance of our different settings to rein in the task represen-
tation shift against the original setting on 20 testing tasks. We find that these specific objectives
hold unanimous performance demonstration on all benchmarks that the previous training framework,
namely Nk = 1, Nacc = 1 , cannot provide the best asymptotic performance. These objectives
focus solely on the optimization target of the task representation, namely the optimal solution of
I(Z;M). While they are guaranteed to produce reasonable results, as shown in Section 4.1, ignoring
the impacts of task representation shift still hinders the capability of these algorithms to reach their
full potential. As shown in Table 3, even with minor changes to the algorithms, the performance
improvements are substantial. Furthermore, we observe that settings with Nk > 1, Nacc = 1 achieve
better performance more frequently than those with Nk = 1, Nacc > 1. Based on this observation, we
recommend prioritizing the adjustment of Nk when tuning parameters. This not only tends to yield
better performance but also offers the advantage of reducing training time. In contrast, increasing
Nacc would increase training time due to the need for multiple context encoder updates within a single
alternating step.

5.3 CAN THE RESULTS SHOW CONSISTENCY ACROSS DIFFERENT DATA QUALITIES?

To make our claim more universal, we conduct the experiment on different data qualities. We collect
three types of datasets with size being equal to the dataset used in Section 5.2. Depending on the
quality of the behavior policies, we denote these datasets as random, medium, and expert respectively.

Figure 3 and Table 3 demonstrate the performance of our different settings to rein in the task
representation shift against the original setting on Ant-Dir. We find that the contrastive-based and
CSRO-based algorithms fail on the random dataset. Except for these cases, the others show consistent
results that reining in the task representation shift may lead to better performance improvements.

Based on these impressive results, we believe that developing a smarter algorithm to control the task
representation shift automatically is an appealing direction and we leave this to future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

cross-entropy contrastive reconstruction csro

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

Ra
nd

om
M
ed

iu
m

Ex
pe

rt

Figure 3: Testing returns of different settings to rein in the task representation shift against the
original setting on different data qualities of Ant-Dir. Solid curves refer to the mean performance
of trials over 8 random seeds, and the shaded areas characterize the standard deviation of these trials.

6 DISCUSSION

This section seeks to raise some interesting issues derived from our work. We hope these issues can
further enable pondering on the significance of the task representation shift.

cross-entropy contrastive reconstruction csro

pretrain original

Figure 4: Testing returns of the pre-training scheme against training from scratch on Ant-Dir.
Solid curves refer to the mean performance of trials over 8 random seeds, and the shaded areas
characterize the standard deviation of these trials.

6.1 CAN THE PRETRAINING SCHEME BE ADOPTED TO ACHIEVE BETTER PERFORMANCE
IMPROVEMENT?

According to our analysis, the task representation shift issue only happens in the case that the context
encoder needs to be trained from scratch. Hence, a question is raised naturally. If we train the
context encoder in advance and use this pre-trained context encoder to train the policy directly, can
we achieve better performance improvement?

To answer this question, we conduct the experiment on Ant-Dir and still use the cross-entropy,
contrastive, reconstruction, and CSRO based objectives to pre-train the context encoder. As shown in
Figure 4, there is a significant performance gap between pre-training and training from scratch. To
better theoretically interpret this, we introduce the following Corollary.

Corollary 6.1 (Monotonic performance improvement condition for pre-training scheme). Denote
Z(·|x;ϕpretrain) as the task representation distribution after pre-training. When meeting Assumption
4.1, the monotonic performance improvement condition for pre-training scheme is:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (12)

Proof: See Section 8.2 in the Appendix.

Due to the implementation error and approximation error, |Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)| can not
equal to 0. Hence, according to Corollary 6.1, pre-training cannot actually achieve monotonic

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

performance improvements. As the task representation cannot be changed under the pre-training
scheme, compared to training from scratch, this scheme loses some degrees of freedom to improve
performance.

Additionally, this scheme can be intuitively regarded as degrading to the problem that how to design
a pre-training algorithm to better approximate Z(·|x;ϕ∗). Notice that there exists the decomposi-
tion |Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)| ≤ |Z(·|x;ϕpretrain)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)−
Z(·|x;ϕ∗)|. Since the cross-entropy based objective is the direct approximation of I(Z;M) and
CSRO based objective linear interpolates between the upper bound and the lower bound of I(Z;M),
holding better performance under the pre-training scheme is also in line with expectation.

This analysis further enhances the importance of considering the impacts of task representation shift
|Z(·|x;ϕ2)− Z(·|x;ϕ1)| in the alternating process. Nevertheless, how to achieve better performance
under the pre-training scheme is also an interesting problem.

6.2 CAN THE VISUALIZATION OF TASK REPRESENTATION BE STRONGLY RELIED UPON TO
IMPLY THE ASYMPTOTIC PERFORMANCE?

cross-entropy; pretrain; 300K; performance≈195 reconstruction; Nk=3, Nacc=1; 300K; performance≈245

Figure 5: The 2D projection of the learned task
representation space in Ant-Dir. Points are uni-
formly sampled from the evaluation datasets. Tasks
of given goals from 0 to 6 are mapped to rainbow
colors, ranging from purple to red.

Previous COMRL endeavors (Li et al., 2020;
Yuan & Lu, 2022; Gao et al., 2024) mostly apply
t-SNE on the learned task representation to show
the differentiation of the tasks. They hold the be-
lief that better performance corresponds to better
differentiation of the tasks. However, based on
our analysis, the visualization result only de-
pends on the task representation at convergence
and ignores the task representation shift during
the whole optimization process. According to
the illustration shown in Figure 5, less desirable
differentiation results can also lead to better per-
formance. Hence, the visualization results may
represent the true task distribution but cannot
sufficiently imply the final performance.

7 CONCLUSION & LIMITATION

Finding that the performance improvement guarantee of the COMRL training framework remains
under-explored, we constructively provide a theoretical framework to link the training scheme in
COMRL with the general RL objective of maximizing the expected return. After scrutinizing this
framework, we further find it ignores the variation of the task representation, which may impair
performance improvement. Based on this finding, we propose a new issue called task representation
shift, refine the condition for monotonicity, and prove that monotonic performance improvements
can be achieved with appropriate context encoder updates. With minor changes to the previous
training framework for reining in the task representation shift, the performance improvements can
be substantial. We prospect that deeply exploring the role of task representation shift can make a
profound difference in the COMRL setting. Naturally, one limitation is that there may exist more
advanced algorithms to control the task representation shift. Additionally, our work focuses on the
representation part for monotonic performance improvement, leaving the policy learning part alone.
Hence, one direction that merits further research is to design a policy learning algorithm to achieve
better policy improvements conditioning on the optimal task representation distribution. We leave
these interesting problems to future work.

REFERENCES

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Era Choshen and Aviv Tamar. Contrabar: Contrastive bayes-adaptive deep rl. In International
Conference on Machine Learning, pp. 6005–6027. PMLR, 2023.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learning
through optimistic policy search and planning. Advances in Neural Information Processing Systems,
33:14156–14170, 2020.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Mehdi Fatemi, Mary Wu, Jeremy Petch, Walter Nelson, Stuart J Connolly, Alexander Benz, Anthony
Carnicelli, and Marzyeh Ghassemi. Semi-markov offline reinforcement learning for healthcare. In
Conference on Health, Inference, and Learning, pp. 119–137. PMLR, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Yunkai Gao, Rui Zhang, Jiaming Guo, Fan Wu, Qi Yi, Shaohui Peng, Siming Lan, Ruizhi Chen,
Zidong Du, Xing Hu, et al. Context shift reduction for offline meta-reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear
function approximation. Advances in Neural Information Processing Systems, 35:13303–13315,
2022.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
neural information processing systems, 34:25502–25515, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Tianying Ji, Yu Luo, Fuchun Sun, Mingxuan Jing, Fengxiang He, and Wenbing Huang. When
to update your model: Constrained model-based reinforcement learning. Advances in Neural
Information Processing Systems, 35:23150–23163, 2022.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In Aleksandra Faust, David Hsu, and Ger-
hard Neumann (eds.), Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pp. 417–428. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/kumar22a.html.

11

https://proceedings.mlr.press/v164/kumar22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Junqiao Zhao, and Pheng-Ann Heng. Towards
an information theoretic framework of context-based offline meta-reinforcement learning. arXiv
preprint arXiv:2402.02429, 2024.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Michaël Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang,
Tom Le Paine, Richard Powell, Konrad Żołna, Julian Schrittwieser, et al. Alphastar unplugged:
Large-scale offline reinforcement learning. arXiv preprint arXiv:2308.03526, 2023.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision for
offline reinforcement learning in robotics. In Conference on Robot Learning, pp. 907–917. PMLR,
2022.

Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces. arXiv preprint
arXiv:1905.00475, 2019.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
factored action spaces for efficient offline reinforcement learning in healthcare. Advances in Neural
Information Processing Systems, 35:34272–34286, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, pp.
125, 2003.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631–24645. PMLR, 2022.

Shentao Yang, Shujian Zhang, Yihao Feng, and Mingyuan Zhou. A unified framework for alternating
offline model training and policy learning. Advances in Neural Information Processing Systems,
35:17216–17232, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

Hai Zhang, Hang Yu, Junqiao Zhao, Di Zhang, Chang Huang, Hongtu Zhou, Xiao Zhang, and
Chen Ye. How to fine-tune the model: Unified model shift and model bias policy optimization.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=d7a5TpePV7.

Xiao Zhang, Hai Zhang, Hongtu Zhou, Chang Huang, Di Zhang, Chen Ye, and Junqiao Zhao. Safe
reinforcement learning with dead-ends avoidance and recovery. IEEE Robotics and Automation
Letters, 9(1):491–498, 2023b.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.
arXiv preprint arXiv:1910.08348, 2019.

13

https://openreview.net/forum?id=d7a5TpePV7
https://openreview.net/forum?id=d7a5TpePV7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

8 APPENDIX

8.1 USEFUL LEMMAS

Lemma 8.1 (Return bound.(Zhang et al., 2023a)). Let Rmax denote the bound of the reward function,
ϵπ denote maxs DTV (π1||π2) and ϵM2

M1
denote E(s,a)∼d

π1
M1

[DTV (pM1 ||pM2)]. For two arbitrary
policies π1, π2 ∈ Π, the expected return under two arbitrary models M1,M2 ∈M can be bounded
as,

|V π2

M2
− V π1

M1
| ≤ 2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (13)

Proof:

|V π2

M2
− V π1

M1
| = |

∞∑
t=0

γt
∑
s,a

(pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a))r(s, a)|

≤ Rmax

∞∑
t=0

γt
∑
s,a

|pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a)|

= 2Rmax

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(14)

According to Theorem 2 (Return Bound) in (Zhang et al., 2023a),
∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ (

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (15)

.

We bring this result back and can draw the conclusion.

Lemma 8.2 (Inequility for L1 deviation of the empirical distribution.(Weissman et al., 2003)). Let P
be a probability distribution on the set A = {1, ..., a}. For a sequence of samples x1, ..., xm ∼ P ,
let P̂ be the empirical probability distribution on A defined by P̂ (j) = 1

m

∑m
i=1 I(xi = j). The

L1-deviation of the true distribution P and the empirical distribution P̂ over Â from m independent
identically samples is bounded by,

Pr(|P − P̂ | ≥ ϵ) ≤ (2|A| − 2) exp (−mϵ2/2) (16)

Proof:

According to the inequality for L1 deviation of the empirical distribution (Weissman et al., 2003), they
conclude that Pr(|P − P̂ |1 ≥ ϵ) ≤ (2|A| − 2) exp(−mϕ(πP)ϵ

2/4), where ϕ(p) = 1
1−2p log

1−p
p

and πP = maxA∈A min(P (A), 1 − P (A)). The paper (Weissman et al., 2003) point out that 0 ≤
πP ≤ 1/2,∀P . Based on this, we can derive the function ϕ(p) and find that ϕ(p) is monotonically
decreasing on (0, 1/2). Therefore, we can get ϕ(p) ≥ ϕ(1/2) = 2. Then, we bring this result back
and can conclude that Pr(|P − P̂ |1 ≥ ϵ) ≤ (2|A| − 2) exp(−mϵ2/2).

8.2 MISSING PROOFS

Theorem 8.3 (Return bound in COMRL). Assume the reward function is upper-bounded by Rmax.
For an arbitrary policy parameter θ, when meeting Assumption 4.1, the return bound in COMRL can
be formalized as:

|J∗(θ)− J(θ)| ≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof:
|J(θ)− J∗(θ)|
= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)

[Rm(s, a)]]− Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]]| (18)

= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)

[Rm(s, a)]]| (19)

= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼d

π(·|s,Z(·|x;ϕmutual);θ)
[Rm(s, a)]

+ E(s,a)∼d
π(·|s,Z(·|x;ϕmutual);θ)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]]| (20)

≤ Em,x[|E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼d

π(·|s,Z(·|x;ϕmutual);θ)
[Rm(s, a)]|

+ |E(s,a)∼d
π(·|s,Z(·|x;ϕmutual);θ)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]|] (21)

= Em,x[|V π(·|s,Z(·|x;ϕ);θ)
m − V π(·|s,Z(·|x;ϕmutual);θ)

m |+ |V π(·|s,Z(·|x;ϕmutual);θ)
m − V π(·|s,Z(·|x;ϕ∗);θ)

m |]
(22)

≤ Em,x[
2Rmax

(1− γ)2
max

s
DTV (π(·|s, Z(·|x;ϕ); θ)||π(·|s, Z(·|x;ϕmutual); θ))

+
2Rmax

(1− γ)2
max

s
DTV (π(·|s, Z(·|x;ϕmutual); θ)||π(·|s, Z(·|x;ϕ∗); θ))] (23)

≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|) (24)

Eq. (23) is the result of directly applying Lemma 8.1 and Eq. (24) is the result of directly applying
Assumption 4.1.
Corollary 8.4 (Monotonic performance improvement condition for previous COMRL works). When
meeting Assumption 4.1, the condition for monotonic performance improvement of previous COMRL
works is:

ϵ∗12 ≜ J∗(θ2)− J∗(θ1) ≥
4RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕ∗)|) (25)

Proof:
J(θ2)− J(θ1) = J(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− J(θ1) (26)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

J(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− J(θ1) (27)
≥ Em,x[−κmax

s
DTV (π(·|s, Z(·|x;ϕ); θ2)||π(·|s, Z(·|x;ϕ∗); θ2))] + ϵ∗12 (28)

− κmax
s

DTV (π(·|s, Z(·|x;ϕ); θ1)||π(·|s, Z(·|x;ϕ∗); θ1))] (29)

≥ Em,x[−2κLz|Z(·|x;ϕ)− Z(·|x;ϕ∗)|+ ϵ∗12] (30)
To get the monotonic performance improvement, we need Eq. (30) to be larger than 0. Hence, we
can get:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕ)− Z(·|x;ϕ∗)|] ≥ 0 (31)

Theorem 8.5 (Lower bound of performance difference in COMRL). Assume the reward function
is upper-bounded by Rmax. When meeting Assumption 4.1, the lower bound of the performance
difference in COMRL can be formalized as:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(32)

Proof: We can introduce the following decomposition
J2(θ2)− J1(θ1) (33)
= Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)]− Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)
[Rm(s, a)] (34)

= Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)
[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)

[Rm(s, a)]] (35)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Denote E(s,a)∼dπ(·|s,Zi(·|x);θj)
[Rm(s, a)]] as Gθj

Zi
, then we can get the following derivation. Here, we

only consider the value within the brackets.
= E(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)
[Rm(s, a)] (36)

= Gθ2
Z2
−Gθ1

Z1
(37)

= Gθ2
Z2
−Gθ2

Z∗ +Gθ2
Z∗ −Gθ1

Z∗ +Gθ1
Z∗ −Gθ1

Z2
+Gθ1

Z2
−Gθ1

Z1
(38)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

Gθ2
Z2
−Gθ2

Z∗ +Gθ2
Z∗ −Gθ1

Z∗ +Gθ1
Z∗ −Gθ1

Z2
+Gθ1

Z2
−Gθ1

Z1
(39)

≥ −κmax
s

DTV (π(·|s, Z(·|x;ϕ2); θ2)||π(·|s, Z(·|x;ϕ∗); θ2)) + ϵ∗12

− κmax
s

DTV (π(·|s, Z(·|x;ϕ∗); θ1)||π(·|s, Z(·|x;ϕ2); θ1))

− κmax
s

DTV (π(·|s, Z(·|x;ϕ2); θ1)||π(·|s, Z(·|x;ϕ1); θ1)) (40)

≥ −κLz|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ ϵ∗12
− κLz|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| − κLz|Z(·|x;ϕ2)− Z(·|x;ϕ1)| (41)

Simplifying Eq. (41) we can get:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(42)

Theorem 8.6 (Monotonic performance improvement guarantee on training process). Denote κ as
(1−γ)2

4RmaxLz
ϵ∗12 − 1

2β and |Z| as the cardinality of the task representation space. Given that the context
encoder has already been trained by maximizing I(Z;M) to some extent. When meeting Assumption
4.1, 4.7, 4.8 and 4.9, with a probability greater than 1− ξ, we can get the monotonic performance
improvement guarantee by updating the context encoder via maximizing I(Z;M) from at least extra
k samples, where:

k =
1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (43)

Here, ξ ∈ [0, 1] is a constant.

Proof:

Let Z1 have already been trained by maximizing I(Z;M) to some extent. Given that to get Z2, we
need to train Z1 by extra k samples from the training dataset by maximizing I(Z;M) to get the
monotonic performance improvement guarantee.

We begin with the following inequality:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̃2)|+ |Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| (44)

where Z(·|x; ϕ̃2) denotes the context encoder updated by fitting the empirical distribution on k i.i.d
samples from Z(·|x;ϕ∗) based on Z(·|x;ϕ1).

According to Assumption 4.9, we have:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| ≤
√

α

k
(45)

Now, we move our focus on solving |Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)|.

By applying Lemma 8.2, the L1 deviation of the empirical distribution Z(·|x; ϕ̃2) and true Z(·|x;ϕ∗)
over |Z| is bounded by:

Pr(|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| ≥ ϵ) ≤ (2|Z| − 2) exp (−kϵ2/2) (46)

Pr(|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| <= ϵ) ≥ 1− (2|Z| − 2) exp (−kϵ2/2) (47)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then for a fixed x, with probability greater than 1− ξ, we have:

|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
(48)

Hence, we can get:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+

√
α

k
(49)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and recall that κ denotes (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, then we can get the k as:√
2

k
log

2|Z| − 2

ξ
+

√
α

k
≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (50)

k ≥ 1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (51)

Since we need the least number of samples that update the context encoder, we take k =
1
κ2 (

√
2 log 2|Z|−2

ξ +
√
α)2.

Corollary 8.7 (Monotonic performance improvement condition for pre-training scheme). Denote
Z(·|x;ϕpretrain) as the task representation distribution after pre-training. When meeting Assumption
4.1, the monotonic performance improvement condition for pre-training scheme is:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (52)

Proof: Denote Jpretrain(θ1) as the expected return of the policy π(·|s, Z(·|x;ϕpretrain); θ1) be-
fore update of the policy. Similarly, denote Jpretrain(θ2) as the expected return of the policy
π(·|s, Z(·|x;ϕpretrain); θ2) after update of the policy.

Jpretrain(θ2)− Jpretrain(θ1) (53)

= Jpretrain(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− Jpretrain(θ1) (54)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

Jpretrain(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− Jpretrain(θ1) (55)

≥ Em,x[−κmax
s

DTV (π(·|s, Z(·|x;ϕpretrain); θ2)||π(·|s, Z(·|x;ϕ∗); θ2))] + ϵ∗12 (56)

− κmax
s

DTV (π(·|s, Z(·|x;ϕpretrain); θ1)||π(·|s, Z(·|x;ϕ∗); θ1))] (57)

≥ Em,x[−2κLz|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|+ ϵ∗12] (58)

To get the monotonic performance improvement, we need Eq. (58) to be larger than 0. Hence, we
can get:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (59)

8.3 JUSTIFICATION OF ASSUMPTIONS

Assumption 4.7:

As our aim is to rein in the task representation shift, setting a threshold to bound the task representation
shift is natural. Nevertheless, how to set this threshold smartly or automatically adjust this threshold
would need further research and we leave this to future work. The task representation shift less

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

than the policy improvement ϵ∗12 with a certain coefficient is to help us ensure κ in Theorem 4.10
is larger than 0. Since we can update the policy consistently (e.g. k determines when to update the
context encoder, but the policy is updated normally), ϵ∗12 can accumulate gradually. Therefore, this
assumption is reasonable.

Assumption 4.8:

Since the task representation is obtained through sampling, whether during the guidance of the
downstream policy or the training of the context encoder by maximizing I(Z;M), it is reasonable to
assume that the space of the task representation is discrete and limited. We think this assumption is
general as it can cover various cases, e.g. sampling, generated from the deterministic network, or
discretization.

Assumption 4.9:

Figure 6: The numerical experiments on Ant-Dir and Walker-Param.

To justify this assumption in practice, we design a numerical experiment.

Firstly, notice that the sub-optimality gap between Z(·|x;ϕmutual) and Z(·|x;ϕ∗) is a constant. We
can introduce a notation Z(·|x; ϕ̂2) that denotes the context encoder updated by fitting the empirical
distribution on b i.i.d samples from Z(·|x;ϕmutual) based on Z(·|x;ϕ1). Similar to Eq. (48), we can
get the upper bound of the discrepancy between Z(·|x; ϕ̂2) and Z(·|x; ϕ̃2):

|Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| (60)

≤ |Z(·|x; ϕ̂2)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ∗)− Z(·|x; ϕ̃2)|
(61)

=

√
constant1

b
+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|︸ ︷︷ ︸

sub-optimality gap

+

√
constant2

b
(62)

=

√
constant3

b
+ constant4 (63)

Secondly, we use the pre-trained context encoder to be Z(·|x;ϕmutual), use the initialized context
encoder to be Z(·|x;ϕ1) and simulate two update processes: 1) use the specific objective w.r.t
maximizing I(Z;M) to update Z(·|x;ϕ1) to get Z(·|x;ϕ2); 2) use task representations randomly
sampled from the pre-trained context encoder to update Z(·|x;ϕ1) to get Z(·|x; ϕ̂2). We set different
numbers of samples to complete these two update processes.

To express the discrepancy, we compute nn.MSE loss of the task representation randomly sampled
from Z(·|x;ϕ2) and Z(·|x; ϕ̂2). As shown in Figure 6, it does fit an inversely proportional trend as
the training size increases. Therefore, we can practically denote the discrepancy between Z(·|x;ϕ2)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and Z(·|x; ϕ̂2) as:

|Z(·|x;ϕ2)− Z(·|x; ϕ̂2)| ≤
√

constant5
b

(64)

By combining the above formulations, we can get:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| (65)

≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̂2)|+ |Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| (66)

=

√
constant6

b
+ constant4 (67)

Since the training sample is finite, the discrepancy would not converge to 0. Hence, with an
appropriate α, Assumption 4.9 can be grounded in practice.

Furthermore, even if we assume the discrepancy would converge to 0 and take the constant into
Assumption 4.9, it only needs to modify the formulation of κ in Theorem 4.10.

Proof: If we take the constant c into Assumption 4.9, then it becomes:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| ≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̂2)|+ |Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| =
√

α

b
+ c

(68)

Therefore, we need to modify Eq. (49) as:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+

√
α

k
+ c (69)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and update the notation of κ as (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β − c, then we can get
the k as: √

2

k
log

2|Z| − 2

ξ
+

√
α

k
+ c ≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (70)

k ≥ 1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (71)

Since we need the least number of samples that update the context encoder, we take k =
1
κ2 (

√
2 log 2|Z|−2

ξ +
√
α)2.

To further enhance the theoretical rigor, we can even set the bound of Assumption 4.9 as a constant
since the bound between Z(·|x;ϕ2) and Z(·|x; ϕ̃2) will be reduced consistently with larger data sizes.
Setting this as a constant only needs the accumulation of ϵ∗12 to become larger, which is also acceptable
under our theoretical framework. For specific algorithms, e.g. contrastive, reconstruction,..., if there
exist theoretical guarantees for the convergence bound, it is nice to derive a more precise calculation
method for k.

Proof: If we set the bound in Assumption 4.9 to be a constant α, then Eq. (49) becomes:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+
√
α (72)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and update the notation of κ as (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β −
√
α, then we can

get the k as: √
2

k
log

2|Z| − 2

ξ
+
√
α ≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (73)

k ≥ 2

κ2
log

2|Z| − 2

ξ
(74)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since we need the least number of samples that update the context encoder, we take k = 2
κ2 log

2|Z|−2
ξ .

8.4 IMPLEMENTATION DETAILS

In this section, we report the details of all the objectives in our main paper.

Contrastive-based (Li et al., 2020). The contrastive-based algorithm uses the task representation to
compute distance metric learning loss. We adopt the open-source code of FOCAL2.

Reconstruction-based (Li et al., 2024). The reconstruction-based algorithm passes the state, action,
and task representation through the decoder to reconstruct the next state and the reward signal. We
obtain the source code of UNICORN from the authors and adopt UNICORN-0 as the reconstruction-
based objective training framework.

CSRO-based (Gao et al., 2024). The CSRO-based algorithm sets an additional CLUB term onto
the FOCAL objective to balance between the lower bound and the upper bound. We adopt the
open-source code of CSRO3.

Cross-entropy-based. The cross-entropy-based algorithm is a straightforward discrete approximation
to I(Z;M). Specifically, after extracting from the context encoder, the task representation would
be passed through a fully connected layer to get the probabilities for each task. Then, the context
encoder is trained by the supervision of the task label and back-propagation of the cross-entropy loss.

According to Theorem 3.1, the previous methods are optimizing the approximate bounds of I(Z;M).
To better approximate I(Z;M), we choose to face this term directly. Notice that I(Z;M) =
H(M)−H(M |Z). For the first part, it is a constant w.r.t the variable Z. Hence, it can be ignored.
For the second part, we have:

H(M |Z) = −Ez[
∑
m

p(m|z) log p(m|z)] (75)

The ideal condition is task representation Z can uniquely identify the task M . Hence, minimizing
H(M |Z) is equivalent to maximizing Ez[log p(m|z)], as we need p(m|z) to approach 1. As maxi-
mizing log p(m|z) can be instantiated as the cross-entropy-loss, we claim that cross-entropy-loss is a
direct approximation towards optimizing I(Z;M).

Built upon the code base of FOCAL, cross-entropy-based only replaces the distance metric learning
loss with cross-entropy loss.

To maintain fairness, we make sure all benchmark-irrelevant parameters are consistent, as shown in
Table 1.

Table 1: Benchmark-irrelevant parameters setting in the training process.

training tasks 20

testing tasks 20

task training batch size 16

rl batch size 256

context size 1 trajectory

actor-network size [256, 256]

critic-network size [256, 256]

task encoder network size [64, 64]

learning rate 3e-4

For each environment, we make the benchmark-relevant parameters the same for each algorithm, as
shown in Table 2.

2https://github.com/FOCAL-ICLR/FOCAL-ICLR/
3https: //github.com/MoreanP/CSRO.git

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Benchmark-relevant parameters setting in the training process.

Configurations Reach Ant-Dir Button-Press Dial-Turn Walker-Param Push

dataset size 3e5 9e4 3e5 3e5 4.5e5 3e5

task representation dimension 5 5 5 5 5 5

Table 3 reports the performance in our experimental setting. The results are averaged by 8 random
seeds with each seed averaged by the last 5 evaluation performances. Furthermore, to demonstrate
whether the performance improvement w.r.t the original is statistically significant, we conduct a
paired t-test for cases where the performance exceeds the original. The statistically significant results
are highlighted in red while others are colored in blue.

Table 3: The performance in our experiments section. Each result is averaged by 8 random seeds.

Benchmark Algorithms Nk = 1, Nacc = 3 Nk = 1, Nacc = 2 Nk = 1, Nacc = 1 (original) Nk = 2, Nacc = 1 Nk = 3, Nacc = 1

Reach

Cross-entropy 2856.35± 315.30 (p = 0.036) 2573.235± 245.25 (p = 0.441) 2470.25± 300.93 2457.77± 309.70 (p = 0.948) 2688.17± 166.59 (p = 0.072)
Contrastive 2622.02± 228.00 (p = 0.667) 2787.83± 148.31 (p = 0.043) 2580.39± 141.73 2802.88± 163.66 (p = 0.006) 2616.68± 418.95 (p = 0.828)

Reconstruction 2692.67± 289.51 (p = 0.033) 2650.42± 162.62 (p = 0.044) 2405.53± 190.28 2614.61± 340.11 (p = 0.215) 2533.80± 393.97 (p = 0.409)
CSRO 2385.59± 452.92 (p = 0.661) 2610.81± 73.95 (p = 0.380) 2547.45± 173.25 2598.97± 176.38 (p = 0.669) 2857.17± 90.15 (p = 0.027)

Dial-Turn

Cross-entropy 1365.08± 229.77 (p = 0.049) 1126.04± 249.26 (p = 0.402) 1015.07± 300.47 1167.92± 208.74 (p = 0.200) 1127.70± 358.05 (p = 0.633)
Contrastive 1314.06± 330.98 (p = 0.047) 1034.83± 322.80 (p = 0.550) 1146.31± 265.92 1118.64± 270.86 (p = 0.875) 1050.41± 300.35 (p = 0.573)

Reconstruction 1420.08± 193.14 (p = 0.181) 1337.72± 256.86 (p = 0.908) 1353.98± 198.90 1111.40± 215.29 (p = 0.046) 1740.45± 51.78 (p = 0.003)
CSRO 2071.34± 150.48 (p = 0.044) 1587.50± 296.00 (p = 0.827) 1510.53± 333.68 1397.55± 349.81 (p = 0.791) 1644.01± 429.55 (p = 0.117)

Button-Press

Cross-entropy 1164.41± 424.59 (p = 0.668) 1422.94± 517.74 (p = 0.264) 1236.10± 187.42 1588.21± 301.15 (p = 0.029) 1048.96± 327.52 (p = 0.252)
Contrastive 1573.33± 138.66 (p = 0.045) 1167.91± 396.01 (p = 0.833) 1206.87± 328.34 645.23± 338.07 (p = 0.014) 1296.29± 439.07 (p = 0.615)

Reconstruction 2947.89± 271.49 (p = 0.028) 2121.66± 601.57 (p = 0.367) 2361.82± 517.93 2496.67± 594.00 (p = 0.632) 2297.39± 559.90 (p = 0.792)
CSRO 1326.82± 550.33 (p = 0.361) 1499.84± 759.36 (p = 0.562) 1793.41± 495.54 1689.44± 663.69 (p = 0.869) 2328.17± 383.46 (p = 0.031)

Push

Cross-entropy 1279.85± 300.24 (p = 0.537) 889.64± 158.81 (p = 0.139) 1103.52± 323.49 1461.72± 157.71 (p = 0.041) 1338.57± 259.27 (p = 0.154)
Contrastive 661.95± 176.91 (p = 0.394) 941.42± 192.44 (p = 0.673) 839.05± 267.61 1557.84± 495.95 (p = 0.017) 1172.82± 387.91 (p = 0.130)

Reconstruction 1357.04± 327.87 (p = 0.038) 1146.68± 465.36 (p = 0.737) 1063.80± 266.31 1071.75± 194.36 (p = 0.977) 1289.08± 354.33 (p = 0.114)
CSRO 1786.30± 302.97 (p = 0.036) 1199.84± 553.20 (p = 0.832) 1264.74± 341.79 1288.64± 578.16 (p = 0.962) 1438.11± 242.08 (p = 0.087)

Walker-Param

Cross-entropy 365.22± 69.27 (p = 0.127) 337.73± 121.10 (p = 0.629) 284.56± 103.71 399.87± 87.20 (p = 0.042) 371.48± 96.95 (p = 0.093)
Contrastive 301.70± 59.35 (p = 0.859) 333.35± 40.14 (p = 0.283) 299.00± 35.42 450.47± 19.71 (p = 0.002) 432.61± 77.14 (p = 0.022)

Reconstruction 281.50± 97.94 (p = 0.339) 240.56± 88.25 (p = 0.763) 232.64± 78.06 370.97± 103.82 (p = 0.030) 292.53± 134.26 (p = 0.178)
CSRO 297.64± 99.69 (p = 0.812) 413.72± 26.33 (p = 0.041) 317.98± 72.30 413.95± 39.37 (p = 0.039) 415.43± 22.65 (p = 0.046)

Ant-Dir

Cross-entropy 245.01± 18.20 (p = 0.320) 252.73± 19.95 (p = 0.880) 253.83± 9.56 291.29± 15.69 (p = 0.0004) 283.56± 17.48 (p = 0.002)
Contrastive 187.72± 19.64 (p = 0.107) 211.31± 20.04 (p = 0.739) 207.92± 18.01 268.23± 19.74 (p = 0.001) 259.47± 16.19 (p = 0.001)

Reconstruction 205.77± 21.88 (p = 0.434) 222.21± 19.71 (p = 0.504) 213.78± 31.88 244.52± 16.20 (p = 0.014) 247.81± 23.60 (p = 0.033)
CSRO 222.97± 13.04 (p = 0.022) 222.36± 49.38 (p = 0.247) 263.66± 15.87 285.97± 15.40 (p = 0.029) 258.57± 44.76 (p = 0.865)

Ant-Dir-Random

Cross-entropy 55.04± 13.56 (p = 0.486) 54.09± 9.75 (p = 0.760) 52.06± 12.51 77.47± 22.20 (p = 0.043) 52.18± 26.82 (p = 0.991)
Contrastive −0.13± 0.40 −0.16± 0.38 0.05± 0.30 0.04± 0.39 −0.07± 0.27

Reconstruction 53.55± 17.94 (p = 0.039) 45.61± 10.05 (p = 0.572) 43.34± 10.90 51.71± 9.08 (p = 0.172) 42.63± 17.37 (p = 0.922)
CSRO −1.18± 0.57 −0.45± 0.25 −1.00± 0.34 −0.93± 0.72 −0.48± 0.47

Ant-Dir-Middle

Cross-entropy 185.10± 15.83 (p = 0.027) 156.89± 30.80 (p = 0.454) 140.64± 37.23 152.72± 46.76 (p = 0.255) 113.96± 34.49 (p = 0.021)
Contrastive 203.53± 19.65 (p = 0.003) 166.72± 17.95 (p = 0.481) 156.66± 26.05 199.96± 29.38 (p = 0.042) 178.09± 33.00 (p = 0.312)

Reconstruction 166.75± 26.74 (p = 0.157) 193.11± 18.21 (p = 0.031) 185.11± 24.86 178.75± 25.70 (p = 0.539) 160.72± 46.56 (p = 0.321)
CSRO 88.48± 71.43 (p = 0.632) 177.76± 15.04 (p = 0.039) 121.93± 39.44 84.25± 65.94 (p = 0.490) 49.22± 77.92 (p = 0.304)

Ant-Dir-Expert

Cross-entropy 207.21± 22.30 (p = 0.144) 218.31± 21.36 (p = 0.234) 228.97± 18.16 261.42± 19.32 (p = 0.022) 237.93± 28.75 (p = 0.521)
Contrastive 219.29± 16.16 (p = 0.008) 246.19± 26.44 (p = 0.279) 261.71± 21.06 286.68± 26.53 (p = 0.048) 317.66± 23.25 (p = 0.003)

Reconstruction 216.05± 32.18 (p = 0.478) 219.70± 18.40 (p = 0.343) 230.49± 26.76 281.18± 7.71 (p = 0.002) 262.63± 18.95 (p = 0.008)
CSRO 289.97± 29.88 (p = 0.038) 229.860± 56.62 (p = 0.570) 251.41± 16.49 253.81± 20.26 (p = 0.916) 227.12± 10.43 (p = 0.031)

8.5 FULL RELATED WORKS

Offline RL. Offline RL (Fujimoto et al., 2019) leverages a fully offline dataset to perform policy
optimization and value function learning, avoiding explicit interaction with the environment. To
overcome the notorious distribution shift and the induced value overestimation issues, prior works
adopt methods based on policy regularization (Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto &
Gu, 2021), value penalty (Wu et al., 2019; Kumar et al., 2020) and sequence modeling (Chen et al.,
2021; Janner et al., 2021). While these methods have demonstrated promising performance on a
single task, their generalization performance to the unknown remains limited (Ghosh et al., 2021).
Our work follows the offline RL setting, attempting to adopt meta-learning techniques to improve the
generalization performance.

Meta RL. Meta RL has emerged as an enticing avenue for effectively adapting to unknown
environments (Finn et al., 2017). Unlike traditional gradient-based meta RL methods (Finn et al.,
2017; Mitchell et al., 2021), context-based meta RL methods demonstrate superior advantages in
both sample efficiency and asymptotic performance (Rakelly et al., 2019; Zintgraf et al., 2019; Li

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

et al., 2024). Our work delves into this promising domain to advance the capabilities of context-based
meta RL further.

Context-based Offline Meta RL. As the marriage between context-based meta RL and offline RL,
COMRL combines the merits of both sides. Specifically, COMRL methods (Li et al., 2020; Yuan &
Lu, 2022; Gao et al., 2024; Li et al., 2024) leverage the offline dataset to train a context encoder to
learn robust task representations, and then pass the representation to the policy and value function
as input. At test time, COMRL methods leverage the generalization ability of the learned context
encoder to perform meta-adaptation. Acknowledging the theoretical insights from (Li et al., 2024),
prior COMRL works (Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024) mainly focus
on how to design a context encoder learning algorithm to better approximate I(Z;M). However, our
work moves the focus on how to refine the condition of monotonic performance improvements based
on a given context encoder learning algorithm. Center around this motivation, we identify a new
issue called task representation shift, which is ignored by the previous COMRL endeavors.

Performance Improvement Guarantee. Ensuring performance improvement is a key concern in
both online and offline reinforcement learning settings. In online RL, performance improvement guar-
antees are often established through methods such as performance difference bounds (Schulman et al.,
2015; Kakade & Langford, 2002; Ji et al., 2022; Zhang et al., 2023a), return discrepancy (Janner et al.,
2019; Luo et al., 2018), and regret bounds (Osband & Van Roy, 2014; Curi et al., 2020). In offline RL,
CQL-based methods (Kumar et al., 2020; Yu et al., 2021) also enjoy safe policy improvement guaran-
tees. However, most works focus on the single-task setting, leaving the performance improvement
guarantees in the context-based meta-RL settings largely unexplored. While ContrBAR (Choshen
& Tamar, 2023) also benefits from the performance improvement guarantee, the theoretical insight
focuses on the online setting. Additionally, it is tailored to one particular approximation of I(Z;M)
as it makes assumptions specific to this approximation. In contrast, our work focuses on the offline
setting, addressing a broader class of algorithms that maximize various bounds of I(Z;M).

8.6 ADDITIONAL RESULTS

Classifier Contrastive Reconstruction

Performance Control
original

Nk = 3,Nacc = 1
Nk = 2,Nacc = 1

Nk = 1,Nacc = 3
Nk = 1,Nacc = 2

Figure 7: The experimental results of using the evaluation performance to guide the learning of the
context encoder on Ant-Dir. Each result of Performance Control is averaged by 6 random seeds.

Here, we give a potential way to achieve better performance. As shown in Theorem 4.10, k has a
close connection with ϵ∗12. When ϵ∗12 is sufficient, k would become less than the given batch size, then
the context encoder can be updated. The straightforward way is to use the performance evaluated
through online interaction with the environment as the guideline. Specifically, we use the evaluation
performance of the learned policy conditioning on the pre-trained task representation to approximate
J∗(θ), thereby providing a way to approximate ϵ∗12. To resolve performance fluctuations, we calculate
ϵ∗12 through ϵ∗12 ← ϵ∗12 +max(J∗(θ2) − J∗(θ1), 0). According to Theorem 4.10, we simply set a
hyper-parameter α to calculate k as k = α

(ϵ∗12)
2+1e−9 . During this experiment, we set α = 0.07. As

for β, we simply set the context encoder to be updated once when an update is required.

As shown in Figure 7, we observe that all three algorithms exhibit improved asymptotic performance
on Ant-Dir. This suggests a potential way to reduce parameter sensitivity by leveraging performance
to guide the training of the context encoder.

Nevertheless, the current method is not practically feasible. Calculating online performance evalua-
tions across 20 training tasks for each training step would require up to a month on an NVIDIA 3090

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

GPU. To speed up the process, we randomly select only 3 training tasks for calculating, reducing the
training time to approximately 3–6 days, depending on the algorithm. Note that the performance
on learning curves is still averaged by 20 testing tasks. Due to the extremely slow training caused
by CSRO, which uses two contrastive learning-based losses, it is excluded from this evaluation.
Exploring methods to guide the training of the context encoder through more efficient performance
estimation techniques could be a promising direction for future work.

23

	Introduction
	Related Works
	Preliminaries
	Problem Statement
	Context-based OMRL

	Methods
	A Performance Improvement Perspective Towards Prior Works
	Monotonic Performance Improvement Concerning Task Representation Shift
	Practical Implementation

	Experiment
	Environments Settings
	MAIN RESULTS
	Can The Results Show Consistency Across Different Data Qualities?

	Discussion
	Can The Pretraining Scheme Be Adopted To Achieve Better Performance Improvement?
	Can The Visualization Of Task Representation Be Strongly Relied Upon to Imply The Asymptotic Performance?

	Conclusion & Limitation
	Appendix
	Useful Lemmas
	Missing Proofs
	Justification Of Assumptions
	Implementation Details
	Full Related Works
	Additional Results

