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Abstract

Scaling law that rewards large datasets, complex models and enhanced data gran-
ularity has been observed in various fields of deep learning. Yet, studies on time
series forecasting have cast doubt on scaling behaviors of deep learning methods
for time series forecasting: while more training data improves performance, more
capable models do not always outperform less capable models, and longer input
horizons may hurt performance for some models. We propose a theory for scaling
law for time series forecasting that can explain these seemingly abnormal behaviors.
We take into account the impact of dataset size and model complexity, as well as
time series data granularity, particularly focusing on the look-back horizon, an
aspect that has been unexplored in previous theories. Furthermore, we empirically
evaluate various models using a diverse set of time series forecasting datasets,
which (1) verifies the validity of scaling law on dataset size and model complex-
ity within the realm of time series forecasting, and (2) validates our theoretical
framework, particularly regarding the influence of look back horizon. We hope
our findings may inspire new models targeting time series forecasting datasets
of limited size, as well as large foundational datasets and models for time series
forecasting in future work.2

1 Introduction

Because of the practical value of time series forecasting, past years have seen rapid development for
time series forecasting methods using the paradigm of neural network training. Neural Nets utilize
different model architectures, including FFN-based [1, 2, 3], Transformer-based [4, 5, 6, 7, 8] and
Convolution-based [9, 10] neural nets have been proposed. Starting from around 2022, some previous
work [1, 11, 7, 10] proposed that powerful models could be enhanced by extending the look-back
horizon because more historical information can be utilized. However, our experiments (Figure 3)
show that this claim may not hold for datasets in practice with a certain amount of training data:
optimal horizon does exist, and it will increase if the amount of available training data increases. This
calls for a more thorough understanding of the impact of horizon and dataset size on forecasting loss.

In Natural Language Processing (NLP) [12, 13], Computer Vision (CV) [14] and other fields in deep
learning, the impact of dataset size, model size and data granularity on performance is sometimes
summarized as the Scaling Law: larger dataset, larger models and more detailed data granularity
improves performance in these cases, and theories [15, 16] have been proposed to explain these
behaviors. However, these theories do not lay emphasis on the horizon of time series, hence
cannot be used directly to explain the impact of the horizon.
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In this work, we introduce a comprehensive scaling law theory for time series forecasting, with a
particular emphasis on the impact of the horizon. This theory integrates dataset size and model size
to optimize predictive performance based on the look-back horizon. We further conduct experiments
to (1) verify that scaling behaviors for dataset size and model size do exist in time series forecasting
and (2) validate our theory, especially about the influence of different horizons.

Our main contribution regarding time series forecasting includes:

1. We introduce a novel theoretical framework that elucidates scaling behaviors from an
intrinsic space perspective, highlighting the critical influence of the look-back horizon on
model performance. Our theory identifies an optimal horizon, demonstrating that beyond
this point, performance degrades due to the inherent limitations of dataset size.

2. We conduct a comprehensive empirical investigation into the scaling behaviors of dataset
size, model size, and look-back horizon across various models and datasets. Our research es-
tablishes a robust scaling law for time series forecasting, providing a foundational framework
that adapts to diverse modeling contexts.

As a corollary to our conclusions, we point out that different models might have different optimal
look-back horizon for the same dataset (Figure 1); therefore, we call for future work to compare
different models using the optimal look-back horizon for each model correspondingly rather
than using a fixed look-back horizon.

As a further result of our findings, though widely used in previous work, to show a model benefits
from longer horizon compared to baseline models is unnecessary for proving its superiority
over these baseline models.

We hope our work may inspire future work when designing forecasting models for specific datasets
of limited size, as well as future work proposing large foundational datasets and models in the field
of time series.

2 Related Work

2.1 Time Series Forecasting

The task of time series forecasting is to predict a time series with N variables in its next S frames
(denoted as Y = {y1, y2, . . . , yN} ∈ RN×S) given its previous observations with H frames (denoted
as X = {x1, x2, . . . , xN} ∈ RN×H ). H is called look back horizon in some scenarios.

Channel-Independent model means to predict yi by ŷi = f(xi). Linear models and MLPs have
been proven to be effective learners for time series forecasting. A series of work [1, 3, 17] utilizes
linear layers and methods like low-pass-filter and Ordinary Least Squares regression to learn linear
relationships in the time series. Reversible MLP [18] proposes to use linear layers and MLPs with
reversible Instance Norm [19] and obtains satisfying results. PatchTST [7] proposes to use patch
embedding for time series.

Channel-Dependent model means to predict y by ŷi = [f(x1, x2, . . . , xN )]i. A series of works based
on Transformers and its variants have been proposed[4, 5, 6], as well as a series of convolution-
based methods based on TCN[20, 21]. More recently, iTransformer [8] proposes to use attention to
capture the relationship between different variables. ModernTCN [10] proposes new convolutional
architectures enabling a wide Effective Receptive Field.

There have been many works analyzing on mathematical properties of time series before machine
learning exists. [22, 23] give good summaries of the early works from different perspectives.

Recently, there have been works proposing large foundational datasets and models for time series.
Some propose foundational models that can do zero-shot forecasting[24]. Some propose open-source
foundational datasets and verify the ability for transfer learning of foundation models trained on the
datasets[25, 26].3 There are also works utilizing LLMs to do zero-shot prediction[28], or use LLM
backbones pretrained on text contexts to perform time series forecasting[29, 30, 31].

3Released in close timing with ours, [27] verifies scaling law experimentally for the classic transformer
architecture on a large mixed dataset for time series forecasting.
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2.2 Scaling Law and related Theory

A plethora of research has been conducted to investigate the scaling law in various domains of deep
learning, encompassing Natural Language Processing, Computer Vision tasks, and Graph-based
Neural Networks [12, 13, 14, 32]. These studies have not only observed the existence of scaling law
but also proposed theories to elucidate them. For instance, certain work has interpreted the scaling
behavior from the standpoint of intrinsic space or data manifold, providing a deeper understanding of
the underlying mechanisms [15, 16]. In parallel, the properties of time series have been the subject of
extensive theoretical and empirical studies. Notably, some research has established bounds for the
quantization error of time series, contributing to the body of knowledge on time series analysis [33].

3 Theory for Scaling Law in Time Series Forecasting

3.1 Forecasting in Intrinsic Space

To represent the amount of information carried by a time series slice of length L, we consult the
concept of intrinsic dimension and intrinsic space. Consider all time series slices of length L in a
particular scenario, these slices are hypothesized to reside within an intrinsic space that encapsulates
the fundamental characteristics of the data, effectively representing its inherent features. Denote this
intrinsic space as M(L) and its intrinsic dimension as dI(L).

It immediately follows that time series forecasting is equivalent to predicting a vector in M(S)
given its previous H frames, which can be represented by a vector in the space M(H).

3.2 Formulation

Before studying the impact of horizon, dataset size and model on loss, we first formulate the intrinsic
space, the data distribution and the form of the loss.

3.2.1 Intrinsic Space

For a time series s0,1,...,L of length L (each si is a unit element in the sequence that may contain
single or multiple variables, dependent or independent), we represent it using a vector x in M(L).

We make these assumptions on the spaces {M(1),M(2), . . .} and the distribution of data in the
spaces:

1. Information-preserving: Intuitively speaking, we should be able to recover the real se-
quence (which might be a multivariable sequence or a singlevariable sequence) from its
corresponding intrinsic vector with the error bounded by a small constant value. Formally
we can state this as follows:
Exists a mapping ϕ from the original length-L sequence space O(L) to M(L), an inverse
mapping ϕ−1 : M(L) → O(L) and a constant e ≪ 1 related to L so that for any Ex∼O(L),
∥x− ϕ−1(ϕ(x))∥22 ≤ e(L).

2. Inverse Lipschitz: ϕ−1 should be KI -Lipschitz under L2 norm. That is:

∀x, y ∈ M(L), ∥ϕ−1(x)− ϕ−1(y)∥2 ≤ KI∥x− y∥2

3. Bounded: For simplicity, we assume the values in all dimensions of the intrinsic space are
bounded, and thus we can scale the intrinsic space to fit it into M(H) = [0, 1]dI(H).

4. Isomorphism: M(L1) is isomorphic to a subspace of M(L2) for L1 ≤ L2. Moreover, the
isometry should also preserve the data distribution in the space. Formally, we can state it as:
Let P [H1, H2] denote the linear projection from M(H1) to the subspace of it isomorphic
to M(H2), and let CovL denote the covariance matrix of data distribution in M(L), then
CovL1

should be congruent to P [L2, L1](CovL2
) for any L1 < L2.

5. Linear Truncation: Truncation in time series space is close to linear projection mapping in
M(L). Formally, we can state it as:
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Define a truncating function tp[H1, H2](x0:H1), so that for any sequence s, let sh1:h2 denote
the intrinsic vector for the subsequence from s[h1] to s[h2 − 1], then tp[H1, H2](s0:H1) =
s0:H2 , then tp[H1, H2] ≈ P [H1, H2].

6. Causality: There should be an optimal model to predict the next S frames given the previous
h → ∞ frames, so that the error only originates from the intrinsic noise. That is:

∃F [S] : M → M(S), s.t. lim
h→∞

P(y | x−h:0) = (1−η)δ(F [S](x−h:0))+ηN (F [S](x−h:0),ΣS),

where η stands for the noise ratio in the system, δ(·) stands for the Dirichlet function and
N (µ,Σ) stands for a normal distribution with mean µ and covariance Σ. (Notice that
the noise distribution is not necessarily a normal distribution and our result holds for any
noise distribution with mean µ and covariance σ. However we only consider the normal
distribution case here for simplicity.)
Moreover, we assume F [S] is first-order K1-Lipschitz and second-order K2-Lipschitz in
L2 metric (as we assume S is fixed we don’t discuss how the Lipschitz coefficients vary
with S and simply take them as constant).

7. Uniform Sampling Noise: When drawing a length-L sample, we assume the sampling
noise is uniform in each direction in M(L).

8. Zip-f Distribution: We assume the data distribution in the intrinsic space follows a Zip-f
law on different dimensions of the intrinsic space. That is, the eigenvalue spectrum of CovL
satisfies λi ≈ λ0i

−αZ where λi represents the i-th largest eigenvalue. This is shown by
other work [34, 35] and also verified in our experiments.

This result is asymptotic and does not suggest uniform intrinsic dimensions across sequence ele-
ments. Specifically, for a sequence element with v variables, dI(H) ∝ v approximately in channel-
independent scenarios. In contrast, for channel-dependent cases, which are more common, the total
intrinsic dimension is typically less than the sum of dimensions for individual variables.

In the deduction part we do not assume the specific relationship between dI(H) and H . Some
previous work[36] shows that in some cases dI(H) ≈ Θ(H). In Appendix A.1 we discuss more
about their relationship.

We formulate the intrinsic space and these assumptions more strictly and provide a brief construction
of {M(1),M(2), . . .} in Appendix A.2. Also, we discuss cases where these conditions are not
strictly satisfied in Appendix A.3.

Moreover, under these assumptions made, the loss in the original space Lori can be linearly bounded
by the loss in the intrinsic space Lins, details of which can be found at Appendix A.4.

In the following deduction, we use L to denote Lins.

3.2.2 Loss: Overall

In the following sections, we consider the task to predict a vector in M(S) given the vector cor-
responding to its previous H frames in M(H) with a model m. For simplicity, we represent the
operation of obtaining a vector in M(t2 − t1) by truncating the sequence s from time t1 to t2 as
x[t1 : t2], where x is a representation in M(|s|).

L = Ex∼M(H+S)[(x[H : H + S]−m(x[0 : H]))2]

Let m∗ denote the optimal Bayesian model, then it should satisfy:

m∗(x[0 : H]) = Ex∼M(H+S)[x[H : H + S]|x[0 : H]]

Thus:

L =Ex∼M(H+S)[(x[H : H + S]−m∗(x[0 : H]) +m∗(x[0 : H]−model(x[0 : H]))2]

=Ex∼M(H+S)[(x[H : H + S]−m∗(x[0 : H])2] + Ex∼M(H)[(m
∗(x)−m(x))2]

+ 2 ∗ Ex∼M(H+S)[(x[H : H + S]−m∗(x[0 : H]) ∗ (m∗(x)−m(x))]
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Since x[H : H+S]−m∗(x[0 : H]) and m∗(x)−m(x) are independent with respect to s[H : H+S]
and Ex∼M(H+S)[x[H : H + S]−m∗(x[0 : H])] = 0, the loss is a sum of the previous two terms:
one is decided by the capability of the optimal Bayesian model (or the Bayesian Error), and the other
is the model’s ability to approximate the Bayes Estimation: L = LBayesian + Lapprox.

We then calculate each of the two terms corresponding to the horizon, dataset size and model size.

3.2.3 Bayesian Loss

We consider the Bayesian error for M(∞), when the loss for predicting S frames originates from the
inherent uncertainty of the system. That is, we evaluate the amount of information carried by M(H)
compared to M(∞). By assumption 5 and 6 in section 3.2.1, It can be verified that:

LBayesian ≤ (1− η)K2
1E[var(P−1[∞, H](x))] + η · tr(ΣS)

According to assumption 7, the noise in the i-th predicted frame would be proportional to
√
i, and the

total noise in the predicted S frames would be proportional to S. Let σ2
M denote the variance of the

noise for a single frame in a single dimension, then tr(ΣS) should be equal to σ2
MS2dI(S).

According to assumptions 4 and 8, we can express the inverse projection term into:

E[var(P−1[H](x))] =
∑

dI(H)≤i<dI

λi ≈
λ0

(αZ − 1)dI(H)αZ−1

which indicates that:

LBayesian ≈ K2
1 (1− η)

λ0

(αZ − 1)dI(H)αZ−1
+ ησ2

MS2dI(S)

3.2.4 Approximation Loss: Two Cases

The training data is sampled from the distribution of Ex∼M(H+S)[x[H : H+S]|x[0 : H]]. Following
previous works [16, 37], we utilize the piece-wise linear assumption for deep learning models. That is,
we assume the model partitions the intrinsic space into N subregions, and does a linear prediction for
each subregion independently. Here we discuss two cases: the large-dataset limit and the small-dataset
limit.

If the dataset is large and contains many samples in the piece of the model, the model tends to learn
the averaged behavior of the region. Intuitively, a larger dataset size brings smaller noise averages,
and a larger model brings smaller piece-wise linear pieces, reducing the error caused by deviation
of the data distribution to the linear model in the small blocks. Roughly speaking, the loss consists
of two terms: one caused by the uncertainly within the subregions partitioned by the model Lr, and
one caused by the noise in the data that makes the model fail to learn the optimal model Ln. If we
assume that the model partitions the space uniformly, then the loss should satisfy:

Lapprox ≈ K2
2

dI(H)2N
− 4

dI (H)

4π2
+

NdI(H)

D
(σ2

MS2dI(S) +
K2

1λ0

(αZ − 1)dI(H)αZ−1
).

The uniform partitioning should be the most naive case for the model to learn, and we also analyze
on the cases where more advanced partitionings are learned in Appendix D. Also, it is worth noticing
that the noise consists of two term, one is the systematic uncertainly as shown in section 3.2.3, and
the other is caused by the horizon limitation so that the effect of unseen dimension seems exactly like
noise for the model. Please refer to Appendix B.2 for a more detailed derivation.

Otherwise if there are few data samples, or the model is sufficiently large and the model cannot
learn to average the noises of closed samples, but rather learns to remember each sample in certain
pieces. This would give a data-scaling loss determined by nearest-neighbor distance. In this case:

Lapprox ≈ K2
1

4π
dI(H)D

− 2
dI (H) .

Please refer to Appendix B.3 for a more detailed derivation of this scenario.

Boundary of the two phases is decided by Dataset size and Model size, as well as horizon. It is
worth noticing that in time series forecasting tasks, the sliding window method for constructing
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data samples is usually used. 4 Therefore, the closest data points are always dependent on each
other and are strongly correlated. The effective number of mutually independent data fragments is
approximately proportional to D/H rather than D, and ξ = D/NH would be a very approximate
order parameter separating the previous two scenarios. Again, please refer to Appendix B for a more
detailed derivation.

3.3 Optimal Horizon under Each Circumstance

As stated in section 3.2.2, the total loss would be simply the sum of the two components deduced
above. Analyzing the total loss form, we may achieve an optimal horizon H∗ (or a corresponding
optimal intrinsic dimension d∗I that minimizes the loss for different cases.

3.3.1 Optimal Horizon for large amount of data

For the case with sufficient data, the total loss is:

L =LBayesian + LApprox

≈K2
2

dI(H)2N
− 4

dI (H)

4π2
+K2

1 (1− η)
λ0

αZ − 1

1

dI(H)αZ−1

+
NdI(H)

D
(σ2

MS2dI(S) +
K2

1λ0

(αZ − 1)dαZ−1
I (H)

)

≈K2
2

dI(H)2N
− 4

dI (H)

4π2
+K2

1 (1− η)
λ0

αZ − 1

1

dI(H)αZ−1
+

NdI(H)

D
σ2
MS2dI(S)

(since we always assume N ≪ D)

We consider two cases. The detailed derivation can be found in Appendix C.1.

If model size is too small compared to dataset size such that N = o(D
dI (H)

dI (H)+4 ), then the effect of
dataset size on picking optimal horizon could be neglected, thus:

d∗I = W(
4

αZC
1

αZ
0

ln
1+ 1

αZ N) ≈ 4

αZC
1

αZ
0

ln
1+ 1

αZ N.

where W(·) is the Lambert W function (W(x) ≈ x) and C0 =
K2

1π
2(1−η)λ0

K2
2

.

If N is not that small: N = ω(D
dI (H)

dI (H)+4 ). Then the noise effect would be dominant in picking
optimal H , and the optimal dI(H) would be:

d∗I = (
K2

1 (1− η)λ0D

Nσ2
MS2dI(S)

)
1

αZ .

In this case, d∗I grows noticeably with the increment of D and the decrement of N .

3.3.2 Optimal Horizon for a relatively small amount of data

If data is scarce, the loss could be written as:

loss ≈ K2
1 (1− η)

λ0

αZ − 1

1

dI(H)αZ−1
+

K2
1

4π
dI(H)D

− 2
dI (H)

It is worth noticing that in this case, we assume the model is always large enough to find the nearest
neighbor for a test sample, hence the loss is irrelevant with N . We can estimate the optimal d∗I as:

d∗I = Cs
lnD

ln lnD

Where Cs is a constant irrelevant with D, N or H . The exact form is provided in Appendix C.2.
Compared to the first scenario, the optimal dI changes much less in this scenario.

4Data points between time [t-H:t+S] is considered one sample, and [t-H+1:t+S+1] is considered another
sample in the dataset. These two samples are strongly correlated with each other.
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4 Experiment Results

4.1 Scaling Law for dataset size and model width do exist for Time Series Forecasting

Figure 1: Data Scaling. The proposed formula loss(D) = A+B/Dα fits well. More comparison
with other formulas can be found at Appendix I.

Figure 2: Width Scaling. When the model is not powerful enough, loss(W ) = A+B/Wα fits well
for these situations. When data is scarce, a large model may lead to overfitting, as observed with
ModernTCN on ETTm1.

As depicted in Figure 1 and Figure 2, we corroborate the scaling behaviors pertaining to data scaling
and model-size scaling across a diverse range of datasets and models. This validation underscores
the robustness and versatility of our proposed theoretical framework in the context of time series
forecasting.

Here we mainly include NLinear[1]/MLP, ModernTCN[10] and iTransformer[8] as our models,
covering a scenario of Channel-Independent and Channel-Dependent, FFN-based, Transformer-based
and Convolution-based methods. For datasets, we mainly use ETTh1, ETTh2, ETTm1, ETTm2,
Traffic and Weather[4, 5] as our datasets. Detailed experiment settings can be found at Appendix E.

It can be seen that for all these models on all these datasets, for the dataset-scaling case where
loss = CD+1/DαD and the model width-scaling with large amount of data: loss = CW+1/WαW .
The results fit well, thus verifying the existence of the original understanding of the scaling law.

However, in some special cases when the model is large enough to approximate the data, increasing
model size would not gain performance, and may hurt performance (if regularization that is not strong
enough is added) in some cases, like ModernTCN for ETTm1.

4.2 The Impact of Horizon to Final Loss

4.2.1 Optimal Horizon and Training Data Amount

Optimal Horizon grows with more available training data. We conduct experiments, fixing the
available training data amount and model size while adjusting the horizon. As shown in Figure 3, an
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optimal horizon is observed at each data amount, and this optimal value grows with more available
training data.

Figure 3: Loss v.s. Horizon for a certain amount of training data, for different datasets and different
models.

A dataset with a larger feature degradation has a smaller optimal horizon. As our theory
predicts, larger αz leads to a smaller optimal horizon. In the experiment in Figure 4, we use the
same Linear model on two different datasets with comparable amount of training data: the Exchange
Dataset has 70% available training data compared to the ETTh1 Dataset. We use eigenvalues obtained
by doing Principal component analysis on sampled series as an approximation to the feature variance
in the intrinsic space. Detailed procedure and more PCA results can be found at Appendix G.

Figure 4: PCA results under Channel-Independent and Instance Normalization setting(left), Loss
v.s. Horizon for certaim amount of training data on Exchange(middle) and ETTh1(right). Exchange
dataset has 70% data points compared to ETTh1 for training. However, since its feature degradation
is stronger, the optimal horizon (< 30) using 100% of Exchange dataset is much smaller than the
optimal horizon of the ETTh1 dataset (> 300) with only 11% of available training data.

Channel-Dependent and Channel-Independent Models sometimes are in different states of the two
cases. For CD models, dI(H) is larger and less training data is available, hence it tends to be in the
few-data limit. For CI models, dI(H) is smaller and D is larger, hence it may reach the data-dense
limit (where the scaling exponent for D is −1).

In the following Figure 5, iTransformer on Traffic dataset is in the data-dense limit. For MLP on
Transformer, when the horizon is small it is in the few-data limit. For the Linear model, since it is
simply linear (rather than piece-wise linear), we expect it to be within the data-dense limit even for
long horizons and when the dataset is relatively small (like ETTh1).

The advantage of channel-independent and channel-dependent models can be explained from the
perspective of our theory. For channel-dependent models, the horizon limitation is smaller hence it
performs better with plenty of training data. For channel-independent models, more training data is
available; moreover, d is smaller, making the scaling exponent larger.
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Figure 5: Data scaling behavior for iTransformer (Channel-Dependent model, left) and Norm-
MLP(Channel-Independent model, middle) and NLinear (CI, right).

4.2.2 Optimal Horizon v.s. Model Size

As predicted by our theory there are two cases. (1) When N is small, the optimal horizon does not
change much with N . (2) When N is large, the model size scaling term no longer dominates, the
coefficient of the noise term NdI

D dominants thus larger N leads to smaller optimal H .

Figure 6: Loss v.s. Horizon for models of different widths. For MLP on ETTh1 (left), ModernTCN
on ETTh1(middle) and ModernTCN on Weather (right).

From the observations in Figure 6, it can be discerned that in the initial scenario, where an enhance-
ment in N results in a performance augmentation, the optimal horizon remains relatively invariant
with respect to N . This is exemplified in the case of the SingleLayerMLP model. However, in the
second scenario, where N attains its optimal value (i.e., for a certain horizon, a smaller N surpasses a
larger N in performance), a larger N will correspond to a reduced optimal horizon. This phenomenon
is evident in the instances involving the ModernTCN model.

As predicted by our theory, we see that dataset size has an impact on optimal horizon, while model
size has a less significant influence on it.

5 Discussion and Conclusion

5.1 Limitation and Discussion

Our theory mainly covers the part of time series forecasting, and our experiments verify our proposed
theory on some of the well-used datasets of various sizes. However, these datasets are still small
compared to some of the recently proposed large datasets[25]. The scaling behavior predicted in
our work of the horizon on these large datasets remains to be experimentally verified and studied.
Moreover, we mainly use popular time series forecasting models in recent work and these models
might be over-designed for a few datasets for time series.

Moreover, our work mainly focus on the in-domain setting, rather for pretrained-then-finetuned
models or foundation models trained on mixed datasets. We discuss more about whether the
assumptions made and our theory deduction work for mixed datasets at Appendix H.

Since we focus on the impact of the horizon which is an adjustable hyper-parameter for forecasting
tasks but a fixed hyper-parameter for other time series tasks, this work does not involve scaling
behaviors for other tasks related to time series analysis.The theory for scaling law in other areas of
time series forecasting as well as for foundation time series forecasting models remains to be studied.
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Also, although our theory is compatible with analyzing the effect of the predict length S and current
experiment for fixed S verifies the impact of H , it is still worth studying the impact of S on optimal
H . Also, our theory only holds with assumptions made in Section 3. We leave these to future work. 5

We call for future work to compare different models by ‘performance at optimal look back
horizon’ rather than ‘performance at a certain look back horizon’ to improve robustness. This
work further elucidates that, though used in a lot of previous work, to show a model benefits from
longer horizon compared to baseline models does not necessarily prove its superiority over
these baseline models.

5.2 Conclusion

In this work, we propose a theoretical framework that contemplates the influence of the horizon
on scaling behaviors and the performance of time series forecasting models. We take into account
the size of the dataset, the complexity of the model, and the impact of the horizon on the ultimate
performance. An expanded horizon results in a diminished Bayesian Error, but it simultaneously
complicates the task for a limited dataset to fully encompass the entire space and for a model of
restricted size to learn effectively. Furthermore, our empirical investigations corroborate the existence
of scaling behaviors in relation to dataset size and model size, and validate our proposed theory
concerning the impact of the horizon.

Our theory provides some insight into the area of time series forecasting. For a certain dataset, it
would be beneficial to design the models and hyperparameters according to the dataset size and
feature degradation property of the particular dataset. Moreover, we think further experiments on
larger foundational time series dataset about the optimal horizon with respect to pretraining loss and
the loss for transferring to certain datasets may provide further insight as well.

In conclusion, we aim to provide insights to future work on time series forecasting, emphasizing the
importance of the horizon and its potential impact on scaling behaviors in time series forecasting
tasks.
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A More about the intrinsic space

A.1 Relationship between intrinsic dimension and horizon

We claimed in section 3.2.1 that dI(H) should be asymptotically linear to H . Here we give a rough
explanation for this. Since the reconstruction error is bounded by a constant value irrelevant to L, the
relative error should be O( 1

L ). That is, the error reconstructing y ∈ O(L) from x ∈ M(L) should be
O( 1

L ). On the hand, this error can be viewed as an error caused by compressing a dO(L)-dimensional
vector into a dI(L)-dimensional space. From a sparse recovery aspect, if the covariance matrix in
O(L) has rank r, then the dO(L)-dimensional vector would be equivalent with a r-sparse vector.
[38] shows that, in this case, the minimal dimension that could recover it with relative error bounded
by C is Ω̃(r). Since in our case r ∝ L due to intrinsic uncertainty, hence dI(L) = Ω(L). And since
dI(L) ≤ dO(L) = O(L), we proved that dI(L) = O(L).

A.2 A Construction Method

We informally provide a specified method to construct M(L) theoretically in a recursion method.
If M(0),M(1), . . . ,M(L − 1) has been defined, then we define M(L) as follows: given a time
series x0,1,...,L−1 of length L, we represent it by concatenating the representation of x0,1,...,L−2 in
M(L− 1) and xL−1 in a space with dimension dim(M(L− 1) + 1). Then we find a manifold that
these points lie in in this space to represent M(L).

A.3 Non-linear truncation

We assumed that the truncating function is close to linear projection in section 3.2.1. But in fact the
two functions might have some subtle differences. This is because for a certain feature, estimating
the feature with a sequence of finite length L might result in error for the feature even if each element
in the sequence is accurate enough. (For example, if the feature comes directly from DFT (Discrete
Fourier Transform), there might be ’leakage error’ if the base frequency is not an exact multiple of
the feature frequency.) This is a systematic error caused by the ’precession’, where the feature’s
characteristic frequency mismatches the measuring frequency.

For any sequence S and let xt1:t2 ∈ M(t2 − t1) denote the vector for the sequence S[t1 : t2],
we can define a ’truncating function’ tp[H1, H2] : M(H1) → M(H2) for any H1 ≥ H2 > 0
with tp[H1, H2](x0:H1) = x0:H2 . Let t−1

p [H1, H2] denote the inverse image function, which maps
x ∈ M(H2) to {y | y ∈ M(H1), tp[H1, H2](y) = x. Notice that this truncating function is
unrelated to the specific sequence. Now, assume that tp[H1, H2] is smooth, then from implicit
function theorem we know that for any vector x ∈ M(H1) if tp[H1, H2] is locally differentiable in a
neighborhood of x then t−1

p [H1, H2](tp[H1, H2](x)) is a submanifold of M(H1) with dimension
dI(H1)− dI(H2), and from Sard’s theorem we know that the targets of these locally undifferentiable
points have measure zero. That is:

Let S = {x | x ∈ M(H1), t
−1
p [H1, H2](x) /∈ MdI(H1)−dI(H2)} where Md denotes the set of all

d-dimensional manifolds. Let µ denote a measuring function defined in M(H1), then µ(S) = 0.

Hence the impact of such ‘critical points’ to the total loss is negligible. For simplicity, we can assume
S = ∅. Then tp could be written as:

tp[H1, H2](x) = P [H1, H2]g[H1, H2](x),

where P [H1, H2] is the projection mapping from M(H1) to M(H2), and g[H1, H2] is an invertible
mapping in M(H1) that maps t−1

p (y) to a (dI(H1)− dI(H2))-dimensional subspace of M(H1) for
each y ∈ M(H2).

We can naturally assume that the ’precession’ effect on each subsequence with a certain length l
is only related to l and intrinsic properties of the task itself, then consider a length-2l sequence, it
could be viewed as two independent measuring of length-l subsequences, hence this error is always
bounded by O( 1√

L
). We can formalize this condition into:

∥g[H1, H2](x)− x∥2
∥g[H1, H2](x)∥2

≤ κ√
H1

,∀x ∈ M(H1),
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where κ is a constant, and ∥ · ∥2 represents L2-norm. Also we should have E[g(x)− x] = 0. This
results in an extra term in the Bayesian loss. We deduce it again formally from E[var(t−1

p [H](x))].

E[var(t−1
p [H](x))] = E[var(g−1[H]P−1[H](x))]

≤ E[
κ2

H
∥y∥22] + E[var(P−1(x)]

=
κ2

H

∑
0≤i<dI

λi + E[var(P−1(x)]

Same to what we have done in section 3.2.3:

E[var(P−1(x))] =
∑

dI(H)<=i<dI

λi

Hence:

E[var(t−1
p [H](x))] ≤ κ2

H

∑
0≤i<dI

λi +
∑

dI(H)<=i<dI

λi

≤ λ0

αZ − 1
(
κ2αZ

H
+

1

dI(H)2αZ−1
)

which indicates that:

loss ≤ K2(1− η)
λ0

αZ − 1
(
κ2αZ

H
+

1

dI(H)αZ−1
) + ησ2

MS2dI(S)

Since κ should be small, and typically α < 2 (it holds for all our experiment results), the extra term
could be neglected. Hence, it is reasonable that we assume tp[H1, H2] ≈ P [H1, H2].

A.4 Reduction of Loss into Intrinsic Space

We prove that under assumptions made in Section 3.2.1, the loss in the orginal space can be linearly
bounded by the loss in the intrinsic space.

Consider we are predicting x[0 : S] from x[−H : 0], let yi ∈ M(H) be the intrinsic vector of
x[−H : 0] and yo ∈ M(S) be the intrinsic vector of x[0 : S] (the true intrinsic vector). If we have a
model m so that:

Ex[−H:S]∈O(H+S)[|m(yi)− yo|2] ≤ Lins

where Lins represents the expected error (or loss) in the intrinsic space. Then, from assumption 2 we
have:

Ex[−H:S]∈O(H+S)[|ϕ−1(m(yi))− ϕ−1(yo)|2] ≤ KILins

and from assumption 1 we know that Ex[0:S]∈O(S)[|ϕ−1(yo)− x[0 : S]|2] ≤ e(S). Therefore:

Lori =Ex[−H:S]∈O(H+S)[|ϕ−1(m(yi))− x[0 : S]|2]
≤2Ex[−H:S]∈O(H+S)[|ϕ−1(m(yi))− ϕ−1(yo)|2] + 2Ex[0:S]∈O(S)[|ϕ−1(yo)− x[0 : S]|2]
≤2KILins + 2e(S).

Therefore, the loss in the original space is linearly bounded by the loss in the intrinsic space. W.l.o.g
we may focus on studying the loss in the intrinsic space.

B Details about the loss deduction

B.1 Boundary

Recall that in section 3.2.4 we mentioned that there are two scenarios in which the model should
work in totally different ways. The boundary between the two scenarios depends not only on the
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dataset size D but also on the model size and prediction horizon. A larger model subdivides the
intrinsic space into smaller subregions, each containing fewer training samples, with the number of
samples per subregion inversely related to model size, expressed as N−1.

In time series forecasting, a unique characteristic is that a single sequence, containing multiple
length-H subsequences, counts as multiple samples. However, these subsequences are not fully
independent due to their proximity in the intrinsic space. To quantify independence, we define a
separation function f(H), assumed to be proportional to H , meaning that a sequence of total length
L represents L

f(H) independent samples. Thus, the effective number of independent samples in the
dataset scales with D

H .

Combining the above analysis, we can define a hyperparameter as ξ = D
NH . If ξ is large enough,

then we can assume data is sufficient, and the model tends to learn a linear approximation for each
subregion; if ξ is small, we can assume data is scarce and the model tends to find the nearest neighbour
for each test sample.

B.2 Sufficient Data

We formally derive the total loss in the scenario where we have a large amount of data. First recall
that the Bayesian loss calculated in section 3.2.3 is:

LBayesian ≈ K2
1 (1− η)

λ0

(αZ − 1)dI(H)αZ−1
+ ησ2

MS2dI(S)

As we assume S is fixed, ησ2
MS2dI(S) is constant and hence could be ignored. Now let’s consider

the approximation loss, it should come from two sources: the limited model size would result in
uncertainty in the subregions, and the limited dataset size would bring noise to the data. Let’s consider
these two causes separately.

B.2.1 Model Size Limitation

We assume that a model is separating the intrinsic space into N regions, and does a linear prediction
for each region. It is easy to verify that the optimal prediction from M(H) to M(S) should be
first-order K1-Lipschitz and second-order K2-Lipschitz, too.

For any region with volume V , the loss could be estimated as:

L =

∫
V

ddI(H)x|f(x)− l(x)|2

where l is the predicted linear function for the region. Expanding with Taylor’s series, we have
f(x) ≈ l(x) + 1

2 (f
′(x) − f ′(µV ))(x − µV ). From the second-order Lipschitz condition, we can

conclude that:
|f(x)− l(x)|2 ≤ K2

2 (x− µV )
4

The total loss could be bounded as follows:

loss ≤ K2
2

∫
f(x)(x−Q(x))4dx

where Q(x) represents the center of the region that x is in and f(x) represents the probability density.
We can find that the integral in the formula is exactly the 4th power distortion of the quantization. For
an arbitrary quantization with code density g(x), [33] gives an exact value of distortion equal to:∫

f(x)(x−Q∗(x))4dx = π−2N
− 4

dI (H)Γ(
dI(H) + 4

dI(H)
)(Γ(

dI(H) + 2

2
))

4
dI (H)

∫
f(x)

g(x)
4

dI (H)

dx

Assume dI(H) is sufficiently large, then Γ(dI(H)+4
dI(H) ) ≈ 1. So the expression can be transformed

into: ∫
f(x)(x−Q∗(x))4dx ≈ dI(H)2N

− 4
dI (H)

4π2

∫
f(x)

g(x)
4

dI (H)

dx
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For uniform distribution, g(x) = 1 (as we assume M(H) = [0, 1]dI(H). Hence:∫
f(x)

g(x)
4

dI (H)

dx = 1

And the total loss could be bounded as:

loss ≤ K2
2

dI(H)2N
− 4

dI (H)

4π2

From this bound, we can see that a larger horizon implies a larger burden for the model, which might
lead to worse performance for the model.

B.2.2 Dataset Limitation

Following the previous chapter, as we assume the mapping f represented by the model is a piecewise
linear function, then regionally it can be written as the usual form of the gaussian-markov linear model,
assuming there are homoscedastic uncorrelated noise ε for every single sample in the dataset. Now
we show that this noise will cause another term of loss even compared to the optimal performance of
the model. We first analyze a single region containing Di samples. Consider X ,Y from the training
set:

Y = Xβ + ε.
Where X is of shape Di × dI(H) and Y, ε is of shape D × dI(S). β is the variable to learn of shape
dI(H)× dI(S). The BLUE estimator β̂ should be β̂ = (XTX)−1XTY .

Now consider X ′, Y ′ from the test set:
Y ′ = X ′β + ε′

Lrecon = E[(Y ′ −X ′β)2]

= E[(ε′ −X ′(XTX)−1XT ε)2]

= E[ε′2] + E[(X ′(XTX)−1XT ε)2]

The first term goes to 0 if the test set is sufficiently large, and it is a constant given a fixed test set, so
we can simply ignore it in our analysis. Consider the second term, we can show that:

E[(X ′(XTX)−1XT ε)2] = D−1
i dI(H)ε2y

Recall the noise consisting of two sources:
Y = Xβ + F [S](X∗ − Pc[H]−1(X)) + εB

As we’ve done in section 3.2.3, we can derive that:

var(X∗ − Pc[H]−1(X)) ≈
∑

dI(H)≤i<dI

λi

≈ λ0

(αZ − 1)dαZ−1
I (H)

As F [S] is K1-Lipschitz, this indicates that:

εh ≤ K2
1λ0

(αZ − 1)dαZ−1
I (H)

And as mentioned in section 3.2.3 var(εB) = σ2
MS2dI(S), hence we can bound the total loss related

to Di into:

lossi ≤ D−1
i dI(H)(σ2

MS2dI(S) +
K2

1λ0

(αZ − 1)dαZ−1
I (H)

)

It is worth noticing that, although different regions have their own distributions and hence may have
different eigenvalues, the loss expression is irrelevant with the eigenvalues, so we can ignore this
issue. Considering the entire dataset with all regions, the total loss should be:

loss ≈

N∑
j=1

lossi ·Di

D

=
NdI(H)

D
(σ2

MS2dI(S) +
K2

1λ0

(αZ − 1)dαZ−1
I (H)

)
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This indicates that, using a larger model would be more prone to being affected by noise in the dataset,
so especially when the data is noisy and the dataset size is limited, our theory suggests that it would
perhaps be better to use a smaller model.

B.2.3 Total loss

Combining the above approximation loss and the Bayesian loss, the total loss would be:

loss ≈ K2
2

d2N− 4
d

4π2
+K2

1 (1− η)
λ0

αZ − 1

1

dI(H)αZ−1
+

NdI(H)

D
σ2
MS2dI(S)

B.3 Scarce Data

As the model finds the nearest neighbor, the approximation loss in this scenario should consist of two
sources: the distance from the test sample to its nearest neighbor and the noise in its nearest neighbor.
If the distribution is smooth, then locally around any point x, the distribution of other points can be
viewed as uniform when D is large.

Consider a sphere of radius r around a test sample, the probability that no point in the training set lies
in the ball is approximately:

P (r) ≈ e−DV (r) = e−DCdr
dI (H)

where Cd = π
dI (H)

2

Γ(dI(H)/2+1) denotes the volume of a unit sphere.

From this, we can derive that:

Ex[r
2] ≈

(Γ(d2 + 1))
2

dI (H)Γ( 2
dI(H) )

πdI(H)
D

− 2
dI (H) f(x)

2
dI (H)

Considering dI(H) is large, we can get that:

E[r2] ≈ dI(H)

4π
D

− 2
dI (H)

which means:

loss ≈ K2
1d

4π
fD− 2

d

Combining the Bayesian loss similar to the previous scenario, the total loss should be:

loss ≈ K2
1 (1− η)

λ0

αZ − 1

1

dI(H)αZ−1
+

K2
1

4π
dI(H)D

− 2
dI (H)

C Optimal Horizon deduction

Continuing from section B, we study the optimal horizon in two scenarios.

C.1 Sufficient Data

Let’s first study the case where the dataset is large, which is the case in section B.2.

C.1.1 Small Model

If the model size is too small compared to the dataset size, i.e. N = o(D
dI (H)

dI (H)+4 ) (however we still
assume N is sufficiently large compared to other variables), then the effect of dataset size on picking
the optimal horizon could be neglected. In this case, the optimal value of dI(H) is unrelated with the
dataset size D, and should satisfy:

d∗I = (
K2

1π
2(1− η)λ0N

4
d∗
I

K2
2 lnN

)
1

αZ
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Solving the formula we get the following result:

d∗I = W(
4

αZC
1

αZ
0

ln
1+ 1

αZ N) ≈ 4

αZC
1

αZ
0

ln
1+ 1

αZ N

where W(·) is the Lambert W function and C0 =
K2

1π
2(1−η)λ0

K2
2

.

We can see that in this case, d∗I is not only irrelevant with D, but also changes very little with N .

C.1.2 Large Model

On the other hand, if we assume the model is large enough, such that N = ω(D
dI (H)

dI (H)+4 ), then the
noise effect would be dominant in picking the optimal H . In this case, the optimal value of dI(H)
should be:

d∗I = (
K2(1− η)λ0D

Nσ2
MS2dI(S)

)
1

αZ

We can see that in this case the optimal dI changes rapidly to D and N . Moreover, the optimal
horizon increases with a larger dataset size D and decreases with a larger model size N (this is quite
counter-intuitive but it surprisingly matches our experiment result).

C.2 Scarce Data

This is the case in section B.3. We can directly solve ∂loss
∂dI(H) = 0, which is equivalent to:

4π(1− η)λ0

d∗I
αZ

= D
− 2

d∗
I (1 +

2 lnD

d∗I
)

We can estimate that d∗I = βC
1

αZ−1 lnD
ln lnD

d∗I ≈ 2

αZ + 1

lnD

ln lnD

where C = 4π(1− η)λ0. Substituting d∗I into the formula, we can get:

(αZ − 1)β2 + β − 2

C
1

αZ−1

= 0

Hence we have:

β =

√
1 + 8(αZ−1)

C
1

αZ−1

2(αZ − 1)

and d∗I should be:

d∗I =

√
1 + 8(αZ−1)

C
1

αZ−1

2(αZ − 1)
C

1
αZ−1

lnD

ln lnD
∝ lnD

ln lnD

Compared to the first scenario, the optimal dI almost doesn’t change in this scenario.

D Details about model’s partitioning

As we mentioned in section 3.2.4, we assume the model partitions the intrinsic space uniformly,
but there should be better partitions. As [33] states the optimal partition should satisfy g(x) ∝
f(x)

dI (H)

dI (H)+4 , and if the distribution is Gaussian then the loss (only for this term) should satisfy:

Lp ≈ K2
2

λ2
0N

− 4
dI (H)

e2dI(H)2α−2
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Replacing the corresponding term with this, we see that in the case in section C.1.2, since the noise
makes the most impact, this term does not matter. However, in the case in section C.1.1, if we assume
the dataset size is infinite, then the loss is asymptotically monotonically decreasing with dI(H). Thus,
the larger the horizon we use, the better performance the model will potentially reach.

However, experiments show that the optimal horizon always exists in this case. This might suggest
that the model structure limits itself from finding the best partitioning. Hence, we expect that when
we design a good enough model structure (maybe only exists theoretically) and when we have enough
data, we should be able to make full use of our horizon regardless of the model size or computational
resources.

E Experiment settings

E.1 Dataset

Dataset Dim Pred Len Dataset Size Frequency Information
ETTh1 7 192 (8545, 2881, 2881) Hourly Electricity
ETTh2 7 192 (8545, 2881, 2881) Hourly Electricity
ETTm1 7 192 (34465, 11521, 11521) 15 min Electricity
ETTm2 7 192 (34465, 11521, 11521) 15 min Electricity
Exchange 8 192 (5120, 665, 1422) Daily Economy
Weather 21 192 (36792, 5271, 10540) 10 min Weather
ECL 321 192 (18317, 2633, 5261) Hourly Electricity
Traffic 862 192 (12185, 1757, 3509) Hourly Transportation

Table 1: Dataset used for experiments

We conduct experiments on 8 datasets listed here. ETTh1, ETTh2, ETTm1, ETTm2 [4] contains 7
factors of electricity transformer from July 2016 - July 2018 at a certain frequency. Exchange [5]
includes panel data for daily exchange rates from 8 countries across 27 years. Weather [5] includes
21 meteorological factors from a Weather Station. ECL [5] records electricity consumption of 321
clients. Traffic [5] records hourly road occupancy rates for 2 years in San Francisco Bay area freeways.
For all experiments, the pred-len is set to 192.

In our experiments, we do 3 iterations for ETTh1, ETTh2, ETTm1, ETTm2, Weather and Exchange,
and draw graphs with error bar equaling to the standard error of these iterations. For Weather dataset,
actually the error is minor. (see Appendix E.3), and for larger datasets including Traffic and Electricity,
the error is even smaller. Therefore, we conduct 1 iters for Traffic and ECL since they are large and
will introduce minor std error.

E.2 Drop-last issue

The drop-last issue is reported by several researchers [3, 39]. That is, in some previous work
evaluating the model on test set with drop_last=True setting may cause additional errors related to
test batch size. In our experiments, we use drop-last set to False to avoid this issue.

E.3 Time-related Domain Difference in Datasets: can be neglected to a certain extent

We use the first p percent of our training dataset as our dataset as available training data. This may
introduce an error caused by time-index-related domain differences in these datasets. To avoid this
we utilize the Instance Normalization [19]. Our further experiments on the Weather dataset show that
this error is actually minor compared to the randomness introduced in the training procedure. We use
an NLinear model to forecast 192 frames based on a look-back window of size 336. We use 10% of
training data, from different slices in the training set. For each slice, we repeat the experiment for 3
times. The result is:

It can be seen that the variance introduced by different slicing points is very small.
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MSE starting point=20% 40% 60% 80%
Exp1 0.223 0.220 0.222 0.223
Exp2 0.221 0.221 0.223 0.224
Exp3 0.221 0.221 0.223 0.221
Avg 0.222± 0.001 0.221± 0.001 0.223± 0.001 0.223± 0.001

Table 2: MSE measured for weather dataset

E.4 Models and Experiment settings

For all models we utilize instance normalization that normalizes an input sequence based on its mean
and std. All the deep learning networks are implemented in PyTorch[40] and conducted on a cluster
with NVIDIA RTX 3080, RTX 3090, RTX 4090D and A100 40GB GPUs. Although we use multiple
types of GPUs, it is possible to carry out all experiments on a single GPU with greater or equal to
24GB of memory. Experiments conducted in this work cost about O(103) gpu hours for RTX 3090
in total.

E.4.1 Linear Models

For linear models, we use the linear layer after instance normalization, and perform de-normalization
after the linear layer, equivalent to the NLinear model[1], for all datasets and all experiments.Batch
size are chosen from {1024, 2048, 4096, 8192, 16384}, learning rate is chosen from {0.003, 0.001}
and weight decay is chosen from {0.0005, 0.005, 0.001, 0.0001}, and we decay the learning rate with
a factor of {0.96, 0.97, 0.98} for at most 100 epochs with patience at most 30. For larger datasets
including Electricity, Traffic and weather the learning rate and weight decay barely make differences
to the result. For relatively small datasets includgin ETTh1/ETTh2, ETTm1/ETTm2 and Exchange,
larger weight decay may improve performance.

E.4.2 MLP

We use two types of MLPs. For the data scaling (including the HorizonXDataset) experiments, we use
the gated MLP[41]: hidden(x) = W1(x)⊙ sigmoid(W2(x)) where ⊙ is the element-wise product
to improve the capability of our model. For the width scaling (and the HorizonXWidth) experiments,
we use plain MLP with leaky-relu as activation function.

Gated MLP is used on Traffic, Weather and Electricity dataset. On these datasets we use 3− layer
mlp with model dimension 768 and hidden dimension 2 ∗ 768. Learning rate is set to 0.001 and
weight decay is set to {0.00001, 0.0005}.

For single layer mlp that we use to experiment the effect of model size scaling, we us the relu
activation function and the model width denotes the hidden dimension of the single hidden layer. For
different datasets, the learning rate is set to {0.003} and the weight decay is set to {0.0005}.

Batchsize is set to 4096 or 8192 for these cases.

E.4.3 iTransformer

We follow the original codes provided by iTransformer[10].

For dataset size scaling and (Horizon X Dataset Size) case we use 4 iTransformer encoder blocks of
dimension 512 for Traffic, Weather and Electricity. For other smaller datasets, we use 1 blocks of
dimension 192.

For Model size scaling case we use 2 iTransformer encoder blocks for large datasets including Traffic,
Weather and ECL, and 1 block for smaller datasets. The width indicates the model dimension as well
as the feedforward dimension.

Learning rate is set to 0.003 for small datasets and 0.0003 for large datasets. We decay the learning
rate with a factor of 0.97 or 0.98 every epoch, and run the training procedure for at most 100 epochs
with patience 10 for small datasets, and 40 epochs with patience 10 for larger datasets including
Traffic, Weather and Electricity. Batch size is chosen from {12, 20, 32}, mainly to fit into the gpu
memory.
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E.4.4 ModernTCN

We follow the original codes provided by ModernTCN[10]. We use the recommended settings
given by the authors of ModernTCN except for the horizon, the channel dimension and the training
procedure. Since ModernTCN has many hyperparameters that can be flexibly tuned, we do not include
other same hyperparameter here, and please refer to the original paper and cods for ModernTCN for
a more detailed description. Here we only include the different hyper-parameters.

For Dataset Size Scaling and (Horizon X Dataset Size) experiments, we only modify the look back
horizon. For training procedure, we use learning rate in {0.00005, 0.0001}. We train for 100 epochs
with patience 20 for small datasets and 40 epochs with patience 10 for larger datasets.

For Model Size Scaling and (Horizon X Model Size) experiments, we only modify the look back
horizon as well as the chanenl dimension and the depth-wise dimensions in the code.Again the
learning rate is chosen from {0.00005, 0.0001}, and we train for 100 epochs with patience 20 for
small datasets and 40 epochs with patience 10 for larger datasets. Batchsize is chosen from {16, 64}
following the original hyperparameter settings given by the author of ModernTCN.

F Downsampling May Improve Performance: power of patch, low-pass-filter,
and downsampling

Previous work has proven the success of patches [7] and low-pass-filter [3] for time series prediction.
These can be explained with our theory by making the assumption that high frequency features are
the most unimportant ones: thus by filtering up high frequency features we make the model visible to
the most important dimensions of the intrinsic space.

From a more detailed theoretical perspective, downsampling can be viewed as a projection to a
subspace in the intrinsic space and thus has a similar effect as decreasing the horizon. Experimental
results (as shown in experiments in previous works like FITS[3], PatchTST[7] and in Figure 7) show
that the projected subspace of higher frequency tends to fall on the large-eigenvalue directions, or the
‘invisible’ dimensions masked by the projection tends to be the more unimportant ones. Although
the precise effect of down sampling is unknown or may need further assumptions and methods for
precise consideration, it is acceptable that we may approximate the effect of down sampling to be
similar to a projection to the first deff < dI(H) dimensions in the intrinsic space. After making this
assumption, the overall loss could be expressed as:

lossnew = L(deff )where deff < dI(H).

Hence, if the original intrinsic dimension is larger than (local) optimal d, indicating ∂loss/∂d > 0,
reducing d from dI(H) to deff would help reduce loss. Otherwise if dI(H) is already smaller than
(local) optimal d∗, meaning ∂loss/∂d < 0, we would expect no performance improvement from
reducing d from dI(H) to deff .

To validate this idea, We do a similar experiment here, that is to do down-sampling and to use the
downsampled sequence as input sequence. We conduct experiments on Traffic dataset and Weather
dataset with a lookback horizon set to be 336 and a prediction length set to be 192. We use a 4-layer
512-dim gated mlp for traffic dataset and 2-layer 192-dim gated mlp for weather dataset. We can
see that doing downsampling would improve the performance of the weather dataset and the optimal
downsample ratio also changes with different training dataset size. The explanation for this is similar
to how we explain the optimal horizon growth with the growth of the training dataset. More data
in the training dataset would lead to less noise on higher dimensions, thus seeing more of these
dimensions (or filtering out fewer dimensions with downsampling with longer interpolate length) can
improve performance.

Meanwhile, for the traffic dataset, downsampling may hurt performance. This is because Traffic has
large amount of training data, and 336 is smaller than the optimal horizon. At this all dimensions in
the intrinsic space are not dominated by noise, hence filtering them out would hurt performance, and
we would expect the performance to be improved with the increment of interpolate length.
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Figure 7: MSE loss v.s. interpolate-to-len (length after downsampling) for Traffic and Weather dataset
for a certain amount of training data.

G PCA settings

We use PCA to obtain eigen values that we use to approximate the importance of features in the
intrinsic space. We conduct PCA at (all or part of the) training samples (after instance normalization),
mainly for the Channel-Independent case. For the PCA used in Figure4 and Figure 8 the horizon is
set to 2000 for both datasets and we perform PCA on all the training samples. We provide more PCA
results in Figure 8: if we approximately view the PCA eig-val as the feature importance, then they do
follow a Zip-f law approximately.

Figure 8: PCA results for L = 2000 under Channel-Independent setting on some datasets.

We further conduct PCA on intermediate vectors of the iTransformer[8] model and obtain results,
further validating the Zip-f assumption in our paper for intrinsic space for Non-Linear Channel-
Dependent Multivariable cases, as shown in Figure 9.

H Foundation Models for Mixed Datasets

Our theory holds without the need for any modification as long as the dataset itself follows a Zip-f
distribution in the intrinsic space. This assumption is sort of natural given that Zip-f law is a natural
distribution, and previous datasets we examined (like Traffic, ETT, etc) to follow the Zip-f law
are composed of smaller datasets. Moreover, we provide further analysis from Theoretical and
Experimental perspective on why it holds for mixed datasets.
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Figure 9: PCA obtained with iTransformer features. Zip-f law fitting receives p > 0.05 in all
cases. Note that it is hard for deep-learning methods (like iTransformer) to learn feature with small
covariance very well, it may be hard to learn features in exchange dataset well (in which feature
degrades very fast), hence the seemingly not-fitting figure for exchange is more likely caused by
under-training of deep learning models.

H.1 Zip-f distribution for Mixed Datasets: a toy model

Theoretically, if a large dataset is composed of s sub-datasets of similar size each following the
Zip-f law with degradation coefficient α1 < α2 < . . . < αs, each with size Si and follows Zip-f
law: λij = Ai/j

αi where λij represents the j-th largest eigenvalue of the i-th dataset. Suppose the
intrinsic dimensions are orthogonal with each other (hence PCA components are orthogonal). A
simple assumption is that the new intrinsic space is a direct product of the old intrinsic spaces, hence
eigenvalues are the union of old eigenvalues. For which, an eigenvalue of value S should be the
idxtotal-largest eigen value, in which:

idxtotal =
∑
i

idxi =
∑
i

(Ai/S)
1/αi .

When S is small (or correspondingly, when idxtotal is large) this sum is dominated by small αs, and
in limitation cases the sum is dominated by α1 term: idx ≈ (A1/S)

1/α1 +C, which is approximately
a Zip-f distribution.

H.2 Experiment results for Zip-f distribution for Mixed Datasets

Experimentally, we use the Mixed Dataset of Traffic, Weather, ETTh1, ETTh2, ETTm1, ETTm2,
exchange and ECL to train a Channel-Independent 2-layer 512-dimension MLP and use the Interme-
diate vector before the decoder layer as a feature vector to do PCA analysis. We found that the result
follows a Zip-f distribution for higher-order components, as shown in Figure 10.

I More comparison with other formulas

We compare AiC and BiC value of our proposed formula f(x) = A + B/xα with other possible
formulas, on ModernTCN, iTraansformer and MLP or Linear models:

• g1(x) = A/xα

• g2(x) = A+B log(x)

• g3(x) = A+Bx+ Cx2
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Figure 10: PCA obtained with MLP features trained on Mixed Dataset. The 2-layer 512-dimension
MLP is trained under Channel Independent setting on a mixed dataset of Traffic, Weather, Exchange,
ETTh1, ETTh2, ETTm1, ETTm2 and ECL. The mixed feature shows a well-aligned Zip-f law for
features of higher rankings.

AiC, BiC Traffic Weather ETTh1 ETTh2
f -103.9,-103.4 -87.2,-87.0 -69.5,-69.6 -64.7,-65.3
g1 -95.3,-94.9 -79.1,-79.0 -60.6,-60.7 -45.6,-46.0
g2 -94.6,-63.3 -71.1,-71.0 -59.7,-59.8 -45.4,-45.8
g3 -93.3,-94.9 -81.3,-83.1 -56.5,-56.7 -43.1,-43.8

Table 3: regression results for ModernTCN

AiC, BiC Traffic Weather ETTh1 ETTh2
f -71.6,-70.7 -74.8,-74.6 -50.7,-50.9 -56.9,-56.7
g1 -66.7,-66.1 -73.1,-72.9 -45.7,-45.8 -57.9,-57.8
g2 -63.3,-62.6 -71.1,-71.0 -41.7,-41.8 -57.9,-57.7
g3 -54.9,-56.3 -70.1,-72.0 -38.9,-39.7 -56.4,-56.2

Table 4: regression results for iTransformer

AiC, BiC Traffic Weather ETTh1 ETTh2
f -91.9,-91.3 -91.5,-91.7 -89.1,-88.8 -62.8,-62.6
g1 -67.1,-66.7 -83.1,-83.2 -67.5,-67.4 -61.1,-60.9
g2 -66.0,-65.6 -82.1,-82.3 -65.6,-65.5 -59.9,-59.8
g3 -60.1,-61.2 -81.3,-83.4 -89.1,-88.8 -60.1,-59.9

Table 5: regression results for MLP or Linear models
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forecasting, taking into account the impact of dataset size, model size and look back horizon
and (2) conduct experiments (please refer to Section 4) to verify the validity of scaling law
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release new models or datasets, hence the paper poses no
such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use previously proposed models and datasets, and include license for
existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use publicly available models and datasets and do not release new assets
including models or datasets. We mainly conduct experiments based on code bases of
previous work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowd sourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowd sourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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