
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING BLACK-BOX LLMS WITH
FEEDBACK REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The optimization of black-box large language models (LLMs) presents signifi-
cant challenges. While the implementation of pre-existing chain-of-thought (CoT)
prompting and feedback mechanisms help occasionally, these approaches still
struggle from unreliable feedback, and fail to leverage the training data. In this
work, we propose Feedback Reinforcement Learning (FRL)—training a separate
feedback model through reinforcement learning to improve the main black-box
LLM. FRL divides self-correction into two stages: our trained feedback model
identifies error, and generate corresponding feedback on how to correct the er-
ror, while the black-box LLM generates correction based on this extra feedback.
During training, the feedback model generates feedback rollouts for initial re-
sponses from a fixed pretrained model, which then produces revised responses.
The improvement between initial and revised responses serves as the reward sig-
nal. This approach treats the solver model as a black-box and optimizes it with
a separate feedback provider, enabling targeted improvement without modifying
the base model. We evaluate FRL on generated Sudoku puzzles, GSM8K, and
MMLU-STEM questions, demonstrating consistent improvements over the initial
language model’s performance by 16.5% on average. Our method outperforms
both non-learning self-correction approaches and oracle-based verification meth-
ods by leveraging training data through reinforcement learning. Moreover, FRL
models can also function as problem solvers, outperforming their pretrained coun-
terparts, effectively enhancing the model’s original reasoning capabilities.

1 INTRODUCTION

Large Language models deployed as APIs present a fundamental challenge: how can we improve
their performance when we cannot access or modify their weights? This black-box optimization
problem is increasingly critical as organizations rely on proprietary models for customized produc-
tion deployment. In this work, we propose treating these black-box models as students that can
benefit from step-by-step verification and correction from a separate trainable teacher. Compared
to a direct revision of the answer, the feedback has the flexibility to capture meta-level information
which generalizes better across different instances of mistakes in the same category.

Our goal is to effectively improve the performance of black-box models, which is particularly im-
portant given the current ubiquity of closed-source models. Without access to the underlying model
weights or the ability to either compute or apply gradient updates, direct finetuning is inapplicable
in the black-box setting. In-context learning (ICL) only uses prompts, but has limited ability to
improve performance. A more complex approach involves self-correction, where a model attempts
to refine its initial answer. Though this approach has some promise, it is limited by the fact that
models are often unable to reliable identify their own mistakes (Zhang et al., 2024; Wu et al., 2024;
Huang et al., 2024; Tyen et al., 2024). Song et al. (2025) even note that models which produce better
initial answers become worse at detecting their own mistakes. More effective and accurate feedback,
however, could resolve this issue and allow for greater performance improvements.

To address this challenge, we present Feedback Reinforcement Learning (FRL), a method specifi-
cally designed for black-box LLM optimization. In FRL, we train a separate feedback model F to
identify errors in the initial responses sampled from a solver model S. The black-box solver model
then uses this feedback to refine its answers, allowing it to improve without any weight updates. By

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

training F to generate useful feedback, we allow it to learn how to detect and correct errors. This
also allows S to use incorporate the generated feedback through ICL, which has allowed pretrained
LLMs to effectively refine their outputs (Kamoi et al., 2024; Shinn et al., 2023). During training, we
generate an initial answer with solver model S, then use the feedback model F to generate feedback
rollouts. Conditioning on the generated feedback f , we use the solver model S to generate a refined
answer. The reward comes from whether the refinement generated using the feedback is an improve-
ment over the initial response, as well as from the verification accuracy of the feedback model F .

We study the effects of FRL in two settings. First, when the models F and S share the same archi-
tecture, which we call same-model correction, and second when they have different architectures,
which we call cross-model correction. Empirical results show that FRL improves the black-box per-
formance by 16.5% across datasets. We note in particular that with cross-model correction, which
more closely matches real-world black-box settings, we observe substantial improvements. This
validates that FRL can be used in practical settings for proprietary API models.

Therefore, we make the following contributions:

1. We propose Feedback Reinforcement Learning (FRL), a new method to optimize black-box
LLMs by training a feedback model with reinforcement learning to help it correct its mistakes.

2. We show that FRL achieves improvement over strong baselines across domains consisting of
mathematical problems, STEM related multiple choice questions, and Sudoku puzzles.

3. We apply FRL to black-box LLMs from other model families and still see strong benefit, showing
its practical usage to real-world proprietary models.

2 RELATED WORK

2.1 SELF-CORRECTION

Self-correction is defined as an LLM refining its answer during inference, with or without access to
external knowledge. There are two main approaches to achieve this, one is by fine-tuning a model
to provide feedback and correct the answer, (Kamoi et al., 2024; Madaan et al., 2023; Saunders
et al., 2022; Kumar et al., 2024). This fine-tuning can be achieved either by supervised fine-tuning
(Madaan et al., 2023; First et al., 2023; Saunders et al., 2022) or reinforcement learning (Bensal
et al., 2025; Kumar et al., 2024; Akyürek et al., 2023). Another approach is to leverage the in-
context learning ability of the LLM and guide it to correct its mistakes by prompting. (Li et al.,
2024; Wang et al., 2024; Jiang et al., 2025; Madaan et al., 2023; Shinn et al., 2023) However, this
approach is not very effective on reasoning tasks, and some of the settings are unrealistic with oracle
answers available during test-time.

2.2 SELF-VERIFICATION

While self-correction focuses on both identifying and fixing errors, self-verification addresses the
crucial first step, determining whether an answer is correct. This distinction matters because verifi-
cation is often easier than generation (Zelikman et al., 2022). The most straightforward approach of
self-verification would be to prompt the model to revise its own answer (Zhang et al., 2024; Madaan
et al., 2023). However, this approach is shown to be insufficient for hard reasoning problems (Zhang
et al., 2024). There are approaches that assign a confidence score to the answer (Miao et al., 2023;
Taubenfeld et al., 2025; Weng et al., 2023). This approach works well when sampling multiple an-
swers from the model. Self-verification is a crucial part of the feedback model in FRL, the feedback
model needs to first verify the answer before passing it to the refinement step.

2.3 OPTIMIZING BLACK-BOX MODELS

A number of works have studied methods for optimizing, adapting, or tuning black-box models.
In the absence of explicit gradient information, zeroth-order methods have been used to compute
approximate gradients for tuning (Park et al., 2025; Hu et al., 2024; Guo et al., 2024b; Malladi et al.,
2023; Zhan et al., 2024; Tsai et al., 2020). Aside from zeroth-order approximations, evolutionary
algorithms can be used to optimize continuous prompts (Sun et al., 2022a;b), particularly when

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Initial Response	𝑦!

Final Response 𝑦"

Feedback 𝑓

Solver LLM
𝑆

If 𝑓 is positive, use 𝑦! as final response 𝑦"

Feedback LLM
𝐹

Input Question 𝑥

Reward

𝑅

Figure 1: Our proposed FRL paradigm: Given an input question x, the solver generates initial output
y0 with solver model S. Then it passes question x and initial response y0 to the feedback model F
to get feedback f . If f is positive, indicating initial response y0 as correct, we use initial response y0
as final response y1. Otherwise, we generate final response y1 with extra feedback again with solver
model S. The reward is then computed and use to train F with RL.

paired with search (Sun et al., 2024), as well as to evolve better discrete prompts (Guo et al., 2024a).
Outside of evolution, reinforcement learning (Deng et al., 2022; Diao et al., 2023), search (Prasad
et al., 2023), and retrieval (Cheng et al., 2023) can be used to adapt models with access to gradient
information. Still others have leveraged auxiliary language models for adaptation. Ormazabal et al.
(2023) use a small language model to adapt a larger one, but require access to the larger, black-box
model’s log probabilities. Chen et al. (2024), Zhou et al. (2023), Cheng et al. (2024), and Yang et al.
(2024) each use LLMs to optimize or generate prompts for a black-box model directly. Finally,
Zhou et al. (2025) use a continually update memory system to adapt a black-box model. We propose
a new way of optimizing black-box LLMs by training a small feedback model to correct black-box
model’s mistakes.

3 FEEDBACK REINFORCEMENT LEARNING

Feedback Reinforcement Learning is a modular approach to correcting errors from black-box
LLMs. We divide the process of self-correction into two steps: error identification and error
correction. With FRL, we only train the feedback model F , whose job is to identify errors from the
initial response y0 and provide feedback to the solver model S on how to correct them, so that the
solver model S can leverage its inherent in-context learning ability to correct the errors with extra
feedback context to get the final response y1.

Inference: During test time, given an input question x and pre-trained solver model S, FRL gen-
erates an initial output y0:

y0 = S(x).

We prompt the model to generate this initial response using CoT, which also allows the feedback
model to more easily point out specific errors. Next, we pass the input question x, along with initial
response y0 to the trained feedback model F to get the feedback f :

f = F (x, y0)

The feedback model analyzes each step of the initial response, identifies errors, and provides guid-
ance on how to correct them. The feedback f concludes with a verification assessment predicting the
overall correctness of the initial response y0. If the verification points out that the initial response
y0 is correct, we use it as the final response y1. Otherwise, we pass the input question x, initial
response y0, and feedback f to the solver model again to get the final response y1:

y1 = S(x, y0, f)

This selective refinement makes FRL less likely to change correct initial responses to incorrect ones
during refinement, and also improves efficiency by only performing refinement when needed.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training: When training with FRL, we initialize the feedback model either from the same base
model as the solver or from a separate model. We keep the training workflow similar to test time,
where we first generate the initial response y0 from S(x), then using the initial response y0 and input
question x, we get the feedback rollouts f from F . Finally, if feedback f is negative, meaning the F
thinks the initial response is incorrect given the input question, we pass the input question x, initial
response y0, and feedback f to the solver model S again to get the final response y1.

Reward: The goals for the feedback model F are: to first verify the initial answer and determine
its correctness and then, if the initial answer is deemed as incorrect according to F , to generate
feedback which is helpful for the solver model to learn from. Towards these goals, we propose the
following rewards:

• Verification Reward Rverify: The feedback model receives a positive verification reward when
it correctly identifies whether y0 is correct or incorrect and receives a reward of −1 when it
incorrectly identifies a correct initial response as wrong. This reward shaping is crucial because
incorrectly flagging correct answers for refinement can degrade performance significantly, since
initially correct solutions may become incorrect after unnecessary revision.

• Refinement Reward Rrefine: This reward assesses the quality of the feedback f by measuring
the improvement from the initial response y0 to the final response y1. To make the training as
realistic as possible, we directly compare performance gains between these two responses. If the
initial response y0 is incorrect and final response y1 is correct, Rrefine is 1, 0 otherwise.

Data Generation: To train the feedback model effectively, we first generate training data by sam-
pling from the solver model’s outputs. For each question in the training set, we iteratively generate
responses until we obtain a balanced dataset of positive examples (correct initial responses) and
negative examples (incorrect initial responses). This iterative sampling approach offers two key
advantages. First, it allows us to generate unlimited training examples, removing the constraint of
limited question availability in the original dataset. Second, we can control the ratio of positive
to negative examples to prevent training bias. Since model performance varies across datasets and
model sizes (e.g., a 7B model achieves high accuracy on GSM8K, creating an imbalanced dataset),
we maintain a 1:1 ratio of positive to negative examples across all experiments to ensure unbiased
feedback training.

4 EXPERIMENTS

The goal of our experiments is to demonstrate the effectiveness of FRL on optimizing black-box
LLMs through self-correction in a realistic setting. To achieve that, we chose three datasets from
different domains and evaluated FRL on different model sizes, including cross-model training.

Datasets: Grade School Math (GSM8K) (Cobbe et al., 2021) is a mathematical dataset consist-
ing of 7473 training and 1319 test problems of grade-school-level word problems. These problems
require multiple steps to get to the final answer. This dataset is particularly well-suited for eval-
uating FRL because: first, errors can occur at any intermediate step, making it crucial to identify
which specific part of reasoning is wrong instead of only checking the final answer; second, the
step-by-step solution allows our feedback model to provide specific, actionable feedback about the
initial response, so the solver model can correct its initial mistakes with this effective feedback.

The Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2021)
is a dataset that evaluates models across 57 subjects, including STEM, US history, law, and more.
For our experiments, we focus on the STEM subset consisting of mathematics, physics, computer
science, etc. These questions are all multiple-choice questions testing the conceptual understanding
and multi-step reasoning of LLMs. Unlike GSM8K or Sudoku, where solutions follow explicit step-
by-step procedures, MMLU-STEM problems often require implicit reasoning chains and domain-
specific knowledge application. Therefore, MMLU-STEM evaluates whether FRL can generalize
beyond step-by-step problem solving by requiring the feedback model to identify conceptual errors
rather than just computational mistakes across diverse, less structured solutions.

Sudoku puzzles are a great way to test the step-by-step error identification and refinement for FRL.
We generated a dataset of 4×4 Sudoku puzzles with 4 empty cells per puzzle, creating a simplified

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Feedback Reinforcement Learning
Require: Pretrained LLM S; Pretrained LLM F ; dataset D = {(xi, yi)}Ni=1; learning rate α

1: Sample training dataset Dtrain = {(xi, yi, yi0)}Ni=1 from D with S
2: for each (xi, yi, yi0) ∈ Dtrain do
3: f = F (x, y0) ▷ Generate Feedback with F
4: if f is negative then
5: generate y1 from S with feedback
6: else
7: y1 = y0
8: end if
9: if f correctly identifies correct y0 as correct, incorrect y0 as incorrect then

10: Rverify = 1 ▷ Correct Verification
11: else if f identifies correct y0 as incorrect then
12: Rverify = −1 ▷ False Positive Reward Shaping
13: else
14: Rverify = 0
15: end if
16: if y0 ̸= y and y1 = y then
17: Rrefine = 1
18: else
19: Rrefine = 0
20: end if
21: Rfinal = Rrefine +Rverify
22: F ← F + α∇θfJGRPO(θf) ▷ Update F’s parameters with GRPO
23: end for

but still challenging constraint satisfaction problem. In 4×4 Sudoku, each row, column, and 2×2 sub-
grid must contain the digits 1-4 exactly once. Despite this simplification from standard 9×9 Sudoku,
we find that base models struggle significantly with these puzzles; even the 7B model achieves only
35.1% accuracy. This difficulty arises because Sudoku requires maintaining multiple simultaneous
constraints where a single incorrect placement can make the puzzle unsolvable, making it particu-
larly well-suited for testing whether feedback models can identify specific constraint violations and
help the correction of solver models.

Baselines: We evaluate FRL against five baselines, which are chosen to highlight the current veri-
fication bottleneck challenge in the self-correction domain. Because we are treating the solver model
as a black-box, all baselines do not require access to the model weight.

• Sover Initial Response establishes a lower bound for performance by showing the base model’s
performance with CoT prompting but without self-correction.

• Vanilla Feedback shares the same two-stage pipeline as FRL, but the feedback model F is not
finetuned, in order to demonstrate the importance of training on the feedback model F .

• Self-Refine and Reflexion represent state-of-the-art training-free self-correction methods that uses
prompting and iterative refinement. These baselines test whether sophisticated prompting strate-
gies can overcome the verification bottleneck.

• Oracle Verification uses ground truth labels to inform the solver model when its initial response is
incorrect, prompting it to generate again, but without providing any specific feedback about what
the error is. This baseline demonstrates that even with a perfect verifier, performing self-correction
without helpful feedback is still ineffective.

• Vanilla Feedback + Oracle Verification combines perfect verification with the pretrained
model’s feedback generation. We tell the feedback model this is wrong if the initial response
does not match the ground truth label, then let it generate feedback. This baseline helps us assess
the upper bound of perfect verification, but untrained feedback generation.

Experimental Protocol: We used 1.5B, 3B, and 7B base models from the Qwen2.5 family (Qwen
et al., 2025) for training. We chose base models for both feedback model F and solver model S to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of FRL and baselines on GSM8K, MMLU-STEM, and Sudoku

Method GSM8K MMLU-STEM Sudoku
1.5B 3B 7B 1.5B 3B 7B 1.5B 3B 7B

Sover Initial Response 62.7 76.0 85.4 54.2 65.1 69.6 1.7 4.0 35.1
Vanilla Feedback 62.5 75.8 85.4 53.9 63.7 69.7 1.7 4.0 34.9
Self-Refine (Madaan et al., 2023) 60.6 76.0 85.4 47.1 64.8 69.7 1.7 3.8 35.1
Reflexion (Shinn et al., 2023) 63.6 75.8 85.4 19.6 65.3 64.9 1.7 3.8 34.7
Oracle Verification 62.9 76.0 85.7 54.2 65.7 70.2 1.8 4.1 35.1
Vanilla Feedback + Oracle Verification 63.1 76.0 85.9 54.2 65.7 70.0 1.8 4.2 35.5
FRL (Ours) 75.1 83.1 91.8 54.2 69.8 75.8 1.8 54.0 96.8

minimize the influence of any post-training. During evaluation, we used 5-shot CoT prompting for
initial solving and 2-shot CoT prompting for feedback and refinement generation due to memory and
context length constraint. We prompted the models to put answers inside boxes and extract the num-
bers for GSM8K and MMLU-STEM. For Sudoku, we prompted the model to write a grid and extract
the final grid during evaluation. We evaluated on the test set of each benchmark, ensuring no data
leakage. When evaluating Self-Refine and Reflexion, we set the max number of trials to 5. For train-
ing, we first sampled the solver iteratively to generate 20,000 question-answer pairs and ran 1 epoch
with a learning rate of 1× 10−6 and KL-penalty of 0, following (Liu et al., 2025). We used GRPO
with effective batch size of 432, number of generations of 24, and temperature of 0.7. For the final
reward, we combined refinement reward Rrefine and verification reward Rverify by taking the average.

5 RESULTS

5.1 MATHEMATICAL PROBLEMS: GSM8K

In Table 1, FRL outperforms all baseline approaches by significant margins with gains of 12.4%,
7.1%, and 6.4% absolute improvement for the 1.5B, 3B, and 7B models, respectively. Notably,
the smaller models benefit more from our approach, with 1.5B improving from 62.7% to 75.1%,
nearly achieving the accuracy of the pretrained 3B model. This suggests that with the help of the
trained feedback model, small models can also self-correct their mistakes. We analyze the failure of
the prompting-based method (Self-Refine and Reflexion). For Reflexion, it shows that using a pre-
trained LLM to act like an evaluator is not enough, especially when the evaluator model and solver
model are the same one. It tends to get overconfident and predict every answer as correct. This leads
to some premature termination. Although we set max trial to 5, 96.7%, 96.5%, and 98.0% of the at-
tempts from 1.5B, 3B, and 7B stop at the first trial, meaning the evaluator predicts the initial response
as correct. This essentially makes most of the response not go through the self-correction loop at
all. The same thing happens to Self-Refine, where 83.3%, 97.7%, and 97.3% of the attempts from
1.5B, 3B, and 7B stop at the first trial. This unreliable verification makes the two prompting-based
approaches fail at this task. Evaluating on the Vanilla Feedback + Oracle Verification and Oracle
Verification baseline, we see an improvement bigger than Self-Refine and Reflexion. This indicates
that with more reliable verification of the initial response, a vanilla feedback model can still give
helpful feedback to the solver model to correct some of its mistakes. Comparing Vanilla Feedback
+ Oracle Verification to Oracle Verification reveals that when pretrained models attempt to gener-
ate feedback, they can correct some errors that remain unfixed when only given binary correctness
signals. However, the improvement is limited compared to FRL, and therefore training a feedback
model with reinforcement learning is the critical ingredient. These findings demonstrate that the key
bottleneck in self-correction is not only verification accuracy but also the ability to generate specific,
actionable feedback. This ability is successfully learned by FRL through reinforcement learning.

GSM8K Cross Model Evaluation: Beyond same-model self-correction, we evaluate FRL’s gen-
eralization capabilities in two realistic scenarios with results shown in Table 2 and Table 3. First, we
test asymmetric configurations where we train smaller feedback models paired with bigger solver
models. Specifically, we trained a 3B feedback model with a 7B solver model and a 7B feedback
model with a 14B solver model. At test time, we evaluate whether the smaller, more efficient trained
feedback model can still improve stronger, bigger solver models. Second, we simulate real-world

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Cross Family Evaluation on GSM8K

Method Llama Deepseek
1.5B 3B 7B 1.5B 3B 7B

Solver Only 61.1 61.1 61.1 69.9 69.9 69.9
Qwen Vanilla Feedback 60.8 61.2 62.8 68.7 69.9 70.0
Qwen FRL (Ours) 74.3 77.6 84.4 73.8 74.8 78.9

Table 3: Asymmetric Model Training: Smaller Feedback Models with Larger Solvers on GSM8K

Method Feedback Model Solver Model Accuracy

Vanilla Feedback 3B 7B 85.4
Vanilla Feedback 7B 14B 88.9
Vanilla Feedback No Feedback 14B 88.9

FRL 3B 7B 88.4
FRL 7B 14B 89.6

deployment by treating the solver model as a complete black-box that we do not use during training.
During training, we exclusively used Qwen2.5 feedback models with Qwen solver models. Then
at test time, we evaluate these Qwen-trained feedback models with solver models from completely
different model families and sizes, deepseek-math-7b-base and Llama-3.1-8B. (Shao et al., 2024;
Grattafiori et al., 2024) Notably, the feedback models never see or train with Deepseek or Llama
during training, so they must generalize their learned feedback strategies from Qwen to these un-
seen structures. This cross-family evaluation demonstrates FRL’s practicality and versatility, where
proprietary solver models are only accessible as black-box APIs at deployment time.

The cross-family generalization results in Table 2 demonstrate FRL’s remarkable ability to transfer
learned feedback strategies across different model architectures. We see substantial improvements
on both Llama-3.1-8B and Deepseek-Math-7B-Base solvers despite the feedback model never en-
countering these solver models during training. For the Llama model with a baseline of 61.1%, FRL
feedback model provides gains of 13.2%, 16.5%, and 23.3% absolute improvement for the 1.5B, 3B,
and 7B feedback models, respectively. Even our smallest 1.5B model elevates Llama’s performance
by a great margin. Looking at the results from using Deepseek-Math-7B-Base as the solver, we also
see improvement of 3.9%, 4.9%, and 8.8% over its 69.9% baseline. By comparing our results to the
pretrained Qwen feedback models, we see only negligible or even negative improvement after the
feedback, confirming that FRL training is essential to make cross-family self-correction with feed-
back. The consistent improvement of FRL FRL-trained model also shows that the benefit of FRL
is generalizable and can provide valuable feedback to the errors that are made by Qwen models.
The fact that our smallest 1.5B trained model can still effectively guide an 8B Llama model demon-
strates that feedback quality matters and FRL can be used to efficiently optimize bigger black-box
solver models. The cross model experiments in Table 3 demonstrate FRL’s practical utility for big-
ger black-box LLMs. The performance of a 3B feedback model pairing with a 7B solver model
improves the 3B baseline by 12.4%, outperforming 3B FRL by 5.3%. This shows that FRL can be
an efficient way to train the model when pairing a small feedback model with a large solver model.
This improvement also scales to a 7B feedback model pairing with a 14B solver model. This com-
bination boosts the performance by a small margin, indicating smaller solver models benefit more
when pairing with smaller feedback models.

5.2 MULTIPLE CHOICE REASONING: MMLU-STEM

Unlike GSM8K, where small models like 1.5B or 3B benefit the most, MMLU-STEM shows the
opposite pattern in Table 1. The 7B model benefits the most from FRL, with accuracy improving
from 69.6% to 75.8%. The 1.5B model shows no improvement at all, and 3B model shows a
modest gain. This pattern reveals important insights about when and how feedback-based correction
succeeds. There are several factors contributing to this result. First, MMLU-STEM questions require
domain-specific knowledge that smaller models may lack entirely. When a 1.5B model does not
know a physics formula or biology terminology, no amount of feedback can compensate for this
knowledge gap. Reinforcement cannot teach specialized knowledge that the model never learned

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison to a GRPO-trained solver.

Method GSM8K MMLU-STEM GSM-Symbolic
1.5B 3B 7B 1.5B 3B 7B 1.5B 3B 7B

Solver GRPO 65.1 76.0 90.8 53.9 60.4 78.8 37.2 60.4 78.2
FRL (Ours) 75.1 83.1 91.8 54.2 69.8 78.9 49.8 68.1 77.0

during pretraining. This limitation also shows for prompting based approach like Reflexion, where
the 1.5B model achieves negative gain. Without a basic understanding of the questions and concepts,
the model cannot generate meaningful verification or reflection. Doing multiple rounds of reflection
would just hurt the performance more and lead to collapse. Looking more closely at the results, we
see that the LLM evaluator was not able to follow the instruction and give a binary prediction, given
the answer for a smaller model like 1.5B in MMLU-STEM. Because the task is beyond the capability
of the small models. With the FRL-trained feedback model, we also find cases where the feedback
model attempts to correct domain knowledge, but sometimes provides incorrect information. This
behavior shows the limitation of FRL: while procedural errors in mathematics can be verified and
corrected through step-by-step feedback, conceptual knowledge requires the feedback model to have
this knowledge during pretraining.

5.3 REASONING PUZZLE: SUDOKU

In the Sudoku dataset, we see the greatest improvement compared to GSM8K and MMLU-STEM
in Table 1, with 3B and 7B models achieving 50% and 61.7% absolute improvement. The success
on Sudoku can be attributed to two factors. First, Sudoku has a unique property where verification is
is simpler than generation. While solving requires sophisticated search and constraint satisfaction,
verification only requires checking if each row, column and 2x2 sub-grid contains unique digits.
This asymmetry makes it ideal for feedback training, as the task is very simple and straightforward.
Second, errors in Sudoku are easy to detect in the middle of the solution, and feedback model can
provide feedback that helps solver model to correct its mistakes. This is different from MMLU-
STEM where the error is more intrinsic and nuanced. The performance difference between model
sizes is also revealing. The 1.5B model shows virtually no improvement (1.7% to 1.8%), suggesting
a minimum capability threshold for constraint tracking. However, once this threshold is crossed,
as with the 3B model, we see massive gains. The 7B model’s near-perfect 96.8% accuracy after
FRL training indicates that larger models have latent constraint-satisfaction capabilities that can be
unlocked through proper feedback, even when their initial performance is poor. On the other hand,
all prompting-based approaches did not work at all. They are all showing overconfident issue and
therefore no correction would be triggered. If the feedback model is not trained and encounters
something unusual, it is more likely to be overconfident and lead to false negative errors.

6 DISCUSSION

6.1 REWARD CHOICES

Table 5: Reward Ablation Study on GSM8K

Model Refinement Only Refinement + Verification Refinement + Verification
Size (No Reward Shaping)

3B 74.8 80.7 83.1
7B 85.1 90.5 91.8

We evaluate the contribution of different reward components to understand their impact on FRL’s
performance in Table 5. We test three configurations: refinement reward only, refinement with
verification reward (no penalty), and refinement with verification reward including false positive
penalty. The penalty specifically assigns -1 reward when the feedback incorrectly identifies a correct
initial response as incorrect, encouraging more conservative verification.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The results validate our reward design choice. Using refinement reward alone improves the solver
model and achieves the highest incorrect-to-correct rate by above 10%. However, it lacks the ability
to preserve correct ones, frequently giving negative feedback to originally correct initial responses,
leading to changing them from correct to incorrect. Adding a verification reward without penalty
improves performance upon the refinement reward only setting, as the model now has to optimize for
verification accuracy. However, we still observe numerous false positives where initial responses are
wrongly flagged and corrupted. Therefore, we introduce the penalty to the verification reward. This
reward successfully achieved our goal of lowering the rate of going from correct to incorrect. This
reward also achieves the highest accuracy for the two model sizes in the GSM8K setting. The penalty
prevents the feedback model from making unnecessary modifications to the correct initial responses
while maintaining the ability to improve the incorrect ones. This 2.4% and 1.3% improvement over
the no-penalty configuration demonstrates that preventing over-correction is crucial for effective
self-correction. The result from the reward ablation study shows that both components, learning to
generate helpful feedback and learning when not to intervene, are essential for FRL’s success.

6.2 COMPARISON WITH DIRECT SOLVER MODEL TRAINING

To understand FRL’s effectiveness, we compare it against directly training the solver model with
GRPO on the same tasks in Table 4. Here we used original questions as input, and answer correct-
ness as reward. This comparison helps establish whether training a separate feedback model offers
advantages over simply improving the solver itself. We also evaluate generalization using GSM-
Symbolic Mirzadeh et al. (2025), a dataset that tests robustness by permuting variable names and
numbers from GSM8K problems. Prior work has shown that most LLMs experience performance
degradation on this variant compared to the original GSM8K. Note here we train the models on
original GSM8K problems, and test their generalization using GSM-Symbolic.

GRPO-trained solver substantially outperform prompt-based baselines, confirming that reinforce-
ment learning can improve reasoning capabilities more than prompting. However, these gains vary
significantly by task and model size. On GSM8K, smaller models see modest improvement, while
larger models like 7B benefit more. Comparing this with FRL, we can see GRPO-solvers show
accuracy consistently lower than FRL, particularly on smaller models where the gap reaches 10%.
This could be due to smaller models being harder to train effectively. Even after GRPO training,
they still frequently make errors that are difficult to self-correct without external feedback.

The generalization test on GSM-Symbolic reveals interesting patterns. FRL outperforms direct
GRPO training by substantial margins for the 1.5B (12.6%) and 3B (7.7%) models. However, the
7B GRPO-trained solver slightly surpasses FRL, achieving 78.2%versus 77.0%. This suggests that
larger models can better internalize robust problem-solving strategies through direct training, while
smaller models benefit more from the structured feedback approach of FRL.

These results demonstrate that smaller models like 1.5B or 3B benefit more from FRL’s feedback-
based design. The small models struggle with new questions even when trained directly as a solver.
But when trained as a feedback model with FRL, these models overcome their inherent limitations.
While larger models like 7B achieve competitive performance through direct training, this approach
requires accessing model weights, not something we can do with proprietary APIs. Notably, FRL
remains competitive even against white-box training methods, validating its practical value and gen-
eralization ability for real-world black-box optimization scenarios.

7 CONCLUSION

In this paper we present Feedback Reinforcement Learning (FRL), a method to optimize black-box
LLMs by training a separate model to generate corrective feedback. Our experiments across diverse
reasoning tasks show FRL significantly boosting accuracy, being generalizable, and outperforming
both existing self-correction methods and oracle-based baselines. FRL therefore provides a practical
and effective strategy for optimizing proprietary models without requiring access to their weights.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

We used an LLM as a grammar checker in this paper.

REPRODUCIBILITY STATEMENT

We provide detailed methodology of Feedback Reinforcement Learning in Section 3. We have our
Experiment setup in Section 5, and Appendix A. We submit our code in the Supplementary Materials
and plan to open-source it in a public GitHub repository with full documentation when the paper is
published. All pretrained LLMs used were obtained from HuggingFace.

REFERENCES

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya,
and Niket Tandon. Rl4f: Generating natural language feedback with reinforcement learning for
repairing model outputs, 2023. URL https://arxiv.org/abs/2305.08844.

Shelly Bensal, Umar Jamil, Christopher Bryant, Melisa Russak, Kiran Kamble, Dmytro Mo-
zolevskyi, Muayad Ali, and Waseem AlShikh. Reflect, Retry, Reward: Self-Improving LLMs
via Reinforcement Learning, May 2025. URL http://arxiv.org/abs/2505.24726.
arXiv:2505.24726 [cs].

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models. In International Conference on
Machine Learning, pp. 6503–6518. PMLR, 2024.

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
Furu Wei, Weiwei Deng, and Qi Zhang. UPRISE: Universal prompt retrieval for improving zero-
shot evaluation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 12318–12337, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
758. URL https://aclanthology.org/2023.emnlp-main.758/.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
Huang. Black-box prompt optimization: Aligning large language models without model training.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3201–3219,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.176. URL https://aclanthology.org/2024.acl-long.176/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training Verifiers to Solve Math Word Problems, October 2021. URL
http://arxiv.org/abs/2110.14168. arXiv:2110.14168 [cs] version: 1.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforce-
ment learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 3369–3391,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.222. URL https://aclanthology.org/2022.
emnlp-main.222/.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, LIN Yong, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
IvsGP7xRvm.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models, 2023. URL https://arxiv.org/abs/2303.04910.

10

https://arxiv.org/abs/2305.08844
http://arxiv.org/abs/2505.24726
https://aclanthology.org/2023.emnlp-main.758/
https://aclanthology.org/2024.acl-long.176/
http://arxiv.org/abs/2110.14168
https://aclanthology.org/2022.emnlp-main.222/
https://aclanthology.org/2022.emnlp-main.222/
https://openreview.net/forum?id=IvsGP7xRvm
https://openreview.net/forum?id=IvsGP7xRvm
https://arxiv.org/abs/2303.04910

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=hS1jvV3Dk3.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet, March 2024. URL
http://arxiv.org/abs/2310.01798. arXiv:2310.01798 [cs] version: 2.

Zhuoxuan Jiang, Haoyuan Peng, Shanshan Feng, Fan Li, and Dongsheng Li. LLMs can Find
Mathematical Reasoning Mistakes by Pedagogical Chain-of-Thought, March 2025. URL http:
//arxiv.org/abs/2405.06705. arXiv:2405.06705 [cs].

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=ZG3RaNIsO8
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=hS1jvV3Dk3
https://openreview.net/forum?id=hS1jvV3Dk3
http://arxiv.org/abs/2310.01798
http://arxiv.org/abs/2405.06705
http://arxiv.org/abs/2405.06705

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When Can LLMs Actually
Correct Their Own Mistakes? A Critical Survey of Self-Correction of LLMs, December 2024.
URL http://arxiv.org/abs/2406.01297. arXiv:2406.01297 [cs].

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D. Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training Language Models to Self-Correct via Reinforcement Learning, October 2024.
URL http://arxiv.org/abs/2409.12917. arXiv:2409.12917 [cs].

Loka Li, Zhenhao Chen, Guangyi Chen, Yixuan Zhang, Yusheng Su, Eric Xing, and Kun Zhang.
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models,
May 2024. URL http://arxiv.org/abs/2402.12563. arXiv:2402.12563 [cs].

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
Refine: Iterative Refinement with Self-Feedback, May 2023. URL http://arxiv.org/
abs/2303.17651. arXiv:2303.17651 [cs].

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and San-
jeev Arora. Fine-tuning language models with just forward passes. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=Vota6rFhBQ.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning, 2023. URL https://arxiv.org/abs/2308.00436.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229.

Aitor Ormazabal, Mikel Artetxe, and Eneko Agirre. CombLM: Adapting black-box language
models through small fine-tuned models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2961–2974, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.180. URL https://aclanthology.org/2023.
emnlp-main.180/.

Seonghwan Park, Jaehyeon Jeong, Yongjun Kim, Jaeho Lee, and Namhoon Lee. Zip: An
efficient zeroth-order prompt tuning for black-box vision-language models. arXiv preprint
arXiv:2504.06838, 2025.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models. In Andreas Vlachos and Isabelle Au-
genstein (eds.), Proceedings of the 17th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pp. 3845–3864, Dubrovnik, Croatia, May 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL https:
//aclanthology.org/2023.eacl-main.277/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

13

http://arxiv.org/abs/2406.01297
http://arxiv.org/abs/2409.12917
http://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://arxiv.org/abs/2308.00436
https://arxiv.org/abs/2410.05229
https://aclanthology.org/2023.emnlp-main.180/
https://aclanthology.org/2023.emnlp-main.180/
https://aclanthology.org/2023.eacl-main.277/
https://aclanthology.org/2023.eacl-main.277/
https://arxiv.org/abs/2412.15115

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, 2022. URL https://arxiv.
org/abs/2206.05802.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language Agents with Verbal Reinforcement Learning, October 2023.
URL http://arxiv.org/abs/2303.11366. arXiv:2303.11366 [cs].

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models, 2025. URL
https://arxiv.org/abs/2412.02674.

Qiushi Sun, Chengcheng Han, Nuo Chen, Renyu Zhu, Jingyang Gong, Xiang Li, and Ming Gao.
Make prompt-based black-box tuning colorful: Boosting model generalization from three orthog-
onal perspectives. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci,
Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp.
10958–10969, Torino, Italia, May 2024. ELRA and ICCL. URL https://aclanthology.
org/2024.lrec-main.956/.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. BBTv2:
Towards a gradient-free future with large language models. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 3916–3930, Abu Dhabi, United Arab Emirates, December 2022a.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.259. URL
https://aclanthology.org/2022.emnlp-main.259/.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022b.

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
Yona. Confidence improves self-consistency in llms. In Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 20090–20111. Association for Computational Linguistics,
2025. doi: 10.18653/v1/2025.findings-acl.1030. URL http://dx.doi.org/10.18653/
v1/2025.findings-acl.1030.

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogramming
black-box machine learning models with scarce data and limited resources. In International
Conference on Machine Learning, pp. 9614–9624. PMLR, 2020.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find
reasoning errors, but can correct them given the error location. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 13894–13908, Bangkok, Thailand and virtual meeting,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.826. URL
https://aclanthology.org/2024.findings-acl.826.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A Theoretical Un-
derstanding of Self-Correction through In-context Alignment, November 2024. URL http:
//arxiv.org/abs/2405.18634. arXiv:2405.18634 [cs].

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification, 2023. URL https:
//arxiv.org/abs/2212.09561.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
Language Models Can Self-Correct with Key Condition Verification. In Proceedings of the

14

https://arxiv.org/abs/2206.05802
https://arxiv.org/abs/2206.05802
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2412.02674
https://aclanthology.org/2024.lrec-main.956/
https://aclanthology.org/2024.lrec-main.956/
https://aclanthology.org/2022.emnlp-main.259/
http://dx.doi.org/10.18653/v1/2025.findings-acl.1030
http://dx.doi.org/10.18653/v1/2025.findings-acl.1030
https://aclanthology.org/2024.findings-acl.826
http://arxiv.org/abs/2405.18634
http://arxiv.org/abs/2405.18634
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2212.09561

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2024 Conference on Empirical Methods in Natural Language Processing, pp. 12846–12867, Mi-
ami, Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.714. URL https://aclanthology.org/2024.emnlp-main.714.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Heshen Zhan, Congliang Chen, Tian Ding, Ziniu Li, and Ruoyu Sun. Unlocking black-box prompt
tuning efficiency via zeroth-order optimization. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 14825–14838, Miami, Florida, USA, November 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-emnlp.871. URL https://aclanthology.org/
2024.findings-emnlp.871/.

Qingjie Zhang, Han Qiu, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, and Minlie Huang.
Understanding the Dark Side of LLMs’ Intrinsic Self-Correction, December 2024. URL http:
//arxiv.org/abs/2412.14959. arXiv:2412.14959 [cs].

Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun
Zhang, Kun Shao, Linyi Yang, et al. Agentfly: Fine-tuning llm agents without fine-tuning llms.
arXiv preprint arXiv:2508.16153, 2025.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=92gvk82DE-.

15

https://aclanthology.org/2024.emnlp-main.714
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2203.14465
https://aclanthology.org/2024.findings-emnlp.871/
https://aclanthology.org/2024.findings-emnlp.871/
http://arxiv.org/abs/2412.14959
http://arxiv.org/abs/2412.14959
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION

A.1 TRAINING CONFIGURATION

Hardware Setup: All experiments were conducted on the HPC cluster equipped with 4x NVIDIA
H200 GPUs (141GB memory each), approximately 600GB total system memory, and CUDA ver-
sion 13.0.

Model Training Parameters: We used base models from the Qwen2.5 family (Qwen et al., 2025)
with 1.5B, 3B, and 7B parameters. Training was performed using GRPO (Group Relative Policy
Optimization) with the following configuration:

• Learning rate: 1× 10−6

• Per-device batch size: 36
• Gradient accumulation steps: 4
• Effective batch size: 432
• Training epochs: 1
• Weight decay: 0.01
• Warmup ratio: 0.05
• Maximum sequence length: 2048
• Maximum new tokens: 512

Generation Parameters: During training, we used the following generation settings:

• Number of generations per step: 24
• Temperature: 0.7
• Top-p sampling: 1.0

Optimization Details: We employed Paged AdamW 8-bit optimizer with Adam β1 = 0.9, β2 =
0.999, and ϵ = 1 × 10−8. Training used bfloat16 precision with gradient checkpointing enabled.
Following Liu et al. (2025), we set the KL penalty to 0.

Data Generation: For each dataset, we generated 20,000 question-answer pairs through iterative
sampling to maintain a balanced 1:1 ratio of positive (correct initial responses) to negative (incorrect
initial responses) examples.

Reward Configuration: The final reward combined two components with equal weighting:

• Verification reward: Rverify = +1 for correct identification, −1 for false positive (penalty),
0 for false negative

• Refinement reward: Rrefine = +1 for incorrect→correct transitions, 0 otherwise
• Final reward: Rfinal = Rverify +Rrefine

Evaluation Setup: During evaluation, we used 5-shot Chain-of-Thought prompting for initial
problem solving and 2-shot Chain-of-Thought prompting for feedback generation and refinement
due to context length constraints. Answers were extracted using boxed format for GSM8K and
MMLU-STEM, and grid format for Sudoku puzzles. For baseline comparisons, Self-Refine and
Reflexion were limited to a maximum of 5 iterations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B PROMPTS

B.1 GSM8K

B.1.1 INFERENCE PROMPT

Instruction: Please reason step by step, and put your final answer within .

Problem: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

Solution: To find the total number of clips Natalia sold:

Step 1: Clips sold in April: 48 clips

Step 2: Clips sold in May: half of April’s sales = 48÷ 2 = 24 clips

Step 3: Total clips sold: 48 + 24 = 72 clips

Therefore, Natalia sold 72 clips altogether in April and May.

Problem: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

Solution: To calculate Weng’s earnings:

Step 1: Hourly rate: $12 per hour

Step 2: Time worked: 50 minutes = 50
60 hours = 5

6 hours

Step 3: Earnings: $12× 5
6 = $12× 5÷ 6 = $60÷ 6 = $10

Therefore, Weng earned 10 dollars.

Problem: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?

Solution: To find how much more money Betty needs:

Step 1: Wallet cost: $100

Step 2: Betty’s current savings: half of $100 = $50

Step 3: Money from parents: $15

Step 4: Money from grandparents: 2× $15 = $30

Step 5: Total money Betty has: $50 + $15 + $30 = $95

Step 6: Money still needed: $100− $95 = $5

Therefore, Betty needs 5 more dollars to buy the wallet.

Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

Solution: To determine how much Janet makes every day at the farmers’ market:

Step 1: Total eggs laid per day: 16 eggs

Step 2: Eggs eaten for breakfast: 3 eggs

Step 3: Eggs used for muffins: 4 eggs

Step 4: Eggs left for sale: 16− 3− 4 = 9 eggs

Step 5: Revenue from selling eggs: 9 eggs× $2 per egg = $18

Therefore, Janet makes 18 dollars every day at the farmers’ market.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Solution: To find the total number of bolts needed:

Step 1: Blue fiber required: 2 bolts

Step 2: White fiber required: half of the blue fiber = 2÷ 2 = 1 bolt

Step 3: Total bolts needed: 2 bolts (blue) +1 bolt (white) = 3 bolts

Therefore, it takes 3 bolts in total to make a robe.

Problem: question

Solution:

B.1.2 FEEDBACK PROMPT

Instructions:

1. Review the solution step-by-step

2. Check if the solution correctly addresses the problem

3. Verify all calculations and logical steps

4. After completing your analysis, provide your conclusion in final assessment.

5. You have to include either “there is no error” or “there is at least one error” in the conclu-
sion.

Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

Solution: To determine how much Janet makes:

Step 1: Total eggs laid per day: 16 eggs

Step 2: Eggs eaten for breakfast: 3 eggs

Step 3: Eggs used for muffins: 4 eggs

Step 4: Eggs left for sale: 16− 3− 4 = 9 eggs

Step 5: Revenue: 9 eggs× $2 = $18

Therefore, Janet makes 18 every day.

Analysis:

Step 1 Verification: The problem states Janet’s ducks lay 16 eggs per day. This is correctly identified.

Step 2 Verification: The problem states she eats three eggs for breakfast. This is correctly recorded
as 3 eggs.

Step 3 Verification: The problem states she uses four eggs for muffins. This is correctly recorded as
4 eggs.

Step 4 Verification: The calculation 16− 3− 4 = 9 is arithmetically correct.

Step 5 Verification: The calculation 9× $2 = $18 is arithmetically correct.

Final Assessment:

There is no error.

Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Solution: To find the total bolts needed:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step 1: Blue fiber required: 2 bolts

Step 2: White fiber required: half of blue = 2/2 = 1 bolt

Step 3: Total bolts: 2 + 1 = 4 bolts

The total is 4 bolts.

Analysis:

Step 1 Verification: The problem states 2 bolts of blue fiber. This is correctly identified.

Step 2 Verification: “Half that much white fiber” means half of 2 bolts. The calculation 2/2 = 1 is
arithmetically correct.

Step 3 Verification: The addition shows 2+ 1 = 4, but this is incorrect arithmetic. 2+ 1 = 3, not 4.

Final Assessment:

There is at least one error: The addition in Step 3 incorrectly states 2 + 1 = 4.

Problem: {question}
Solution: {initial response}
Analysis:

B.1.3 REFINE PROMPT

Original Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?

Previous Solution: To determine how much Janet makes:

Step 1: Total eggs laid per day: 16 eggs

Step 2: Eggs eaten for breakfast: 3 eggs

Step 3: Eggs used for muffins: 4 eggs

Step 4: Eggs left for sale: 16− 3− 4 = 10 eggs

Step 5: Revenue: 10 eggs× $2 = $20

Therefore, Janet makes 20 dollars every day.

Feedback Received: Step 1 Verification: Correctly identifies 16 eggs laid per day. Step 2 Verifica-
tion: Correctly identifies 3 eggs for breakfast. Step 3 Verification: Correctly identifies 4 eggs for
muffins. Step 4 Verification: The subtraction is incorrect. 16−3−4 = 9, not 10. Step 5 Verification:
Cannot verify due to error in Step 4. Final Assessment: There is at least one error: The subtraction
in Step 4 is incorrect.

Revised Solution: To determine how much Janet makes:

Step 1: Total eggs laid per day: 16 eggs

Step 2: Eggs eaten for breakfast: 3 eggs

Step 3: Eggs used for muffins: 4 eggs

Step 4: Eggs left for sale: 16− 3− 4 = 9 eggs

Step 5: Revenue: 9 eggs× $2 = $18

Therefore, Janet makes 18 dollars every day.

Original Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?

Previous Solution: To find the total bolts needed:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Step 1: Blue fiber required: 2 bolts

Step 2: White fiber required: half of blue = 2/2 = 1 bolt

Step 3: Total bolts: 2 + 1 = 4 bolts

The total is 4 bolts.

Feedback Received: Step 1 Verification: Correctly identifies 2 bolts of blue fiber. Step 2 Verification:
Correctly calculates half of 2 as 1 bolt. Step 3 Verification: The addition is incorrect. 2+ 1 = 3, not
4. Final Assessment: There is at least one error: The addition in Step 3 incorrectly states 2+ 1 = 4.

Revised Solution: To find the total bolts needed:

Step 1: Blue fiber required: 2 bolts

Step 2: White fiber required: half of blue = 2/2 = 1 bolt

Step 3: Total bolts: 2 + 1 = 3 bolts

The total is 3 bolts.

Original Problem: {question}
Previous Solution: {initial response}
Feedback Received: {feedback}
Revised Solution:

B.2 MMLU-STEM

B.2.1 INFERENCE PROMPT

Instruction: Please reason step by step, and put your final answer within .

Problem: Statement 1— RoBERTa pretrains on a corpus that is approximate 10x larger than the
corpus BERT pretrained on. Statement 2— ResNeXts in 2018 usually used tanh activation functions.
Option 0: True, True Option 1: False, False Option 2: True, False Option 3: False, True

Solution: To evaluate both statements:

Step 1: Statement 1 - RoBERTa vs BERT corpus size: - BERT pretrained on BookCorpus (800M
words) + English Wikipedia (2,500M words) ≈ 3.3B words - RoBERTa pretrained on BookCorpus
+ Wikipedia + CC-News + OpenWebText + Stories ≈ 160GB of text - RoBERTa’s corpus is indeed
approximately 10x larger than BERT’s. Statement 1 is TRUE.

Step 2: Statement 2 - ResNeXt activation functions: - ResNeXt, introduced in 2017 and widely
used in 2018, is based on ResNet architecture - Like ResNet, ResNeXt uses ReLU (Rectified Linear
Unit) activation functions, not tanh - Tanh was more common in older architectures; modern CNNs
predominantly use ReLU. Statement 2 is FALSE.

Step 3: Combine evaluations: True, False corresponds to Option 2.

Therefore, the answer is 2 .

Problem: The Barkhausen criterion for an oscillator Option 0: Loop gain should be unity Option 1:
Loop gain should be less than unity Option 2: The phase of a feedback signal with respect to input
should be 0 or 360 Option 3: Both A and C

Solution: To identify the Barkhausen criterion requirements:

Step 1: Understand oscillator requirements - For sustained oscillations, a circuit needs specific con-
ditions for the feedback loop.

Step 2: Loop gain condition - The magnitude of the loop gain (product of forward gain and feedback
factor) must equal 1 (unity) for sustained oscillations. This matches Option 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Step 3: Phase condition - The total phase shift around the loop must be 0 or 360 (or integer multiples
of 360) for positive feedback. This matches Option 2.

Step 4: Complete Barkhausen criterion - Both conditions must be satisfied simultaneously: -
|Loop gain| = 1 (unity) - Phase shift = 0 or 360

Step 5: Match to options - Both Option 0 and Option 2 are required, which corresponds to Option 3.

Therefore, the answer is 3 .

Problem: The quantum efficiency of a photon detector is 0.1. If 100 photons are sent into the
detector, one after the other, the detector will detect photons Option 0: an average of 10 times, with
an rms deviation of about 4 Option 1: an average of 10 times, with an rms deviation of about 3
Option 2: an average of 10 times, with an rms deviation of about 1 Option 3: an average of 10 times,
with an rms deviation of about 0.1

Solution: To find the detection statistics:

Step 1: Calculate expected detections - With quantum efficiency η = 0.1 and n = 100 photons: -
Expected number of detections = η × n = 0.1× 100 = 10

Step 2: Determine the statistical distribution - Photon detection follows binomial distribution with:
- Number of trials: n = 100 - Probability of success: p = 0.1

Step 3: Calculate standard deviation for binomial distribution: - Standard deviation σ =√
n× p× (1− p) - σ =

√
100× 0.1× 0.9 =

√
9 = 3

Step 4: RMS deviation equals standard deviation for this process = 3

Step 5: Match to options - Average of 10 with RMS deviation of 3 corresponds to Option 1.

Therefore, the answer is 1 .

Problem: A gas phase is generally absent from which of the following biogeochemical cycles?
Option 0: Water Option 1: Carbon Option 2: Sulfur Option 3: Phosphorus

Solution: To determine which biogeochemical cycle generally lacks a gas phase:

Step 1: Water cycle - Includes water vapor (H2O gas) in the atmosphere through evaporation and
condensation. Gas phase is present.

Step 2: Carbon cycle - Includes carbon dioxide (CO2) and methane (CH4) gases exchanged between
atmosphere, organisms, and oceans. Gas phase is present.

Step 3: Sulfur cycle - Includes sulfur dioxide (SO2) and hydrogen sulfide (H2S) gases from volcanic
emissions and decomposition. Gas phase is present.

Step 4: Phosphorus cycle - Phosphorus primarily cycles through rocks, soil, water, and organisms in
solid or dissolved forms. Under normal Earth conditions, phosphorus does not form stable gaseous
compounds. Gas phase is generally absent.

Therefore, the answer is 3 .

Problem: What is the units digit in the standard decimal expansion of the number 725? Option 0: 1
Option 1: 3 Option 2: 5 Option 3: 7

Solution: To find the units digit of 725:

Step 1: Calculate the first few powers of 7 and identify units digits: - 71 = 7 (units digit: 7) -
72 = 49 (units digit: 9) - 73 = 343 (units digit: 3) - 74 = 2401 (units digit: 1) - 75 = 16807 (units
digit: 7)

Step 2: Identify the pattern: The units digits follow the pattern [7, 9, 3, 1] and repeat every 4 powers.

Step 3: Determine position in cycle: 25÷ 4 = 6 with remainder 1

Step 4: Apply the remainder: Since the remainder is 1, 725 has the same units digit as 71, which is
7.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 5: Match to option: Units digit 7 corresponds to Option 3.

Therefore, the answer is 3 .

Problem: {question}
Solution:

B.2.2 FEEDBACK PROMPT

Instructions:

1. Review the solution step-by-step

2. Check if the solution correctly addresses the problem

3. Verify all calculations and logical steps

4. After completing your analysis, provide your conclusion in final assessment.

5. You have to include either “there is no error” or “there is at least one error” in the conclu-
sion.

Problem: A gas phase is generally absent from which of the following biogeochemical cycles?
Option 0: Water Option 1: Carbon Option 2: Sulfur Option 3: Phosphorus

Solution: Analyzing each cycle:

Step 1: Water cycle has water vapor in atmosphere (gas present)

Step 2: Carbon cycle has CO2 exchanges (gas present)

Step 3: Sulfur cycle has SO2 emissions (gas present)

Step 4: Phosphorus cycle has no significant gas phase

Step 5: The answer is Option 3 .

Analysis:

Step 1 Verification: Water vapor is indeed a gas phase in the water cycle. This is correct.

Step 2 Verification: CO2 is a gas in the carbon cycle. This is correct.

Step 3 Verification: SO2 and other sulfur gases exist in the sulfur cycle. This is correct.

Step 4 Verification: Phosphorus does not have a significant gas phase under normal conditions. This
is correct.

Step 5 Verification: Option 3 (Phosphorus) correctly corresponds to the cycle without a gas phase.

Final Assessment:

There is no error.

Problem: What is the units digit in the standard decimal expansion of the number 725? Option 0: 1
Option 1: 3 Option 2: 5 Option 3: 7

Solution: To find the units digit of 725:

Step 1: Calculate pattern - 71 = 7, 72 = 49, 73 = 343, 74 = 2401

Step 2: Units digits form pattern: [7, 9, 3, 1]

Step 3: Pattern repeats every 4 powers

Step 4: 25÷ 4 = 6 remainder 1

Step 5: Remainder 1 corresponds to first position, units digit 7

Step 6: The answer is Option 1 .

Analysis:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Step 1 Verification: The calculations are correct with units digits 7, 9, 3, 1.

Step 2 Verification: The pattern [7, 9, 3, 1] is correctly identified.

Step 3 Verification: The pattern does repeat every 4 powers.

Step 4 Verification: 25÷ 4 = 6 remainder 1 is arithmetically correct.

Step 5 Verification: Remainder 1 does correspond to units digit 7.

Step 6 Verification: Units digit 7 corresponds to Option 3, not Option 1.

Final Assessment:

There is at least one error: Option 1 is incorrectly selected when units digit 7 corresponds to Option
3.

Problem: {question}
Solution: {initial response}
Analysis:

B.2.3 REFINE PROMPT

Original Problem: A gas phase is generally absent from which of the following biogeochemical
cycles? Option 0: Water Option 1: Carbon Option 2: Sulfur Option 3: Phosphorus

Previous Solution: Analyzing each cycle:

Step 1: Water has water vapor (gas present)

Step 2: Carbon has CO2 (gas present)

Step 3: Sulfur has SO2 (gas present)

Step 4: Phosphorus has no gas phase

Step 5: The answer is 2 .

Feedback Received: Step 1 Verification: Water vapor is a gas - correct. Step 2 Verification: CO2 is
a gas - correct. Step 3 Verification: SO2 is a gas - correct. Step 4 Verification: Phosphorus lacks gas
phase - correct. Step 5 Verification: Phosphorus is Option 3, not Option 2. Final Assessment: There
is at least one error: Option 2 is incorrectly selected when the answer should be Option 3.

Revised Solution: Analyzing each cycle:

Step 1: Water has water vapor (gas present)

Step 2: Carbon has CO2 (gas present)

Step 3: Sulfur has SO2 (gas present)

Step 4: Phosphorus has no gas phase

Step 5: The answer is 3 .

Original Problem: What is the units digit in the standard decimal expansion of the number 725?
Option 0: 1 Option 1: 3 Option 2: 5 Option 3: 7

Previous Solution: To find units digit of 725:

Step 1: Powers give units digits: 7, 9, 3, 1

Step 2: Pattern repeats every 4

Step 3: 25÷ 4 = 5 remainder 5

Step 4: Remainder 5 wraps to position 1, units digit 7

Step 5: The answer is 1 .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Feedback Received: Step 1 Verification: Pattern 7, 9, 3, 1 is correct. Step 2 Verification: Cycle
length 4 is correct. Step 3 Verification: 25 ÷ 4 = 6 remainder 1, not 5 remainder 5. Step 4
Verification: Cannot verify due to error in Step 3. Step 5 Verification: Cannot verify due to error in
Step 3. Final Assessment: There is at least one error: The division 25÷ 4 is incorrectly calculated.

Revised Solution: To find units digit of 725:

Step 1: Powers give units digits: 7, 9, 3, 1

Step 2: Pattern repeats every 4

Step 3: 25÷ 4 = 6 remainder 1

Step 4: Remainder 1 means position 1, units digit 7

Step 5: The answer is 3 .

Original Problem: {question}
Previous Solution: {initial response}
Feedback Received: {feedback}
Revised Solution:

B.3 SUDOKU PUZZLE

B.3.1 INFERENCE PROMPT

Instruction: Solve this 4x4 sudoku step by step where each row, column, and 2x2 box must contain
1-4 exactly once, then put your final answer grid inside verbatim blocks.

Problem:

1 2 3 4
4 . 2 .
. 1 . 3
3 . 1 .

Solution: Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4
4 3 2 1
. 1 . 3
3 . 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2 1 . 3
3 . 1 .

Step 3: Analyze row 3

Row 3: 2 1 . 3

Missing number: 4

• Position (3,3) must be 4

Grid after step 3:

1 2 3 4
4 3 2 1
2 1 4 3
3 . 1 .

Step 4: Analyze column 2

Column 2: 2 3 1 .

Missing number: 4

• Position (4,2) must be 4

Grid after step 4:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 5: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Problem:

1 2 3 4
4 . 2 .
. 1 4 3
3 4 1 .

Solution: Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1, 4 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1 2 3 4
4 3 2 1
. 1 4 3
3 4 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 3: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Problem:

1 2 3 4
4 . 2 1
2 1 4 3
3 4 1 .

Solution: Step 1: Analyze row 2

Row 2: 4 . 2 1

Missing number: 3

• Position (2,2) must be 3

Grid after step 1:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 2: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Problem:

{question}

Solution:

B.3.2 FEEDBACK PROMPT

Instructions:

1. Review the solution step-by-step
2. Check if the solution correctly addresses the problem
3. Verify all calculations and logical steps
4. After completing your analysis, provide your conclusion in final assessment
5. You have to include either “there is no error” or “there is at least one error” in the conclusion

Problem:

1 2 3 4
4 . 2 .
. 1 . 3
3 . 1 .

Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4
4 3 2 1
. 1 . 3
3 . 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 . 3
3 . 1 .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Step 3: Analyze row 3

Row 3: 2 1 . 3

Missing number: 4

• Position (3,3) must be 4

Grid after step 3:

1 2 3 4
4 3 2 1
2 1 4 3
3 . 1 .

Step 4: Analyze column 2

Column 2: 2 3 1 .

Missing number: 4

• Position (4,2) must be 4

Grid after step 4:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 5: Analyze row 4

Row 4: 3 4 1 .

Missing number: 3

• Position (4,4) must be 3

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 3

Analysis:

Step 1 Verification: Row 2 has 4, *, 2, *. Missing numbers are indeed 1 and 3. Column 2 check:
row 1 has 2, row 3 has 1, so position (2,2) can be 3. Column 4 would then be 1. This is logically
correct.

Step 2 Verification: Column 1 has 1, 4, , 3. The missing number is 2, so position (3,1) = 2 is correct.

Step 3 Verification: Row 3 now has 2, 1, , 3. The missing number is 4, so position (3,3) = 4 is
correct.

Step 4 Verification: Column 2 has 2, 3, 1, . The missing number is 4, so position (4,2) = 4 is correct.

Step 5 Verification: Row 4 has 3, 4, 1, . The numbers 1, 3, 4 are present. The missing number
should be 2, not 3. The solution incorrectly states the missing number is 3, which would create a
duplicate 3 in row 4.

Final Assessment: There is at least one error. Step 5 incorrectly identifies the missing number as 3
instead of 2, resulting in an invalid Sudoku solution with duplicate 3s in row 4.

Problem:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 2 3 4
4 . 2 .
. 1 4 3
3 4 1 .

Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1, 4 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4
4 3 2 1
. 1 4 3
3 4 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 3: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Analysis:

Step 1 Verification: Row 2 has 4, *, 2, *. Missing numbers are 1 and 3. Column 2 check: row 1 has
2, row 3 has 1, row 4 has 4, so position (2,2) must be 3. Column 4 would then be 1. This is correct.

Step 2 Verification: Column 1 has 1, 4, , 3. The missing number is 2, so position (3,1) = 2 is correct.

Step 3 Verification: Row 4 has 3, 4, 1, . The numbers 1, 3, 4 are present. The missing number is 2,
so position (4,4) = 2 is correct.

Final grid check:

• All rows contain 1, 2, 3, 4 exactly once

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• All columns contain 1, 2, 3, 4 exactly once
• The solution matches the original given numbers

Final Assessment: There is no error.

Problem:

{question}

Solution: initial response

Analysis:

B.3.3 REFINE PROMPT

Original Problem

1 2 3 4
4 . 2 .
. 1 . 3
3 . 1 .

Previous Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4
4 3 2 1
. 1 . 3
3 . 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 . 3
3 . 1 .

Step 3: Analyze row 3

Row 3: 2 1 . 3

Missing number: 4

• Position (3,3) must be 4

Grid after step 3:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1 2 3 4
4 3 2 1
2 1 4 3
3 . 1 .

Step 4: Analyze column 2

Column 2: 2 3 1 .

Missing number: 4

• Position (4,2) must be 4

Grid after step 4:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 5: Analyze row 4

Row 4: 3 4 1 .

Missing number: 3

• Position (4,4) must be 3

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 3

Feedback Received:

Step 1 Verification: Row 2 has 4, , 2, . Missing numbers are 1 and 3. Column 2 check: row 1 has
2, row 3 has 1, so position (2,2) can be 3. Column 4 would be 1. This is correct.

Step 2 Verification: Column 1 has 1, 4, , 3. The missing number is 2, so position (3,1) = 2 is correct.

Step 3 Verification: Row 3 now has 2, 1, , 3. The missing number is 4, so position (3,3) = 4 is
correct.

Step 4 Verification: Column 2 has 2, 3, 1, . The missing number is 4, so position (4,2) = 4 is correct.

Step 5 Verification: Row 4 has 3, 4, 1, . The solution states the missing number is 3, but 3 is already
present in the row. The missing number should be 2.

Final Assessment: There is at least one error: Step 5 incorrectly identifies the missing number as 3
instead of 2.

Revised Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

4 3 2 1
. 1 . 3
3 . 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 . 3
3 . 1 .

Step 3: Analyze row 3

Row 3: 2 1 . 3

Missing number: 4

• Position (3,3) must be 4

Grid after step 3:

1 2 3 4
4 3 2 1
2 1 4 3
3 . 1 .

Step 4: Analyze column 2

Column 2: 2 3 1 .

Missing number: 4

• Position (4,2) must be 4

Grid after step 4:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 5: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Original Problem:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1 2 3 4
4 . 2 .
. 1 4 3
3 4 1 .

Previous Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1, 4 in other rows, so position (2,2) must be 1
• Column 4: Must be 3

Grid after step 1:

1 2 3 4
4 1 2 3
. 1 4 3
3 4 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 1 2 3
2 1 4 3
3 4 1 .

Step 3: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 1 2 3
2 1 4 3
3 4 1 2

Feedback Received:

Step 1 Verification: Row 2 has 4, , 2, . Missing numbers are 1 and 3. Column 2 check: row 1 has
2, row 3 has 1, row 4 has 4. The only missing number in column 2 is 3, not 1. Position (2,2) should
be 3.

Step 2 Verification: Based on the error in Step 1, this step cannot be properly verified.

Step 3 Verification: Cannot verify due to propagated errors.

Final Assessment: There is at least one error: Step 1 incorrectly assigns 1 to position (2,2) when it
should be 3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Revised Solution:

Step 1: Analyze row 2

Row 2: 4 . 2 .

Missing numbers: 1, 3

• Column 2: Already has 2, 1, 4 in other rows, so position (2,2) must be 3
• Column 4: Must be 1

Grid after step 1:

1 2 3 4
4 3 2 1
. 1 4 3
3 4 1 .

Step 2: Analyze column 1

Column 1: 1 4 . 3

Missing number: 2

• Position (3,1) must be 2

Grid after step 2:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 .

Step 3: Analyze row 4

Row 4: 3 4 1 .

Missing number: 2

• Position (4,4) must be 2

Final Answer:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Original Problem:

{question}

Previous Solution: initial response

Feedback Received: feedback

Revised Solution:

C COMPLETE GSM8K EXAMPLE

Input Question:

Stephen placed an online order for groceries. His final bill came to $40.00. Because this was through
a delivery vendor, they tacked on a 25% fee to his final total and charged him $3.00 in delivery fees.
Stephen also added a $4.00 tip. After the extra fees, what was the final price of Stephen’s groceries?

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Initial Response:

To find the final price of Stephen’s groceries:

Step 1: Final bill: $40.00

Step 2: Delivery fee: $3.00

Step 3: Tip: $4.00

Step 4: Total extra fees: $3.00 (delivery) + $4.00 (tip) = $7.00

Step 5: Total bill with extra fees: $40.00 (final bill) + $7.00 (extra fees) = $47.00

Therefore, the final price of Stephen’s groceries was 47 dollars.

Feedback:

Step 1 Verification: The problem states the final bill amount as $40.00. This is correctly identified.

Step 2 Verification: The delivery fee stated is $3.00, which is correctly identified.

Step 3 Verification: The tip stated is $4.00, which is correctly identified.

Step 4 Error: The problem states a 25% service fee on the final bill but does not account for it in the
calculation of total extra fees.

Step 5 Error: In Step 5, only the extra fees ($3.00 + $4.00) are added to the bill, without including
the 25% service fee.

Final Assessment:

There is at least one error, as the 25% service fee on the final bill and the $3.00 delivery fee (not
stated as a service fee) should have been included in the total extra fees.

Final Response:

To find the final price of Stephen’s groceries:

Step 1: Final bill: $40.00

Step 2: Delivery fee: $3.00

Step 3: Tip: $4.00

Step 4: Calculate the 25% service fee on the final bill: $40.00 × 0.25 = $10.00

Step 5: Total extra fees: $3.00 (delivery) + $4.00 (tip) + $10.00 (service fee) = $17.00

Step 6: Total bill with extra fees: $40.00 (final bill) + $17.00 (extra fees) = $57.00

Therefore, the final price of Stephen’s groceries was 57 dollars.

Input Question: question

Initial Response: initial response

Feedback: feedback

Final Response:

35

	Introduction
	Related Work
	Self-Correction
	Self-Verification
	Optimizing Black-Box Models

	Feedback Reinforcement Learning
	Experiments
	Results
	Mathematical Problems: GSM8K
	Multiple Choice Reasoning: MMLU-STEM
	Reasoning Puzzle: Sudoku

	Discussion
	Reward Choices
	Comparison With Direct Solver Model Training

	Conclusion
	Implementation
	Training Configuration

	Prompts
	GSM8K
	Inference Prompt
	Feedback Prompt
	Refine Prompt

	MMLU-STEM
	Inference Prompt
	Feedback Prompt
	Refine Prompt

	Sudoku Puzzle
	Inference Prompt
	Feedback Prompt
	Refine Prompt

	Complete GSM8K Example

