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Abstract: Using Large Language Models to produce intermediate thoughts before1

providing a final answer has been a successful recipe for solving increasingly2

complex tasks with reduced human supervision. In robotics, similar embodied rea-3

soning strategies have also been shown to lead to improved performance. However,4

as these techniques increase the length of the model’s outputs to include reasoning5

traces, the inference time is negatively affected. Delaying an agent’s actions in6

real-world executions, as in robotic manipulation settings, can be particularly prob-7

lematic, as the agent needs to perform long sequences of actions before solving a8

task. In this work, we establish a Hybrid Thinking (HyT) framework for training9

Vision-Language-Action (VLA) models. Agents can learn both to directly answer10

with actions (fast mode) or to spend more time thinking (slow mode). We show that,11

even when generating no thoughts, in fast mode, the agent performance benefits12

from training on the reasonings that leads to successful actions. Our agent demon-13

strates improved performance at lower inference costs, and greater scalability with14

larger datasets across a set of different robotic manipulation tasks. Additionally,15

hybrid thinking allows humans to interpret the agents’ intentions and intervene on16

them to prevent failures for complex tasks’ execution.17
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Figure 1: Hybrid Thinking VLAs. The hybrid thinking framework enables vision-language-action
models to work either in fast, acting, mode or thoughtful, slow, execution. In fast mode, the agent
retains high performance, at high inference speed, facilitating deployment in real-world platforms. In
slow mode, the model grants high interpretability and the possibility of intervening on its thoughts, to
change the predicted course of actions. Further details about the Figure are provided in the Appendix.

1 Introduction18

Despite recent advances in robotics, truly generalist robot policies have long been elusive. Thanks to19

the joint efforts of collecting large-scale robot data [1] and making large Vision Language Models20
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(VLM) open-source [2, 3], we have entered a new era in robotics foundation models. By fine-tuning21

VLMs on robotic datasets containing actions, we can create Vision-Language-Action models (VLAs)22

[4, 5, 6]. These large policy models are trained end-to-end to take language instructions and raw23

camera images as inputs, and output low-level actions for the robot to perform.24

VLAs possess several advantages over previous work, such as multimodal prompting of the agent25

and the availability of knowledge from the base pre-trained VLM. However, generalization to out-of-26

distribution (OOD) settings, e.g., task configurations not available in the robotics training dataset,27

remains challenging. Indeed, the knowledge of the agent is vast about general concepts, but remains28

limited in the robotics settings, where the data distribution is often narrow.29

In order to further unleash the capabilities of VLAs, recent works have explored adding Chain-of-30

Thought (CoT) reasoning [7] while training VLAs [8]. This class of thinking VLA models learns31

to output useful information about the given task in language form, before generating the actions32

to execute. This not only has shown to improve performance, but it also allows humans to more33

easily interpret the agent’s intentions and potentially intervene on them, i.e. manipulating the agent’s34

thoughts, before action generation. However, due to the large amount of reasoning outputs generated35

before actions, the inference time of these models is significantly higher.36

Similarly to thinking VLAs, hierarchical VLA methods [9, 10] aim to improve performance by37

leveraging a two-level system. A high-level VLM processes the instructions and the information from38

the environment and provides an actionable plan. A low-level VLA policy receives the higher-level39

plan as an instruction and generates robotic actions to execute accordingly. This class of VLAs offers40

similar benefits and drawbacks as thinking VLAs: they can improve performance and allow humans41

to read and/or manipulate the agent’s intentions, but they come with an even higher inference cost.42

The human cognition process from observation to action has been hypothesized to leverage the43

interaction of two systems [11]. The fast and intuitive System I handles most daily tasks, taking44

control in contexts that our brain judges as unchallenging. The slow and deliberate System II is45

activated when decisions require additional computation, such as comparing options or processing46

complex information. The tendency of the brain is to delegate decisions to System II only when it’s47

really necessary, to save energy and time. Humans can improve the capabilities of their System I,48

developing a skilled intuition [12] to solve complex but familiar tasks effortlessly.49

We hypothesize that VLA models can similarly develop more skilled intuition. Learning from the50

CoT reasoning traces, a model should be able to internalize knowledge about environments and tasks.51

Then, during test-time, the model should more easily recognize patterns, even without generating any52

thoughts. With this hypothesis in mind, we develop a hybrid thinking (HyT) framework, where the53

agent learns to operate in different modes, thinking and non-thinking ones, within a single model.54

Hybrid thinking can be effectively implemented by teaching the model to predict a variety of outputs,55

which are sampled with different probabilities during training. During test-time, the model can operate56

in different modes: primarily a fast mode and a slow mode. The fast mode improves performance over57

standard VLAs, while having no higher inference costs. The slow mode could be employed in critical58

settings, where interpreting the agent’s intentions or allowing interventions from humans could be59

useful. In addition to investigating the hybrid thinking framework, we aim to address a fundamental60

question regarding VLA models: What is the contribution of reasoning and CoT techniques to their61

performance?62

Our contributions are:63

• We establish the hybrid thinking (HyT) framework for vision-language-action (VLAs)64

models. We present an implementation of HyT which has a Fast and a Slow mode, enabling65

both fast action inference and rational thinking when necessary, within the same model.66

• We empirically validate our approach, highlighting its data-efficiency, scalability and inter-67

venability across a large quantity of simulated experiments.68

• We perform a real-world experiment on a UFactory xArm 6 that showcases the applicability69

of the approach in real robotics settings.70
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2 Related Work71

Vision-Language-Action models. Open-source efforts in the robotics field, such as the Open X-72

Embodiment dataset [1], have fueled progress in the development of large VLAs [4, 13, 14, 15, 16].73

Recent works have also explored hierarchical VLA architectures [9, 10], showing they can be74

beneficial for solving open-ended and long-horizon tasks.75

Chain-of-Thought and reasoning. Generating a chain of thought has shown improved performance76

in LLMs solving complex reasoning tasks [17]. Recently, reasoning has shown notable success using77

RL with verifiable rewards, coupled with Supervised Finetuning (SFT) on example reasoning traces78

[18, 19]. CoT techniques specifically for VLMs [20] and VLAs have also been researched [8, 21].79

In particular, ECoT [8] shows that embodied thoughts can greatly improve the agent’s predictions80

in robotics, despite the higher inference costs. Our work grounds on their findings and proposes a81

method that accomplishes both strong performance and fast inference.82

Hybrid reasoning. Recent works have attempted to distill slow thinking capabilities into faster83

models [22, 23]. Closely related to our method is DualFormer [24], proposes to train a language84

model by systematically dropping out reasoning traces. In robotics domain, RFST [25] proposes a85

hierarchical setup that uses a discriminator to decide whether to switch to the fast or slow system,86

with the respective model of the chosen mode being then used as the policy. Our work, instead,87

focuses on providing a single system that is capable of both thinking and acting.88

3 Method89

3.1 Formal definitions90

Vision-Language Action models are multimodal policies generally trained with imitation learning.91

A VLA processes language inputs through a Transformer-based LLM architecture [26, 27, 28].92

Language is first "tokenized" into language tokens that are then processed by the LLM. Similarly,93

VLAs can process visual inputs through a vision encoder, e.g., a vision transformer [29], that94

transforms image patches into visual tokens, which are then processed by the LLM.95

Given a language description of a task ℓ, the goal of the VLA policy is to solve the task in a given96

environment. The policy observes the environment through images x, generally captured by a camera97

in the environment. The policy interacts with the environment using actions a. Through imitation98

learning, the policy’s objective is to learn, at each discrete timestep, the distribution p(at|xt, ℓ) that99

solves the given task, which is empirically observed from a dataset of demonstrations. In this work,100

we assume that actions are mapped to tokens in the LLM’s vocabulary, through a discretization101

scheme that assigns continuous values to one of the 256 bins [4]. This enables the LLM to predict102

action tokens in the same vocabulary space as language tokens. A VLA policy can be defined as:103

VLA: p(at|xt, ℓ) = pθ(at|xt, ℓ).

In addition to predicting actions, thinking VLAs [8] are also capable to reason about the task and104

the environment. These reasonings are expressed as thoughts τ in language form, predicted by the105

model. Generally, thoughts include information about the overall plan of action, the current subtask106

to execute, the location of objects in the image, or the direction of the agent’s ongoing motion [8]. A107

thinking VLA policy can be defined as:108

Thinking VLA: p(at, τt|xt, ℓ) = pθ(at|xt, ℓ, τt)pθ(τt|xt, ℓ).

Thinking VLAs learn a single set of parameters θ to predict both actions and thoughts. Hierarchical109

VLAs [9, 10] use a two-level hierarchy of models, where one model is to provide an actionable plan110

for solving the task, while the second model should execute the plan. As shown in [9], predicting the111

current plan to solve the task can be as simple as predicting the current subtask and motion primitives.112

Thus, we treat high-level plans and thoughts interchangeably in this work. A hierarchical VLA policy113

can be defined as:114

Hierarchical VLA: p(at, τt|xt, ℓ) = pθℓ(at|xt, τt)pθh(τt|xt, ℓ),
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where θh denotes the parameters of the “high-level" model, θℓ denotes the parameters of the “low-115

level" model, and the models’ hierarchy enforces (at |= ℓ|τt), i.e. the conditional independence116

between actions and language instructions, given thoughts.117

3.2 Hybrid Thinking118

Thinking and hierarchical VLAs have demonstrated improved performance over a standard VLA119

[9, 10, 8]. However, generating thoughts comes at a high inference cost, as they generally consist of120

significantly more tokens than their action counterpart. This can significantly slow down the agent’s121

action execution in the environment.122

We hypothesize that the primary benefits of these models arise not from the generated thoughts123

themselves, but from the knowledge learned by the model through thought prediction. This suggests124

that the model refines its intuitive capabilities by internalizing the patterns present in the thoughts,125

akin to the development of intuitive expertise [12]. Under this hypothesis, after a learning process126

that is similar to those of thinking and hierarchical models, a VLA should be able to predict actions127

with higher accuracy, with or without the thoughts as an input.128

To address the need for agents capable of producing multiple probability distributions within a single129

model, we introduce a new thinking strategy, Hybrid Thinking (HyT), designed to integrate structured130

reasoning with flexible policy learning.131

Definition 3.1 (Hybrid Thinking) Given a task description ℓ and the current environment observa-132

tion xt, the conditional distribution over actions at can be expressed as:133

p(at|xt, ℓ) =
∑
i

∑
j

p(at, τ
i,mj |xt, ℓ) =

∑
i

∑
j

p(at, τ
i|xt, ℓ,m

j)p(mj), (1)

by marginalizing out thoughts τ and a “modality" variable m.134

The hybrid thinking formulation enables to describe a VLA model that learns different thoughts and135

conditional action distributions depending on a modality variable.136

3.3 Training VLAs with Hybrid Thinking137

Leveraging the insights from other VLA models, we can use the hybrid thinking framework to138

conditionally learn three distributions:139

p(at|xt, ℓ) = p(at|xt, ℓ,m
a)p(ma)︸ ︷︷ ︸

Act

+ p(at|xt, ℓ, τt)p(τt|xt, ℓ,m
τ )p(mτ )︸ ︷︷ ︸

Think

+ p(at|xt, τt,m
f )p(mf )︸ ︷︷ ︸

Follow

.

(2)

The utility of each distribution is defined as follows:140

• “Act" action distribution: following from p(τ = ∅|ma) = 1, is defined to predict only actions.141

This modality enables fast inference time, by predicting no thoughts.142

• “Think" joint distribution: predicts thoughts and actions. This modality fosters the model to learn143

the thoughts distribution and to condition action predictions both on the task and the thoughts.144

• “Follow" action distribution: follows from p(at|xt, τt,m
f ) = p(at|xt, ℓ, τt,m

f ) and145

p(τ = ∅|mf ) = 1. This modality assumes that thoughts are provided to the policy and it en-146

courages the model to follow them closely for action prediction, as they replace the language task147

in the inputs.148

We can then assign the probabilities for different realizations of m to a set of values, which allows us149

to define a stable VLA formulation:150

p(at|xt, ℓ) = wα · pθ(at|xt, ℓ,m
a) + wτ · pθ(at|xt, ℓ, τt)p(τt|xt, ℓ,m

τ ) + wf · pθ(at|xt, τt,m
f ),
(3)

where wa = p(ma), wf = p(mf ) and wτ = p(mτ ) are the probabilities of a modality variable151

following a categorical distribution and θ denotes the parameters of the model.152
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In order to train a HyT VLA, we define the weights wa, wτ , wf as the probabilities of sampling the153

corresponding inputs and outputs for the model during training. This way, at each batch sampled154

during training, the model receives modality tokens, actions and thoughts, with probabilities that155

are defined by the coefficients. The model inputs and outputs are formed as in Equation 3. Then,156

the model’s parameters are trained to minimize the cross-entropy loss on future tokens predicted157

autoregressively with causal mask attention [26].158

During inference, we can prompt the model with different modality sets of tokens. These are defined159

as ma = <act>, mt = <think> and mf = ∅1 ). Depending on the modality token received, the model160

is able to provide the corresponding modality’s outputs, as also depicted in Figure 1.161

Intuitive explanation of the “follow" distribution. Ideally, the model should be able to follow the162

information in the thoughts by learning the joint distribution from the “Think” modality. However,163

as the model is concurrently trained to predict actions, independently of the thoughts, the model164

could tend to ignore the thoughts. Humans may want to possibly manipulate the agent’s thoughts for165

correcting its action predictions. Thus, it is important that changes in the thoughts have a noticeable166

impact on the action prediction, and the “Follow" distribution encourages such tendency.167

4 Experiments168

We evaluate the proposed HyT VLA in a series of simulated experiments, which we use to reliably169

assess the model’s capabilities, and on a set of real-world tasks, which demonstrates the practical170

applicability of the approach.171

General setup172

Across all models, the task description is provided in the same format, i.e. "What should the robot173

do to {task}?". Image inputs are 224 × 224 RGB images from a camera pointing at the robot’s174

workspace. The action space is 7-dimensional and defined as: [∆x,∆ϕ, gripper]. The end-effector175

position x and orientation ϕ are controlled in delta space, while the gripper pose is in absolute value.176

For all the thoughts, we adopt the same format, which includes the current subtask and, for the177

moving subtask, the main direction of the movement. This simple definition has proven effective178

across different models in early stages of our analysis and also in related work [9]. More elaborate179

thoughts could include object bounding boxes or justification of the agent’s actions [8], but we180

decided against this as it would also significantly increase the amount of resources needed for training181

and the inference time for thinking models due to the increasing number of generated tokens.182

For HyT, during training, the different modality tokens are sampled with equal probabilities, i.e.183

p = 0.33. During inference, we use the denomination “Fast mode" to refer to the “Act" modality184

during inference and “Slow mode" to refer to the “Think" modality. The mode is set by forcing185

the first tokens of the agent’s output to be the set of tokens corresponding to ma =< act >186

or mτ =< think >. There is no switch between the two modalities within the same episode:187

we evaluate them differently, to test the different agent capabilities. Designing an orchestration188

mechanism that allows switching the two modalities for adaptive reasoning within the same episode189

is left for future work.190

The training for all experiments and approaches is done using PyTorch DDP [30] on 4 A100 GPUs.191

Inference requires less than 20GB VRAM and is performed on a multi-instance A100 for simulated192

environments and on an RTX A5000 for real-world experiments.193

4.1 Simulated Experiments194

For the simulated experiments, we employ the ClevrSkills benchmark [31], which is based on the195

ManiSkill2 manipulation environments [32]. This environment includes an oracle solver to collect196

1For the follow modality defined by mf there’s no modality tokens, but the model can still discriminate it
from the other modalities as the follow modality enforces no task description.
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Figure 2: Performance scalability. On the left, success rate per task for three task groups (one per
row). For each task group, agents are trained on a dataset containing a number of demonstrations
from that task group that is showed on the x-axis (which uses a log scale). Then, the agent is evaluated
on the three tasks of the group, averaging performance over 100 episodes × 3 checkpoints. On the
right, normalized scores averaged across all the tasks and evaluations.

demonstrations, and reasoning traces from the oracle, which we can use to discriminate subtasks197

and extract thoughts. ClevrSkills also adopts a vacuum gripper and mostly uses simple shapes and198

objects, avoiding the challenges of manipulating complex objects, which may require more complex199

action prediction heads [33, 34].200

Using the oracle, we collect a diverse set of training data which spans three task groups: Place At,201

evaluating the agent’s spatial understanding, Place OnTop, evaluating the agent’s understanding of202

interactions between objects, and Stack Tower, evaluting longer-horizon capabilities. Further details203

about the tasks and the datasets’ definition are provided in Appendix.204

For all approaches, we start from the PaliGemma-2 VLM model with 3B parameters [2], which is205

based on the Gemma-2 LLM [28] and on the SigLIP vision encoder [35]. We perform full-finetuning206

of the model with a batch size of 8 and a learning rate of 2e− 5, using the Adam optimizer [36]. For207

the hierarchical VLA approaches, we train two distinct PaliGemma-2 models.208

During evaluation, we run the agent in the environment for 100 evaluation episodes. At inference209

time, we found that non-thinking VLA output actions at around ∼ 3Hz, while running 4 models in210

parallel on A100 GPUs. Thinking models are 2.5-3× slower. Hierarchical models are ∼ 4× slower.211

Data-scaling experiments212

The ability to scale with data and compute is a crucial criterion when aiming to build general purpose213

agents [37]. With this experiment, we aim to verify the hypothesis that HyT VLA can develop214

intuitive thinking through the hybrid training strategy. If the hypothesis is correct, we expect: i) that215

HyT VLA in Slow mode performs as well as thinking or hierarchical VLA models, ii) that HyT VLA216

in Fast mode performance is better than a standard VLA.217

In this section, we also verify scaling properties of HyT. We adopt a set of three datasets, one for each218

task group, and train models at different data scales, up to 4000 demos per task. We show results in219

Figure 2. The normalized scores on the right are obtained by dividing each task’s success rates by the220

highest success rate we obtained in all experiments, such that the highest performance obtained by at221

least one of the approaches corresponds to 1 for all tasks (see Appendix for details). Normalizing222

scores this way is a common strategy when comparing agents evaluated on multiple tasks that have223

different performance scales [38, 39, 40].224

Overall, we observe that the performance of all approaches scales similarly over time. However,225

Thinking and HyT models achieve higher performance earlier and maintain higher success rate over226

time, compared to standard VLAs, which are between 5 and 20% less performant at any data scale.227
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The fact that HyT - Fast is performing as well as Thinking and HyT - Slow VLAs confirm our228

hypothesis that directly predicting actions in Fast mode benefits from the hybrid thinking training.229

Scale matters! As a matter of fact, the performance increases with larger datasets across all tasks. The230

models saturate performance (close to 100%) on the easier tasks and start solving the most complex231

task, Stack Tower with 4 objects, at larger data scales.232

Intervenability experiments233

One useful feature of Thinking and Hierarchical models is the possibility to intervene on the model’s234

thoughts. One way of intervening is to replace the agent’s generated thoughts with human-determined235

thoughts to correct or steer the agent’s behavior towards the solution of a task. Ideally, HyT models236

should also be intervenable. In particular, the addition of the “Follow" modality in Equation 3 should237

encourage the agents to condition its actions on the thoughts.238

To verify this empirically, we train a set of models on a multitask dataset of 3000 demos.2 At this239

data scale, the models should be able to easily solve easier tasks and have modest success on harder240

tasks. In order to improve success on harder tasks, we replace the agent’s thoughts with a set of241

“Oracle thoughts", which we extract using the code from the the ClevrSkills’ oracle. Oracle thoughts242

replace the agent’s thoughts only during moving subtasks, i.e. "move to location X". This is because243

the oracle has precise conditions for picking and placing. A learned policy not always satisfies them,244

while still being successful, causing the agent to get stuck.245

We present results in Figure 3 for four of the most complex tasks of our benchmark. We also compare246

to an ablation of HyT that does not include the “Follow” component in Eq. 3, to verify whether247

the agent benefits or not from this component during training. We observe that overall all methods248

improve when provided oracle thoughts. In particular, hierarchical VLAs, which generally tend249

to perform worse than the other models, significantly improve in Stack tasks thanks to the oracle250

thoughts. Thinking and HyT VLAs receives similar improvements from using oracle thoughts,251

proving that HyT is definitely intervenable. HyT ablation performs slightly worse than its counterpart,252

showing a minor but still beneficial increase in performance when including the “Follow" modality253

during training, both with and without the oracle thoughts.254

4.2 Real-world Experiments255

One of the major benefits of the HyT approach is its capability to retain higher performance at a256

lower inference time, which is the same as with standard VLAs. This benefit mainly makes sense in257

real-world use-cases, where faster execution is important to carry out tasks quickly and to increase258

2The choice of using a multitask dataset here is mostly to save compute. Hierarchical models, for instance,
require training two models for each dataset. This is also the reason why we omitted them from the scaling
experiments.
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Table 1: Success rates on the real-world tasks and number of successful trials. Some pictures of the
agent performing the tasks are available in Figure 1. Additional details are provided in Appendix.

FT-OpenVLA HyT- Fast
In-distribution tasks 52% (13/25) 72% (18/25)
Place the banana in the green bowl 70% (7/10) 70% (7/10)
Place the red cube in the brown bag 50% (3/6) 100% (6/6)
Place the tomato left of the lettuce 60% (3/5) 60% (3/5)
Place the zucchini in front of the green cube 0% (0/4) 50% (2/4)
Out-of-distribution tasks 29% (7/24) 54% (13/24)
Place the rubber duck in the green bowl 40% (4/10) 20% (2/10)
Place the mushroom in the brown bag 0% (0/6) 100% (6/6)
Place the purple die left of the lettuce 0% (0/4) 50% (2/4)
Place the zucchini in front of the red hexagon 75% (3/4) 75% (3/4)
Overall 41% (20/49) 63% (31/49)

the perceived quality of the agent’s execution. Thus, it is important to verify whether the findings in259

simulation about HyT transfer to real-world scenarios.260

For our real-world experiments, we collected a dataset comprising 320 trajectories using a robotic261

setup featuring an UFactory xArm 6 with a flexible two-fingered gripper, operating on a white262

tabletop. The agent observes the environment through RGB images captured by a RealSense D435263

camera, positioned at a corner of the table. For the models, we start from the pre-trained OpenVLA264

model with 7B parameters [4] and compare directly to it. We perform LoRA fine-tuning with rank 32265

[41], a batch size of 8 and a learning rate of 5e− 4, using the Adam optimizer [36].266

Our evaluation spans two categories of tasks: in-distribution and out-of-distribution. The in-267

distribution set includes tasks for which the dataset contains at least 10 demonstrations. For the268

out-of-distribution set, we modify the in-distribution tasks by altering certain elements, such as269

the object to be picked or the reference object for placement, ensuring the agent encounters novel270

scenarios not present in the training data. See the Appendix for additional details.271

The robot control frequency is ∼ 3 Hz with no thinking and ∼ 1 Hz with thinking. Thus, due to the272

long times required for thinking models evaluation, we study only the OpenVLA model fine-tuned273

on our dataset (using the original code) and HyT in Fast mode. The results, shown in Table 1, show274

that HyT overall significantly outperforms OpenVLA, especially in out-of-distribution tasks.275

From a qualitative perspective, we notice that OpenVLA and HyT have similar flaws, e.g., they276

tend to pick objects with the wrong orientation. However, HyT tends to be more precise when277

reaching picking and placing positions, e.g. it never reached for the wrong object while OpenVLA278

did, eventually leading to a noticeable performance gap.279

5 Conclusion280

Thinking strategies for VLAs [8, 9] have shown important benefits in terms of performance and281

intervenability over standard VLAs, with the drawback of slower inference. In this work, we support282

the idea that the thinking process can be “internalized" by the model, developing some form of expert283

intuition [12]. We proposed the Hybrid Thinking framework that enables the agent to use different284

training and inference modalities. This enables the possibility of learning from thoughts, while also285

being able to predict actions directly. As empirically validated through simulated and real-world286

experiments, Hybrid Thinking VLAs can obtain data-efficient performance and intervenability, along287

with fast inference.288

Limitations. Thoughts in robotics require an user to design a thought structure that is beneficial to the289

agent. Automated reasoning approaches to obtain useful thoughts may be explored [18]. In this work,290

we adopted large 3B and 7B parameters models. As we deploy faster models for computing actions291

on edge devices, we should aim to achieve similar performance with compute-efficient models [42].292
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D. Vijaykumar, D. Rogozińska, D. Herbison, E. Bandy, E. Wang, E. Noland, E. Moreira, E. Senter,431

E. Eltyshev, F. Visin, G. Rasskin, G. Wei, G. Cameron, G. Martins, H. Hashemi, H. Klimczak-Plucińska,432
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A Appendix480

A.1 Details about Figure 1481

<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

<act>

[∆x, ∆Φ, gripper]

Task: “What should the robot do to 

put the red triangle on the mug?” 

Large Language Model (LLM)

Hybrid Thinking (HyT)

Modality token:
<think> / <act>

Slow

mode
(thinking)

Fast

mode
(non-thinking)

Vision-Language-Action (VLA) model

Fast, performant and interpretable for real-world use-cases

Data-efficient

performance

Intervenability

Scalability

Real-world 

applicability

Inference

speed

“Place the red cube 

in the brown bag”
“Place the banana in 

the green bowl”

“Place the zucchini behind 

the red hexagon”

Image:

Figure 4: Hybrid Thinking VLAs. The hybrid thinking framework enables vision-language-action
models to switch between fast execution and thoughtful - slow - execution. In addition to an image of
the scene and a language description of the task, the agent receives a modality token, which conditions
the output of the model. We observed that, even in the fast mode (high inference speed), the model has
high performance, both in low-data (data-efficiency) and large-data (scalability) regimes. The high
performance and fast inference speed enable fast and performant deployment in real-world scenarios
(real-world applicability). The improved performance obtained when using ‘oracle’ thoughts together
with the slow mode of HyT demonstrate the agent’s interpretability and the possibility to intervene
on the thoughts for behavior’s correction (intervenability).

In the caption of Figure 4, we provide a detailed explanation of the HyT framework and performance.482

The radar plot in the Figure illustrates the results of standard VLAs as ‘Non-thinking’, thinking VLA483

as ‘Thinking’, and HyT. The data used for the radar plot is presented in Table 2 and obtained as484

follows:485

• Inference speed: measured on (fractions of) A100 GPUs, while performing inference on486

the ClevrSkills tasks. HyT is in Fast mode;487

• Scalability: overall normalized scores after training on the 4000 trajectories datasets on488

ClevrSkills (as in Figure 2). HyT results are obtained in Fast mode;489

• Data-efficient: overall normalized scores after training on the 1500 trajectories multitask490

dataset and evaluating on ClevrSkills (see Table ??). HyT results are obtained in Fast mode;491

• Intervenability: overall normalized scores when intervening on the thoughts (see Fig 3).492

HyT results must be obtained in Slow mode. Non-thinking is ‘NA’ as it doesn’t allow493

interventions on the thoughts;494

• Real-world: overall success rate in real-world tasks (see Table 1). HyT results are obtained495

in Fast mode. Thinking VLAs are excluded from the comparison due to time constraints496

(the inference process is 3× slower).497

Table 2: Max scores for different systems across evaluation dimensions
Inference speed Scalability Data-efficient Intervenability Real-world

Non-thinking 3 Hz 0.76 0.33 NA 0.41
Thinking 1 Hz 0.88 0.37 0.80 NA
HyT 3 Hz 0.92 0.42 0.85 0.64
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A.2 Simulation experiments498

Tasks definition The tasks are defined as follows:499

• Place At tasks evaluate the agent’s spatial understanding. The tasks require the agent to bring an500

object to a location specified in relation to another object location, i.e. left/right/behind/in front of501

the object. The objects used are mainly simple-shaped objects of different colors as in [16].502

• Place OnTop tasks evaluate the agent’s understanding of object interactions, as they require placing503

an object on top of another in a stable position. The set of objects used contains simple shapes, but504

also more complex objects from YCB, such as mugs, wooden blocks, bowls, etc.505

• Stack Tower evaluates the long-horizon capabilities of the agent, as it requires multiple “place on506

top" with simple object shapes, where the order of the objects in the stack is defined in the prompt.507

For each task, we train and test the agent with three variants, containing varying number of objects.508

In Place OnTop and Place At the number of additional objects is only distracting or increasing the509

amount of clutter in the scene, e.g. making placing objects on the table harder. For the Stack Tower510

tasks more objects also require more actions, as the agent should stack all the objects present in the511

scene.512

Evaluation details At each episode, objects and positions are resampled randomly (but consistently513

among evaluation runs), making no evaluation environment exactly the same as any of the training514

examples. The agent is, thus, required to generalize actions to new settings in order to succeed. For515

each model, we evaluate 3 checkpoints taken at epochs 5,7 and 10 during training. In general, we516

found no strong correlation between validation losses and performance on the task. Though, with517

additional training after 10 epochs, models tend to start overfitting.518

Dataset definition. For each task group, we collected a set of 4000 demo trajectories composed as519

follows: 1000 demos in the 2 objects task, 2000 demos in the 3 objects task, 1000 demos in the 4520

objects task. Then, to train agents with different sizes of the dataset, we subsample fixed subsets of521

trajectories from each dataset. For the multitask dataset, the task group datasets are subsampled and522

then aggregated.523

Example 1: ‘Stack Tower’ task group dataset with 1000 demos (scaling experiments). The 4000524

demos dataset is subsampled, maintaining an equal ratio of trajectories per task. The number of525

trajectories per task will be: 250 demos in the Stack Tower with 2 objects task, 500 demos in the526

Stack Tower with 3 objects task, 250 demos in the Stack Tower with 4 objects task.527

Example 2: multitask dataset with 3000 demos (intervenability experiments). For each task group, we528

subsample a dataset of 1000 demos (see Example 1). Then, 3000 demos are obtained by aggregating529

all the task groups’ demos.530

Extracting thoughts. In ClevrSkills’ demonstrations [31] a variety of solvers is applied to the task,531

following a pre-specificied order - the oracle’s plan. Each solver takes executes one subtask from532

the overall plan and the solver parameters can be recovered in the demonstrations. In order to create533

thoughts, we can use the ClevrSkills library to transform each subtask from the solver into a natural534

language instruction, e.g. "Move to X" or "Pick up Y". Then, for moving instructions - e.g. "Move535

to..." and "Carry Z to..." - we extract the motion direction of the agent. Similarly to [9], this is536

obtained at each timestep by computing the distance between the current end-effector position and537

the position at the end of the motion subtask. This is then transformed into language, in the form538

of "left/right", "forward/backward" and "up/down" instructions, as in [8]. Finally, for distances that539

are less than 1 cm the agent receives a "close" moving instruction. Two examples of thoughts and540

actions, in the HyT format, are provided in Figure 5.541

Gripper information. The ClevrSkills benchmark adopts a vacuum-gripper robot which creates a542

vacuum in the gripper’s suction cups to maintain contact with objects. Compared to a fingers-based543

gripper, a suction gripper’s state, i.e. open or closed, cannot be easily assessed through images. Thus,544

in order for the agent to be able to perform grasping actions reliably, we concatenate the state of the545

gripper in language form to the task description (or to the thoughts for the hierarchical low-level546

VLA). The gripper state information we pass to the agent is: (i) whether the gripper suction cups are547

making contact with something, (ii) whether the gripper was on, grasping something, or not. There’s548

no need for the gripper information in the real-world experiments, as we use a fingers-based gripper,549

where the gripper state is visually observable.550
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<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

(a)

<think>

pick up the red triangle

<act>

[∆x, ∆Φ, gripper]

(b)

Figure 5: Examples of thoughts and actions for a moving (a) and a non-moving (b) subtasks, expressed
in language format following the format used for HyT.

A.3 Normalizing scores551

In Figures 1 and 3 we used ‘normalized scores’ to provide aggregate results across different tasks. This552

is typically done when different tasks have results in different scales across a benchmark [40, 39, 38].553

In Table 3, we report the highest success rates obtained by any approach in each task. We see that554

for some tasks the success rate is significantly lower than for others, e.g. Stack Tower with 3 and 4555

objects and Place At with 4 objects are harder to solve. Thus, when showing ‘overall’ performance,556

we rescale the results on each task in [0,1] by dividing them by the maximum obtained in that task -557

that is shown in the Table. Then, results are aggregated into ‘normalized scores’ providing a more558

insightful view on each approach’s relative performance [43].559

Table 3: Highest success rate obtained by any approach (at any scale) and used to normalize scores.
Category 2 Objects 3 Objects 4 Objects
Place At 0.96 0.91 0.71
Place OnTop 0.84 0.80 0.80
Stack Tower 0.99 0.79 0.34

A.4 Real-world experiments560

(a) (b) (c) (d)

Figure 6: The setup for some of the real-world tasks: (a) banana in green bowl (b) red cube in brown
bag (c) zucchini in front of green cube (d) tomato left of lettuce.

Dataset preparation. The dataset for real-world experiments is collected via human tele-operation,561

using a VR set and a controller to map the human motions and intentions, e.g., closing the gripper, to562

the robot. After collecting the trajectories, we apply some basic pre-processing operations. First, we563

take the sequences collected at 60 Hz, and we subsample them at 10 Hz. Then, we extract actions564

in the format [∆x,∆ϕ, gripper] from the end-effector and gripper positions of the demonstrations.565

Finally, we filter out no-motion operations, i.e. having ∆x and ∆θ equal to zero.566

Extracting thoughts. For extracting the subtasks to use in the thoughts, we use a simple heuristic-567

based approach. This is based on the assumption that all the tasks in the dataset are in the format568

‘place the {obj1} {position} the {obj2}’, e.g. ‘place the {zucchini} {in front of} the {green cube}’.569

We identify the position when the robot closes the gripper as the grasping position, and the position570

when the robot opens the gripper as the releasing position. Then, we identify the following 3 keyframe571

moments: (i) the moment when the agent reaches within 3 cms distance from the grasping position,572
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(ii) the grasping moment, (iii) the moment when the agent reaches within 3 cms distance from the573

releasing position. Finally, the subtasks are defined in the trajectory as follows:574

• Move to the {obj1}: between the start of the trajectory and keyframe (i);575

• Pick up the {obj1}: between keyframe (i) and keyframe (ii);576

• Move {position} the {obj2}: between keyframe (ii) and keyframe (iii);577

• Place object {position} the {obj2}: between keyframe (iii) and the end of the trajectory.578

Also, to have the same thought structure as in the ClevrSkills’ experiments, we concatenate a ‘move:579

{direction}’ to the moving subtasks, where the direction is computed using the end-effector position580

(see Section A.2).581

Evaluation. During evaluation, we limit the execution time to 150 agent steps, which is ∼ 2 minutes582

per trajectory, considering 3 actions/second from the model and a control loop running at ∼ 2Hz for583

stable motions. In case of failed grasps, we allow up to 3 attempts to the agent, before assessing the584

outcome of the episode. In the following, you find a detailed description of how each in-distribution585

task is executed and randomized. For out-of-distribution tasks, we follow the same procedures, but586

we swap one of the main actors in the scene (e.g. the object to pick or the placing target). See Figure587

6) for reference. Note: fruits are stuffed toys, while vegetables are hard foam models.588

• Place the banana in the green bowl. The scene includes a green bowl and three objects: a589

banana, a tomato, and a blue hexagon, each with predefined positions. We conduct five trials590

with the banana starting in one location, and five more from a different location. In each591

location, the banana appears in three orientations: vertical (2/5 trials), horizontal (2/5 trials),592

and diagonal (1/5 trial).593

• Place the red cube in the brown bag. The setup features a brown bag and three objects: a594

red cube, a banana, and a lettuce leaf, all placed at specific locations. We run two trials for595

each location of the red cube. Its orientation varies between being aligned with the robot’s596

base and being tilted.597

• Place the tomato left of the lettuce. The scene contains three objects: a lettuce leaf, a carrot,598

and a tomato. Their positions are randomized within defined regions, though the overall599

layout remains consistent. We perform five trials with these randomized placements. A trial600

is only considered successful if the tomato ends up on the table, near the lettuce, and to its601

left.602

• Place the zucchini in front of the green cube. The environment includes five objects: a shape603

sorting box, a zucchini, a purple die, a rubber duck, and a green cube. Object positions are604

randomized within certain bounds, while maintaining the general layout. We carry out four605

trials with these randomized setups. Success is defined as the zucchini being placed on the606

table, close to and in front of the green cube.607
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