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Abstract

The substantial computational demands of detec-
tion transformers (DETRs) hinder their deploy-
ment in resource-constrained scenarios, with the
encoder consistently emerging as a critical bottle-
neck. A promising solution lies in reducing token
redundancy within the encoder. However, exist-
ing methods perform static sparsification while
ignoring the varying importance of tokens across
different levels and encoder blocks for object de-
tection, leading to suboptimal sparsification and
performance degradation. In this paper, we pro-
pose Dynamic DETR (Dynamic token aggrega-
tion for DEtection TRansformers), a novel strat-
egy that leverages inherent importance distribu-
tion to control token density and performs multi-
level token sparsification. Within each stage, we
apply a proximal aggregation paradigm for low-
level tokens to maintain spatial integrity, and a
holistic strategy for high-level tokens to capture
broader contextual information. Furthermore, we
propose center-distance regularization to align the
distribution of tokens throughout the sparsifica-
tion process, thereby facilitating the representa-
tion consistency and effectively preserving critical
object-specific patterns. Extensive experiments
on canonical DETR models demonstrate that Dy-
namic DETR is broadly applicable across various
models and consistently outperforms existing to-
ken sparsification methods.

1. Introduction
Detection Transformer (DETR) (Vaswani, 2017; Carion
et al., 2020; Meng et al., 2021; Yao et al., 2021) has marked
a transformative shift in object detection by incorporating
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Figure 1: (a) Calculation distribution of D-DETR (Zhu et al.,
2021), DAB-D-DETR (Liu et al., 2022), and DINO (Zhang
et al., 2022), where the encoder emerges as the primary
contributor to the overall computational load. The compar-
isons between various sparsification strategies on D-DETR
(b) and DINO (c) in terms of FLOPs and FPS, while (d)
exhibits the promotion of our method applying to DAB-D-
DETR, DN-D-DETR (Li et al., 2022), andH-D-DETR (Jia
et al., 2023), where the AP of each method is underlined.
All results are obtained using ResNet-50 as the backbone.

transformers. Deformable DETR (Zhu et al., 2021) further
advances this paradigm with a multi-level deformable at-
tention mechanism that accelerates convergence and boosts
detection performance. Building on this foundation, vari-
ous DETR-based models (Zhu et al., 2021; Liu et al., 2022;
Li et al., 2022; Zhang et al., 2022) have been proposed,
driving both the performance and versatility of object de-
tection frameworks. However, the growing computational
and memory demands of DETRs remain a significant obsta-
cle to their practical deployment, particularly in resource-
constrained environments that necessitate both efficiency
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Figure 2: Visualization of attention weights of tokens across
different encoder blocks. Noting that larger weights con-
tribute more to the optimization and are deemed to be im-
portant in the attention mechanism according to pioneering
efforts (Raganato & Tiedemann, 2018). We highlight the top
75% weights in the current block with pink-shaded mask,
while the proportion of each level comes to Proportion.
Moreover, the term importance ranking (R) is introduced
to intuitively represent the distribution of important tokens
across different hierarchies. It can be seen that important
tokens tend to migrate from shallow to deeper pyramidal
levels as the depth of the encoder blocks increases.

and low-latency inference (Chen et al., 2022b; Zhang et al.,
2023; Chen et al., 2022a).

To investigate the underlying computational burden, we an-
alyze the floating point operations (FLOPs) for three preva-
lent DETR variants: Deformable DETR (Zhu et al., 2021),
DAB DETR (Liu et al., 2022), and DINO (Zhang et al.,
2022). As illustrated in Figure 1(a), the backbone and en-
coder contribute the most to the overall computational load.
Although recent work has predominantly focused on opti-
mizing the backbone (Rao et al., 2021; Chang et al., 2023;
Liang et al., 2021; Long et al., 2023; Bolya et al., 2023), the
encoder remains a significant bottleneck. This oversight is
problematic, as efforts to reduce backbone complexity, such
as with DynamicViT (Rao et al., 2021; Liu et al., 2024),
lead to only modest reductions in FLOPs (approximately
12%), while causing a substantial drop in accuracy (4.6%).

Token sparsification has emerged as an effective solution for
reducing the number of tokens based on their importance.
To employ the importance of tokens, we visualize the atten-

tion weights across different levels and encoder blocks in
Figure 2, and find that as we move deeper into the encoder
blocks, the importance ranking R of lower-level tends to
decrease, while that of higher-level increases. This indicates
that token importance across levels is dynamic but grad-
ually migrates from lower to higher levels as the encoder
depth increases. However, current approaches (Zheng et al.,
2023; Wang et al., 2021; Roh et al., 2022), typically employ
static, coarse-grained token discarding strategies based on
global patches (Pu et al., 2022). Worse still, they resort to
compensatory modules to mitigate information loss and fail
to capture the hierarchical characteristic of tokens. Inspired
by this insight, we propose Dynamic DETR, a framework
that adapts token sparsification based on their evolving im-
portance across encoder stages.

We apply token merging for token sparsification, which
has been widely validated across the fields of transformers
(Bolya et al., 2023; Liang et al., 2021; Long et al., 2023; Lee
et al., 2024). Yet, its application in DETRs often overlook
the diverse relationships between tokens and their respective
levels, leading to suboptimal matching and significant per-
formance degradation. Low-level tokens primarily capture
detailed local information, with key features often concen-
trated in specific spatial regions (Cao et al., 2021). To
preserve these details, merging should prioritize spatially
proximal tokens, ensuring the retention of critical localized
information. At higher levels, tokens with border recep-
tive filed, related tokens may be distributed across different
spatial locations (Lin et al., 2022). Holistic aggregation fa-
cilitates the direct integration of the most important tokens,
without being constrained by local neighboring regions. To
this end, we propose a strategy that applies distinct aggre-
gation techniques across different levels, ensuring optimal
token aggregation and preserving both local and global in-
formation effectively.

Furthermore, we hypothesize that sparse and non-sparse
features fed into the detection heads should maintain an in-
dependent and identically distributed (i.i.d.) alignment (Gao
et al., 2024). However, the varying inputs at encoder block
introduce deviations from this ideal distribution. To address
this issue, we propose a representational center-distance reg-
ularization to encourage the convergence toward the desired
i.i.d. distribution.

To further validate the effectiveness and generality of Dy-
namic DETR, we evaluate it on COCO2017 using five
DETR variants (Zhu et al., 2021; Liu et al., 2022; Zhang
et al., 2022; Li et al., 2022; Jia et al., 2023). Results show
that Dynamic DETR significantly reduces computational
costs with minimal performance drops, outperforming other
token sparsification methods (Figure 1). To sum up, the
contributions of this paper are three-fold:

• Proposing Dynamic DETR, a dynamic token aggregation
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pipeline for detection transformers that efficiently sparsi-
fies tokens across encoder stages, achieving computation
reduction with least performance loss.

• Devising a novel token aggregation strategy to handle
multi-level token sparsification: a proximal aggregation
paradigm for low-level tokens to preserve spatial details and
a holistic merging strategy for high-level tokens to leverage
their global receptive field. To the best of our knowledge,
this is the first application of token aggregation techniques
in detection transformers.

• Introducing the representation center-distance regulariza-
tion that aligns the centroids of token distributions before
and after sparsification. This improves feature consistency
and enhances detection performance.

2. Related Work
2.1. Advancing Detection Transformer Designs

Recent advancements in Detection Transformers (DETRs)
have aimed at improving detection accuracy and reducing
computational costs.

On the performance front, Deformable DETR (Zhu et al.,
2021) introduced multi-scale deformable attention to en-
hance convergence and accuracy, while Anchor DETR
(Wang et al., 2022) and DAB-DETR (Liu et al., 2022) in-
corporated anchor-based priors to bridge the gap with tra-
ditional detectors. DN-DETR (Li et al., 2022) and DINO
(Zhang et al., 2022) leveraged noisy ground-truth boxes to
improve bounding box prediction. Despite these improve-
ments, their high computational cost remains a barrier for
real-world deployment.

Efficiency-focused DETR variants address this challenge.
Efficient DETR (Yao et al., 2021) reduced encoder layers by
initializing decoder queries with priors, while Lite DETR
(Li et al., 2023) simplified token levels. Sparse approaches
like Sparse DETR (Roh et al., 2022), PnP DETR (Wang
et al., 2021), and Focus DETR (Zheng et al., 2023) opti-
mized token updates by scoring salient tokens. However,
these methods often rely on auxiliary modules and loss
terms, complicating integration and limiting generality.

2.2. Token Sparsification Algorithms

Token sparsification has become central to accelerating vi-
sion transformers (ViTs) (Dosovitskiy et al., 2020), primar-
ily comprising pruning-based and merging-based methods.

Pruning-based methods predict token importance scores us-
ing auxiliary modules. For instance, DynamicViT (Rao
et al., 2021) and STViT-R (Chang et al., 2023) rank tokens
based on their relevance, while A-ViT (Yin et al., 2022) uses
an accumulative mask to discard tokens below a threshold.

While effective, these methods impose substantial computa-
tional overhead, rendering them less suitable for deployment
in detection transformers.

Merging-based methods simplify computations by consoli-
dating similar tokens. ToMe (Bolya et al., 2023) and CTS
(Lu et al., 2023) merge tokens based on similarity, while
EViT (Liang et al., 2021) and Long et al. (Long et al., 2023)
use attention scores to aggregate discarded tokens into ”su-
per tokens”. MCTF (Lee et al., 2024) extends merging by
integrating multi-criteria for better information preservation.
However, existing merging methods often lack hierarchical
adaptability, and overly simplistic strategies risk entangling
critical information.

3. Method
We propose a general paradigm for token sparsification in
Detection Transformer (DETR) models, compatible with a
wide range of architectures, including Deformable DETR
(Zhu et al., 2021), DAB-DETR (Liu et al., 2022), DINO
(Zhang et al., 2022), and other prominent variants (Li et al.,
2022; Jia et al., 2023). Based on the analysis presented in
Section 1, our method applies token merging selectively
at specific stages within the encoder, as illustrated in Fig-
ure 3. Detailed descriptions of the proposed methodology
are provided in the following subsections.

3.1. Preliminaries

Deformable DETR (Zhu et al., 2021) significantly enhances
the performance of DETR (Carion et al., 2020) and has
served as the foundation for several subsequent variants
(Liu et al., 2022; Li et al., 2022; Zhang et al., 2022; Jia et al.,
2023). For clarity and reproducibility, we adopt Deformable
DETR as the baseline to describe our method.

Let {xl}Ll=1 represent the multi-level input feature maps,
where xl∈RC×Hl×sl denotes the representation at level
l, with Hl, sl, and C corresponding to the height, width,
and hidden states dimension, respectively. To meet the
input requirements of the DETR encoder, each feature map
is flattened into a sequence of embeddings Zl ∈ RNl×C ,
where Nl = Hl × sl denotes the total number of tokens at
level l, which are subsequently fed into the encoder.

The total number of tokens across all levels is N =∑L
l=1 Nl. The computational complexity of encoder blocks

is primarily dominated by the self-attention mechanism. In
the case of the deformable multi-scale attention module, the
complexity is O(2NqC

2 + min(NC2, NqKC2)), where
Nq is the number of tokens updated in the current block and
K is the number of sampled keys (Yang et al., 2021). Thus,
the primary issue for decreasing the overall computational
cost lies in the reduction of Nq .
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Figure 3: Dynamic Token Aggregation Pipeline for Detection Transformers (Dynamic DETR). The 6 encoder blocks are
divided into three stages with N1 = 2, N2 = 3, and N3 = 1. At each stage, tokens are merged based on dynamic importance
rankingRs of different levels. At lower levels, a proximal aggregation paradigm is employed, which first maps tokens to
there original spatial grids and aggregates them within local windows. (e.g., at level-2 with a window size of n = 2, each
window contains 4 tokens.) Then the proximal relationship, denoted as wm, is quantified to inform the aggregation decision.
At higher levels, we devise a holistic aggregation strategy, where tokens are divided into important ones and unimportant
ones according to their importance scores. Then unimportant tokens are aggregated into its most affine counterparts with the
proposed affinity matching and aggregation mechanism. Finally, the sparsified features are constrained by Lalign to preserve
their fidelity by aligning the representation centroids between the non-sparsified and sparsified feature spaces.

Figure 4: The distribution of importance ranking index
(namely I) across various pyramidal levels at three stages.
Note that the statistics are captured on the COCO val-set
images (Lin et al., 2014).

3.2. Dynamic Token Aggregation

The core of our aggregation mechanism lies in the dynamic
evolution of the importance criterion for tokens across vari-
ous hierarchical features and encoder blocks. Therefore, be-
fore delving into the proposed paradigm, we first investigate
how the importance shifts within the encoder architecture.

Notation. Hereafter, we use the following notation for
clarity and conformity. Given the importance ranking at s-
th stage Ri1 > Ri2 > · · · > RiL , we first introduce ranking
index as follows:

Is = (i1, i2, . . . , iL),where 1 ≤ ij ≤ L, ij ̸= ik (j ̸= k).
(1)

Then, the aforementioned ranking can be formulated with:

Rs = (Ri1 , Ri2 , . . . , RiL) ∈ RL. (2)

Firstly, we divide the conventional six encoder blocks in the
pipeline into three stages with N1 = 2, N2 = 3, and N3 =
1. Then, we procure the distribution of importance ranking
for each level l ∈ {1, . . . , L} at three stages in Figure 4.
It is evident that the importance rankings are distributed
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differently across the various encoder stages. In particular,
during the first stage, we observe R1 = (R1, R2, R3, R4),
indicating that the model initially places greater emphasis
on lower-level feature maps. As the stage depth increases,
however, higher-level representations—such as those from
levels l = 3 or l = 4—start to account for more of the impor-
tant tokens, demonstrating a clear migration of importance.
This finding aligns precisely with our observations in the
Introduction (see Figure 2): namely, that the criterion for
token-level importance within the encoders is dynamic and
evolving across different stages.

Inspired by this observation, we therefore propose an dy-
namic token aggregation mechanism to dynamically reduce
the number of tokens updated at each stage, thereby sub-
stantially diminishing the computational complexity while
maintaining competitive performance. In contrast to pio-
neering works (Wang et al., 2021; Roh et al., 2022; Zheng
et al., 2023) that fix a uniform retention ratio across all
levels, we leverage statistic-based importance ranking to dy-
namically derive this key parameter for token sparsification
at each level, thereby more accurately accommodating the
evolving distribution of critical tokens within the encoder.
To be specific, we first initialize the retention ratios for L
pyramidal levels with ρ = (ρ1, ρ2, . . . , ρL) ∈ RL. Then
for stage s, its retention ratio ρs is formulated by reordering
ρ based on the ranking index Is, namely:

ρs = ρ[Is] = (ρi1 , ρi2 , . . . , ρiL). (3)

In this way, the number of tokens after sparsification for
level l is derived as Kl = Nl × ρs

l . To go a step further, the
static ratio setting can be viewed as a special case of our
dynamic strategy, wherein ρ1 = ρ2 = · · · = ρL. To sum
up, by reducing the number of tokens at each stage in an
evolving manner, our approach achieves substantial compu-
tational savings, allowing more resources to be dedicated to
processing the most critical token interactions

3.3. Multi-level Token Aggregation

Our solution is grounded in the observation that the distribu-
tion of important tokens across different hierarchies of Fea-
ture Pyramid Network (FPN) (Lin et al., 2017) progressively
shifts as the encoder blocks deepen. Therefore, the sparsifi-
cation process is dynamically executed through a multi-level
framework, incorporating two complementary aggregation
paradigms: (a) Proximal Aggregation (gp) applied to low-
level tokens (l ≤ L− 1), which groups and merges tokens
within spatially proximal patches. This paradigm not only
preserves spatial coherence but also retains the fine-grained
details that are essential for discriminative representation.
(b) Holistic Aggregation (gh) applied to (l = L) tokens,
which leverages a global perspective for aggregation. It
efficiently integrates long-range contextual patterns, thereby
facilitating compact and semantically rich features. Gen-

erally, the aggregation of tokens at level l is formalized
as:

Ẑl =

{
gp(Zl) if l ≤ L− 1

gh(Zl) otherwise,
(4)

where Ẑl illustrates the aggregated tokens at level l.

Low-level: Proximal Aggregation. The idea behind this
paradigm is simple: tokens at lower pyramids are spatially
abundant but semantically sparse, hence aggregating seman-
tically similar proximal tokens builds a path to reduce the
overall redundancy. Enlightened by previous works (Liu
et al., 2021; Zhang et al., 2024), we introduce a window-
based setup to achieve the optimal balance between com-
pression efficiency and semantic integrity.

To be specific, we first map the tokens at level l, Zl, back to
the original spatial dimensions C ×Hl × sl. Then, it will
be partitioned into M local patches with each containing
n×n tokens, where n = 2l−1 stands for the window size at
level l. Intuitively, such setup fully leverages the resolution
relationships between adjacent feature maps in the FPN.
And most importantly, it is hyperparamter-free.

Next, to better investigate the local similarity of these
patches, we capture the proximal relationship matrix for
each patch, based on a fully connected bipartite graph con-
structed among tokens within the patch, which is formulated
as the edge matrix Em∈Rn×n, where m ∈ {1, . . . ,M}.
Concretely, supposing zi and zj belong to the identical
proximal patch, then the edge weight ei,j between these two
nodes is demonstrated as follows:

ei,j =
zi · zj

∥zi∥2 · ∥zj∥2
, (5)

where zi, zj ∈ RC×1 (with i, j ∈ {1, . . . , Nl} and i ̸= j)
represent the i-th and j-th tokens of Zl, while · stands for
the inner product, and ∥ · ∥2 is the Euclidean norm.

To comprehensively quantify the semantic coherence of all
proximal patches at level l, we capture the average weight
sequence Wl = (w1, w2, · · · , wM ), in which:

wm =
1

n× n

n∑
i=1

n∑
j=1

ei,j . (6)

Next, we rank Wl with decreasing order and filter top-M ′

by indexing the set of selected indices as follows:

Sl = {π(1), π(2), . . . , π(M ′)}, (7)

in which π = argsort(Wl, descending). To go a step fur-
ther, the number of remaining tokens after sparsification
is M ′ + (M − M ′) · n2, which is consistent with that
Kl = Nl × ρs

l (see Sec. 3.2). In this way, M ′ essentially
comes as follows:

M ′ =
Nl · (1− ρs

l )

n2 − 1
(8)
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Algorithm 1 Affinity Matching and Aggregation.

Input: Important token set V = {zi | i = 1, 2, . . . ,Kl};
Unimportant token set U = {zi | i = 1, 2, . . . , Nl −
Kl}; Import-to-unimportant affinity matrix Ai2u ∈
R(Nl−K)×Nl

Output: Updated important tokens Ẑl = {ẑi | i =
1, 2, . . . ,Kl}
Initialize ẑi ← zi, {i = 1, 2, . . . ,Kl}.
for i = 1 to Nl −Kl do
ids, affs← SortReverse(Ai2u, i)
Delete ids[0], affs[0]
for j = 1 to T do

if ids[j] ∈ {i = 1, 2, . . . ,Kl} then
zids[j]←Merge(zids[j] ∈ V , zj ∈ U)

end if
end for

end for

Thereafter, within each qualified patch, the n2 tokens are
merged to form a super token which replaces the bottom-
right one of current patch. Then, the aggregated token set
P = {zi|i = π(1) · n2, π(2) · n2, . . . , π(M ′) · n2}, while
the remaining unmerged patches are flattened into T . The
final output tokens include both the aggregated super tokens
and unmerged ones which can be formulated as follows:

Ẑl = P ∪ T . (9)

Thanks to the rigorous evaluation of semantic integrity
across all patches, our proximal aggregation strategy en-
sures the integration of semantically meaningful tokens,
thereby achieving an optimal balance between computa-
tional efficiency and representational quality.

High-level: Holistic Aggregation. Inspired by the bipartite
soft matching mechanism (Bolya et al., 2023), we propose
a tailored strategy to aggregate high-level tokens from a
holistic fashion.

Given high-level tokens Zl = {zi | i = 1, 2, . . . , Nl}, we
first construct the affinity matrix A ∈ RNl×Nl by capturing
the cosine similarity between all tokens with Eq. 5. Subse-
quently, the importance score for the i-th token is defined
as follows:

γi =
1

Nl

Nl∑
j=1,j ̸=i

1

ei,j
. (10)

To go a step further, tokens exhibiting lower similarity to
others are assigned higher importance scores, as they are
presumed to encapsulate more distinctive information. Next,
we rank the importance sequence in descending order. Ac-
cording to Eq. 3, the top Kl tokens are designated as im-
portant tokens V = {zi | i = 1, 2, . . . ,Kl}, while the
remaining (Nl −Kl) tokens are identified as unimportant
ones U = {zj | j = 1, 2, . . . , Nl −Kl}.

To preserve token relationships for further processing, we
employ an affinity matching strategy. Each unimportant
token is paired with its most similar important tokens, and
the corresponding visual patterns are aggregated into these
counterparts. Then, the import-to-unimportant affinity ma-
trix Ai2u ∈ R(Nl−Kl)×Nl is derived from A. For each
unimportant token, the top-T similar tokens are identified
by selecting the second-largest similarity value from each
row of Ai2u. We conduct ablations to procure the optimal
setup of T , and further details are provided in Sec. A.

After identifying the top-T tokens for each unimportant
token, we verify whether these tokens belong to the set
of important tokens V . If they do, the representation of
the unimportant token is aggregated into its corresponding
important tokens. Note such one-to-many matching strategy
can optimally embed the information from tokens in U .
Moreover, the overall matching and aggregation pipeline is
summarized in Algorithm 1.

This token merging process not only preserves the seman-
tic richness of the discarded tokens but also enhances the
expressiveness of the important tokens by enriching them
with complementary information.

3.4. Representational Center-distance Regularization

Let Z represent the standard forward-pass representation
and Ẑ the corresponding sparsified pattern. In an ideal
scenario, the distribution of predictions based on representa-
tions between the pre- (ppre) and post-sparsification (ppost)
stages should exhibit minimal deviation, thereby effectively
reducing sparsification-induced information loss. Unfortu-
nately, this is infeasible in practical implementations due to
inherent limitations.

To mitigate this thorny issue without introducing auxiliary
burdens, we propose representational center-distance reg-
ularization, which aligns the centroids of sparsified and
non-sparsified representations:

Lalign = ∥νpre − νpost∥2, (11)

in which νpre = Eppre
[f(Z)] and νpost = Eppost

[f(Ẑ)]
stand for the representation centroids of the non-sparsified
and sparsified models, respectively. Then, the overall objec-
tives can be formulated as follows:

Ltotal = Ldet + λ · Lalign, (12)

where Ldet is the detection loss of the original model and
λ balances the contributions of different loss terms which
is empirically default to 0.1 in our experiments. This regu-
larization promotes alignment between centroids, ensuring
consistent representation quality across sparsification levels
and enhancing both robustness and generalization.
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Table 1: Comparison of Dynamic DETR with DETR variants and other efficient DETR algorithms on the COCO2017
val-set. DETR, DAB DETR, DN DETR, Conditional DETR and Anchor DETR use a single DC5 feature, while the
remaining detectors in the comparison employ multi-level features. “D-DETR” refers to Deformable DETR. Noting the
top-performing results are highlighted in Red while the second-best ones are in Blue.

Model Paradigm Epochs AP AP50 AP75 APS APM APL Params(M) FLOPs(G) FPS

DETR (Carion et al., 2020) 500 43.3 63.1 45.9 22.5 47.3 61.1 41.0 187.0 11.2
DAB DETR (Liu et al., 2022) 50 44.5 65.1 47.7 25.3 48.2 62.3 44.0 203.0 -

DN DETR (Li et al., 2022) 50 46.3 66.4 49.7 26.7 50.0 64.3 44.0 202.0 -
Conditional DETR (Yao et al., 2021) 108 45.1 65.4 48.5 25.3 49.0 62.2 44.0 195.0 11.5
Anchor DETR (Wang et al., 2022) 50 44.2 64.7 47.5 24.7 48.2 60.6 37.0 171.5 25.0

D-DETR (Zhu et al., 2021)

Original

50

47.0 66.1 50.9 30.0 49.8 61.9 41.0 179.0 19.1
Sparse (Roh et al., 2022) 46.0 65.9 49.7 29.1 49.1 60.6 41.0 121.0↓32.4% 23.2↑21.5%

Lite (Li et al., 2023) 45.8 65.1 49.3 27.7 49.1 61.1 41.0 108.0↓39.7% 24.0↑25.7%
Dynamic 46.0 65.1 50.1 29.0 48.9 60.6 41.0 107.9↓39.7% 25.2↑31.9%

DINO (Zhang et al., 2022)

Original

36

50.9 68.9 55.3 34.6 54.1 64.6 47.0 244.5 14.4
Sparse (Roh et al., 2022) 48.2 65.9 52.5 30.4 51.4 63.1 47.0 152.0↓37.8% 20.2↑40.2%

Lite (Li et al., 2023) 50.4 - 54.6 33.5 53.6 65.5 47.0 151.0↓38.2% 23.2↑61.1%
Focus (Zheng et al., 2023) 50.4 68.5 55.0 34.0 53.5 64.4 48.0 154.0↓37.0% 20.0↑38.9%

Dynamic 50.2 69.2 54.7 33.6 53.4 64.4 47.0 141.7↓42.0% 23.2↑61.1%

DAB-
D-DETR (Liu et al., 2022)

Original 50 46.9 66.0 50.8 30.1 50.4 62.5 44.0 235.4 14.8
Dynamic 45.8 64.4 49.7 29.0 49.3 60.2 44.0 131.8↓44.0% 22.6↑52.7%

DN-
D-DETR (Li et al., 2022)

Original 50 48.6 67.4 52.7 31.0 52.0 63.7 48.0 231.3 18.5
Dynamic 47.7 66.5 51.8 30.3 50.6 62.6 48.0 139.8↓39.6% 23.0↑24.3%

H-
D-DETR (Jia et al., 2023)

Original 36 50.0 - - 32.9 52.7 65.3 48.0 234.8 6.7
Dynamic 49.1 65.7 54.0 32.7 52.9 64.3 48.0 123.6↓47.4% 9.3↑38.8%

4. Experiments
4.1. Implementation Details

All experiments are implemented using the detrex frame-
work (Ren et al., 2023). Training is performed on 4 Nvidia
GPUs with a batch size of 2. To ensure fair comparisons,
we strictly follow the configurations of baseline models,
including hyperparameters, network architectures, and loss
functions.

The primary experiments are performed on the COCO 2017
dataset, which contains 118K training images and 5K vali-
dation images. We adopt ResNet-50 as the backbone, and
use 6 encoder blocks and 4 pyramid levels by default. To
evaluate the generalizability of our approach, we addition-
ally conduct experiments on LVIS v1.0 (Gupta et al., 2019)
and PASCAL VOC 2007 (Everingham et al.) within the
DINO framework. LVIS v1.0 (Gupta et al., 2019) presents a
large-vocabulary setting with a long-tailed category distribu-
tion, challenging models to detect rare objects. In contrast,
PASCAL VOC 2007 (Everingham et al.) is a smaller-scale
dataset that focuses on simpler object layouts and limited
training samples. Moreover, we evaluate our method with
the Swin-T backbone (Liu et al., 2021), a hierarchical vision
transformer, to assess its effectiveness.

4.2. Experimental Results

4.2.1. MAIN RESULTS

Comprehensive results are summarized in Table 1, contrast-
ing DETR variants, efficient DETR algorithms, and the
enhanced versions with our Dynamic DETR. When applied
to Deformable DETR, Lite DETR reduces FLOPs by 58.0G
(32.4%) with a minor 1.0% drop in accuracy. In compari-
son, Dynamic DETR achieves a more substantial reduction
of FLOPs (↓39.7%), while outperforming Lite DETR with
comparable FLOPs and an additional 0.2% gain in precision.
Sparse DETR achieves the same accuracy but incurs more
FLOPs (13.1G) than our method. For DINO, Dynamic
DETR reduces the overall computational cost by 42.0%,
with only a 0.7% drop in AP. In contrast, Lite DETR and
Focus DETR reduce FLOPs by 38.2% and 37.0%, respec-
tively, with slightly smaller performance drops (0.5% AP).
Dynamic DETR achieves the best trade-off by offering a
higher reduction in computational cost while maintaining
competitive accuracy.

We further evaluate Dynamic DETR on three advanced
DETR variants: DAB-D-DETR, DN-D-DETR, and H-D-
DETR. Dynamic DETR can reduce the models’ compu-
tational cost by varying amounts (ranging from 39.6% to
47.4%), while only incurring a minimal performance loss
(about 1.0%). Dynamic DETR demonstrates superior com-
putational efficiency and accuracy across a wide range of
DETR architectures. This, makes it an good choice for
real-time and resource-constrained applications.

7



Not All Tokens Matter All The Time: Dynamic Token Aggregation Towards Efficient Detection Transformers

4.2.2. ADDITIONAL RESULTS

To further assess the generalizability and robustness of our
approach, we conduct supplementary experiments across
multiple datasets and architectures. All models are trained
for 12 epochs with consistent settings unless otherwise spec-
ified.

Results on LVIS v1.0. Table 2 presents the results on LVIS
v1.0, a large-scale benchmark featuring over 1200 categories
with a long-tailed distribution (Gupta et al., 2019). Dynamic
DINO achieves a strong trade-off between performance and
efficiency. While Focus DINO yields the highest overall AP
and APr, Dynamic DINO delivers a competitive AP of 23.4
and achieves the best APf . Notably, our method reports
the lowest FLOPs and the highest FPS among all variants,
highlighting its efficiency advantage in long-tailed detection
scenario.

Table 2: Detection performance on LVIS v1.0.

Model AP AP50 AP75 APr APc APf FLOPs(G) FPS

DINO 26.1 34.5 27.5 8.3 24.1 36.1 247.1 19.8
Sparse DINO 22.9 32.0 24.2 8.4 21.3 30.9 151.7 21.2

Lite DINO 20.2 28.0 21.4 3.0 17.5 30.8 160.0 16.0
Focus DINO 23.7 32.9 25.2 10.2 21.7 31.9 168.2 20.4

Dynamic DINO 23.4 31.8 25.0 7.7 20.8 33.4 146.6 22.5

Results on PASCAL VOC 2007. As shown in Table 3,
we evaluate our method on PASCAL VOC 2007, a com-
pact dataset with 20 object classes and relatively simple
scenes (Everingham et al.). Dynamic DINO attains the
highest mAP (63.8%) among all lightweight variants, while
consuming only 135.2 GFLOPs. Compared to the original
DINO, our method maintains competitive accuracy with
just 56% of the computation, and significantly outperforms
Sparse DINO and Focus DINO in both accuracy and speed.
Despite its lightweight design, Lite DINO significantly un-
derperforms compared to its counterparts, potentially due
to the necessity of prolonged training to achieve satisfac-
tory convergence. To sum up, the promising results further
underscore the generality of our design in efficient object
detection.

Table 3: Detection performance on PASCAL VOC 2007.

Model mAP FLOPs(G) FPS

DINO 65.7 241.6 15.5
Sparse DINO 62.5 141.4 19.6

Lite DINO 38.1 151.0 21.3
Focus DINO 51.4 152.1 20.2

Dynamic DINO 63.8 135.2 21.1

Results on Swin-T Backbone. We also assess our method
with Swin-T, a hierarchical vision Transformer (Liu et al.,
2021), to examine its compatibility with modern backbones.

Table 4 shows that Dynamic DINO consistently surpasses
other variants across most metrics. It achieves the lowest
FLOPs and the highest FPS, validating that the dynamic
token aggregation strategy scales well with multi-stage,
patch-based architectures. Compared to Sparse DINO, Dy-
namic DINO improves AP by 0.3 points while reducing
computational cost by over 9%, indicating a better accuracy-
efficiency trade-off.

Table 4: Performance comparison using the Swin-T back-
bone.

Model AP AP50 AP75 APS APM APL FLOPs(G) FPS

DINO 51.5 70.2 56.5 34.6 54.5 67.0 252.3 14.0
Sparse DINO 49.6 68.4 54.1 32.1 52.6 65.3 137.0 18.0

Lite DINO 48.3 66.1 52.8 30.3 51.6 64.0 151.0 16.8
Focus DINO 49.9 68.2 54.3 32.9 52.8 65.1 156.9 15.3

Dynamic DINO 49.9 68.8 54.3 32.8 52.9 65.4 149.4 18.2

4.2.3. ABLATION STUDIES

We perform all the ablation studies on DINO to evaluate the
effectiveness of the proposed components. The results are
summarized in Table 5.

Effect of the Dynamic Token Aggregation Mechanism.
To assess the impact of the Dynamic Token Aggregation
(DTA) module, we replace it with a static variant using a
fixed token retention ratio of 0.3 across all pyramid levels.
Under this setting, the overall AP achieved is 48.2%, which
is 1.4 points lower than the full dynamic version. This
performance gap highlights the limitations of static aggre-
gation, which fails to adaptively prioritize token relevance,
and demonstrates the effectiveness of our DTA strategy in
selectively retaining informative tokens.

Effect of Multi-level Token Aggregation. We further in-
vestigate the role of Multi-level Token Aggregation (MTA).
Disabling token aggregation across stages by randomly se-
lecting and retaining tokens with dynamic ratios results in a
significant performance drop to 46.6% AP, despite the reduc-
tion in computational cost to 134.7G FLOPs. Additionally,
we assess the role of affinity matching within the holistic to-
ken aggregation process. Removing affinity matching yields
an AP of 49.8%, while enabling it improves performance to
50.2%, with a minor increase of 1.5G FLOPs. These results
demonstrate the effectiveness of hierarchical aggregation
and highlight the advantages of incorporating semantic sim-
ilarity matching in holistic token aggregation, achieving a
balanced accuracy-efficiency trade-off.

Effect of Representational Center-distance Regulariza-
tion. Finally, we evaluate the impact of the Representa-
tional Center-distance Regularization (RCDR). Incorporat-
ing RCDR results in a significant performance improvement
of 0.6% AP (from 49.6% to 50.2%) with no additional
computational overhead. This result indicates that RCDR
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Table 5: Ablation studies of the proposed components on COCO 2017. We evaluate the individual and combined
contributions of the Dynamic Token Aggregation (DTA), Multi-level Token Aggregation (MTA) with and without Affinity
Matching (AM), and Representational Center-distance Regularization (RCDR).

DTA MTA RCDR AP AP50 AP75 APS APM APL FLOPs(G)

46.6 68.3 50.1 29.9 49.9 63.1 134.7
(with AM) 48.2 64.5 52.9 30.9 52.1 63.1 140.6
(w/o AM) 49.8 69.9 54.2 33.1 53.4 65.4 140.2
(with AM) 49.6 68.1 54.2 32.0 52.9 65.2 141.7
(with AM) 50.2 69.2 54.7 33.6 53.4 64.4 141.7

Figure 5: The distribution of important tokens, in which
unimportant ones are masked.

effectively enhances feature discrimination and improves
model generalization through a lightweight yet principled
regularization scheme.

4.2.4. VISUALIZATION AND QUALITATIVE ANALYSIS

We visualize the distribution of important tokens across
three stages in Figure 5. Consistent with our design, earlier
stages retain a higher proportion of tokens at lower levels,
while the focus gradually shifts toward higher levels in later
stages. This demonstrates that critical information is effec-
tively preserved throughout the merging process. At lower
levels (e.g., Levels 1–3), proximal tokens corresponding to
spatially similar regions, are merged. In contrast, at higher
levels, token aggregation is guided by the global semantic
relationships. Notably, tokens with unique or distinctive

features are preserved, reflecting the model’s ability to pri-
oritize salient information during the aggregation process.

5. Conclusion
In this work, we proposed Dynamic DETR (dynamic token
aggregation for detection transformers) to tackle the compu-
tational bottlenecks inherent in DETRs. By leveraging token
redundancy at multiple levels and across different encoder
blocks, Dynamic DETR dynamically adjusts token repre-
sentations while preserving essential semantic information.
Through extensive experiments on various DETR variants,
Dynamic DETR demonstrates state-of-the-art performance
in terms of speed and accuracy, surpassing existing token
sparsification competitors. Its flexibility allows it to be in-
tegrated seamlessly into diverse architectures, paving the
way for efficient DETRs. Future work will explore adaptive
sparsification strategies tailored to varying input character-
istics and task requirements. Additionally, we aim to extend
Dynamic DETR to other Transformer-based architectures,
broadening its applicability to a wider range of tasks in
computer vision and beyond.
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A. Discussions
To gain deeper insights into the effectiveness and robustness of our method, we conducted a series of experiments to analyze
the impact of various hyperparameters and design choices.

Choice of Token Retention Ratios. We present a systematic investigation into the impact of dynamic token retention
ratios on model performance through a comprehensive experimental framework. Our methodology evaluates retention
ratio configurations by exploring an upper bound range of 0.4 to 0.8 and a lower bound range of 0.1 to 0.5, with detailed
results documented in Table 6. As retention ratios increase, both computational complexity (measured in FLOPs) and model
accuracy improve. For example, increasing the retention ratios from (0.4, 0.3, 0.2, 0.1) to (0.8, 0.7, 0.6, 0.5) results in a
substantial 29.7% increase in computational requirements, with FLOPs rising from 107.9G to 140.0G for Deformable DETR.
Concurrently, the AP metric exhibits a modest improvement (from 46.0% to 46.8%). This empirical evidence highlights a
critical trade-off: while higher retention ratios consistently enhance the overall performance, the marginal gain in accuracy
is disproportionately small compared to the significant increase in computational overhead. Based on a comprehensive
analysis of these metrics, we propose an optimized configuration strategy that carefully balances token selection ratios for
each model. This maximizes the efficiency-accuracy trade-off, ensuring optimal performance across all evaluation metrics
while maintaining computational feasibility.

Table 6: Performance comparison of different token retention ratios ρ on different models. We include the purple results in
Table 1.

ρ
D-DETR (Zhu et al., 2021) DINO (Zhang et al., 2022) DAB D-DETR (Liu et al., 2022) DN D-DETR (Li et al., 2022) H D-DETR (Jia et al., 2023)

AP FLOPs(G) AP FLOPs(G) AP FLOPs(G) AP FLOPs(G) AP FLOPs(G)

(0.4, 0.3, 0.2, 0.1) 46.0 107.9 49.9 132.6 45.4 120.1 47.5 128.4 49.1 123.6
(0.5, 0.4, 0.3, 0.2) 46.3 114.7 50.2 141.7 45.8 131.8 47.7 139.8 49.2 135.3
(0.6, 0.5, 0.4, 0.3) 46.5 122.9 50.5 159.3 46.1 146.2 47.9 154.5 49.4 149.6
(0.7, 0.6, 0.5, 0.4) 46.6 131.5 50.6 174.5 46.2 161.4 48.2 169.6 49.5 164.8
(0.8, 0.7, 0.6, 0.5) 46.8 140.0 50.8 189.5 46.3 176.4 48.3 184.7 49.7 179.8

Choice of Options for Token Aggregation. We demonstrate the optimal choices of token retention ratios on various models.
For consistency and convenience in further discussions, all subsequent experiments are conducted on DINO (Zhang et al.,
2022).

Table 7: Performance comparison across different experimental settings. All experiments are conducted on DINO. We
include the purple results in Table 1 and Table 6.

Method AP AP50 AP75 FLOPs(G)

Retain 49.7 68.2 53.8 141.7
Sum 49.9 68.5 54.1 141.7
Max 50.0 69.6 54.5 141.7
Mean 50.2 69.2 54.7 141.7

(a): Different token aggregation strategies.

T AP AP50 AP75 FPS FLOPs(G)

1 50.1 69.5 54.5 25.2 141.7
3 50.2 69.2 54.7 23.3 141.7
5 50.2 69.4 54.6 18.4 141.7
7 50.2 69.6 54.6 12.1 141.7
9 50.3 69.6 54.6 7.9 141.7

(b): The number of aggregation tokens.

λ AP AP50 AP75 FLOPs(G)

0.01 49.7 69.4 54.1 141.7
0.03 49.8 69.8 54.3 141.7
0.1 50.2 69.2 54.7 141.7
0.8 49.9 69.9 54.4 141.7
1 49.4 69.6 53.5 141.7

(c): Varying setups of the regularization coefficient λ.

As outlined in the Proximal Aggregation section, the tokens within each eligible patch are merged to form a super token,
which is retained at the bottom-right corner of the current patch. Subsequently we examine how various aggregation
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strategies affect model performance during unified representation generation, including: (a) Retain: Preserving the token
located at the bottom-right corner of n×n region; (b) Sum: Summing all tokens within the current patch; (c) Max: Indexing
the maximum value among all tokens within the current patch; (d) Mean: Calculating the average of all tokens within
the current patch. The results summarized in Table 7(a) demonstrate that all three merging strategies outperform the
non-merging baseline (Retain), highlighting the benefits of token aggregation for efficient modeling. Among these strategies,
Mean achieves the best performance, with 50.2% AP, 69.2% AP50, and 54.7% AP75. We attribute the superior performance
of Mean to its ability to evenly distribute information across tokens during aggregation. This approach preserves semantic
consistency while reducing redundancy, making it particularly effective for compressing token representations without
sacrificing discriminative power.

The Number of the Most Similar Tokens in Holistic Aggregation. We investigate the effect of varying the number of most
similar tokens, T , set to 1, 3, 5, 7, and 9. The results, shown in Table 7(b), indicate that propagating information into a larger
number of tokens generally enhances performance compared to using only one or three tokens. This improvement stems from
the robustness of distributing information across multiple tokens. Specifically, aggregating into multiple tokens mitigates
the impact of noise or erroneous information in individual tokens, as the other tokens are more likely to contain accurate
and complementary information. However, the performance gains become marginal when T exceeds 3. Additionally,
increasing T beyond this point causes a decline in inference speed, from 23.3 FPS to 7.9 FPS. Considering the trade-off
between effectiveness and efficiency, we select T = 3 as the optimal setting for the number of the most similar tokens in our
experiments.

Coefficient of Representational Center-distance Regularization Term. We analyze the effect of the regularization
coefficient λ in the representational center-distance regularization term on model performance. A range of λ values, from
0.01 to 1, is tested, and the results are summarized in Table 7(c). The results show that λ = 0.1 achieves the best balance
between representation alignment and model performance, resulting in an AP of 50.2%. When λ is set too high (e.g., λ =
0.8 or 1), the model becomes over-regularized, focusing too heavily on aligning representation centroids at the cost of
learning meaningful task-specific features, which leads to a decline in overall accuracy. On the other hand, when λ is too
low (e.g., λ = 0.01 or 0.03), the regularization effect is insufficient, leading to weak alignment between sparsified and
non-sparsified representations, which results in suboptimal sparsification performance. Based on these observations, we
select λ = 0.1 as the optimal value.

B. Additional Visualization
Due to the application of our multi-level token aggregation strategy across various stages, direct visual comparison with
existing coarse-grained token discarding approaches poses a challenge. To ensure a fair and interpretable evaluation, we
visualize the top 300 decoder queries extracted from the encoder outputs of the vanilla DINO model (Zhang et al., 2022),
Sparse DETR (Roh et al., 2022), and our proposed Dynamic DETR. These queries are directly responsible for the detection
results, as illustrated in Figure 6.

In Figure 6, selected decoder queries are visualized as yellow regions, while unselected tokens are marked in purple. Sparse
DETR predominantly focuses on inner areas of the most salient objects, effectively isolating them. However, it neglects
background regions and other objects that are critical for accurate detection, particularly at higher levels. In contrast, our
proposed Dynamic DETR incorporates a more comprehensive approach by preserving the intrinsic relationships among
tokens, leading to a token distribution that more closely resembles the original DINO. This alignment ensures that both
salient objects and essential contextual information are retained, enhancing the robustness and accuracy of the detection
process.
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Figure 6: Visualization of the Top-300 decoder queries from the encoder output. Note the selected queries are highlighted
with yellow.
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