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I. INTRODUCTION

Quadrotors are increasingly deployed into safety-critical
applications, such as drone delivery [3], security [5], and
even cinematography [2]. However, maintaining safety is
challenging in these applications due to unknown, varying
disturbances. In addition, it’s often advantageous to replace
conventional sensors (ex. GPS, LIDAR) with cheaper and
smaller visual sensors. However, visual sensors are vulnera-
ble to lighting changes and dynamic objects [12]. We must
develop systems that can reason around such disturbances and
uncertainties to guarantee real-time safety.

Safe control methods guarantee system safety, given that
assumptions made during problem setup (e.g., bounded dis-
turbances and bounded state uncertainties) hold. In particular,
exponential control barrier functions (ECBFs) enforce high
relative degree safety by guaranteeing forward invariance when
the system is already in a safe set [1]. While this technique has
shown success in safely controlling quadrotors in simulation
[14] and in heavily-controlled lab settings [15], there has been
limited experimentation in the real world. We extend the work
from [15], which uses ECBFs for safe teleoperation of quadro-
tors. To the best of the authors’ knowledge, this work presents
the first implementation of ECBFs on a quadrotor with fully
onboard computing and state estimation. With this platform,
we evaluate the robustness of ECBFs with actual flight tests
to identify key roadblocks in deploying such guaranteed safe
methods in the real world. Our main contributions are:

• implementation of ECBFs with fully onboard computing
and vision-based state estimation for avoiding virtual
obstacles, and

• extensive outdoor field experiments and analysis of key
failure points when deploying ECBFs in the real world.

Video of Flight Tests: https://youtu.be/1ohaMHlCmDA
Code: https://github.com/hocherie/cbf quadrotor

II. PROBLEM SETUP & CONTROL DESIGN

Overall Objective: Our objective is to maintain safety
while minimizing the intervention of a safe controller. We
define intervention as the difference between the applied (safe)
control inputs û and nominal control inputs u, ||û−u||2, which
becomes a cost function to minimize over given safe control
constraints (remaining in safe set).

Exponential Control Barrier Functions: Let Ct be the
safe set of states for a given dynamical system, and define the

Fig. 1: Timelapse of quadrotor with Exponential Control Barrier Functions
(ECBFs) enabled to avoid a virtual obstacle. The quadrotor follows a nominal
trajectory toward goal point (orange cone at top right) that would have passed
through obstacle without safe control. We use this setup to identify key failure
cases of deploying ECBFs in the wild.

Fig. 2: Overall block diagram. Given a nominal input, the proposed safe
controller computes a safe control input that satisfies constraints from a
predefined ECBF set. The final control input û∗ is then converted from
acceleration to desired roll and pitch angles for the quadrotor.

scalar function h(t, x) so that Ct = {x ∈ Rn|h(x, t) ≥ 0} for
all t > 0. h(t, x) is an ECBF for a system of relative degree
2 if the following conditions apply: a) h(t, x) is continuously
differentiable; b) a gain matrix K ∈ R2 exists such that the
poles of the system ḧ+K · [h(t, x) ḣ(t, x)] are on the negative
real line; and c) a control input u exists such that

ḧ(t, x, u) +K · [h(t, x) ḣ(t, x)]T ≥ 0,∀x ∈ Ct (1)

Assuming these conditions hold and initial conditions are such
that h(0) > 0, the set of possible inputs u are guaranteed to
maintain the safety of the system (that is, positive h(t, x)).

Control Design: Fig. 2 describes our method. The nominal
trajectory outputs a desired control input capped at 1m/s2; a
safe controller then calculates the closest input (acceleration)
that satisfies safety constraints defined by ECBF sets. Let r ∈
R2 be the position vector from robot to obstacle in the x-y
plane, and let u directly control r̈. Let K = [k1 k2]

T . The

https://youtu.be/1ohaMHlCmDA
https://github.com/hocherie/cbf_quadrotor


Fig. 3: Trajectories of all 16 flight tests with safe control enabled. Out of all
trials, 4 violated safety.

Failure
Case

Notes

F1 High wind gust. Large abrupt state estimation jump
from flying cone, safe control outputted 2000m/s2

away from obstacle. Manual takeover.
F2 Slight brush against obstacle (max penetration: 4cm).
F3 Small state estimation jump from flying cone, safe

control outputted 2m/s2 away from obstacle.
F4 Small state estimation jump into obstacle. Able to

recover.

TABLE I: Failed trials during real-life testing, with associated color in Fig.
3. The leading causes of failure are: sudden state estimation error, wind/gusts
and response delay in roll and pitch angle, further analyzed in discussion.

final safe control û∗ is from

û∗ = argmin
ui

||û− u||2; s.t. ḧ+K · [h ḣ]T ≥ 0 (2)
where ḧ is affine in u. Similarly to [15], we choose a
superellipsoid to represent obstacles in our safety index h, with
a safety buffer based on size of the quadrotor and tracking
error. Details on safe set formulation can be found in the
appendix.

III. EXPERIMENTAL RESULTS

1) Experimental Setup: Field tests were conducted on a DJI
M100 quadrotor with an Intel T265 for state estimation. All
processing is done with an Intel i7 NUC. A virtual obstacle is
given, with cones and physical obstacles for easy visualization.
Final desired roll and pitch angle to quadrotor is capped at 30o.

2) Results: We conducted 16 trials with multiple start and
goal points with a virtual obstacle to test the robustness of our
ECBF implementation. Fig. 3 overlays all trajectories, with
highlighted paths for trials that violated safety. Table I details
these failure cases. Detailed results of failure cases can be
found in the appendix.

IV. DISCUSSION AND POTENTIAL SOLUTIONS

We identified three key reasons for ECBF failures in the real
world from our flight tests, and propose potential solutions and

recent works that may address these.
Sudden State Estimation Error: Visual Inertial Odometry
(VIO) is especially vulnerable to dynamically-changing envi-
ronments. In several trials with safety violations, state esti-
mation jumps abruptly into the obstacle when objects within
the view changed (e.g. cones flying away from quadrotor
turbulence). In F1, the safety index h became negative and
the drone abruptly commanded a high acceleration away from
the obstacle, necessitating a manual takeover to keep operators
safe. Flight tests were run under conditions normally ideal for
VIO. In conditions with higher lighting variation, such as a
partly cloudy day where the sun may be briefly occluded, the
errors may be much worse, compounding the problem.

To retain safety in real-world conditions, a potential method
is including state estimation uncertainty (i.e., covariance) in a
stochastic CBF framework [7, 4]. The proposed change can
be robustly tested in TartanAir [12], a photo-realistic dataset
that contains challenging light conditions, weather and moving
object to stress test vision-based state estimation algorithm.

Exogenous Disturbance - Wind/Gust: During real world
testing, the system was subjected to varying wind conditions
(up to 10km/h wind). As the model assumed no exogenous dis-
turbance, the computed acceleration is only dependent on the
current robot position and velocity. Therefore, the computed
control is not able to counteract the wind. One can account for
estimated exogenous acceleration in the CBF framework, such
as with an L1 Adaptive Controller as used in [8] for Control
Lyapunov Functions. Alternatively, provably safe planning
methods such as FasTrack [6] guarantee safety, using worst-
case scenarios from bounded disturbances as safety buffers.

Response delay in roll, pitch: We assume the system
response is affine to the commanded acceleration. However, in
reality, there is a delay in the order of 0.1s in the acceleration
response to the drone. One could use a discrete formulation
for the safe control calculation that also includes the maximum
expected delay, or as in [9] accounting for an estimated delay.

V. CONCLUSION

We tested the robustness of Exponential Control Barrier
Functions (ECBFs) with outdoor flight tests on a quadrotor
with fully onboard computing and state estimation. Field
testing showed that a safe controller that performs well under
the assumed model (perfect state estimation, no time delay,
and little to no disturbances) will fail when these assumptions
are violated. A number of recent works are aimed towards
relaxing these assumptions for CBFs, such as by incorporating
stochasticity [7, 4], accounting for disturbances in an adaptive
framework [10], or using a discrete formulation to account for
an estimated delay [9]. As robots are increasingly deployed
into more challenging situations, there is a growing need for
common benchmarking frameworks, such as the one presented
in [13], that replicate real life scenarios to robustly test safe
control algorithms.
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APPENDIX

A. Safe Set Design - Superellipsoids

As done in [15], we choose a superellipsoid to represent
obstacles in our safety index h. A safety buffer ds based on
the size of the quadrotor and tracking error is incorporated
into h, resulting in the safety set and ECBF as follows:

C = {ri|h(r)}, i = 1, 2; h(r) =

(
r1
a1

)n

+

(
r2
a2

)n

− ds

(3)
where ai describe the size of obstacles and n describes
the shape. As n increases, the shape of the bounding box
becomes less circular and more rectangular; we choose n = 4
(as in [11]) to represent a rounded rectangular prism. Re-
arranging Eq. 3, we replace the constraint equation in Eq.
2 with Au ≤ b , where A =

[
−4r31
a4
1

−4r32
a4
2

]
and b =∑2

i=1

[(
12r2i ṙi

2

a4
i

+ k1
r4i
a4
i
+ k2

4r3i ṙi
a4
i

)]
− ds.

B. Failure Cases

Figs. 4-7 show detailed results from the four trials where
safety is violated.

(a) Robot trajectory.

(b) Position, safety index h, and control over time.

(c) Distance from safe set (where negative values indicate
collision) over time. Maximum penetration was 0.9306 meters.

Fig. 4: Summary plots of the failed trial F1.



(a) Robot trajectory.

(b) Position, safety index h, and control over time.

(c) Distance from safe set (where negative values indicate
collision) over time.

Fig. 5: Summary plots of the failed trial F2.

(a) Robot trajectory.

(b) Position, safety index h, and control over time.

(c) Distance from safe set (where negative values indicate
collision) over time.

Fig. 6: Summary plots of the failed trial F3.



(a) Robot trajectory.

(b) Position, safety index h, and control over time.

(c) Distance from safe set (where negative values indicate
collision) over time. Maximum penetration of set was 0.3538
meters.

Fig. 7: Summary plots of the failed trial F4.
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