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Abstract

Multi-modal image segmentation faces real-world deployment challenges from
incomplete/corrupted modalities degrading performance. While existing methods
address training-inference modality gaps via specialized per-combination mod-
els, they introduce high deployment costs by requiring exhaustive model subsets
and model-modality matching. In this work, we propose a unified modality-relax
segmentation network (UniMRSeg) through hierarchical self-supervised compen-
sation (HSSC). Our approach hierarchically bridges representation gaps between
complete and incomplete modalities across input, feature and output levels. First,
we adopt modality reconstruction with the hybrid shuffled-masking augmentation,
encouraging the model to learn the intrinsic modality characteristics and generate
meaningful representations for missing modalities through cross-modal fusion.
Next, modality-invariant contrastive learning implicitly compensates the feature
space distance among incomplete-complete modality pairs. Furthermore, the pro-
posed lightweight reverse attention adapter explicitly compensates for the weak
perceptual semantics in the frozen encoder. Last, UniMRSeg is fine-tuned under
the hybrid consistency constraint to ensure stable prediction under all modality
combinations without large performance fluctuations. Without bells and whistles,
UniMRSeg significantly outperforms the state-of-the-art methods under diverse
missing modality scenarios on MRI-based brain tumor segmentation, RGB-D se-
mantic segmentation, RGB-D/T salient object segmentation. The code will be
released at https://github.com/Xiaoqi-Zhao-DLUT/UniMRSeg.

1 Introduction

Visual multi-modal image segmentation has become a cornerstone in critical applications such
as autonomous driving [9], medical diagnostics [23], and robotics [67], where complementary
visual cues (e.g., RGB-D, MRI sequences) improve scene understanding. Advanced hybrid CNN-
Transformer [14, 46, 39, 79, 68, 40], global-local attention [64, 66, 81, 82, 84, 78, 75, 41], multi-
scale [38, 36, 37, 83], dynamic convolution [35, 77, 76] techniques have achieved remarkable success
under idealized settings with complete modalities. However, real-world scenarios often suffer from
incomplete modality inputs due to sensor failures, low-quality data and clinical constraints. For
example, although it is ideal to use four complementary MRI modalities—fluid-attenuated inver-
sion recovery (Flair), contrast-enhanced T1-weighted (T1ce), T1-weighted (T1), and T2-weighted
(T2)—for brain tumor diagnosis, variations in scanning protocols and patient conditions may limit
the ability to obtain all MRI scans.
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Figure 1: Top: UniMRSeg has a unified framework and parameters within each segmentation task to
handle 21 modality combinations (RGB-Depth: 3, RGB-Thermal: 3, MRI: 15). Bottom: Box plots
compare UniMRSeg with existing methods across four benchmarks, displaying average performance
(red dots) and standard deviation (error bars).

Recent research on addressing missing modalities falls into two main challenges. Firstly, most meth-
ods [71, 58, 72, 80] focus on designing adaptable cross-modal interaction to amalgamate multi-modal
features while preserving generalizable architectures for single-modal scenarios. However, during
inference, diverse modality combinations require separate model parameters [71, 58] or independent
encoder parameters [69, 74], which not only increase resource consumption in practical deployment
but also necessitate additional manual or automatic modality classification as a prerequisite. Although
some works [25, 8] leverage the knowledge distillation from complete to incomplete modalities, they
still demand multiple models for each modality subset, complicating clinical deployment. Secondly,
modality reconstruction-based methods [80, 69, 25, 85] aim to predict missing modality inputs to
align features during training and inference. Since segmentation requires precise spatial features and
boundary information, the pre-trained reconstruction model prioritizes global feature compression,
resulting in insufficient feature representation. Therefore, it is difficult to directly inherit the ability
to reduce the modality gap obtained by input-level [80, 25] or feature-level [69, 85] reconstruction
for downstream tasks (i.e., image segmentation). In particular, cascading low-quality reconstruction
predictions [25] as input to the segmentation network will increase error propagation and degrade
performance.
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Figure 2: Illustration of the hierarchical compensation.

In this paper, we propose a unified
modality-relax segmentation frame-
work (UniMRSeg). As shown in
Fig. 1, UniMRSeg shares 100% of its
parameters across all possible modal-
ity input combinations in a given
segmentation task. Since complete
modality inputs typically yield the
best prediction, our goal is to ensure
that UniMRSeg, after training, can ap-
proach complete modality represen-
tation quality during inference with
arbitrary modality inputs. To achieve this, we fully exploit the power of self-supervision [1, 16, 4, 57]
in representation learning and propose a hierarchical compensation mechanism that operates at
the input level, feature level, and output level, as shown in Fig. 2. First, we adopt cross-modal
reconstruction as a pretext task. Unlike previous methods [80, 2] that either discard complete modal-
ities or employ partial masking strategies, our approach simultaneously applies global and local
masking mechanisms. This dual masking design enables the model to capture both fine-grained local
patterns and holistic semantic representations from intra-modality and cross-modality interactions.
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Furthermore, we introduce a channel-wise modality shuffling operation that deliberately breaks the
correspondence between input and reconstructed modalities. This operation implicitly formulates a
modality classification task, compelling the model to disentangle modality-specific characteristics
while eliminating dependence on modality category priors during inference. Next, we leverage
contrastive learning to finish the feature-level compensation. Specifically, we construct complete
and randomly missing modalities from the same sample as positive pairs, and those from other
samples as negative pairs. To enhance the inheritance of representation for downstream segmentation
tasks [33, 7], we jointly optimize the spatial distance metric and object segmentation at this stage to
guide feature clustering in a direction that is beneficial for the results of the segmentation. Consid-
ering the inevitable prediction errors in the aforementioned pixel-level reconstruction and feature
contrast learning, they may still limit the boundaries of the compensation mechanism. Inspired by
adapter-based methods [26, 5, 61], we design a lightweight reverse attention adapter to explicitly
compensate for weak perceptual semantics in the frozen encoder, while embedding a 3D Swin
Transformer [28, 52] to capture high-response mutual attention patterns across modalities. By adding
feature-level consistency constraints, we ensure that the adapter is aware of the partial representation
defects inherent in any missing modal combination. Last, UniMRSeg is fine-tuned by enforcing
segmentation consistency constraints, and the knowledge presented by the complete modality at the
output will be distilled to all missing modality combinations as supervision information. Through the
hierarchical three-level compensation strategy, UniMRSeg achieves optimal average performance,
the highest full-modality performance, and minimal performance variance, as shown in Fig. 1.

Our main contributions can be summarized as follows:

• We propose a unified framework, i.e., UniMRSeg, with one set of parameters adapting to varying
modality-missing scenarios for general multi-modal segmentation.

• We integrate pixel-level modality reconstruction, feature-level contrastive learning, and prediction-
level label distillation to construct a hierarchical annotation-free compensation mechanism, breaking
through the previous isolated self-supervised research paradigm.

• Benefiting from the reverse attention adapter, UniMRSeg can explicitly obtain the compensation
about difficult regions with weak perception of the complete modality, aligning missing and
complete modality representations.

• Extensive comparisons conducted on brain tumor, salient object and semantic segmentation tasks
in MRI (15 combinations), RGB-D (3 combinations), and RGB-T (3 combinations) modalities
across 2D and 3D images within medical and natural scenes, show that our method consistently
achieves the best performance in all individual modality combinations while attaining superior
average accuracy with minimal standard deviation.

2 Related Works

2.1 Incomplete Multi-modal Image Segmentation

There are three popular research patterns to handle missing modalities situations. I) Generalizable
Architectures. Some methods [58, 71, 73] aim to fully integrate multi-modal features while min-
imizing structural modifications in single-modal scenarios. CMX [71] introduces a cross-modal
interaction attention mechanism that combines both the CNN and Transformer. Tokenfusion [58]
focuses on efficient token-based fusion, pruning multiple single-modal Transformer and repurposing
the pruned units for multi-modal fusion. II) Projection-based Methods. Hetero [11] and HeMIS [15]
perform arithmetic operations (e.g., averaging) in the projected space to obtain the final segmentation
result. SFusion [30] proposes a self-attention-based fusion block, where extracted features from
available modalities are projected as tokens and processed through a self-attention layer to capture
cross-modal relationships. III) Reconstruction Strategies. M3AE [25] refines the segmentation
network by reusing the reconstructed modality images as inputs for fine-tuning. MaskMentor [85]
and SSLSOD [80] treat modality reconstruction as a pre-training representation task, where missing
and complete modalities share weights for joint training. Zeng et al. [69] enforce consistency between
missing modality feature reconstruction and complete modality features at the token level. Different
from them, we aim to achieve a simple yet efficient architecture while completing the comprehensive
compensation of multi-modal and multi-combinatorial representations with unified parameters by
constructing multi-granularity self-supervised tasks that are not limited to pixel/token-level recon-
struction.
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2.2 Self-supervised Learning

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations
without relying on manual annotations. Three principal SSL mechanisms dominate current research:
I) Mask-based SSL involves training models to predict missing or masked parts of an input. Early
image inpainting works [42, 70] evolved into modern masked autoencoders [16, 60] using high-ratio
masking and asymmetric encoder-decoder architectures to various visual tasks, including image
segmentation, depth estimation, and low-level image restoration. II) Contrastive learning encourages
models to bring similar data points closer while distancing dissimilar ones. SimCLR [4] establishes
data augmentation principles with momentum encoders, while MoCo series [17, 6] address negative
sample scarcity through dynamic queues. CLIP [44] leverages cross-modal contrastive learning to
embed images and text into a unified semantic space, enabling zero-shot transfer capabilities and
providing a universal representation foundation for multi-modal tasks like medical image retrieval
and caption generation. III) Knowledge distillation [19] transfers supervision via teacher-student
paradigms. In image segmentation, Chen et al. [49] propose to normalize the activation map
of each channel to obtain a soft probability map. For cross-modal scenarios, Gupta et al. [13]
transfer supervision from labeled RGB images to unlabeled depth and optical flow images. Existing
studies usually develop these paradigms in isolation. We hope to take the incomplete multi-modal
image segmentation task as an opportunity to effectively combine these three different levels of
self-supervision techniques and demonstrate their synergy.

3 Approach

Preliminaries. In this section, we adopt the MRI-based brain tumor segmentation with the T1, T1ce,
T2 and Flair modalities as the targeted task to describe the proposed multi-stage learning framework.
Let I ∈ R1×H×W×T be the input modality-specific sequence with T slices for the model, where 1,
H , and W are the channel, height, and width of the slice. The final model generates the segmentation
tensor P ∈ RN×H×W×T , where each channel corresponds to a specific class and indicates the
probability of each spatial-temporal location being assigned to that class.

Multi-stage Learning Framework. Our framework aims to bridge the performance gap between
complete and incomplete multi-modal inputs through three-stage progressive learning, specifically
designed to empower flexible handling of diverse missing modality scenarios while maintaining
segmentation robustness. The overall pipeline is shown in Fig. 3. The basic models in all stages
follow a unified 3D U-Net-style [45] encoder-decoder structure and embed a 3D ASPP [3] with
dilation rates of [1, 6, 12, 18] into the high-level feature. The following sections elaborate on the
technical specifics of each learning stage.

3.1 Multi-granular Modality Reconstruction

This stage emphasizes enhancing the representation capabilities under diverse potential input-side
missing modality scenarios. Existing work [16] has demonstrated that effective data perturbations
facilitate learning more robust representations. To encourage the model to mine implicit contextual
relationships across modalities, this stage integrates three strategies, including modality dropout,
modality shuffle and spatial masking, to enable multi-granular information reconstruction.

Data Perturbation. For the complete multi-modal input, we first apply the random modality
dropout strategy to randomly discard some modalities with a 50% probability and generate the
output. And it also preserves at least one modality, thus retaining the fundamental information for
overall reconstruction. Furthermore, we randomly shuffle the order of remaining modalities, which
mitigates the model’s reliance on fixed modality order and further decouples modality-agnostic repre-
sentations from their inherent sequential dependencies in existing paradigms [85, 25]. Additionally,
the following spatial masking strategy randomly masks a portion of the input data, thus simulating
missing effects within the sequences from available modalities.

Data Reconstruction. We input these remaining perturbed samples into the 3D U-Net-based
reconstruction network, and obtain the output through a ReLU function. The normalized slices from
the original complete modalities are used as reconstruction objectives based on the combination loss
of L1 and SSIM [59], thus overall achieving self-supervised pre-training in the first stage.
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Figure 3: Multi-stage learning framework built on our encoder-decoder network. Stage 1: complete
modality reconstruction based on multi-granular random perturbations. Stage 2: modality-invariant
contrastive learning for enhancing incomplete-modality representation. Stage 3: incomplete modality
adaptive fine-tuning via hybrid consistency constraints.

3.2 Modality-invariant Contrastive Learning

The core idea behind this stage is to implicitly compensate for the feature biases introduced by
missing modalities through contrastive learning.

Representation Construction. Without loss of generality, we consider a batch containing two input
samples with complete modalities, i.e., I1 and I2. By applying random modality dropout to each
of them while ensuring at least one and at most three modalities remain active, we can obtain two
extended samples (Î1 and Î2) with missing modalities. And then, we initialize the segmentation
model by load the weights of the first stage except for the last output layer. {I1, Î1, I2, Î2} are then fed
into the segmentation model to extract multi-level encoder features and generate the final predictions
{P1, P̂1, P2, P̂2}, respectively. After the global average pooling, those features are converted into
four vector sets {f i

1}5i=1, {f̂1}5i=1, {f2}5i=1, and {f̂2}5i=1, respectively. They are utilized for the
following representation contrastive learning.

Contrastive Learning. The aforementioned representation vectors are utilized to construct positive-
negative sample relationships. And we introduce the NT-Xent loss [4] in each feature level to
minimize distances between positive pairs and maximize separation of negative pairs. Specifically, for
the ith level, positive pairs are from the same input sample and its augmented variant, i.e., Iik and Îk
(k ∈ {1, 2}). Negative pairs are from distinct input sources, e.g., (I1, I2) and (I1, Î2). Considering
the vector set f i = {f i

1, f̂
i
1, f

i
2, f̂

i
2}, we can calculate the NT-Xent loss as follows:

li(u, v) = − log
exp(sim(f iu, f

i
v)/τ)∑2B

k=1 I[k ̸=i] exp(sim(f iu, f
i
k)/τ)

(1)

LNT-Xent =

5∑
i=1

B∑
k=1

li(2k − 1, 2k) + li(2k, 2k − 1)

2B × 5
(2)

where B = 2 and sim are the batch size and the cosine similarity. I[k ̸=i] is an indicator function
that results in 1 when k ̸= i otherwise 0. Such a contrastive learning encourages the model to learn
modality-invariant representations, focusing on the underlying target semantic features rather than
being biased by modality-specific characteristics.
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Segmentation Constraint. The common Dice loss lDice is used to supervise the segmentation
predictions as follows:

LDice =
1

B

B∑
k=1

∑
P∈{Pk,P̂k}

lDice(P,Gk) (3)

It is worth noting that despite applying the contrastive learning, the segmentation constraint is also
necessary to guide the encoder’s representation learning. This ensures the learned features are
optimized and aligned for our ultimate objective, i.e., the segmentation task.

3.3 Incomplete Modality Adaptive Fine-tuning

Due to potential errors in the reconstruction from the first stage and the positive-negative sample
distance control in the second stage, we introduce the following adaptive fine-tuning guided by
the complete modalities to dynamically compensate for these representation errors. As shown in
Fig. 3, our framework implements parallel pipelines to handle complete modality samples and their
all potential incomplete counterparts (14 valid variants for 4 MRI modalities). The model directly
generates the ideal intermediate features {F i}5i=1 and segmentation prediction P as the reference from
complete modality samples via the forward propagation. And its prediction P is supervised by the GT
mask using the Dice loss. The incomplete samples additionally require targeted optimization through
lightweight adapters {Ai}5i=1, which progressively aligns their features {F̂ i}5i=1 and prediction P̂
with those references. To maintain the representation capabilities pre-trained from the first two stages,
we freeze the entire encoder during this stage and only fine-tune the decoder and adapters.

Reverse Attention Adapter. Taking the ith encoder stage as an example, we attach the adapter
component to the frozen encoder stage Ei. In the feature propagation path for incomplete multi-modal
samples, the feature F̂ i−1 from the previous encoder layer is first processed by Ei to obtain the
base features F̂ i

cp. Meanwhile, F̂ i−1 also undergoes 3D convolutions and output the initial adaptive
feature F̂ i

ada−in, which is then integrated with F̂ i
cp via element-wise addition and sequential 3D

convolutions. The generated feature F̂ i
h is fed into a 3D Swin Transformer [29] block to establish

global contextual correlations between the F̂ i
cp and F̂ i

ada−in. And then the global average pooling is
applied across channel and sequence dimensions, followed by the sigmoid to generate the mutual
attention. We hope to capture the difficult semantic parts that cannot be perceived by the first two
stages and then compensate F̂ i

cp. Therefore, we apply the reverse operation to the mutual attention
map and generate the reverse attention map. And it is multiplied to F̂ i

h and generate the adapted
feature F̂ i

ada, which highlights differential information between modality-complete and -incomplete
representations. Finally, the sum F̂ i of F̂ i

ada and F̂ i
cp replaces original F̂ i

cp as the real input to the
subsequent process. The roles played by the above features need to be activated with the help of
feature-level consistency constraints.

Hybrid Consistency Constraints. The consistency constraint process depicted in Fig. 3 involves the
levels of encoder features and final predictions. For the feature-level consistency, we compare the
intermediate features {F i}5i=1 from modality-complete samples and {F̂ i}5i=1 compensated by the
adapter from modality-incomplete samples:

Lfc =
1

B

B∑
k=1

M∑
m

1

5

5∑
i=1

∥F i
k − F̂ i

k,m∥1 (4)

where M denotes the number of potential valid modality-incomplete samples and it is 14 in our MRI
experiments. Besides, the prediction-level consistency between the predicted segmentation maps
from modality-complete and -incomplete samples can be formulated by:

Lpc =
1

B

B∑
k=1

M∑
m=1

lDice(P
i
k, P̂

i
k,m) (5)

By accumulating these consistency constraints, the parameters of the decoder and adapters are
jointly optimized to minimize the difference between the representations from modality-complete
and -incomplete samples.
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Table 1: Quantitative comparison of brain tumor segmentation on BraTS2020 [32]. ↑ and ↓ indicate
that the larger scores and the smaller ones are better, respectively. Note: Official implementations
are used when available. All methods are evaluated under a unified missing modality setting when
possible. Some methods use different training data and lack released code, making exact re-training
infeasible. Extended results under various settings are in the Appendix.

Dice score(%)Modality
Whole Tumor (Whole) Tumor Core (Core) Enhancing Tumor (Enhancing)

Flair T1 T1ce T2 NestedFormer SFusion ShaSpec PASSION UniMRSeg NestedFormer SFusion ShaSpec PASSION UniMRSeg NestedFormer SFusion ShaSpec PASSION UniMRSeg
[63] [30] [55] [48] [63] [30] [55] [48] [63] [30] [55] [48]

◦ ◦ ◦ • 23.22 58.54 63.10 64.83 75.14 8.26 37.20 42.83 50.36 56.31 2.31 16.34 22.15 30.23 35.19
◦ ◦ • ◦ 24.61 60.82 57.31 60.92 68.87 27.40 45.19 54.59 54.78 79.20 35.85 44.34 64.93 69.12 79.20
◦ • ◦ ◦ 8.15 55.69 55.40 54.10 60.41 6.77 29.84 34.26 39.93 45.70 3.55 14.13 18.23 22.13 28.70
• ◦ ◦ ◦ 61.18 74.25 79.54 77.35 85.33 34.01 43.23 52.74 50.27 61.81 29.84 30.92 37.40 39.60 45.61
◦ ◦ • • 47.22 72.91 70.60 75.82 81.64 40.02 71.82 75.93 80.35 82.01 49.13 66.18 74.23 79.03 79.58
◦ • • ◦ 40.87 60.30 67.58 67.90 72.98 52.34 75.62 78.92 79.85 84.60 56.87 66.09 77.13 78.32 80.23
• • ◦ ◦ 70.54 84.40 80.23 82.39 86.22 42.84 64.31 60.20 60.55 67.90 33.61 36.53 48.08 46.05 51.14
◦ • ◦ • 22.77 67.35 72.40 77.71 77.98 13.16 42.92 52.80 51.60 59.71 7.26 32.29 36.02 33.42 41.49
• ◦ ◦ • 59.18 83.71 85.31 86.64 87.78 32.42 55.62 63.53 52.87 70.00 29.40 32.09 43.52 43.34 53.12
• ◦ • ◦ 58.57 84.90 82.80 85.74 87.96 43.91 73.30 76.52 78.94 85.71 54.05 69.48 77.28 79.08 81.59
• • • ◦ 76.67 80.52 84.12 85.42 86.91 63.12 77.30 79.34 80.38 85.92 69.73 74.36 76.02 78.12 81.28
• • ◦ • 73.00 78.90 81.13 81.31 85.50 42.25 63.62 61.93 63.95 67.43 32.44 30.03 39.89 43.60 49.57
• ◦ • • 74.30 80.65 83.20 83.52 87.51 60.04 76.28 78.93 79.92 82.78 64.47 70.02 74.68 79.09 80.50
◦ • • • 58.77 70.52 74.36 76.31 76.57 60.32 78.48 80.65 82.36 84.92 69.46 67.18 73.39 76.04 77.15
• • • • 81.07 84.92 85.02 85.90 88.74 67.02 78.84 84.26 84.75 86.01 73.78 72.09 75.59 80.72 82.18

Average ↑ 52.01 73.23 74.81 76.39 80.64 39.59 60.90 65.16 66.06 73.33 40.78 48.14 55.90 58.53 63.10
Std Dev ↓ 23.09 10.47 10.08 10.07 8.43 19.53 17.07 15.45 15.34 13.04 24.20 21.80 21.62 21.84 19.86

Table 2: Quantitative comparison of segmentation performance across RGB, Depth and Thermal
modalities.

Modality RGB-D Salient Object Segmentation (STERE [34]) RGB-T Salient Object Segmentation (VT1000 [54]) RGB-D Semantic Segmentation (SUN-RGBD [50])

RGB Depth/Thermal SSLSOD CAVER PopNet GateNet UniMRSeg SSLSOD LSNet CAVER CONTRINET UniMRSeg TokenFusion CMX CMXNeXt MaskMentor UniMRSeg
[80] [39] [62] [82] [80] [86] [39] [51] [58] [71] [72] [85]

• ◦ .846 .825 .916 .844 .918 .784 .698 .720 .735 .847 48.1 49.6 48.6 49.8 51.7
◦ • .732 .614 .645 .653 .839 .894 .837 .861 .854 .911 40.6 42.9 41.0 41.2 47.3
• • .885 .917 .917 .919 .923 .930 .924 .936 .929 .938 51.0 52.4 51.9 53.0 53.2

Average ↑ .821 .785 .826 .805 .893 .869 .820 .839 .839 .899 46.6 48.3 47.2 48.0 50.7
Std Dev ↓ .080 .155 .157 .137 .047 .076 .114 .110 .098 .047 5.4 4.9 5.6 6.1 3.1

4 Experiments

4.1 Datasets and Metrics

In this work, we conduct experimental comparisons on four popular visual multi-modal image seg-
mentation tasks to show the generalizability of the proposed method. I) Brain Tumor Segmentation.
We follow most brain tumor segmentation methods [22, 63, 10, 30] use the BraTS2020 dataset [32],
which contains 369 images with four modality scans: T1ce, T1, T2, and Flair, along with three
annotated regions: enhancing tumor, tumor core, and whole tumor, which are mutually inclusive.
The dataset is split into training (315), validation (17), and test (37) sets. II) RGB-D Salient Object
Segmentation. We adopt the same training set as most methods [80, 82, 39], i.e., 1,485 samples from
the NJUD [20] and 700 samples from the NLPR [43]. The test dataset is STERE [34], which contains
1,000 RGB and depth image pairs with complex scenes. III) RGB-T Salient Object Segmentation.
We follow the setting of recent works [39, 86, 51], the training set only contains the 2,500 samples
from VT5000 [53] and adopt the VT1000 [54] as the test set which contains 1,000 pairs of RGB-T
images including more than 400 kinds of common objects collected in 10 types of scenes under
different illumination conditions. IV) RGB-D Semantic Segmentation. SUN-RGBD [50] is the
popular indoor scene benchmark with 37 classes. It contains 10,335 pairs of RGB-D images, with
5,285 pairs allocated for training and 5,050 for testing. We introduce some widely used metrics in
each field for fair evaluation, including Dice for brain tumor segmentation, S-measure [12] (Sm) for
salient object segmentation and IoU for semantic segmentation.

4.2 Implementation Details

All experiments are conducted on one NVIDIA A800 GPU. We adopt basic image augmentation
techniques to avoid overfitting, including random flipping, rotating and border clipping. We train
the model for 300 epochs based on the AdamW optimizer [31] with a warmup schedule, an initial
learning rate of 0.0001, and a weight decay of 0.00001. For RGB-D and RGB-T tasks, we concatenate
the inputs into a 4-channel tensor to maintain the single-stream architecture. For fair comparison, we
separately adopt ResNet-50 [18] and ConvNext-B [27] as the backbone for RGB-D/T salient object
segmentation and RGB-D semantic segmentation, which are widely used in their respective fields.
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Figure 4: Qualitative comparisons of predictions from different methods across different modality
combinations. Best viewed on screen.
4.3 Evaluation

Quantitative Results. We conduct thorough comparisons on all the four tasks, as shown in Tab. 1
and Tab. 2. All these models are either directly tested for performance or retrained based on their
publicly released code. To simulate missing modalities in practice and keep consistent with training,
we fill missing modalities in MRI with zero pixel values and directly copy other existing modalities to
complete the dual input of any missing modality in RGB-D and RGB-T tasks. In addition, we follow
some methods with depth estimation functions [80, 62, 85] to cascade the intrinsic depth predictor
as the input of the models for RGB-D salient object segmentation and RGB-D semantic segmentation
tasks. It can be seen that our proposed UniMRSeg achieves excellent performance on all tasks with
the best average performance and lowest standard deviation. These high accuracy, strong robustness
and generalization capabilities across multiple modalities show its potential as a unified, reliable, and
efficient segmentation framework.

Qualitative Results. In Fig. 4a, PASSION [48] exhibits significant prediction fluctuations for
enhancing tumor (blue) and tumor core (red) under missing modalities, while UniMRSeg maintains
highly consistent predictions aligned with ground truth. T1 and Flair modalities notably degrade
PASSION’s boundary discrimination for whole tumor (green), revealing mutually exclusive fusion
deficiencies. In Fig. 4b, UniMRSeg achieves precise door segmentation (red) by fusing color and
geometric features across RGB/RGB-D modes, whereas CMX [71] fails completely with depth-only
inputs. Leveraging spatial topology of chairs, UniMRSeg robustly segments blurred wall-adjacent
boxes using pure depth data, demonstrating superior shape reasoning. Fig. 4c shows PopNet [62]
produces identical spherical predictions in RGB/RGB-D modes via embedded depth prediction,
but degenerates to depth map binarization without RGB. In contrast, UniMRSeg reconstructs RGB
semantics from depth and fuses cross-modal features to accurately segment humans and spheres.
Fig. 4d verifies thermal modality’s advantage in resolving RGB’s color-similarity-induced sticking
issues. Remarkably, UniMRSeg achieves complete target segmentation using thermal data alone.

4.4 Ablation Study

In this section, we show the effectiveness of each component on the brain tumor segmentation
task with the most complex modality combination. The baseline model is 3D-UNet without any
pre-training.

Each Components. As shown in Tab. 3, the three data perturbations in stage 1 demonstrate the
effectiveness of learning intra- and inter-modal features for multi-granular reconstruction. Their
accumulation during pre-training leads to over 14.7% performance gain over the baseline in subse-
quent segmentation. Stage 2 highlights the importance of jointly training the segmentation decoder
and the encoder guided by spatial distance clustering, which promote each other. Stage 3 further
optimizes cross-modal alignment through reverse attention adapters and prediction-level consistency
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Table 3: Ablation study of each component.

Average Dice score(%)Models Whole Core Enhancing
Baseline 63.31 51.60 38.40
Stage 1: Multi-granular Modality Reconstruction (Sec. 3.1)
+ Random Modality Dropout 66.98 55.47 42.25
+ Random Modality Shuffle 67.78 56.85 44.17
+ Random Spatial Masking 69.35 59.89 47.12
Stage 2: Modality-invariant Contrastive Learning (Sec. 3.2)
+ Contrastive Learning (Encoder) 72.45 64.02 51.45
+ Segmentation Constraint (Decoder) 74.53 65.25 53.97
Stage 3: Incomplete Modality Adaptive Fine-tuning (Sec. 3.3)
+ Feature-Level Consistency (Adapter) 78.12 69.38 59.25
+ Prediction-Level Consistency (Segmentation) 80.64 73.33 63.10
Three-Stage Design vs. Unified Single Stage
Three-Stage Design 80.64 73.33 63.10
Unified Single Stage 20.32 13.67 10.03

Table 4: Ablation study of the reverse atten-
tion adapter.

Average Dice score(%)Models Whole Core Enhancing
UniMRSeg 80.64 73.33 63.10
w/o Rervese Attention 78.28 69.26 60.45
w/o Rervese Attention+Mutual Attention 78.12 68.98 60.23
w/o 3D Swin Transformer+Rervese Attention+Mutual Attention 77.44 68.74 59.24
Fine-tune Encoder in Stage 3 77.05 68.15 58.20

Table 5: Evaluation of different compensa-
tion levels.

Input Level Feature Level Output Level Average Dice score(%)
(Stage 1) (Stage 2 and Adapter) (Segmentation Consistency) Whole Core Enhancing

✓ - - 69.35 59.89 47.12
- ✓ - 72.46 62.30 50.92
- - ✓ 69.47 57.25 48.31
✓ ✓ - 78.12 69.38 59.25
✓ - ✓ 74.45 66.40 54.38
- ✓ ✓ 75.65 67.48 54.95
✓ ✓ ✓ 80.64 73.33 63.10

Baseline 63.31 51.60 38.40
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Figure 5: Average response value of feature maps of each encoding layer under different modal
combinations at different stages.

constraints. The latter alone surpasses the stage 2 decoder by 12.0%, showing the importance of
enforcing prediction consistency across modalities. Gains in each stage are consistently and gradually
improved, with the final model outperforming the baseline by over 44.6% on average.

Three-Stage Design vs. Unified Single Stage. UniMRSeg is built upon a self-supervised pretraining
framework, with training initialized from scratch starting at Stage 1. For each task (e.g., BraTS 2020),
self-supervised training is conducted solely on the task’s own training set, rather than relying on
externally labeled datasets such as ImageNet-pretrained weights for initialization. Our three-stage
design includes: 1) Pretrain both the encoder and decoder through arbitrary modality reconstruction.
2) Pretrain the encoder with contrastive learning. The segmentation task here is only used to guide
the contrastive objective, not as a final goal. 3) Perform the downstream segmentation task. In this
way, our three-stage design explicitly aims to reduce the representation gap between complete and
incomplete modalities in the encoder-decoder space during the final segmentation stage. If all these
tasks are trained jointly in a single-stage model, it would fall into the scope of multi-task learning,
rather than self-supervised pretraining.

In multi-task learning, the goal is to leverage multiple complementary clues for collaborative learning.
These clues can come from the data level [21, 56, 77], or from structural supervision types [47, 24, 65].
Most approaches often incorporate deliberate designs for task-sharing and task-specific components
to enable effective joint prediction across tasks. If the three stages are forcibly merged into a
single training stage, two major issues will arise: 1) The model is trained with inputs that involve
Random Modality Dropout, Random Modality Shuffle, and Random Spatial Masking. The encoder
is supervised using the NT-Xent contrastive loss, an adapter is incorporated, and the model is
simultaneously tasked with both segmentation and reconstruction. Such a fully entangled training
setup lacks a clear task hierarchy, and there is no explicit coordination among the input, encoder,
decoder, and output. 2) When all tasks are treated equally without ordering, joint optimization
becomes highly difficult. In the unified single-stage training attempt, the total loss involves six parts.
As shown in Tab. 3, we compare the three-stage model with the unified single-stage model. We
observed two phenomena during the experiments: 1) The single stage model failed to converge,
with loss plateauing early. 2) The optimization process was highly unstable, with different losses
fluctuating in turn and failing to decrease consistently together. These phenomena and performace
clearly indicate that unified single stage training is unable to achieve effective coordination among the
various designs and supervision signals. The lack of a clear training order, combined with competing
optimization objectives, leads to mutual interference.
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Reverse Attention Adapter. Tab. 4 shows ablations on the reverse attention adapter. There are three
key findings: 1) Removing reverse attention alone leads to a 4.2% average drop, confirming its role
in semantic compensation for missing modalities. 2) Subsequent elimination of mutual attention
yields negligible performance variation, indicating that only emphasizing high-response regions
between adapter layers and frozen encoding layers cannot achieve meaningful feature compensation.
3) Replacing the 3D Swin Transformer with a 3D convolution of similar parameters significantly
degrades performance, validating the Transformer’s advantage in cross-modal correlation modeling.
Additionally, we compare freezing vs. fine-tuning the encoder during stage 3. Fine-tuning causes over
6.4% performance drops, indicating that it destroys the adapter-encoder synergy and the compensation
mechanism relies on stable encoder representations rather than task-specific tuning.

To further explain this observation, we provide two perspectives: the inheritance between Stage 2
and Stage 3, and the rationale behind the lightweight reverse attention adapter (RAA). 1) Unlike
general SSL methods [4, 17, 16] that focus on learning generic representations without targeting
specific downstream tasks, our contrastive learning in Stage 2 is task-aware. We co-train the
segmentation head to guide the encoder toward modality-invariant features that are directly beneficial
for segmentation, rather than general-purpose representations. This task-guided design ensures
that the learned contrastive space aligns with the downstream segmentation objective. Therefore,
fine-tuning the encoder in Stage 3 would undermine the task-guided contrastive representations that
were carefully established. 2) The RAA itself is designed as a residual correction bridging the encoder
representation gap between incomplete and complete modality inputs. Formally:

finc +A(finc) ≈ fcom, (6)

where finc denotes encoder features from incomplete modalities, fcom represents encoder features
from complete modalities, and A(·) is the learnable adapter. During Stage 3, both finc and fcom are
frozen, while only A is trained. This constrained setup ensures that the adapter focuses purely on
compensating missing information, enabling stable and efficient optimization. Once the encoder
is unfrozen, however, all three components become variables, making their roles unclear and the
optimization unstable. In conclusion, freezing the encoder in Stage 3 is a deliberate and necessary
design choice to preserve the task-guided contrastive representations learned earlier. The RAA thus
works in synergy with a stable encoder to effectively compensate for missing modalities and maintain
robust segmentation performance.

Hierarchical Compensation Mechanism. As shown in Tab. 5, single-level compensations each
surpass the baseline. Cross-level combinations reveal nonlinear synergy. Notably, merely integrating
input- and feature-level compensations outperforms existing methods in Tab. 1. The fully compen-
sated model achieves 36.2% average gain over baseline across categories, demonstrating consistent
collaborative synergy among all three levels without mutual exclusion. To quantify modality rep-
resentation gaps, Fig. 5 visualizes the average feature activation values across different encoding
layers under various modality combinations. Fig. 5a displays the baseline visual distributions, where
single-modality, dual-modality, and triple-modality combinations exhibit pronounced representation
gaps compared to the full-modality setup. Fig. 5b shows results after stage 1 pre-training, where
the compensation capability for single-modality inputs is significantly enhanced. Fig. 5c illustrates
the results under the joint constraints of contrastive learning and segmentation tasks, where the
representations of all the modalities are further aligned. In Fig. 5d, the reverse attention adapter in
stage 3 effectively compensates for cumulative errors from modality reconstruction in stage 1 and
spatial discrepancy differentiation in stage 2, using only a small number of parameters.

5 Conclusion

In this work, we propose a novel modality-relax segmentation framework based on a hierarchical self-
supervised compensation strategy. Through multi-granularity data perturbation, segmentation task-
guided feature distance constraints, and the design of a reverse attention adapter, we simultaneously
integrate three different self-supervised techniques into the proposed UniMRSeg model and complete
the representation compensation of the missing modality from the input level, feature level, and output
level. UniMRSeg is simple yet effective, achieving dominant performance in four different multi-
modal image segmentation tasks. We hope that this research paradigm focusing on representation-
level compensation can inspire more visual tasks that require modality-relax conditions in the future.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are detailed in the abstract and introduction.
Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theoretical paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included the implementation details in Sec. 4.2.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code will be released to facilitate further research.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the implementation details and the hyperparameters in
Sec. 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report average and standard deviation values in our main experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computing cost in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and understood the code of ethics and have done our best to
conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work does not present any potential negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not incorporate any large language models as part of the core
methods, any LLMs used were only for manuscript editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 6: Quantitative comparison of brain tumor segmentation on BraTS2020. ↑ and ↓ indicate
that higher and lower scores are better, respectively. Note: The reported results of RFNet [10] and
mmFormer [74] are taken from the PASSION paper [48], where they are evaluated using the same
training and test splits of BraTS2020.

Dice score(%)Modality
Whole Tumor (Whole) Tumor Core (Core) Enhancing Tumor (Enhancing)

Flair T1 T1ce T2 RFNet mmFormer PASSION-RFNet UniMRSeg RFNet mmFormer PASSION-RFNet UniMRSeg RFNet mmFormer PASSION-RFNet UniMRSeg
[10] [74] [48] [10] [74] [48] [10] [74] [48]

◦ ◦ ◦ • 82.25 83.33 81.35 84.54 66.77 63.74 53.69 68.94 40.08 38.20 32.13 47.41
◦ ◦ • ◦ 69.27 69.87 75.02 80.49 77.24 76.40 77.25 78.33 65.81 67.25 69.15 68.79
◦ • ◦ ◦ 68.53 69.60 72.20 79.72 59.53 56.00 57.20 63.32 31.99 28.66 30.42 40.12
• ◦ ◦ ◦ 82.28 83.34 83.95 84.45 64.30 61.74 58.60 66.69 36.67 33.76 26.40 41.17
◦ ◦ • • 83.94 85.47 82.60 85.66 81.90 81.36 78.16 82.43 69.18 69.83 69.52 71.48
◦ • • ◦ 74.07 74.74 76.45 81.46 81.45 80.50 79.83 82.06 68.56 70.70 70.34 71.38
• • ◦ ◦ 85.51 86.60 86.78 86.27 70.28 67.07 65.57 72.00 41.19 38.51 36.62 48.45
◦ • ◦ • 84.90 85.81 82.30 85.97 70.39 66.61 61.70 72.09 43.61 41.02 37.26 54.44
• ◦ ◦ • 86.42 87.73 86.85 86.76 70.70 68.66 61.54 72.34 43.62 42.17 31.47 56.44
• ◦ • ◦ 85.18 87.39 85.57 86.54 80.16 79.67 78.38 81.91 68.38 68.11 68.60 71.83
• • • ◦ 86.61 87.99 87.46 88.81 81.67 80.71 79.54 82.41 69.47 70.86 72.24 74.93
• • ◦ • 87.63 88.60 87.91 89.87 72.83 69.89 66.50 80.69 45.21 43.22 37.48 53.49
• ◦ • • 87.36 88.84 87.45 89.46 81.97 81.25 78.88 83.68 68.76 69.91 70.18 74.37
◦ • • • 85.40 86.40 83.04 89.04 83.28 82.23 80.00 84.64 71.04 70.82 69.90 74.56
• • • • 88.30 89.27 88.20 90.45 82.80 81.90 80.79 85.26 69.64 70.62 71.35 75.96

Average ↑ 82.51 83.67 83.15 85.97 75.02 73.18 70.51 77.12 55.55 54.91 52.87 61.65
Std Dev ↓ 6.27 6.45 4.86 3.26 7.45 8.48 9.66 6.95 14.56 16.24 18.69 12.81

Table 7: Quantitative comparison of brain tumor segmentation on BraTS2018. ↑ and ↓ indicate
that higher and lower scores are better, respectively. Note: The reported results of mmFormer [74],
M3AE [25] and M3FeCon [69] are taken from the M3FeCon [69], where they are evaluated using
the same training and test splits of BraTS2018.

Dice score(%)Modality
Whole Tumor (Whole) Tumor Core (Core) Enhancing Tumor (Enhancing)

Flair T1 T1ce T2 mmFormer M3AE M3FeCon UniMRSeg mmFormer M3AE M3FeCon UniMRSeg mmFormer M3AE M3FeCon UniMRSeg
[74] [25] [69] [74] [25] [69] [74] [25] [69]

◦ ◦ ◦ • 81.43 84.22 85.13 87.10 64.61 69.14 72.48 76.45 41.92 46.93 49.32 54.20
◦ ◦ • ◦ 72.62 75.16 75.26 82.22 75.93 82.53 82.31 82.25 71.37 73.04 75.88 75.46
◦ • ◦ ◦ 67.92 73.83 75.24 82.29 56.96 65.77 65.72 69.70 31.38 36.54 44.35 49.20
• ◦ ◦ ◦ 86.37 88.04 89.05 89.85 61.61 66.02 69.42 73.52 37.98 34.96 46.59 51.35
◦ ◦ • • 83.25 85.58 86.61 88.57 79.07 83.85 84.75 84.85 73.13 74.39 76.55 76.75
◦ • • ◦ 74.75 76.50 79.16 83.25 79.01 83.11 82.88 83.97 72.77 74.58 76.78 78.41
• • ◦ ◦ 87.46 88.49 90.17 91.45 66.47 70.53 72.82 76.72 41.75 48.16 48.47 53.20
◦ • ◦ • 82.46 86.34 86.03 88.15 69.89 71.46 72.01 77.43 43.85 44.73 50.17 55.12
• ◦ ◦ • 87.99 89.31 90.46 91.78 70.18 70.59 72.81 76.95 46.47 40.57 51.12 56.09
• ◦ • ◦ 87.61 88.85 90.35 91.98 78.34 84.03 84.14 85.20 73.93 74.08 76.23 78.43
• • • ◦ 87.77 88.07 89.62 89.99 80.22 83.72 84.81 85.41 74.31 73.42 76.74 78.72
• • ◦ • 88.08 89.24 90.24 91.89 71.97 72.41 75.98 80.26 46.51 44.15 52.63 60.12
• ◦ • • 88.47 89.46 90.07 92.01 79.94 84.25 84.64 85.47 74.53 74.68 77.64 79.02
◦ • • • 83.08 85.06 86.79 90.48 80.89 84.13 84.39 85.49 73.49 73.37 77.33 79.36
• • • • 89.93 89.56 90.69 92.45 86.23 84.24 85.03 86.44 76.36 74.85 77.81 79.87

Average ↑ 83.28 85.18 86.32 88.90 73.42 77.05 78.28 80.67 58.65 59.23 63.84 67.02
Std Dev ↓ 6.37 5.29 5.25 3.50 8.02 7.34 6.60 5.05 16.51 16.17 14.05 12.25

Appendix

A Performance Comparison on BraTS2020 and BraTS2018

To enable fair comparisons with a broader range of methods, we adopt the same data split settings
as used in the PASSION paper [48] for BraTS2020, where the dataset is divided into 219 cases for
training, 50 for validation, and 100 for testing. For BraTS2018, we follow the data split protocol
from M3FeCon [69], using 200 cases for training and 85 for testing. As shown in Tab. 6 and Tab. 7,
our method consistently achieves the best average performance and lowest standard deviation.

B Necessity of the Three-Stage Training Strategy

The proposed three-stage training pipeline, comprising Multi-granular Modality Reconstruction,
Modality-Invariant Contrastive Learning, and Incomplete Modality Adaptive Fine-tuning, is designed
to address the unique challenges of missing modality segmentation, which cannot be effectively
tackled using standard end-to-end training.

24



Unlike single-modality RGB image tasks that benefit from large-scale pre-trained models, many
other modalities such as depth, infrared, and medical imaging still lack general-purpose pre-trained
encoders. As a result, most models initialized randomly suffer from suboptimal feature representa-
tions and unstable performance. Moreover, simple end-to-end optimization struggles to bridge the
representation gap between complete and incomplete modality inputs, leading to poor generalization
to unseen modality combinations.

To this end, each stage in our training strategy plays a complementary role in strengthening the
model’s robustness and adaptability:

• Stage 1 (Modality Reconstruction): Enables the model to learn cross-modality structural priors and
recover semantically meaningful representations from incomplete inputs.

• Stage 2 (Contrastive Learning): Encourages the network to align features between complete and
missing modality inputs, enhancing modality-invariant representations.

• Stage 3 (Unified Fine-tuning): Refines prediction consistency across different modality combina-
tions and ensures deployment under a unified model.

• Each stage serves a distinct and complementary role (input-level structure recovery, feature-level
modality alignment, and output-level consistency). Extensive ablation studies (Sec. 4.4) validate
that each stage contributes distinct improvements in average accuracy. Without any of the stages,
performance consistently degrade.

C Discussion on Training Complexity and Efficiency

Although UniMRSeg adopts a three-stage training strategy, it is deliberately designed for efficiency
and simplicity. We analyze the training complexity from two perspectives: concise design and
inference simplicity.

Concise Design: All three stages in UniMRSeg share a unified 3D U-Net-style encoder-decoder
backbone, integrated with a lightweight 3D ASPP module. No additional complex or stacked modules
are introduced. This ensures both architectural clarity and training efficiency. Stage 1 utilizes a
masked autoencoding-based reconstruction head. This head operates on top of the shared encoder
and does not require extra encoder-decoder branches, keeping the design compact. Stage 2 applies a
contrastive loss to already-computed latent features, without introducing new network components.
Stage 3 focuses on refining segmentation via a lightweight reverse attention adapter and decoder. The
encoder is frozen, making this phase computationally efficient and requiring minimal fine-tuning.

Single-Stage Inference with Unified Weights:

Table 8: Efficiency comparison.

Metrics RFNet [10] mmFormer [74] M3AE [25] UniMRSeg
Parameters (MB)↓ 34 106 167 87
FLOPs (G)↓ 148 748 248 202

Despite the multi-stage training, inference remains
a single-stage process. The final model trained at
stage 3 merges all learned representations into a
unified network with shared parameters across all
modality combinations. Unlike other methods that re-
quire ensemble inference [25, 8] or modality-specific
branches [69, 74], UniMRSeg performs fast, unified
inference without requiring modality recognition or dynamic model selection. As shown in Tab. 8,
UniMRSeg achieves comparable computational efficiency to state-of-the-art methods.

D Modality-Agnostic Robustness via Random Modality Shuffle

Previous multi-modal segmentation methods [69, 74, 10, 25] often rely on a fixed modality-to-channel
correspondence, where each input modality (e.g., T1, T2, T1ce, Flari) is assigned to a specific encoder
or channel during both training and inference. This design imposes a strong prior assumption: the
modality type of each input channel must be known in advance and must strictly align with the
model’s expected input structure during inference. However, such assumptions significantly limit the
scalability and automation of AI-driven medical image analysis pipelines, especially in real-world
applications where modality labels may be missing, inconsistent, or ambiguous.

To alleviate this constraint, we introduce a random modality shuffle strategy in stage 1, where the
input modalities are randomly permuted at each training iteration. This forces the model to learn
modality-invariant representations and reduces its reliance on fixed input orders.
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Table 9: Ablation study on the impact of different modality-
channel orders during inference. Flair-T1-T1ce-T2 de-
notes the best-performing fixed input order, while 5-Ave
represents the average result of five inference runs using ran-
dom modality shuffle.

Average Dice score(%)Models
Whole Core Enhancing

Flair-T1-T1ce-T2 80.64 73.33 63.10
5-Ave 80.54 73.27 63.05

As shown in Tab. 9, even after ran-
domly shuffling the modality-channel
order five times during inference, the
segmentation performance remains
stable with minimal variation. These
results demonstrate that the random
shuffle not only improves perfor-
mance (see Tab. 3) but also enhances
practical robustness and scalability.
This aligns with the broader goal of
building fully automated and general-
izable medical AI systems.

E Limitations and Future Work

While the three-stage training strategy significantly improves model generalizability and segmentation
accuracy under missing modalities, it inevitably increases the training pipeline complexity. This
additional training overhead may pose challenges for practitioners in time-constrained or resource-
limited environments. We acknowledge this trade-off and consider streamlining or accelerating the
training process as a critical future direction. Several promising avenues to achieve this include:
I) Curriculum-based Optimization. Introducing a curriculum learning schedule that gradually
transitions from reconstruction to segmentation may allow for progressive learning in a single stage.
II) Modality-aware Parameter Sharing. Parameter-efficient fine-tuning (e.g., adapters or LoRA)
across stages may allow most model weights to be reused, reducing memory and time overhead. III)
Cross-task Shared Training Objectives. Reformulating the three tasks under a shared objective (e.g.,
information bottleneck or consistency maximization) may unify their gradients and reduce stage-
specific training routines. These directions hold the potential to preserve the benefits of multi-stage
training while simplifying the optimization process, making the proposed method more accessible to
broader applications in multi-modal image analysis.
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