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ABSTRACT

While policy optimization algorithms have demonstrated remarkable empirical
success in reinforcement learning (RL) tasks, their theoretical analysis is limited
compared to those of value-based algorithms. In this paper, we address the gap by
proposing a new provably efficient policy optimization algorithm that incorporates
optimistic value estimation and rare policy switches. For linear Markov decision
processes (MDPs), our algorithm achieves a regret bound of Õ(d2H2

√
T ), which

is the sharpest regret bound of a policy optimization algorithm for linear MDPs.
Furthermore, we extend our algorithm to general function approximation and es-
tablish a regret bound of Õ(

√
T ). To our best knowledge, this is the first regret

guarantee of a policy optimization algorithm with general function approximation.
Numerical experiments demonstrate that our algorithm has competitive regret per-
formances compared to the existing RL algorithms while also being computation-
ally efficient, supporting our theoretical claims.

1 INTRODUCTION

Policy optimization algorithms have garnered substantial attention across diverse RL applications,
from board/video games to large language models (Silver et al., 2016; Schulman et al., 2015; 2017;
Mnih et al., 2016; Fujimoto et al., 2018; Ouyang et al., 2022). However, despite its wide appli-
cability, in contrast to their value-based counterparts (Jiang et al., 2017; Agrawal & Jia, 2017; Jin
et al., 2018), the theoretical understandings of policy optimization methods remain relatively under-
explored. (Kakade & Langford, 2002; Bagnell et al., 2003; Bhandari & Russo, 2019)

This evident dichotomy between value-based and policy optimization methods becomes increasingly
pronounced concerning linear function approximation and the associated regret guarantees. For the
value-based methods, the literature on linear function approximation has seen rapid expansion, with
the linear Markov decision processes (MDP) often being the central focus (Jiang et al., 2017; Du
et al., 2019; Wang et al., 2019; Sun et al., 2019; Yang & Wang, 2019; Zanette et al., 2020b; Modi
et al., 2020; Jin et al., 2020; Cai et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zanette et al., 2020a;
Ishfaq et al., 2021; Zhou et al., 2021; Zhou & Gu, 2022; He et al., 2023). Many of these value-based
methods have been shown to achieve O(

√
T ) regret upper bounds, matching the Ω(

√
T ) lower

bound for linear MDPs established in Zhou et al. (2021) in terms of the total time-step T . On the
other hand, there have been very few existing works on policy optimization algorithms with O(

√
T )

regret under the linear MDP. Hence, the following research question arises:

Q: Can we design a provably efficient and practical policy optimization algorithm
with O(

√
T ) regret bound for linear MDPs?

We answer this question affirmatively by proposing a policy optimization algorithm, Optimistic
Policy Optimization with Rare Switches (OPORS). For our proposed algorithm, we establish
Õ(d2H2

√
T ) regret bound under linear MDPs. To our best knowledge, Zhong & Zhang (2023)

and Sherman et al. (2023) are the only existing results for policy optimization with linear MDPs.
Zhong & Zhang (2023) show a Õ(T 3/4) regret bound which is known to be sup-optimal. A con-
current work by Sherman et al. (2023) proves a regret of Õ(d2H5/2

√
T log |A|). Thus, the regret

of our proposed method shows an improvement by a factor of
√
H log |A|. Hence, our algorithm

has the sharpest regret bound known for policy optimization algorithms under linear MDPs. Such an
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improvement is made possible by a new policy update rule inspired by the proximal policy optimiza-
tion (PPO) (Schulman et al., 2017). Furthermore, the implementation of the algorithm in Sherman
et al. (2023) is much more complicated than that of our method. Hence, our method is one of very
few policy optimization methods for linear MDPs that achieve both provably efficiency and practi-
cality. In addition, we extend our algorithm and regret analysis to general function approximation,
which, to our best knowledge, is the first regret guarantees of a policy optimization algorithm for
general function approximation. Our main contributions are summarized as follows:

• We propose a policy optimization algorithm OPORS for linear MDPs, which incorporates our novel
policy update rule and a rare policy switching technique of O(log T ) described in Section 3.1 We
establish Õ(d2H2

√
T ) regret bound (in Theorem 3.1) for our proposed algorithm, where d is the

dimension of linear features, H is the episode length, and T is the total time-steps. To our best
knowledge, Theorem 3.1 establishes the sharpest known regret bound proven for linear MDPs,
improving the regret bound of a concurrent work (Sherman et al., 2023). Along with Sherman
et al. (2023), our result shows the first policy-based algorithm matching the O(

√
T ) of the regret

lower bound (Zhou et al., 2021).

• We extend our proposed algorithm to general function approximation and achieve Õ(d3gH
2
√
T )

regret bound where dg represents the complexity of the function class measured by covering num-
ber or the eluder dimension (Russo & Van Roy, 2013). To our best knowledge, this is the first
policy optimization algorithm with regret guarantees for general function approximation.

• We numerically evaluate our algorithm and show that it shows the state-of-the-art performances
compared with the existing provably efficient RL methods, with far reduced computational cost.

2 PRELIMINARIES

Notations. We denote [n] := {1, 2, . . . , n} for n ∈ N. For x, y ∈ Rd, ⟨x, y⟩ denotes the inner
product of x and y. For a positive definite matrix A, we denote ∥x∥A :=

√
xTAx. The notation

f ≲ g means that there exists some constant C > 0 satisfying f ≤ Cg. For any function f and
numbers a < b, we denote [f ][a,b] := max{min{f, b}, a}. For a function class F , C(F , ε) and
N (F , ε) denote the ε-cover and ε-covering number of F .

Problem Formulation. We consider episodic MDPs (S,A, H, {Ph}h∈[H], {rh}h∈[H]), where S
and A are the state space and the action space, H is the length of each episode, P = {Ph}h∈[H] is
the transition probability distributions, r = {rh}h∈[H] is the reward functions. We assume that each
episode starts at some initial state s1 1, and the episode ends after H steps. For each step h ∈ [H], the
agent observes state sh, then takes an action ah. The agent receives a reward rh(sh, ah) determined
by (sh, ah), and transit to the next state sh+1 according to the transition probability Ph(· | sh, ah).
The agent takes actions based on its policy π = {πh}h∈[H], where πh(· | s) is a probability distribu-
tion over A. The value function (V -function) and the action-value function (Q-function) of policy
π are the expected sum of rewards up to termination, starting from sh = s and (sh, ah) = (s, a)
respectively, following the policy π. Formally, they are defined as

V π
h (s) := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s

]
, Qπ

h := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s, ah = a

]
.

To simplify the notation, we use PhVh+1 to denote Es′∼P(·|s,a)[Vh+1(s
′)]. We denote the optimal

value function and the optimal action-value function by V ∗
h (s) := maxπ V

π
h (s) and Q∗

h(s, a) :=

maxπ Q
π
h(s, a). There exists an optimal policy π∗ such that V π∗

h (s) = V ∗
h (s) and Qπ∗

h (s, a) =
Q∗

h(s, a) for all h ∈ [H], (s, a) ∈ S ×A. For any π, the Bellman equation relates Qπ to V π as

Qπ
h(s, a) = (r + PV π

h+1)(s, a), V π
h (s) = ⟨Qπ

h(s, ·), π(· | s)⟩, V π
H+1(s) = 0.

When πk is the policy executed in the k-th episodes, the suboptimality of πk compared to the
optimal policy π∗ is represented by V ∗

1 (s
k
1) − V πk

1 (sk1), where sk1 is the initial state in the k-th
1Our result is valid for the general case with an initial distribution ρ(·). We can modify the MDP by setting

a fixed initial state s1 and P1(· | s1, a) = ρ(·) for all a ∈ A.
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Algorithm 1 Optimistic Policy Optimization with Rare Switches (OPORS)

1: Input: Failure probability δ ∈ (0, 1), stepsize α > 0, confidence radius β > 0, regularization
parameter λ > 0, policy switching parameter η > 1

2: Initialize: Set {π0
h(· | ·)}h∈[H] as uniform policy on A, Λ0

h ← λI for ∀h ∈ [H], k̄ = 0
3: for episode k = 1, · · · ,K do
4: Λk

h ←
∑k−1

i=1 ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

T + λI

5: if k = 1 or ∃h ∈ [H] det
(
Λk
h

)
≥ η det

(
Λk̄
h

)
then

6: for step h = H, . . . , 1 do
7: ŵk

h ← (Λk
h)

−1
∑k−1

i=1 ϕ(sih, a
i
h)
[
rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)

]
8: bkh(s, a)← β ∥ϕ(s, a)∥(Λk

h)
−1

9: Qk
h(s, a)← [ϕ(s, a)T ŵk

h + bkh(s, a)][0,H−h+1]

10: Update πk
h(a | s) ∝ πk−1

h (a | s) exp(αQk
h(s, a))

11: V k
h (s)← ⟨Qk

h(s, ·), πk
h(· | s)⟩

12: end for
13: k̄ ← k
14: else
15: Qk

h(s, a)← Qk−1
h (s, a), πk

h(a | s)← πk−1
h (a | s), V k

h (s)← V k−1
h (s) for all h ∈ [H]

16: end if
17: for step h = 1, . . . ,H do
18: Take an action akh ∼ πk

h(· | skh) and observe skh+1
19: end for
20: end for

episode. Summing them up for k ∈ [K], we get the cumulative regret of π over K episodes:

Regret(K) :=

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1).

The goal of the agent is to maximize the sum of rewards over K episodes, or equivalently, to mini-
mize the cumulative regret over K episodes.

3 LINEAR FUNCTION APPROXIMATION

In this section, we present our proposed algorithm, named Optimistic Policy Optimization with Rare
Switches (OPORS), a policy optimization algorithm with linear function approximation. The algo-
rithm is based on the standard linear MDP (Yang & Wang, 2019; Jin et al., 2020) as defined below.
Assumption 1 (Linear MDP). An MDP (S,A, H, {Ph}h∈[H], {rh}h∈[H]) is a linear MDP with
a feature map ϕ : S × A → Rd if for all h ∈ [H], there exists d unknown (signed) measures
µh = (µ

(1)
h , . . . , µ

(d)
h ) over S and an unknown vector θh ∈ Rd, such that for all (s, a) ∈ S ×A,

Ph(· | s, a) = ⟨ϕ(s, a),µh⟩, rh(s, a) = ⟨ϕ(s, a),θh⟩.

We assume ∥ϕ(s, a)∥2≤1 for all (s, a)∈S×A, and max{∥µh(S)∥2, ∥θh∥2} ≤
√
d for all h ∈ [H].

3.1 ALGORITHM: OPORS

In this section, we illustrate each component of our algorithm OPORS in Algorithm 1.

Rare Policy Switching. Infrequent policy switching (update) is a pivotal factor in enhancing both
the regret bound and computational efficiency. OPORS accomplishes this by adhering to a rare-
switching strategy, wherein policy updates are triggered when the determinant of the Gram matrix
Λk
h increases by a factor of η since the last update (Line 5 of Algorithm 1). This rare-switching

technique was introduced by Wang et al. (2021) for value-based methods and has been demonstrated
to be computationally efficient. We can guarantee that when η remains an absolute constant, the
number of policy switches enforced by OPORS is upper-bounded by O(dH log T ).
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Value Function Estimation. Lines 6-12 of Algorithm 1 involve estimating the value function of the
current policy. Starting with V k

H+1 = 0, for h = H, . . . , 1, we compute the Q-values by minimizing
the empirical squared Bellman error. The estimator is given by

ŵk
h = (Λk

h)
−1

k−1∑
i=1

ϕ(sih, a
i
h)
[
rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)

]
,

where Λk
h =

∑k−1
i=1 ϕ(sih, a

i
h)ϕ(s

i
h, a

i
h)

T + λI . Subsequently, we construct the optimistic Q-value
Qk

h(s, a) = [ϕ(s, a)T ŵk
h + bkh(s, a)][0,H−h+1], where the bonus function is defined as bkh(s, a) :=

β ∥ϕ(s, a)∥(Λk
h)

−1 . Based on the optimistic Q-value Qk
h and the policy πk

h, the optimistic V -value is
determined as ⟨Qk

h(s, ·), πk
h(· | s)⟩.

Policy Update. Our policy update rule is inspired by the proximal policy optimization (PPO) (Schul-
man et al., 2017). It is important to note that OPORS update the policy πk

h based on the previous policy
πk−1
h and the current Q-value Qk

h (Line 10 of Algorithm 1). Consequently, the policy update and
value function estimation steps alternate. In essence, each update in Line 10 follows a stepwise
PPO approach, optimizing the policy at step h in the order of h = H, . . . , 1. In the k-th episode,
during the step h of the inner-loop (Lines 6-12), we have {Qk

h′}h′≥h and {πk
h′}h′≥h+1. Consider an

auxiliary policy π̃k,h := {πk−1
h′ }h′≤h ∪ {πk

h′}h′≥h+1. Then, the PPO objective is formulated as:

maximizeπ

{
Lk−1
h (π)− α−1 · Eπ̃k,h

[
H∑

h′=1

DKL

(
πh′(· | sh′)∥π̃k,h

h′ (· | sh′)
)]}

. (1)

Here, Lk−1
h is the local approximator for the expected return under π̃k,h, which is defined as

Lk−1
h (π) := V π̃k,h

1 (s1) + Eπ̃k,h

[
H∑

h′=1

⟨Qπ̃k
h

h′ (sh′ , ·), πh′(· | sh′)− π̃k,h
h′ (· | sh′)⟩

]
.

Rearranging the optimization objective (1), we have an equivalent objective:

maximizeπ

{
Eπ̃k,h

[
H∑

h′=1

(
⟨Qπ̃k

h

h′ (sh′ , ·), πh′(· | sh′)⟩ − α−1DKL

(
πh′(· | sh′)∥π̃k,h

h′ (· | sh′)
))]}

.

A simple calculation leads to the closed-form solution:

πh′(· | s) ∝ π̃k,h
h′ (· | s) · exp(αQπ̃k

h

h′ (s, ·)).
Instead of optimizing {πh′}h′∈[H] for all steps, we optimize πh for current step and set the opti-

mized policy as πk
h. Since true Q

π̃k
h

h is unknown, we substitute it with the estimated Q-value Qk
h.

Considering the definition of the auxiliary policy π̃k,h, our update rule is expressed as:

πk
h(· | s) ∝ πk−1

h (· | s) · exp(αQk
h(s, ·)).

Our update rule distinguishes itself from the previous provably efficient policy optimization algo-
rithms (Agarwal et al., 2020a; Cai et al., 2020; Zanette et al., 2021; Feng et al., 2021; Li et al., 2023;
Liu et al., 2023; Zhong & Zhang, 2023; Li et al., 2023; Sherman et al., 2023), which employ the
update rule πk

h(· | s) ∝ πk−1
h (· | s) · exp(αQk−1

h (s, ·)). As shown in Section 3.3, the new policy
update rule enables us to incorporate O(log T ) rare-switching techniques into our algorithm, which
plays a crucial role in reducing regret bound, as well as reducing the computational cost.

3.2 REGRET ANALYSIS

We present the regret bound for OPORS under the linear MDP assumption.
Theorem 3.1 (Regret bound of OPORS). Suppose Assumption 1 holds. There exists a constant
Cl > 0 such that, if we set λ = 1, α = poly(T, 1/δ, log |A|, d) ≥ Ω(

√
K log |A|), and

β = Cl · d3/2H3/2χl where χl = 1
log η

√
log
(
1 + K

λd

)
log
(

dT log |A|
δλ log η

)
, then with probability at

least 1− δ, the regret of Algorithm 1 is upper bounded by

Regret(K) ≤ Õ

(
η

log η
d2H2

√
T

)
.
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Discussion of Theorem 3.1. Theorem 3.1 establishes Õ(d2H2
√
T ) regret bound. There exists a

concurrent work (Sherman et al., 2023) which proves Õ(d2H5/2
√

T log |A|). Theorem 3.1 shows
an improved regret bound by a factor of

√
H log |A|. Hence, our regret bound is the sharpest regret

bound known for policy optimization algorithms under linear MDPs. Sherman et al. (2023) utilize
a reward-free exploration algorithm adapted from Wagenmaker et al. (2022) to bound optimistic
Q-values, then conduct policy updates without clipping Q-values. In contrast, we integrate our new
policy update rule and the rare-switching technique, without an initial exploration phase.

3.3 PROOF SKETCH

In this section, we give an outline of the proof of Theorem 3.1 and the key lemmas for the proof.
We begin with the regret decomposition in Cai et al. (2020):

Regret(K) =

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ] (2)

+

K∑
k=1

H∑
h=1

(
Ph[V

k
h+1 − V πk

h+1](s
k
h, a

k
h)− [V k

h+1 − V πk

h+1](s
k
h+1)

)
(3)

+

K∑
k=1

H∑
h=1

(
⟨[Qk

h −Qπk

h ](skh, ·), πk
h(· | skh)⟩ − [Qk

h −Qπk

h ](skh, a
k
h)
)

(4)

+

K∑
k=1

H∑
h=1

(
Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah)

)
(5)

where ξkh(·, ·) := rh(·, ·) + PhV
k
h+1(·, ·) − Qk

h(·, ·). Note that (3) and (4) are the sums of uni-
formly bounded martingale difference sequences. Hence, with high probability1− δ, the sum of the
martingale difference sequences is easily bounded by O(

√
H2T log(1/δ)).

The statistical error term (5) represents the error arising from the least-square value iteration step
(Lines 6-12 of Algorithm 1). The technical challenge in bounding this statistical error lies in the
fact that the log covering number of the V -funciton class is directly related to the number of policy
switches, as Lemma D.8 implies. Consequently, the confidence radius of the estimator ŵk

h grows
accordingly. In extreme cases where the policy is updated every episode, this leads to a trivial linear
regret bound. To mitigate this issue, OPORS effectively controls the covering number by infrequently
switching the policy. The following lemma from Wang et al. (2021) ensures that the number of
policy switches is bounded.
Lemma 3.2 (Policy switches). The number of policy switches in Algorithm 1 is upper bounded by

Nl = dH/ log η · log (1 +H/λd) .

With Lemma 3.2, it can be shown that the log covering number of V -function class is Õ(d3H).
Utilizing this covering number, we can prove that ξkh(·, ·) is bounded.
Lemma 3.3 (Concentration of value functions). With probability at least 1 − δ/2, for all k ∈
[K], h ∈ [H], (s, a) ∈ S × A, it holds that −2β ∥ϕ(s, a)∥(Λk̄

h)
−1 ≤ ξkh(s, a) ≤ 0, where k̄ is the

largest index k′ ≤ k on which the policy is switched, and β is defined in Theorem 1.

Lemma 3.3 implies that the statistical error is bounded by the sum of bonus functions, eval-
uated at the trajectories. The policy optimization error (2) is of significance for policy opti-
mization algorithms, unlike value-based algorithms that employ the argmax policy with respect
to the Q-value. The distinction arises because ⟨Qk

h(sh, ·), π∗
h(· | sh) − πk

h(· | sh)⟩ could be
positive for general stochastic policy πk

h. Previous approaches, which utilize the update rule
πk
h(· | s) ∝ πk−1

h (· | s) · exp(αQk−1
h (s, ·)) bound the policy optimization error by

√
H3T log |A|,

using a well-known result of online mirror descent (see Lemma 3.3 in Cai et al. 2020). How-
ever, the bound is valid only when policy updates are equally spaced. In contrast, our update rule
πk
h(· | s) ∝ πk−1

h (· | s) · exp(αQk
h(s, ·)) guarantees that the policy optimization error is bounded,

regardless of the specific update schedule. Lemma 3.4 formally states this property.

5



Under review as a conference paper at ICLR 2024

Algorithm 2 F-OPORS

1: Input: Failure probability δ ∈ (0, 1), stepsize α > 0, confidence radius β > 0

2: Initialize: Set {π0
h(· | ·)}h∈[H] as uniform policy on A, Ẑ1

h ← {} for all h ∈ [H]
3: for episode k = 1, · · · ,K do
4: for step h = H, . . . , 1 do
5: Ẑk

h ← Sample
(
F , Ẑk−1

h , (sk−1
h , ak−1

h ), δ
)

(if k ≤ 2)
6: end for
7: if k = 1 or ∃h ∈ [H] Ẑk

h ̸= Ẑ
k−1
h then

8: for step h = H, . . . , 1 do
9: Dk

h ← {(sτh, aτh, rτh + V k
h+1(s

τ
h+1)}τ∈[k−1]

10: fk
h ← argminf∈F ∥f∥

2
Dk

h

11: bkh(·, ·)← supf1,f2∈F,∥f1−f2∥2

Ẑk
h

≤β |f1(·, ·)− f2(·, ·)|

12: Qk
h(·, ·)← min

{
fk
h (·, ·) + bkh(·, ·), H

}
13: Update πk

h(· | ·) ∝ πk−1
h (· | ·) exp(αQk

h(·, ·))
14: V k

h (·)← ⟨Qk
h(·, ·), πk

h(· | ·)⟩
15: end for
16: else
17: Qk

h(s, a)← Qk−1
h (s, a), πk

h(a | s)← πk−1
h (a | s), V k

h (s)← V k−1
h (s) for all h ∈ [H]

18: end if
19: for step h = 1, . . . ,H do
20: Take an action akh ∼ πk

h(· | skh) and observe skh+1
21: end for
22: end for

Algorithm 3 Sample(F , Ẑ, z, δ)

1: Input: Function classF , current sub-sampled dataset Ẑ ⊆ S×A, new stat-action pair z, failure
probability δ

2: Let pz be the smallest real number such that 1/pz is an integer and

pz ≥ min
{
1, C · sensitivityẐ ,F (z) · log

(
TN (F ,

√
δ/64T 3)/δ

)}
3: Let ẑ ∈ C(S ×A, 1/(16

√
64T 3/δ)) such that supf∈F |f(z)− f(ẑ)| ≤ 1/(16

√
64T 3/δ)

4: Add 1/pz copies of ẑ into Ẑ with probability pz
5: return Ẑ

Lemma 3.4 (Policy optimization error). It holds that
K∑

k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(sh, ·), π∗
h(· | sh)− πk

h(· | sh)⟩ | s1 = sk1
]
≤ α−1HK log |A|

We emphasize that Lemma 3.4 places no restrictions on the sequence of Q-values, except the bound-
edness |Qk

h| ≤ H . We can bound the policy optimization error corresponding to any sequence
{Qk

h}(k,h)∈[K]×[H], with carefully chosen α.

Since Qk
h(s, ·) are |A|-dimensional vectors and πk

h(· | s) are unit vectors in the same space, each
term ⟨Qk

h(sh, ·), π∗
h(· | sh) − πk

h(· | sh)⟩ can be understood as the difference between two inner
products, ⟨Qk

h(s, ·), π∗
h(· | s)⟩ and ⟨Qk

h(s, ·), πk
h(· | s)⟩. Hence, the policy optimization error de-

creases if πk
h(· | s) aligns more closely with Qk

h(s, ·) than π∗
h(· | s) does. This is the intuition behind

why our update rule yields a smaller policy optimization error. Unlike the previous update rule, our
update rule directly incorporates Qk

h into πk
h.

With these lemmas at hand, we can bound the cumulative regret of Algorithm 1. The detailed proofs
are provided in Appendix C.
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4 GENERAL FUNCTION APPROXIMATION

In this section, we extend our rare-switching optimistic policy optimization method to general func-
tion approximation. The extended algorithm, F-OPORS is described in Algorithm 2.

4.1 ALGORITHM: F -OPORS

The overall structure of F-OPORS is similar to our first algorithm OPORS, except for the rare-
switching technique. In the following, we describe each component of the algorithm.

Sampling. Utilizing online sentitivity sampling (Line 5 of Algorithm 2) introduced by Kong et al.
(2021) effectively reduces policy switching. During the collection of trajectories into the dataset
Zk

h := {(sτh, aτh, rτh, sτh+1}τ∈[k−1], we concurrently maintain a subsampled dataset {Ẑk
h}h∈[H] that

approximates the original dataset with reduced complexity. In the k-th episode, we calculate the
online sensitivity score based on the current subsampled dataset {Ẑk−1

h }h∈[H] and the trajectory
from the previous episode {(sk−1

h , ak−1
h )}h∈[H], as follows:

sensitivityẐk−1
h ,F (z

k−1
h ) := min

{
sup

f1,f2∈F

(f1(z
k−1
h )− f2(z

k−1
h ))2

min{∥f1 − f2∥Ẑk−1
h

, T (H + 1)2}+ β
, 1

}
.

Each zk−1
h := (sk−1

h , ak−1
h ) is stochastically sampled into Ẑk

h with a probability proportional to the
sensitivity score. Additionally, the sampled zk−1

h is rounded to belong to a finite cover of S × A
to bound the complexity of Ẑk

h . After the sampling procedure, we evaluate and update the policy
only when any of the zk−1

h is sampled. Otherwise, we proceed without changing the value function
estimate and the policy. By implementing this strategy, the number of policy switches remains less
than or equal to the number of distinct elements in {ẐK

h }h∈[H], which is bounded by Õ(d2gH) with
high probability.

Value Function Estimation and Policy Update. In the k-th episode, if any of the zk−1
h instances

is sampled during the sampling procedure, we proceed to compute the optimistic Q-values using
the least-square value iteration, as described in Lines 9-13 of Algorithm 2. For each h = H, . . . , 1,
given the dataset Dk

h := {(sτh, aτh, rτh + V k
h+1(s

τ
h+1)}τ∈[k−1], we solve the regression problem:

fk
h = argmin

f∈F
∥f∥2Dk

h
= argmin

f∈F

k−1∑
τ=1

(
f(sτh)−

[
rτh + V k

h+1(s
τ
h+1)

])2
.

Subsequently, we set the optimistic Q-value Qk
h(·, ·) = min

{
fk
h (·, ·) + bkh(·, ·), H

}
, where the

bonus function is defined as follows:

bkh(·, ·) := sup
f1,f2∈F,∥f1−f2∥2

Ẑk
h

≤β

|f1(·, ·)− f2(·, ·)|.

Intuitively, the bonus function reflects the level of confidence in the value estimation, thereby pro-
moting the exploration of rarely observed state-action pairs. The policy update process mirrors that
of OPORS. After updating πk

h, the optimistic V -value is defined as V k
h (·) = ⟨Qk

h(·, ·), πk
h(· | ·)⟩.

4.2 REGRET ANALYSIS

In this section, we present the regret bound for F-OPORS. The following standard assump-
tions (Wang et al., 2020) are required for our analysis. To measure the complexity of a function
class, we use the eluder dimension (Russo & Van Roy, 2013).
Assumption 2 (Value closedness). For any V → [0, H] and h ∈ [H], rh + PhV ∈ F .
Assumption 3 (Covering number). For any ε > 0, the function class F satisfies the following.

1. There exists an ε-cover C(F , ε) ⊆ F with size |C(F , ε)| ≤ N (F , ε), such that for any f ∈ F ,
there exists f ′ ∈ F with ∥f − f ′∥∞ ≤ ε.

2. There exists an ε-cover C(S ×A, ε) ⊆ S ×A with size |C(S ×A, ε)| ≤ N (S ×A, ε), such that
for any (s, a) ∈ S ×A, there exists (s′, a′) ∈ S ×A with supf∈F |f(s, a)− f(s′, a′)| ≤ ε.

7
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Definition 1 (Eluder dimension). Let ε > 0 and Z = {(si, ai)}i∈[n].

1. A state-action pair (s, a)S ×A is ε-dependent on Z with respect to F if any f, f ′ ∈ F satisfying
∥f − f ′∥Z ≤ ε also satisfies |f(s, a)− f ′(s, a)| ≤ ε.

2. An (s, a) is ε-independent of Z with respect to F if (s, a) is not ε-dependent on Z .

3. The ε-eluder dimension dimE (F , ε) is a function class F is the length of the longest sequence of
elements in S×A such that, for some ε′ ≥ ε, every element is ε′-independent of its predecessors.

When F = {θTϕ(s, a) : θ ∈ Θ ⊆ Rd} is the class of linear functions with a feature map ϕ :

S × A → Rd, it is known that dimE (F , ε) = O(d log(1/ε)) and logN (S × A, ϵ) = Õ(d) (Russo
& Van Roy, 2013). Thus, we can roughly understand that dimE (F , ·) ≈ N (S × A, ·) measure the
complexity of a given function class. Equipped with these concepts, we state the regret bound.
Theorem 4.1 (Regret bound of F-OPORS ). Suppose Assumption 2 and Assumption 3 hold. There
exist absolute constants Cg, Cs, Csw such that, if we set α ≥ Ω(

√
T log |A|),

β = Cg ·H3 · log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · [logN (F , 1/(16αNgT
2H3))

+ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
],

in Algorithm 2 and C = Cs in Algorithm 3, then with probability at least 1 − δ, the regret of
Algorithm 2 is upper bounded by

Regret(K) ≤ O
(
H2
√
ι · T

)
where ι = log(TN (F , δ/T 2)/δ) · dimE (F , 1/T )2 · log2 T · [logN (F , 1/(16αNgT

2H3))

+ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
],

Ng =Csw · log(TN (F ,
√

δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T.

Discussion of Theorem 4.1 This is the first regret guarantee for a policy optimization algorithm
with general function approximation. When F-OPORS is applied to the class of d-dimensional linear
functions, Theorem 2 implies Õ(d2H) policy switches and Õ(d3H2

√
T ) regret bound. However, as

Kong et al. (2021) pointed out, the spectral approximation algorithm in Cohen et al. (2016) can be
used to construct a subsampled dataset. In Appendix E, we present a policy optimization algorithm
using the techniques in Cohen et al. (2016), that achieves Õ(dH) policy switches and Õ(d2H2

√
T )

regret bound.

4.3 PROOF SKETCH

The proof of Theorem 4.1 shares the same outline with Theorem 3.1. Using the same regret decom-
position, we bound (2) with Lemma 3.4, and bound (3), (4) in the same way. The difference lies in
the rare-switching technique. Specifically, the following lemma from Kong et al. (2021) provides a
polylog(T ) bound on the number of policy switching.
Lemma 4.2 (Policy switches). For β specified in Theorem 4.1, with probability at least 1− δ/8, for
all (k, h) ∈ [K]× [H], the number of distinct elements in ẐK

h is bounded by

Ng ≤ O
(
· log(TN (F ,

√
δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T

)
.

Therefore, the number of policy switches in Algorithm 2 is bounded by H ·Ng .

Therefore, we can bound the covering number of value functions. The bound is applied to a uniform
concentration inequality and then gives the following lemma.
Lemma 4.3 (Concentration of value function). With probability at least 1 − δ/8, for all (k, h) ∈
[K]× [H] and for all (s, a) ∈ S ×A, it holds that −2bkh(s, a) ≤ ξkh(s, a) ≤ 0.

Therefore, the statistical error term (5) is bounded by the sum of bonus functions, evaluated at the
trajectories. The proof is complete by bounding the sum of bonuses using the property of the eluder
dimension. The detailed proof is deferred to Appendix D.
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5 NUMERICAL EXPERIMENTS

In this section, we evaluate our algorithm on RiverSwim (Osband et al., 2013) and DeepSea (Osband
et al., 2019) environments. These environments are considered to be hard exploration problems that
require deep, strategic exploration. To compare the performance of our algorithm with other prov-
ably efficient RL algorithms for linear MDPs, we choose value-based algorithms, LSVI-UCB (Jin
et al., 2020), LSVI-PHE (Ishfaq et al., 2021) and a policy-based algorithm OPPO+ (Zhong & Zhang,
2023) for comparisons.2 For each algorithm, we performed a grid search to set the hyperparameters.
We run 20 independent instances for each experiment and plot the average performance with the
standard deviation. For more details, please refer to Appendix G.
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Figure 1: Results on RiverSwim. (left) Episodic return on S = 4, H = 16, (center) Episodic return
on S = 6, H = 24, (right) Runtime of the algorithms
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Figure 2: Results on DeepSea. (left) Episodic return on N = 8, (center) Episodic return on N = 12,
(right) Runtime of the algorithms

We performed experiments on the two RiverSwim instances, |S| = 4 and |S| = 6. The episode
lengths are set to be H = 4|S|. Figure 1 shows that OPORS outperforms the value-based methods,
and OPPO+ lags behind the others since the batch size suggested by Zhong & Zhang (2023) is too
large. Note that OPORS achieves high performance at much less computational cost, as the runtime
of OPORS over 30000 episodes is around two orders of magnitude shorter than that of LSVI-UCB and
LSVI-PHE. Such efficiency comes from rare policy switching, as OPORS requires only Õ(dH log T )
value estimations and policy updates. The experiments on two DeepSea instances, N = 8 and N =
12, shown in Figure 2 exhibit consistent results. Again, OPORS is statistically efficient compared to
LSVI-UCB and LSVI-PHE while being far more computationally efficient.

6 CONCLUSION

In this paper, we propose optimistic policy optimization algorithms with rare policy switching:
OPORS for linear MDPs and F-OPORS for general function approximation. For both algorithms,
we prove regret bounds of Õ(d2H2

√
T ) and Õ(d3gH

2
√
T ), respectively. Therefore, our algorithms

are the first policy optimization method establishing Õ(
√
T ) regret bound for both settings with

the sharpest result for linear MDPs. Our empirical evaluations further highlight the competitive
performance and reduced computational cost of our proposed method.

2Since the algorithm suggested by Sherman et al. (2023) is impractical due to a large number of hyperpa-
rameters and subroutines, we did not include it in our experiments.
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A ADDITIONAL RELATED WORKS

RL with Linear Function Approximation. There exist extensive works on RL with linear func-
tion approximation (Jiang et al., 2017; Du et al., 2019; Wang et al., 2019; Sun et al., 2019; Yang
& Wang, 2019; Zanette et al., 2020b; Modi et al., 2020; Jin et al., 2020; Cai et al., 2020; Jia et al.,
2020; Ayoub et al., 2020; Zanette et al., 2020a; Ishfaq et al., 2021; Zhou et al., 2021; Zhou & Gu,
2022; Hwang & Oh, 2023; He et al., 2023). The most related works to ours is the linear MDP model
introduced by Yang & Wang (2019) and Jin et al. (2020), which assumes that rewards and transi-
tion probabilities are linear functions of some d-dimensional feature mapping ϕ(s, a). Based on
the analysis from linear contextual bandit literature (Chu et al., 2011; Abbasi-Yadkori et al., 2011;
Agrawal & Goyal, 2013; Abeille & Lazaric, 2017), Jin et al. (2020) establish Õ(

√
d3H3T ) regret

bound. Zanette et al. (2020a) develop a randomized least-square value iteration algorithm and prove
a frequentist regret bound of Õ(

√
d4H4T ). Ishfaq et al. (2021) also proposed a randomized algo-

rithm with Õ(
√
d3H3T ), which achieves optimism by taking a maximum value over a number of

samples. Recently, He et al. (2023) prove a nearly minimax optimal regret bound Õ(dH
√
T using a

Bernstein-type concentration (Zhou & Gu, 2022) and monotonic value estimation.

RL with General Function Approximation. Since many successful applications of RL rely on
complex function approximation such as neural networks, an increasing number of works focus on
the theoretical guarantee with general function approximation (Russo & Van Roy, 2013; Jiang et al.,
2017; Du et al., 2021; Agarwal et al., 2020a; Feng et al., 2021; Wang et al., 2020; Jin et al., 2021;
Kong et al., 2021; Agarwal et al., 2023). Each work defines a complexity measure for a general
function class, with some assumptions required for theoretical guarantees. Among these complexity
measures, we use the eluder dimension (Russo & Van Roy, 2013) to measure the complexity of
general function classes. The eluder dimension was first introduced in Russo & Van Roy (2013),
and they prove Bayesian regret bounds of Thompson sampling based bandit algorithms. Using the
properties of the eluder dimension, Wang et al. (2020) propose a model-free value-based algorithm.
They present the sampling method called sensitivity sampling to bound the complexity of bonus
functions, and establish a regret bound Õ(d2gH

√
T ). Building upon this work, Kong et al. (2021)

develop an improved sampling method that enables O(log T ) rare policy switching while preserving
the regret bound. Jin et al. (2021) proposed the Bellman Eluder dimension which includes the
notion of Bellman rank and the eluder dimension, and prove Õ(dgH

√
T ) under the assumption that

episodic return is bounded by 1. Recently, Agarwal et al. (2023) proposed an algorithm based on
weighted least square and the general eluder dimension. They establish Õ(dg

√
HT regret bound

with a sparse reward assumption, which is nearly minimax optimal in the linear MDP setting.

Policy Optimization. Several works study the convergence guarantees for policy optimization al-
gorithms (Kakade & Langford, 2002; Bagnell et al., 2003; Bhandari & Russo, 2019; Geist et al.,
2019; Agarwal et al., 2020b; Shani et al., 2020; Cen et al., 2022), under the assumption that the
starting state distribution well covers the state-action space. However, we focus on the setting with-
out such assumptions, hence the agent should balance exploration and exploitation. Moreover, there
exists a line of works that prove the sample complexity of policy optimization algorithms to learn
a near-optimal policy. Agarwal et al. (2020a) develop a policy optimization algorithm for general
function approximation, and establish Õ( poly(d,1/(1−γ))

ϵ11 ) sample complexity bound in discounted
linear MDPs. Feng et al. (2021) extend the idea for general function approximation, and prove
Õ(

poly(dg,1/(1−γ))
ϵ8 ) sample complexity bound. Agarwal et al. (2020a); Feng et al. (2021) are robust

to the model misspecification in that the additional sample complexity due to the misspecification
depends on the average model error, at the cost of large sample complexity. Zanette et al. (2021)
improve the sample complexity to Õ( d3

(1−γ)13ϵ3 ) by using fewer samples for value estimation, but
the result is specific to the linear function approximation. Building upon Feng et al. (2021), Li et al.

(2023) achieve Õ(
d3
g

(1−γ)8ϵ3 ) sample complexity bound using the sensitivity sampling introduced by
Kong et al. (2021). In a slightly different setting of episodic MDP, Liu et al. (2023) proposed a

simple on-policy batch policy optimization method with Õ(
d2
gH

6

ϵ3 ) sample complexity bound. An-
other line of work seeks to prove regret bound for policy optimization algorithms. Cai et al. (2020)
propose a policy update method that is equivalent to the proximal policy optimization (PPO), and
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establish a regret bound of Õ(
√

d2H3T log |A|) in adversarial linear mixture MDPs. Subsequently,
He et al. (2023) proves nearly minimax optimal regret in the same setting by adapting the Bernstein-
type concentration inequality from Zhou et al. (2021). On the other hand, Shani et al. (2020) proves
Õ(
√
S2AH3T ) regret bound for tabular MDPs, where S,A are the number of states and actions,

respectively. In the same tabular setting, Wu et al. (2022) achieves nearly minimax optimal regret
bound, with an assumption S > H . However, theoretical analyses in linear MDPs are relatively
limited. Zhong & Zhang (2023) is the first to prove sub-linear regret Õ(d3/4H5/4T 3/4 log |A|) for a
policy optimization algorithm, in adversarial linear MDPs. They propose a batch update method to
reduce the number of policy switches. Recently, an independent and concurrent work Sherman et al.
(2023) established a Õ(d2H5/2

√
T log |A|) in adversarial linear MDPs, by controlling the size of

Q-values via reward-free warm-up phase (Wagenmaker et al., 2022).

B PROOF OF LEMMA 3.4

Proof. Let {ki}i∈m be the set of episodes on which the value function and the policy are up-
dated. For convenience, define k0 = 0 and km+1 = K + 1. Note that the update rule is
πki

h (· | s) ∝ π
ki−1

h (· | s) exp
(
αQki

h (s, ·)
)

. To simplify the notation, we define γki

h (·) =

log
(∑

a∈A πki

h (a | ·) exp(αQki

h (·, a)
)

. Then it holds that

⟨αQki

h (sh, ·), π∗
h(· | sh)− πki

h (· | sh)⟩

=
∑
a

αQki

h (sh, a)
(
π∗
h(a | sh)− πki

h (a | sh)
)

=
∑
a

(
log πki

h (a | sh)− log π
ki−1

h (a | sh) + γki

h (sh)
)(

π∗
h(a | sh)− πki

h (a | sh)
)

=
∑
a

(
log πki

h (a | sh)− log π
ki−1

h (a | sh)
)(

π∗
h(a | sh)− πki

h (a | sh)
)
+
∑
a

γki

h (sh)
(
π∗
h(a | sh)− πki

h (a | sh)
)

=
∑
a

(
log πki

h (a | sh)− log π
ki−1

h (a | sh)
)(

π∗
h(a | sh)− πki

h (a | sh)
)

where the last equality holds because γ(·) is a function of states. Furthermore, it follows that

∑
a

(
log πki

h (a | sh)− log π
ki−1

h (a | sh)
)(

π∗
h(a | sh)− πki

h (a | sh)
)

= ⟨log πki

h (· | sh)− log π
ki−1

h (· | sh), π∗
h(· | sh)− πki

h (· | sh)⟩

= ⟨log π∗
h(· | sh)

π
ki−1

h (· | sh)
− log

π∗
h(· | sh)

πki

h (· | sh)
, π∗

h(· | sh)⟩ − ⟨log
πki

h (· | sh)
π
ki−1

h (· | sh)
, πki

h (· | xh)⟩

= DKL(π
∗
h(· | sh)∥π

ki−1

h (· | sh))−DKL(π
∗
h(· | sh)∥π

ki

h (· | sh))−DKL(π
ki

h (· | sh)∥πki−1

h (· | sh))

≤ DKL(π
∗
h(· | sh)∥π

ki−1

h (· | sh))−DKL(π
∗
h(· | sh)∥π

ki

h (· | sh))

where the inequality holds because KL divergence is always non-negative. Since we only update
Qk

h(·, ·), V k
h (·), and πk

h(· | ·) at kis, the term Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh) − πk
h(· | sh)⟩] is repeated
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until the next update. Thus we have

K∑
k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(sh, ·), π∗
h(· | sh)− πk

h(· | sh)⟩
]

=

H∑
h=1

m∑
i=1

(ki+1 − ki)Eπ∗

[
⟨Qki

h (sh, ·), π∗
h(· | sh)− πki

h (· | sh)⟩
]

≤ α−1
H∑

h=1

m∑
i=1

(ki+1 − ki)Eπ∗

[
DKL(π

∗
h(· | sh)∥π

ki−1

h (· | sh))−DKL(π
∗
h(· | sh)∥π

ki

h (· | sh))
]

≤ α−1
H∑

h=1

m∑
i=1

KEπ∗

[
DKL(π

∗
h(· | sh)∥π

ki−1

h (· | sh))−DKL(π
∗
h(· | sh)∥π

ki

h (· | sh))
]

= α−1
H∑

h=1

KEπ∗

[
DKL(π

∗
h(· | sh)∥π0

h(· | sh))−DKL(π
∗
h(· | sh)∥π

km

h (· | sh))
]

≤ α−1HK log |A|

where the second inequality holds due to the fact that ki ∈ [K + 1] for all i ∈ [m + 1], and
the last inequality holds because DKL(π

∗
h(· | s)∥π0

h(· | s)) =
∑

a π
∗
h(a | s) log

π∗
h(a|s)

π0
h(a|s)

=∑
a (π

∗
h(a | s) log π∗

h(a | s) + π∗
h(a | s) log |A|) ≤ log |A|.

C ANALYSIS FOR THEOREM 3.1

In this section, we provide detailed proof of Theorem 3.1. First, define the following filtrations.

Fk := σ
(
{(sτh, aτh, rτh)}(τ,h)∈[k]×[H]

)
Fk
1,h := σ

(
Fk−1 ∪ {(skj , akj , rkj )}j∈[h]

)
Fk
2,h := σ

(
Fk−1 ∪ {(skj , akj , rkj )}j∈[h−1] ∪ skh

)
where σ(A) is the σ-algebra generated by A.

C.1 PROOF OF LEMMA 3.2

This is proved in Wang et al. (2021), and we include it for completeness.

Proof of Lemma 3.2. Let {ki}i∈m be the set of episodes on which the value function and the policy
are updated. For convenience, define k0 = 0. Then according to Line 5 of Algorithm 1, for all
i ∈ [m], there exists h ∈ [H] such that

det
(
Λki

h

)
≥ η det

(
Λ
ki−1

h

)
.

On the other hand, by the definition of Λk
h, we know Λki

h ⪰ Λ
ki−1

h and det
(
Λki

h

)
≥ det

(
Λ
ki−1

h

)
for all h ∈ [H]. Thus, we have

H∏
h=1

det
(
Λki

h

)
≥ η

H∏
h=1

det
(
Λ
ki−1

h

)
.

Repeating the inequality, we get

H∏
h=1

det
(
Λkm

h

)
≥ ηm

H∏
h=1

det
(
Λk0

h

)
= ηmλdH
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where we use Λk0

h = λI . Finally, since det
(
Λkm

h

)
≤ det

(
ΛK
h

)
for all h ∈ [H] and det

(
ΛK
h

)
≤

(λ+K/d)d by Lemma F.11, we have

ηmλdH ≤
H∏

h=1

det
(
Λkm

h

)
≤

H∏
h=1

det
(
ΛK
h

)
≤ (λ+K/d)dH ,

which immediately implies

m ≤ dH

log η
log

(
1 +

K

λd

)

C.2 CONCENTRATION

The following lemma bound the error due to the least square value iteration.

Lemma C.1. With probability at least 1 − δ/2, for all k ∈ [K], h ∈ [H], (s, a) ∈ S × A, it holds
that

|ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)| ≤ β ∥ϕ(s, a)∥(Λk

h)
−1

where β is defined by β = Cld
3/2H3/2χl with χl =

1
log η

√
log
(
1 + K

λd

)
log
(

dT log |A|
δλ log η

)
for some

constant Cl.

Proof. By Lemma F.4, we can find wk
h such that ϕ(s, a)Twk

h = rh(s, a) + PhV
k
h+1(s, a) for all

(s, a) ∈ S ×A. Therefore, we have

ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)

= ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)[rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)]− ϕ(s, a)Twk

h

= ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)[rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)]

− ϕ(s, a)T (Λk
h)

−1

(
k−1∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

Twk
h + λwk

h

)

= ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V k
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
− λϕ(s, a)T (Λk

h)
−1wk

h

where the second last equality uses the definition of Λk
h.

Since Lemma 3.2 states that the number of policy switches is bounded by Nl =
dH
log η log (1 +K/λd), we can bound the covering number of the class of V -functions. Applying
Lemma F.12 with M = Nl, in conjunction with Lemma F.8 and Lemma F.6, we have

logN (V, ε) ≤ logN (Q, ε/2) + logN (Π, ε/2H)

≤ logN (Q, ε/2) +Nl logN (Q, ε/(16αMH2))

≤
[
d log(1 + 16H

√
dK/λ/ε) + d2 log(1 + 32

√
dβ2/(λε2))

]
+Nl

[
d log(1 + 128αMH3

√
dK/λ/ε) + d2 log(1 + 2048α2

√
dβ2M2H4/(λε2))

]
≲
d3H

log η
log

(
1 +

K

λd

)
log

(
1 +

αβdH

λε2 log η

)
.
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where V denotes the class of V -functions. With this bound at hand, we use Lemma F.7 with ε = dH
K

and α = poly (T, 1/δ, log |A|, d). Then it holds that

|ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
|

≤

∥∥∥∥∥
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]∥∥∥∥∥

(Λk
h)

−1

∥ϕ(s, a)∥(Λk
h)

−1

≲ c′
d3/2H3/2

log η

√
log

(
1 +

K

λd

)
log

(
βdHK log(|A|)

δλ log η

)
∥ϕ(s, a)∥(Λk

h)
−1 .

On the other hand, by Cauchy-Schwarz inequality and Lemma F.4, it holds that

|λϕ(s, a)T (Λk
h)

−1wk
h| ≤ λ

∥∥wk
h

∥∥
(Λk

h)
−1 ∥ϕ(s, a)∥(Λk

h)
−1 ≤ 2H

√
d ∥ϕ(s, a)∥(Λk

h)
−1

where we used the fact that (Λk
h)

−1 ⪯ 1
λI . Combining the results above, it follows that

|ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)|

≤ |ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
|+ |λϕ(s, a)T (Λk

h)
−1wk

h|

≤ c′
d3/2H3/2

log η

√
log

(
1 +

K

λd

)
log

(
βdHK log(|A|)

δλ log η

)
∥ϕ(s, a)∥(Λk

h)
−1

where c′ is some absolute constant. Now the proof is complete if the following inequality holds:

c′
d3/2H3/2

log η

√
log

(
1 +

K

λd

)
log

(
(Cld3/2H3/2χl)dHK log(|A|)

δλ log η

)
≤ β = Cld

3/2H3/2χl

Since c′ is independent of Cl, we can find an absolute constant Cl satisfying this inequality. This
completes the proof.

C.3 PROOF OF LEMMA 3.3

Proof of Lemma 3.3. By Lemma C.1, with probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], we
have

|ϕ(s, a)T ŵk
h − rh(s, a)PhV

k
h+1(s, a)| ≤ β ∥ϕ(s, a)∥(Λk

h)
−1 .

Therefore, for any (s, a) ∈ S ×A, it holds that

ξkh(s, a) = rh(s, a) + PhV
k
h+1(s, a)−Qk

h(s, a)

= rh(s, a) + PhV
k̄
h+1(s, a)−Qk̄

h(s, a)

= rh(s, a) + PhV
k̄
h+1(s, a)−

[
ϕ(s, a)T ŵk̄

h + β ∥ϕ(s, a)∥(Λk̄
h)

−1

]
[0,H−h+1]

≤ rh(s, a) + PhV
k̄
h+1(s, a)− ϕ(s, a)T ŵk̄

h − β ∥ϕ(s, a)∥(Λk̄
h)

−1

≤ 0

where the first equality uses the definition of k̄, the first inequality uses the fact that rh(s, a) +
PhV

k
h+1(s, a) ∈ [0, H − h + 1] for any k ∈ [K], h ∈ [H] and any (s, a) ∈ S × A. The other

direction can be shown similarly:
−ξkh(s, a) = Qk

h(s, a)− rh(s, a)− PhV
k
h+1(s, a)

= Qk̄
h(s, a)− rh(s, a)− PhV

k̄
h+1(s, a)

=
[
ϕ(s, a)T ŵk̄

h + β ∥ϕ(s, a)∥(Λk̄
h)

−1

]
[0,H−h+1]

− rh(s, a)− PhV
k̄
h+1(s, a)

≤ ϕ(s, a)T ŵk̄
h + β ∥ϕ(s, a)∥(Λk̄

h)
−1 − rh(s, a)− PhV

k̄
h+1(s, a)

≤ 2β ∥ϕ(s, a)∥(Λk̄
h)

−1
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where the first inequality we again rely on the fact rh(s, a)+PhV
k
h+1(s, a) ∈ [0, H−h+1] for any

k ∈ [K], h ∈ [H] and any (s, a) ∈ S ×A.

C.4 PROOF OF THEOREM 3.1

We need the following lemma to bound the sum of martingale difference sequences that appears in
the regret decomposition (Lemma F.3).

Lemma C.2. It holds with probability at least 1− δ/2 that

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h ≤ 2

√
2H2T log(4/δ)

whereMk
1,h andMk

2,h are defined in Lemma F.3.

Proof. Since Mk
1,h is adapted to Fk

1,h+1 and E[Mk
1,h | Fk

1,h] = 0, Mk
1,h is a martingale

difference sequence bounded by |Dk
h| ≤ 2H . Hence, Azuma-Hoeffding inequality implies∑K

k=1

∑H
h=1Mk

1,h ≤
√
2H2T log(4/δ) with probability at least 1 − δ/4. Similarly, Mk

2,h is
adapted to Fk

2,h+1. Thus E[Mk
2,h | Fk

2,h] = 0 and |Mk
h| ≤ 2H leads to

∑K
k=1

∑H
h=1Mk

2,h ≤√
2H2T log(4/δ) with probability at least 1− δ/4. Taking union bound completes the proof.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma F.3, we have

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

=

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ]

+

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h

+

K∑
k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah))

Lemma 3.4 with α = Ω(
√
K log (|A|)) gives

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ] ≤ H

√
K.

By Lemma C.2, with probability at least 1− δ/2, we have

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h ≤ 2

√
2H2T log(4/δ).

On the other hand, Lemma 3.3 implies that, with probability at least 1− δ/2, we have

K∑
k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah))

≤ 0 +

K∑
k=1

H∑
h=1

2β
∥∥ϕ(skh, akh)∥∥(Λk̄

h)
−1 ≤

K∑
k=1

H∑
h=1

2ηβ
∥∥ϕ(skh, akh)∥∥(Λk

h)
−1
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where the last inequality holds due to Lemma F.10 and the fact that det((Λk̄
h)

−1) < η det((Λk
h)

−1).
Furthermore, it follows that

K∑
k=1

H∑
h=1

2ηβ
∥∥ϕ(skh, akh)∥∥(Λk

h)
−1 ≤ 2ηβ

H∑
h=1

√
K

√√√√ K∑
k=1

∥∥ϕ(skh, akh)∥∥(Λk
h)

−1

≤ 2ηβ
√
K

H∑
h=1

√
2 log

det(ΛK
h )

det(Λ1
h)
≤ 2ηβH

√
K

√
2d log

(
1 +

K

λd

)
where the first inequality uses the Cauchy-Schwartz inequality, the second inequality holds due to
Lemma F.9, and the last inequality holds due to Lemma F.11. Combining the results above and
taking a union bound, with probability at least 1− δ, we have

Regret(K) ≤ H
√
K + 2

√
2H2T log (4/δ) + 2ηβH

√
K

√
2d log

(
1 +

K

λd

)

≲
ηd2H2

√
T

log η
log

(
1 +

K

λd

)√
log

(
dT log(|A|)
δλ log η

)

since we set β = Cld
3/2H3/2 1

log η

√
log
(
1 + K

λd

)
log
(

dT log |A|
δλ log η

)
.

D ANALYSIS FOR THEOREM 4.1

In this section, we prove Theorem 4.1. We begin by defining the following filtrations.

Gk := σ
(
{(sτh, aτh, rτh)}(τ,h)∈[k]×[H] ∪ Ẑk

h

)
Gk

1,h := σ
(
Gk−1 ∪ Ẑk

h ∪ {(skj , akj , rkj )}j∈[h]

)
Gk

2,h := σ
(
Gk−1 ∪ Ẑk

h ∪ {(skj , akj , rkj )}j∈[h−1] ∪ skh

)
where σ(A) is the σ-algebra generated by A. For notational convenience, we use Ek to denote the
conditional expectation with respect to Gk, and we denote P(AB) := P(A ∩B) for events A,B.

D.1 PROOF OF LEMMA 4.2

We formally restate Lemma 4.2, which is established in Kong et al. (2021):

Lemma D.1. For β specified in Theorem 4.1, with probability at least 1− δ/8, the following hold:

1. For all (k, h) ∈ [K]× [H], the number of distinct elements in ẐK
h is bounded by

Ng = Csw · log(TN (F ,
√
δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T.

Therefore, the number of policy switches in Algorithm 2 is bounded by H ·Ng .

2. For all (k, h) ∈ [K]× [H], |Ẑk
h | ≤ 64T 3/δ

3. For all (k, h) ∈ [K]× [H], it holds that

∥f1 − f2∥2Zk
h

10000
≤ min{∥f1 − f2∥2Ẑk

h
, T (H + 1)2} ≤ 10000 ∥f1 − f2∥2Ẑk

h
, ∀ ∥f1 − f2∥2Zk

h
> 100β

and min{∥f1 − f2∥2Ẑk
h
, T (H + 1)2} ≤ 10000β, ∀ ∥f1 − f2∥Zk

h
≤ 100β
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We define sets and events required to prove Lemma D.1. For each (k, h) ∈ [K] × [H] and γ ∈
[β,∞), define

Bkh(γ) := {(f1, f2) ∈ F × F : ∥f1 − f2∥2Zk
h
≤ γ/100}

Bkh(γ) := {(f1, f2) ∈ F × F : min{∥f1 − f2∥2Ẑk
h
, T (H + 1)2} ≤ γ}

Bkh(γ) := {(f1, f2) ∈ F × F : ∥f1 − f2∥2Zk
h
≤ 100γ}

Moreover, we define the following bonus functions with respect Zk
h .

bkh(·, ·) := sup
∥f1−f2∥2

Zk
h

≤β/100

|f1(·, ·)− f2(·, ·)|

b
k

h(·, ·) := sup
∥f1−f2∥2

Zk
h

≤100β

|f1(·, ·)− f2(·, ·)|

For each (k, h) ∈ [K]× [H], we consider a good event Ekh(γ) that

Bkh(γ) ⊆ Bkh(γ) ⊆ B
k

h(γ)

and denote that

Ekh :=

∞⋂
n=0

Ekh(100nγ)

On the good event Ekh , we can show that Ẑk
h is a good approximation of Zk

h , i.e., ∥f1 − f2∥Ẑk
h

is
close to ∥f1 − f2∥Zk

h
up to some constant factor. Also, setting γ = β directly implies

bkh(·, ·) ≤ bkh(·, ·) ≤ b
k

h(·, ·)

on Ekh . The following lemma from Kong et al. (2021) formalizes the notion of good approximation.

Lemma D.2. Conditioned on Ekh , it holds that

∥f1 − f2∥2Zk
h

10000
≤ min{∥f1 − f2∥2Ẑk

h
, T (H + 1)2} ≤ 10000 ∥f1 − f2∥2Zk

h
,∀ ∥f1 − f2∥2Zk

h
> 100β

and

min{∥f1 − f2∥2Ẑk
h
, T (H + 1)2} ≤ 10000β, ∀ ∥f1 − f2∥2Zk

h
≤ 100β

Proof. If ∥f1 − f2∥2Zk
h
≤ 100β, then (f1, f2) ∈ Bkh(10000β). Conditioned on Ekh , we have

(f1, f2) ∈ Bkh(10000β), which means min{∥f1 − f2∥2Ẑk
h
, T (H + 1)2} ≤ 10000β.

If ∥f1 − f2∥2Zk
h

> 100β, assume 100nβ < ∥f1 − f2∥2Zk
h
≤ 100n+1β for some n ∈ N ∪

{0}. Then we have (f1, f2) /∈ Bkh(100n−1β), and Ekh implies (f1, f2) /∈ Bkh(100n−1β).
Hence min{∥f1 − f2∥2Ẑk

h
, T (H + 1)2} ≥ 100n−1β ≥ 1

10000 ∥f1 − f2∥2Zk
h

. Similarly, we have

(f1, f2) ∈ Bk
h(100

n+2β), and Ekh implies (f1, f2) ∈ Bkh(100n+2β). Thus it follows that
min{∥f1 − f2∥2Ẑk

h
, T (H + 1)2} ≤ 100n+2β ≤ 10000 ∥f1 − f2∥2Zk

h
.

The following lemma from Kong et al. (2021) states that Ekh happens with high probability.
Lemma D.3.

P

(
H⋂

h=1

K⋂
k=1

Ekh

)
≥ 1− δ/32

Now we present some lemmas required to prove Lemma D.3. The following lemma states that the
size of Ẑk

h is bounded with high probability. This is proved in Kong et al. (2021).
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Lemma D.4. With probability at least 1− δ/64T , for all (k, h) ∈ [K]× [H], it holds that

|Ẑk
h | ≤ 64T 3/δ

Proof. For a fixed pair (k, h) ∈ [K]× [H], Markov’s inequality implies

P(|Ẑk
h | > 64T 2|Zk

h |/δ) ≤ E[|Ẑk
h |]/(64T 2|Zk

h |/δ) = δ/64T 2

where we used the fact E[|Ẑk
h |] = |Zk

h | which is the result of the sampling procedure. Taking a
union bound completes the proof.

The following lemma is a key step for proving Lemma D.3, and this is established in Kong et al.
(2021).

Lemma D.5. For γ ∈ [β, T (H + 1)2] and any fixed (k, h) ∈ [K]× [H], it holds that

P

((
k−1⋂
i=1

E ih

)
Ekh(γ)c

)
≤ δ/32T 2

Proof. We use Z̄k
h to denote the dataset without rounding, i.e., we replace every element ẑ with z in

Ẑk
h . Denote C̃ := C log(TN (F ,

√
δ/64T 3)/δ) where C is the parameter used in Algorithm 3.

Consider a fixed pair (f1, f2) ∈ C(F ,
√

δ/64T 3)× C(F ,
√
δ/64T 3). For each i ≥ 2, define

Zi := max{∥f1 − f2∥2Zi
h
,min{∥f1 − f2∥2Ẑi−1

h
, T (H + 1)2}}

and

Yi :=


1

p
z
i−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))2 zi−1

h is added into Z̄i
h and Zi ≤ 2000000γ

0 zi−1
h is not added into Z̄i

h and Zi ≤ 2000000γ

(f1(z
i−1
h )− f2(z

i−1
h ))2 Zi > 2000000γ

Note that Yi is adapted to Gi and Ei−1[Yi] = (f1(z
i−1
h ) − f2(z

i−1
h ))2. In order to use Freedman’s

inequality (Lemma F.1), we need to bound Yi and its variance.

If pzi−1
h

= 1 or min{∥f1 − f2∥2Ẑi−1
h

, T (H + 1)2} > 2000000γ, then Yi − Ei−1[Yi] = Vari−1[Yi −
Ei−1[Yi]] = 0. Otherwise, from the definition of pzi−1

h
, we have

1 > C · sensitivityẐi−1
h ,F (z

i−1
h ) · log

(
TN (F ,

√
δ/64T 3)/δ

)
= C̃ · sensitivityẐi−1

h ,F (z
i−1
h )

Note that we can pick sufficiently large absolute constant C, so that sensitivityẐi−1
h

(zi−1
h ) < 1,

which leads to

sensitivityẐi−1
h

(zi−1
h ) = min

 sup
f̃1,f̃2∈F

(f̃1(z
i−1
h )− f̃2(z

i−1
h ))2

min

{∥∥∥f̃1 − f̃2

∥∥∥2
Ẑi−1

h

, T (H + 1)2
}
+ β

, 1


= sup

f̃1,f̃2∈F

(f̃1(z
i−1
h )− f̃2(z

i−1
h ))2

min

{∥∥∥f̃1 − f̃2

∥∥∥2
Ẑi−1

h

, T (H + 1)2
}
+ β

.
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In the case of Yi =
1

p
z
i−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))2, it follow that

|Yi − Ei−1[Yi]| ≤
1

pzi−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))2

≤
(f1(z

i−1
h )− f2(z

i−1
h ))2

C̃ · sensitivityẐi−1
h

(zi−1
h )

≤
(f1(z

i−1
h )− f2(z

i−1
h ))2(min{

∥∥∥f̃1 − f̃2

∥∥∥2
Ẑi−1

h

, T (H + 1)2}+ β)

C̃(f1(z
i−1
h )− f2(z

i−1
h ))2

≤ (2000000γ + β)/C̃ ≤ 3000000γ/C̃.

If Yi = 0, we have

|Yi − Ei−1[Yi]| = (f1(z
i−1
h )− f2(z

i−1
h ))2

≤ 1

pzi−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))2 ≤ 3000000γ/C̃

In the last inequality, we apply the same steps derived above. Combining the two cases, we get

|Yi − Ei−1[Yi]| ≤ 3000000γ/C̃.

For the variance, we have

Vari−1[Yi − Ei−1[Yi]] ≤ Ei−1[Y
2
i ]

= pzi−1
h
·

(
1

pzi−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))2

)2

+ (1− pzi−1
h

) · 02

=
1

pzi−1
h

(f1(z
i−1
h )− f2(z

i−1
h ))4

≤ (f1(z
i−1
h )− f2(z

i−1
h ))2 · 3000000γ

C̃

where the last inequality holds due to the inequality we derived above. Let k̃ ≤ k be the largest
integer satisfying Zk̃ < 2000000γ. We know Vari−1[Yi − Ei−1[Yi]] = 0 for i > k̃. Therefore, we
obtain

k∑
i=2

Vari−1[Yi − Ei−1[Yi]] =

k̃∑
i=2

Vari−1[Yi − Ei−1[Yi]]

≤ 3000000γ

C̃

k̃∑
i=2

(f1(z
i−1
h )− f2(z

i−1
h ))2

≤ 3000000γ

C̃
Zk̃ ≤ (3000000γ)2/C̃

where the second last inequality uses the definition of Zi. Applying Freedman’s inequal-
ity(Lemma F.1) to the sequence {Yi − Ei−1[Yi]} , we have that

P

(∣∣∣∣∣
k∑

i=2

(Yi − Ei−1[Yi])

∣∣∣∣∣ ≥ γ/100

)
≤ 2 exp

(
− (γ/100)2/2

(3000000γ)2/C̃ + (3000000γ/C̃)(γ/100)/3

)

≤ 2 exp

(
−
C log(TN (F ,

√
δ/64T 3)/δ)

20000 · (30000002 + 10000)

)
≤ (δ/64T 2)/(N (F ,

√
δ/64T 3))2
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for sufficiently large C. With a union bound over C(F ,
√
δ/64T 3) × C(F ,

√
δ/64T 3), we know

that with probability at least 1 − δ/64T 2, for any (f1, f2) ∈ C(F ,
√

δ/64T 3) × C(F ,
√
δ/64T 3),

the corresponding {Yi} satisfies ∣∣∣∣∣
k∑

i=2

(Yi − Ei−1[Yi])

∣∣∣∣∣ ≤ γ/100

Now we condition on the above event (say E1) and the event defined in Lemma D.4 (say E2) for the
rest of the proof. Since We know that P((E1E2)c) ≤ δ/32T 2 and

P

((
k−1⋂
i=1

E ih

)
Ekh(γ)c

)
≤ P

((
k−1⋂
i=1

E ih

)
Ekh(γ)c | E1E2

)
· P(E1E2) + P((E1E2)c),

The proof is complete if we show that

P

((
k−1⋂
i=1

E ih

)
Ekh(γ)c | E1E2

)
= 0.

Therefore, we condition on the event
⋂k−1

i=1 E ih, then show that Bkh(γ) ⊆ Bkh(γ) ⊆ B
k

h(γ) (i.e. Ekh(γ))
holds almost surely.

Part 1: (Bkh(γ) ⊆ Bkh(γ)) Consider any pair f1, f2 ∈ F with ∥f1 − f2∥2Zk
h
≤ γ/100. From

the definition, we know that there exist (f̂1, f̂2) ∈ C(F ,
√
δ/64T 3) × C(F ,

√
δ/64T 3) such that∥∥∥f̂1 − f1

∥∥∥
∞

,
∥∥∥f̂2 − f2

∥∥∥
∞
≤
√
δ/64T 3. Then we have that∥∥∥f̂1 − f̂2

∥∥∥2
Zk

h

≤ (∥f1 − f2∥Zk
h
+
∥∥∥f̂1 − f1

∥∥∥
Zk

h

+
∥∥∥f̂2 − f2

∥∥∥
Zk

h

)2

≤ (∥f1 − f2∥Zk
h
+ 2
√
|Zk

h |
√
δ/64T 3)2

≤ (∥f1 − f2∥Zk
h
+ 2
√
δ/64T )2 ≤ γ/50.

Consider the {Yi} corresponding to f̂1 and f̂2. Since
∥∥∥f̂1 − f̂2

∥∥∥2
Zk−1

h

≤
∥∥∥f̂1 − f̂2

∥∥∥2
Zk

h

≤ γ/100,

From the definition of Ek−1
h we know that min{

∥∥∥f̂1 − f̂2

∥∥∥
Ẑk−1

h

, T (H + 1)2} ≤ 2γ ≤ 10000γ.

Then from the definition of {Yi}, we have∥∥∥f̂1 − f̂2

∥∥∥2
Z̄k

h

=

k∑
i=2

Yi ≤
k∑

i=2

Ei−1[Yi] + γ/100

=
∥∥∥f̂1 − f̂2

∥∥∥2
Zk

h

+ γ/100 ≤ 3γ/100

where the first inequality used the concentration we derived above. Further, we can bound
∥f1 − f2∥Z̄k

h
by

∥f1 − f2∥Z̄k
h
≤ (
∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

+
∥∥∥f̂1 − f1

∥∥∥
Z̄k

h

+
∥∥∥f̂2 − f2

∥∥∥
Z̄k

h

)2

≤ (
∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

+ 2
√
|Z̄k

h |
√
δ/64T 3)2

≤ (
∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

+ 2)2 ≤ γ/25

where the second last inequality holds due to Lemma D.4, and the last inequality holds due to the
fact γ ≥ β. Finally, ∥f1 − f2∥Ẑk

h
can be bounded:

∥f1 = f2∥2Ẑk
h
≤ (∥f1 − f2∥Z̄k

h
+

√
|Ẑk

h |/16
√
64T 3/δ)2

≤ (∥f1 − f2∥Z̄k
h
+ 1/16)2 ≤ γ
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where the first inequality holds due to the rounding property of Ẑk
h and the second inequality holds

due to Lemma D.4. Since it holds that any f1, f2 ∈ F with ∥f1 − f2∥2Zk
h
≤ γ/100 satisfies

∥f1 − f2∥2Ẑk
h
≤ γ, we have Bkh(γ) ⊆ Bkh(γ).

Part 2: (Bkh(γ) ⊆ B
k

h(γ)) Consider any f1, f2 ∈ F with ∥f1 − f2∥2Zk
h
≥ 100γ. From the

definition, we know that there exist (f̂1, f̂2) ∈ C(F ,
√
δ/64T 3) × C(F ,

√
δ/64T 3) such that∥∥∥f̂1 − f1

∥∥∥
∞

,
∥∥∥f̂2 − f2

∥∥∥
∞
≤
√
δ/64T 3. Then we have that∥∥∥f̂1 − f̂2

∥∥∥
Zk

h

≤ (∥f1 − f2∥Zk
h
−
∥∥∥f̂1 − f1

∥∥∥
Zk

h

−
∥∥∥f̂2 − f2

∥∥∥
Zk

h

)2

≤ (∥f1 − f2∥Zk
h
− 2
√
|Zk

h |
√
δ/64T 3)2

≤ (∥f1 − f2∥Zk
h
− 2
√
δ/64)2

≤ 50γ.

Now consider the {Yi} corresponding to f̂1 and f̂2.

Case 1: (
∥∥∥f̂1 − f̂2

∥∥∥
Zk

h

≤ 2000000γ) From the definition of {Yi}, it holds that

∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

=

k∑
i=2

Yi ≥
k∑

i=2

Ei−1[Yi]− γ/100

=
∥∥∥f̂1 − f̂2

∥∥∥2
Zk

h

− γ/100 > 49γ

where the first inequality holds due to the concentration we derived above. Then we have that∥∥∥f̂1 − f̂2

∥∥∥
Ẑk

h

≥ (
∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

−
√
|Ẑk

h |/16
√
64T 3/δ)2

≥ (
∥∥∥f̂1 − f̂2

∥∥∥
Z̄k

h

− 1/16)2 > 40γ

where the second last inequality uses Lemma D.4.

Case 2: (
∥∥∥f̂1 − f̂2

∥∥∥
Zk−1

h

> 10000γ) Since we conditioned on Ek−1
h , we have that∥∥∥f̂1 − f̂2

∥∥∥
Ẑk

h

> 100γ > 40γ

Case 3: (
∥∥∥f̂1 − f̂2

∥∥∥
Zk

h

> 2000000γ and
∥∥∥f̂1 − f̂2

∥∥∥
Zk−1

h

≤ 10000γ) It is clear that

(f̂1(z
k−1
h ) − f̂2(z

k−1
h ))2 > 1990000γ. Since

∥∥∥f̂1 − f̂2

∥∥∥
Zk−1

h

≤ 10000γ, Ek−1
h guarantees that∥∥∥f̂1 − f̂2

∥∥∥
Ẑk−1

h

≤ 1000000γ. Thus, from the definition of the sensitivity, sensitivityẐk−1
h

(zk−1
h ) =

1 and zk−1
h is added to Ẑk

h almost surely. Hence, we have∥∥∥f̂1 − f̂2

∥∥∥
Ẑk

h

≥ (f̂1(z
k−1
h )− f̂2(z

k−1
h ))2 > 40γ

Combining the three cases, we conclude that
∥∥∥f̂1 − f̂2

∥∥∥
Ẑk

h

> 40γ. Finally we bound ∥f1 − f2∥Ẑk
h

:

∥f1 − f2∥Ẑk
h
≥ (∥f1 − f2∥Ẑk

h
− 2

√
|Ẑk

h |
√

δ/64T 3)2

≥ (∥f1 − f2∥Ẑk
h
− 2)2 ≥ γ

where the second last inequality holds due to Lemma D.4. Since it holds that any f1, f2 ∈ F with
∥f1 − f2∥2Zk

h
> 100γ satisfies ∥f1 − f2∥2Ẑk

h
> γ, we have Bkh(γ) ⊆ B

k

h(γ).

25



Under review as a conference paper at ICLR 2024

Proof of Lemma D.3. For any fixed (k, h) ∈ [K]× [H], we have

P(E1hE2h . . . Ek−1
h )− P(E1hE2h . . . Ekh)

= P
(
E1hE2h . . . Ek−1

h (Ekh)c
)

= P

(
E1hE2h . . . Ek−1

h

( ∞⋂
n=0

Ekh(100nβ)

)c)

= P

(
E1hE2h . . . Ek−1

h

∞⋃
n=0

Ekh(100nβ)c
)

≤
∞∑

n=0

P
(
E1hE2h . . . Ek−1

h (Ekh(100nβ))c
)

=
∑

n≥0,100nβ≤T (H+1)2

P
(
E1hE2h . . . Ek−1

h (Ekh(100nβ))c
)

where the last inequality is due to the fact that Ekh(100nβ) always holds for 100nβ > T (H + 1)2.
Applying Lemma D.5, it holds that

P(E1hE2h . . . Ek−1
h )− P(E1hE2h . . . Ekh) ≤ (δ/32T 2) · (log(T (H + 1)2/β) + 2) ≤ δ/32T

for sufficiently large Cl (the absolute constant of β). Hence for all h ∈ [H], we have

P

(
K⋂

k=1

Ekh

)
= 1−

K∑
k=1

(
P(E1hE2h . . . Ek−1

h )− P(E1hE2h . . . Ekh)
)

≥ 1−K · (δ/32T ) = 1− δ/32H.

Taking a union bound for all h ∈ [H] completes the proof.

The following lemma bound the sum of online sensitivity scores with respect to Zk
h . This is proved

in Kong et al. (2021).
Lemma D.6. For all h ∈ [H], it holds that

K−1∑
k=1

sensitivityZk
h ,F

(zkh) ≤ 13dimE (F , 1/T ) log(T (H + 1)2) log T

Proof. Since |Zk
h | = k − 1 ≤ T , ∥f1 − f2∥Zk

h
≤ T (H + 1)2 for all f1, f2 ∈ F . Thus we have that

sensitivityZk
h ,F

(zkh) = min

{
sup

f1,f2∈F

(f1(z
k
h)− f2(z

k
h))

2

min{∥f1 − f2∥2Zk
h
, T (H + 1)2}+ β

, 1

}

≤ min

{
sup

f1,f2∈F

(f1(z
k
h)− f2(z

k
h))

2

∥f1 − f2∥2Zk
h
+ 1

, 1

}
.

For each k ∈ [K − 1], let f1, f2 ∈ F be an arbitrary pair of functions such that

(f1(z
k
h)− f2(z

k
h))

2

∥f1 − f2∥2Zk
h
+ 1

is maximized, and define L(zkh) := (f1(z
k
h) − f2(z

k
h))

2 for such f1, f2. Note that 0 ≤ L(zkh) ≤
(H +1)2. Let ZK

h =
⋃⌊log(T (H+1)2)⌋−1

α=0 Zα ∪Z∞ be a dyadic decomposition with respect to L(·),
where for each 0 ≤ α ≤ ⌊log(T (H + 1)2)⌋ − 1, define

Zα := {zkh ∈ ZK
h : L(zkh) ∈ ((H + 1)2 · 2−α−1, (H + 1)2 · 2−α]}

and

Z∞ := {zkh ∈ ZK
h : L(zkh) ≤ (H + 1)2 · 2−⌊log(T (H+1)2)⌋}.
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For any zkh ∈ Z∞, sensitivityZk
h ,F

(zkh) ≤ (H + 1)2 · 2−⌊log(T (H+1)2)⌋ ≤ 2/T and we have∑
zk
h∈Z∞

sensitivityZk
h ,F

(zkh) ≤ |Z∞| · 2/T ≤ 2.

Now we bound
∑

zk
h∈Zα sensitivityZk

h ,F
(zkh) for each 0 ≤ α ≤ ⌊log(T (H + 1)2)⌋ − 1 separately.

For each α, let

Nα := |Zα|/dimE

(
F , (H + 1)2 · 2−α−1

)
and decompose Zα into Nα + 1 disjoint subsets, Zα =

⋃Nα+1
j=1 Zα

j , using the following procedure:

Initialize Zα
j = {} for all j and consider each zkh ∈ Zα sequentially. For each zkh ∈ Zα, find the

smallest 1 ≤ j ≤ Nα such that zkh is (H + 1)2 · 2−α−1-independent of Zα
j with respect to F . If

there is no Zα
j , we set j = Nα + 1. We use j(zkh) to denote such j, then add zkh into Zα

j(zk
h)

.

Following the procedure, zkh is (H + 1)2 · 2−α−1-dependent of Zα
1 , . . . , Z

α
j(zk

h)−1
. Recall that for

each zkh ∈ Zα, we selected f1, f2 ∈ F such that

(f1(z
k
h)− f2(z

k
h))

2

∥f1 − f2∥2Zk
h
+ 1

is maximized. Since zkh ∈ Zα, we have (f1(z
k
h)− f2(z

k
h))

2 ≤ (H + 1)2 · 2−α. Moreover, since zkh
is (H + 1)2 · 2−α−1-dependent of Zα

1 , . . . , Z
α
j(zk

h)−1
, it holds that

∥f1 − f2∥Zα
t
≥ (H + 1)2 · 2−α−1, 1 ≤ t ≤ j(zkh).

Therefore, the online sensitivity score can be bounded by

sensitivityZk
h ,F

(zkh) ≤
(f1(z

k
h)− f2(z

k
h))

2

∥f1 − f2∥2Zk
h
+ 1

≤ (H + 1)2 · 2−α

∥f1 − f2∥2Zk
h

≤ (H + 1)2 · 2−α∑j(zk
h)−1

t=1 ∥f1 − f2∥Zα
t

≤ 2

j(zkh)− 1
.

By the definition of online sensitivity score, we have sensitivityZk
h ,F

(zkh) ≤ 1. Thus we obtain

sensitivityZk
h ,F

(zkh) ≤ min

{
2

j(zkh)− 1
, 1

}
≤ 4

j(zkh)
.

Moreover, by the definition of the eluder dimension, |Zα
j | ≤ dimE

(
F , (H + 1)2 · 2−α−1

)
for 1 ≤

j ≤ Nα. Therefore, it holds that∑
zk
h∈Zα

sensitivityZk
h ,F

(zkh)

≤
∑

1≤j≤Nα

|Zα
j | · 4/j +

∑
z∈Zα

Nα+1

4/Nα

≤ 4dimE

(
F , (H + 1)2 · 2−α−1

)
(ln(Nα) + 1) + |Zα| ·

4dimE

(
F , (H + 1)2 · 2−α−1

)
|Zα|

≤ 12dimE

(
F , (H + 1)2 · 2−α−1

)
log T
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where the second inequality holds due to the fact that
∑n

i=1 1/i ≤ lnn+ 1. Finally, combining the
inequalities above and using the monotonicity of the eluder dimension, it follows that

K−1∑
k=1

sensitivityZk
h ,F

(zkh)

≤
⌊log(T (H+1)2)⌋−1∑

α=0

∑
zk
h∈Zα

sensitivityZk
h ,F

(zkh) +
∑

zk
h∈Z∞

sensitivityZk
h ,F

(zkh)

≤
⌊log(T (H+1)2)⌋−1∑

α=0

12dimE

(
F , (H + 1)2 · 2−α−1

)
log T + 2

≤ 12dimE (F , 1/T ) log T ⌊log(T (H + 1)2)⌋+ 2

≤ 13dimE (F , 1/T ) log T log(T (H + 1)2),

which completes the proof.

Proof of Lemma 4.2. Note that in Algorithm 3, the sampling probability is bounded by

pz ≲ sensitivityZ,F (z) · log(TN (F ,
√

δ/64T 3)/δ).

On the other hand, we can bound sensitivityẐk
h ,F

(zkh) using Lemma D.2. Conditioned on⋂H
h=1

⋂K
k=1 Ekh , we have that

sensitivityẐk
h ,F

(zkh) = min

{
sup

f1,f2∈F

(f1(z
k
h)− f2(z

k
h))

2

min{∥f1 − f2∥2Ẑk
h
, T (H + 1)2}+ β

, 1

}

≤ min

{
sup

f1,f2∈F

(f1(z
k
h)− f2(z

k
h))

2

min{∥f1 − f2∥2Zk
h
/10000, T (H + 1)2}+ β

, 1

}

≤ 10000min

{
sup

f1,f2∈F

(f1(z
k
h)− f2(z

k
h))

2

min{∥f1 − f2∥2Zk
h
, T (H + 1)2}+ β

, 1

}
= 10000 · sensitivityZk

h ,F
(zkh)

Therefore, it follows that

K−1∑
1{Ekh} · pzk

h
≲

K−1∑
1{Ekh} · sensitivityẐk

h ,F
(zkh) · log(TN (F ,

√
δ/64T 3)/δ)

≲
K−1∑

sensitivityZk
h ,F

(zkh) · log(TN (F ,
√
δ/64T 3)/δ)

≲ log(TN (F ,
√
δ/64T 3)/δ)dimE (F , 1/T ) log2 T

for sufficiently large T . By adjusting the constant Csw in the statement of Lemma 4.2, we have that

K−1∑
1{Ekh} · pzk

h
≤ Ng/3.

For 2 ≤ k ≤ K, let Xk
h be a random variable defined as:

Xk
h =

{
1{Ek−1

h } ẑk−1
h is added into Ẑk

h

0 otherwise

Then Xk
h is adapted to Gk. Simple calculation gives Ek−1[X

k
h ] = pzk−1

h
·1{Ek−1

h } and Ek−1[(X
k
h−

Ek−1[X
k
h ])

2] = pzk−1
h

(1 − pzk−1
h

) · 1{Ek−1
h }. Since Xk

h − Ek−1[X
k
h ] is a martingale difference
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sequence satisfying

|Xk
h − Ek−1[X

k
h ]| ≤ 1,

K∑
k=2

Ek−1[(X
k
h − Ek−1[X

k
h ])

2] =

K∑
k=2

pzk−1
h

(1− pzk−1
h

) · 1{Ek−1
h } ≤

K∑
k=2

pzk−1
h
· 1{Ek−1

h } ≤ Ng/3,

K∑
k=2

Ek−1[X
k
h ] = pzk−1

h
=

K∑
k=2

pzk−1
h
· 1{Ek−1

h } ≤ Ng/3

By Freedman’s inequality(Lemma F.1, it holds that

P

(
K∑

k=2

Xk
h ≥ Ng

)

≤ P

(
|

K∑
k=2

(Xk
h − Ek−1[X

k
h ])| ≥ 2Ng/3

)

≤ 2 exp

(
− (2Ng/3)

2/2

Ng/3 + 2Ng/9

)
≤ 2 exp

(
−2

5
Csw log(TN (F ,

√
δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T

)
≤ δ/32T

where the first inequality uses the triangle inequality. Taking a union bound for all h ∈ [H], with
probability at least 1− δ/32, it holds that

K∑
k=2

Xk
h ≤ Ng, ∀h ∈ [H].

Since we’ve conditioned on
⋂H

h=1

⋂K
k=1 Ekh ,

∑K
k=2 X

k
h is the number of distinct elements in ẐK

h .
According to Line 7 of Algorithm 2, the number of policy switches is less than or equal to∑H

h=1 |ẐK
h |. Hence we conclude that the number of policy switches is at most H ·Ng times. This

proves the first part of the statement. Note that the third part of Lemma 4.2 is proved bt Lemma D.2.
Taking a union bound with the event in Lemma D.4, the second part is also proved. This completes
the proof.

D.2 LEAST SQUARE VALUE ITERATION ERROR

Lemma D.7. Conditioned on the event in Lemma D.1, for all (k, h) ∈ [K]× [H], bkh(·, ·) ∈ W for
a function classW such that

log |W| ≤ CW · log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
for some absolute constant CW and sufficiently large T .

Proof. Note that the bonus function b(·, ·) is uniquely defined by the subsampled dataset Ẑ. Con-
ditioned on the event in Lemma D.1, |Ẑ| ≤ 64T 3/δ and the number of distinct elements in Ẑ is at
most Ng . Since every element in Ẑ belongs to C(S ×A, 1/16

√
64T 3/δ), it holds that

log |W|

≤Ng · log
(
N (S ×A, 1/16

√
64T 3/δ) · 64T 3/δ

)
≲ log(TN (F ,

√
δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T · log

(
N (S ×A, 1/16

√
64T 3/δ) · 64T 3/δ

)
≲ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log

(
N (S ×A, δ/T 2)T/δ

)
where the first inequality holds due to the following counting scheme: Construct Ẑ by making Ng

choices, each of which determines what element z ∈ N (S × A, 1/16
√

64T 3/δ) to add, and how
many copies(at most 64T 3/δ) of z to add.
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Lemma D.8. Define the class of Q-functions

Q = {min{f(·, ·) + w(·, ·), H} : f ∈ F , w ∈ W}

whereW is defined in Lemma D.7, the class of policies

Π =

π(· | ·) =
exp

(∑HNg

i=1 αQi(·, ·)
)

∑
a∈A exp

(∑HNg

i=1 αQi(·, a)
) : Qi ∈ Q for i ∈ [HNg]

 ,

and the class of V -functions

V = {V (·) = ⟨Q(·, ·), π(· | ·)⟩ : Q ∈ Q, π ∈ Π} .

Conditioned on the event in Lemma D.1, the functions generated by Algorithm 2 belong to these
classes, i.e., for all (k, h) ∈ [K]× [H], Qk

h(·, ·) ∈ Q, πk
h(· | ·) ∈ Π, and V k

h (·) ∈ V . Moreover, for
ε > 0, it holds that

logN (Q, ε) ≤ logN (Q, ε)
+ CW log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log

(
N (S ×A, δ/T 2) · T/δ

)
and

logN (V, ε) ≤ logN (Q, ε/2) +HNg logN (Q, ε2/(16αNgH
3))

Proof. Conditioned on the event in Lemma D.1, Lemma D.7 implies Qk
h(·, ·) ∈ Q for all (k, h) ∈

[K] × [H]. Since the number of policy switches is bounded by HNg , it follows that πk
h(· | ·) ∈ Π,

and clearly V k
h (·) ∈ V .

Now we show that the covering number of these classes are bounded. For any q = min{f(·, ·) +
w(·, ·), H} ∈ Q, we can find f̂ ∈ F such that

∥∥∥f − f̂
∥∥∥
∞
≤ ε. Since q̂(·, ·) = min{f̂(·, ·) +

w(·, ·), H} ∈ Q and

|q(s, a)− q̂(s, a)| = |min{f(s, a) + w(s, a), H} −min{f̂(s, a) + w(s, a), H}|
≤ |f(s, a)− f̂(s, a)| ≤ ε

for all (s, a) ∈ S ×A, we have that

logN (Q, ε)
≤ logN (F , ε) + log |W|
= logN (F , ε)
+ CW log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log

(
N (S ×A, δ/T 2) · T/δ

)
.

On the other hand, Lemma F.12 directly implies

logN (V, ε) ≤ logN (Q, ε/2) +HNg logN (Q, ε2/(16αNgH
3)).

Lemma D.9. Let Ckh be a confidence set defined as

Ckh =
{
f ∈ F :

∥∥f − fk
h

∥∥2
Zk

h

≤ β/100
}
.

Then with probability at least 1− δ/4, for all (k, h) ∈ [K]× [H],

rh(·, ·) + PhV
k
h+1(·, ·) ∈ Ckh,

provided

β = c′ ·H2 (log(T/δ) + logN (V, 1/T )) + logN (F , 1/T ))

for some absolute constant c′ and the function class V defined in Lemma D.8.
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Proof. We condition on the event in Lemma D.1 and
⋂

(k,h)∈[K]×[H]

⋂
V ∈C(V,1/T ) EV,δ/(8N (V,1/T ))T )

where EV,δ is defined in Lemma F.13. The events occur with probability at least 1 − δ/4. For any
V ∈ V , there exists V ′ ∈ C(V, 1/T ) such that ∥V − V ′∥∞ ≤ 1/T . Therefore, it holds that∥∥∥f̂V (·, ·)− rh(·, ·)− PhV (·, ·)

∥∥∥
Zk

h

≤
∥∥∥f̂V ′(·, ·)− rh(·, ·)− PhV

′(·, ·)
∥∥∥
Zk

h

+ |Zk
h |/T

≲ H
√
log(8N (V, 1/T )T/δ) + logN (F , 1/T )

≲ H
√

log(T/δ) + logN (V, 1/T ) + logN (F , 1/T )

where the second inequality holds due to EV ′,δ/(8N (V,1/T ))T ).

D.3 PROOF OF LEMMA 4.3

Proof of Lemma 4.3. We condition on the event in Lemma D.9. Since Lemma D.9 condition on the
event in Lemma D.1, the results in Lemma D.1 also hold. Define f̄k

h (·, ·) := rh(·, ·) +PhV
k
h+1(·, ·).

Since
∥∥fk

h − f̄k
h

∥∥2
Zk

h

≤ β/100, i.e. (fk
h , f̄

k
h ) ∈ B

k
h(β), it follows that |(fk

h (·, ·) − f̄k
h (·, ·))| ≤

supf1,f2∈Bk
h(β)
|f1(·, ·) − f2(·, ·)| = bkh(·, ·). Since conditioned on Ekh , we have |(fk

h (·, ·) −
f̄k
h (·, ·))| ≤ bkh(·, ·).

Therefore, for all (k, h) ∈ [K]× [H] and for all (s, a) ∈ S ×A,

ξkh(s, a) = f̄k
h (s, a)−Qk

h(s, a)

= f̄k
h (s, a)−min

{
fk
h (s, a) + bkh(s, a), H

}
= max

{
f̄k
h (s, a)− fk

h (s, a)− bkh(s, a), f̄
k
h (s, a)−H

}
≤ max{0, 0} = 0

Similarly, it holds that

−ξkh(s, a) = Qk
h(s, a)− f̄k

h (s, a)

= min
{
fk
h (s, a) + bkh(s, a), H

}
− f̄k

h (s, a)

≤ min
{
fk
h (s, a) + bkh(s, a)− f̄k

h (s, a), H − f̄k
h (s, a)

}
≤ min{2bkh(s, a), H} ≤ 2bkh(s, a)

D.4 REGRET BOUND

The following two lemmas from Wang et al. (2020); Kong et al. (2021) bounds the sum of bonuses
by utilizing the property of the eluder dimension.
Lemma D.10. With probability at least 1− δ/8, for any ε > 0, for all h ∈ [H], it holds that

K∑
k=1

1
{
bkh(s

k
h, a

k
h) > ε

}
≤
(
100β

ε2
+ 1

)
· dimE (F , ε) .

Proof. We condition on the event defined in Lemma D.1, which happens with probability at least
1− δ/8.

Let Lh = {(skh, akh) : bkh(skh, akh) > ε} with |Lh| = Lh. Consider a fixed h ∈ [H]. We show that
there exists (skh, a

k
h) ∈ Lh such that (skh, a

k
h) is ε-dependent on at least Nh = Lh/dimE (F , ε) − 1

disjoint subsequences in Lh. We decompose Lh into Nh+1 disjoint subsets Lh =
⋃Nh+1

j=1 Lj
h using

the following procedure.

First, initialize Nh + 1 sets L1
h, . . . ,L

Nh+1
h to be empty sets. We consider zkh ∈ Lh sequentially.

For each zkh ∈ Lh, we find the smallest 1 ≤ j ≤ Nh such that zkh is ε-independent on Lj
h with

respect to F , and add zkh into Lj
h. If such j does not exist, add zkh into LNh+1

h . By the definition of
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the eluder dimension, |Lj
h| ≤ dimE (F , ε). Thus LNh+1

h is nonempty at the end of the procedure,
and each zkh ∈ L

Nh+1
h is ε-dependent on at least Nh = Lh/dimE (F , ε) − 1 disjoint subsequences

in Zk
h ∩ Lh.

On the other hand, since (skh, a
k
h) ∈ Lh, there exist f1, f2 ∈ Bkh(β) ⊆ B

k

h(β) such that |f1(skh, akh)−
f2(s

k
h, a

k
h)| > ε and ∥f1 − f2∥Zk

h
≤ 100β. By the definition of ε-independence, it holds that

(Lh/dimE (F , ε)− 1)ε2 ≤ ∥f1 − f2∥Zk
h∩Lh

≤ ∥f1 − f2∥Zk
h
≤ 100β

which implies

Lh ≤
(
100β

ε2
+ 1

)
· dimE (F , ε) .

Lemma D.11. With probability at least 1− δ/8, it holds that
K∑

k=1

H∑
h=1

bkh(s
k
h, a

k
h) ≤ H +H(H + 1)dimE (F , 1/T ) + c′

√
dimE (F , 1/T ) · TH · β

for some absolute constant c′.

Proof. We condition on the event defined in Lemma D.10. Fix h ∈ [H], then let b1 ≥ b2 ≥ · · · ≥ bK
be a permutation of {bkh(skh, akh)}k∈[K]. For any bt ≥ 1/T , by Lemma D.10, we have

t ≤
(
100β

b2t
+ 1

)
· dimE (F , bt) ≤

(
100β

b2t
+ 1

)
· dimE (F , 1/T ) ,

which implies

bt ≤
(

t

dimE (F , 1/T )
− 1

)
·
√

100β.

Moreover, we have bt ≤ H + 1 by definition. Therefore, it holds that
K∑

k=1

bkh(s
k
h, a

k
h)

≤
∑

bk≤1/T

bk +
∑

k≤dimE(F,1/T )

bk +
∑

k>dimE(F,1/T )

bk

≤ 1

T
· T + (H + 1) · dimE (F , 1/T ) +

∑
k>dimE(F,1/T )

(
t

dimE (F , 1/T )
− 1

)
·
√
100β

≤1 + (H + 1)dimE (F , 1/T ) + c′
√

dimE (F , 1/T ) ·K · β

where the last inequality holds due to the fact that
∑n

i=1 1/
√
i ≲
√
n. Taking the summation over

h ∈ [H] gives
K∑

k=1

H∑
h=1

bkh(s
k
h, a

k
h) ≤ H +H(H + 1)dimE (F , 1/T ) + c′

√
dimE (F , 1/T ) · TH · β

As done in the proof of Theorem 1, we can bound the sum of martingale difference sequences.
Lemma D.12. For δ > 0, it holds with probability at least 1− δ/2 that

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h ≤ 2

√
2H2T log(4/δ)

whereMk
1,h andMk

2,h are defined in Lemma F.3.
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Proof. The proof is almost identical to the proof of Lemma C.2, except that Fk
1,h and Fk

2,h are
replaced with Gk

1,h and Gk
2,h.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We condition on the event defined in Lemma 4.2, Lemma D.12, and
Lemma D.11. Using Lemma F.3, with probability at least 1− δ, it holds that

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

=

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ]

+

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h

+

K∑
k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah))

≤α−1HK log |A|+ 2
√

2H2T log(4/δ) +

K∑
k=1

H∑
h=1

2bkh(s
k
h, a

k
h)

≤α−1HK log |A|+ 2
√
2H2T log(4/δ)

+ 2(H +H(H + 1)dimE (F , 1/T ) + c′
√

dimE (F , 1/T ) · TH · β).

By Lemma D.8, we have

logN (V, 1/T ) ≤ logN (Q, 1/2T ) +HNg logN (Q, 1/(16αNgT
2H3)),

logN (Q, 1/2T ) ≤ logN (F , 1/2T ) + CW log(TN (F , δ/T 2)/δ)

· dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
,

logN (Q, 1/(16αNgT
2H3)) ≤ logN (F , 1/(16αNgT

2H3)) + CW log(TN (F , δ/T 2)/δ)

· dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
,

Ng =Csw · log(TN (F ,
√
δ/64T 3/δ)) · dimE (F , 1/T ) · log2 T

≲ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T
For sufficiently large T. Hence, it follows that Lemma D.9 holds for β such that

β ≲H2 (log(T/δ) + logN (V, 1/T ) + logN (F , 1/T ))
≲H3 · log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · [logN (F , 1/(16αNgT

2H3))

+ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
].

Setting α ≥ Ω(
√
T log |A|), we have

Regret(K) ≤α−1HK log |A|+ 2
√

2H2T log(4/δ)

+ 2
(
H +H(H + 1)dimE (F , 1/T ) +

√
dimE (F , 1/T ) · TH · β

)
≲H
√
T +

√
H2T log(1/δ) + 2

√
2H2T log(4/δ) +

√
dimE (F , 1/T ) · TH · β

≲
√
ι ·H4T

where

ι = log(TN (F , δ/T 2)/δ) · dimE (F , 1/T )2 · log2 T · [logN (F , 1/(16αNgT
2H3))

+ log(TN (F , δ/T 2)/δ) · dimE (F , 1/T ) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
]
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E SAMPLING-BASED OPORS

In this section, we present a sampling-based variant of OPORS mentioned in Section 4.2. The algo-
rithm implements O(log T ) policy switching by maintaining the approximation of Gram matrices.

E.1 ALGORITHM AND REGRET BOUND

Algorithm 4 OPORS-v2
1: Input: Failure probability δ ∈ (0, 1), stepsize α > 0, confidence radius β, regularization

parameter λ > 0, sampling precision parameter ϵ ∈ (0, 1), sampling probability parameter
c > 0

2: Initialize: Set {π0
h(· | ·)}h∈[H] as uniform policy on A, Λ0

h, Λ̂
0
h ← λI for ∀h ∈ [H + 1], k̄ = 1

3: for episode k = 1, · · · ,K do
4: for step h = 1, . . . ,H do
5: lkh ← min{(1 + ϵ)ϕ(sk−1

h , ak−1
h )T (Λ̂k−1

h )−1ϕ(sk−1
h , ak−1

h ), 1}
6: pkh ← min{clkh, 1}

7: Set Λ̂k
h ←

{
Λ̂k−1
h + ϕ(skh, a

k
h)ϕ(s

k−1
h , ak−1

h )T /pkh with probability pk
Λ̂k
h−1 otherwise

8: end for
9: if k = 1 or ∃h ∈ [H] Λ̂k

h ̸= Λ̂k−1
h then

10: for step h = H, . . . , 1 do
11: Λk

h ←
∑k−1

i=1 ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

T + λI

12: ŵk
h ← (Λk

h)
−1
∑k−1

i=1 ϕ(sih, a
i
h)
[
rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)

]
13: bkh(s, a)← β ∥ϕ(s, a)∥(Λ̂k

h)
−1

14: Qk
h(s, a)← [ϕ(s, a)T ŵk

h + bkh(s, a)][0,H−h+1]

15: Update the policy by πk
h(a | s) ∝ πk−1

h (a | s) exp(αQk
h(s, a))

16: V k
h (s)← ⟨Qk

h(s, ·), πk
h(· | s)⟩

17: end for
18: k̄ ← k
19: else
20: for step h = 1, . . . ,H do
21: Qk

h(s, a)← Qk−1
h (s, a), πk

h(a | s)← πk−1
h (a | s), V k

h (s)← V k−1
h (s)

22: end for
23: end if
24: for step h = 1, . . . ,H do
25: Take an action akh ∼ πk

h(· | skh) and observe skh+1
26: end for
27: end for

Sampling. The sensitivity sampling procedure of Algorithm 3 is computationally expensive, as it
requires optimization on the function space F and rounding z into a finite cover of S×A. However,
we can efficiently sample and compute the bonus function using the online spectral approximation
algorithm presented in Cohen et al. (2016) (Lines 4-8 of Algorithm 4). Starting with Λ̂0

h = λI for
all h ∈ [H], we maintain the approximate Gram matrices {Λ̂k

h}. At the k-th episode, we compute
the online leverage score:

lkh := min{(1 + ϵ)ϕ(sk−1
h , ak−1

h )T (Λ̂k−1
h )−1ϕ(sk−1

h , ak−1
h ), 1}.

based on this score, we sample ϕ(sk−1
h , ak−1

h ) with probability pkh := min{clkh, 1}. If ϕ(sk−1
h , ak−1

h )

is sampled, update the approximate Gram matrix by Λ̂k
h = Λ̂k−1

h + ϕ(skh, a
k
h)ϕ(s

k−1
h , ak−1

h )T /pkh.
We will prove that with high probability, for all (k, h) ∈ [K]× [H], Λ̂k

h is a good approximation of
Λk
h in that

(1− ϵ)Λk
h ⪯ Λ̂k

h ⪯ (1 + ϵ)Λk
h.
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Value Function Estimation and Policy Update. OPORS-v2 switches the policy only if {Λ̂k
h}h∈[H]

has changed. The value function estimation and policy update procedure (Lines 10-23) are almost
identical to that of OPORS (Algorithm 1), except that OPORS-v2 constructs the bonus function with
{Λ̂k

h}h∈[H].

We have the following regret upper bound for OPORS-v2.

Theorem E.1. Suppose Assumption 1 holds. There exists a constant C̃l > 0 such that, if we
set λ = 1, c = 4/ϵ2 · log(4dT/δ), α = poly(T, 1/δ, log |A|, d) ≥ Ω(

√
K log |A|), and β =

C̃l · d3/2H3/2χ̃l(1 + ϵ)/ϵ with χ̃l =

√
log2

(
dT
λ

)
log
(

dT log |A|
δλϵ

)
, then with probability at least

1− δ, the regret of Algorithm 4 is upper bounded by

Regret(K) ≤ Õ

(
1

ϵ(1− ϵ)
d2H2

√
T

)
.

E.2 PROOF OF THEOREM E.1

This section proves Theorem E.1. We define the following filtrations.

Hk := σ
(
{(sτh, aτh, rτh)}(τ,h)∈[k]×[H] ∪ Λ̂k

h

)
Hk

1,h := σ
(
Hk−1 ∪ Λ̂k

h ∪ {(skj , akj , rkj )}j∈[h]

)
Hk

2,h := σ
(
Hk−1 ∪ Λ̂k

h ∪ {(skj , akj , rkj )}j∈[h−1] ∪ skh

)
where σ(A) is the σ-algebra generated by A. We use Ek to denote the expectation conditioned on
Hk.

The following lemma guarantees that Λ̂k
h is a good approximation of Λk

h, with high probability. Our
approach is inspired by Cohen et al. (2016).
Lemma E.2. If we set c = 4/ϵ2 · log(4dT/δ), then with probability at least 1 − δ/4, for all
(k, h) ∈ [K]× [H], it holds that

(1− ϵ)Λk
h ⪯ Λ̂k

h ⪯ (1 + ϵ)Λk
h

Proof. Consider a fixed pair (k, h) ∈ [K]× [H], then define

ui := (Λk
h)

−1/2ϕ(sih, a
i
h), i = 1, . . . , k

We construct a matrix martingale Y0, . . . ,Yk ∈ Rd×d with the difference sequence X1, . . . ,Xk.
Set Y = 0. For i = 1, . . . , k, if ∥Yi−1∥2 ≥ ϵ, we set Xi = 0. Otherwise, let

Xi :=

{
(1/pih − 1)uiu

T
i if ϕ(sih, a

i
h) is sampled into Λ̂i

h

−uiu
T
i otherwise.

Note that in this case, we have

Yi−1 = (Λk
h)

−1/2(Λ̂i−1
h − Λi−1

h )(Λk
h)

−1/2.

Since ∥Yi−1∥2 < ϵ, we have

li =min{(1 + ϵ)ϕ(sih, a
i
h)

T (Λ̂i−1
h )−1ϕ(sih, a

i
h), 1}

≥min{(1 + ϵ)ϕ(sih, a
i
h)

T (Λi−1
h + ϵΛk

h)
−1ϕ(sih, a

i
h), 1}

≥min{(1 + ϵ)ϕ(sih, a
i
h)

T ((1 + ϵ)Λk
h)

−1ϕ(sih, a
i
h), 1}

=ϕ(sih, a
i
h)

T (Λk
h)

−1ϕ(sih, a
i
h)

=uT
i ui

where the first inequality holds due to the condition ∥Yi− 1∥2 =∥∥∥(Λk
h)

−1/2(Λ̂i−1
h − Λi−1

h )(Λk
h)

−1/2
∥∥∥
2

< ϵ. Thus, we further have pih = min{clih, 1} ≥
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min{cuT
i ui, 1}. If pi = 1, then Xi = 0. Otherwise, we have 1 > pih ≥ min{cuT

i ui, 1} = cuT
i ui.

Hence, it follows that

∥Xi∥2 ≤max{(1/pih − 1)
∥∥uiu

T
i

∥∥
2
,
∥∥uiu

T
i

∥∥
2
}

≤max{(1/cuT
i ui − 1) ·

∥∥uiu
T
i

∥∥
2
, pih/c} ≤ 1/c

and

Ei−1[X
2
i ] ⪯ pih · (1/pih − 1)2(uiu

T
i )

2 + (1− pih) · (uiu
T
i )

2

=(uiu
T
i )

2/pih ⪯ (uiu
T
i )

2/c.

For the predictable quadratic variation process Wi :=
∑i

τ=1 Eτ−1[X
2
τ ] of the martingale {Yi}, we

have

∥Wi∥2 ≤

∥∥∥∥∥
i∑

τ=1

(uiu
T
i )

2/c

∥∥∥∥∥
2

≤ 1/c.

Therefore, by Lemma F.2, it follows that

P (∥Yk∥2 ≥ ϵ) ≤P (∃i ∥Yi∥2 ≥ ϵ)

=P (∃i ∥Yi∥2 ≥ ϵ and ∥Wi∥2 ≤ 1/c)

≤d · exp
(
− ϵ2/2

1/c+ ϵ/3c

)
≤d · exp

(
−cϵ2/4

)
= δ/4T,

if we set c = 4/ϵ2 · log(4dT/δ). This implies that with probability at least 1− δ/4T , it holds that

∥Yk∥2 =
∥∥∥(Λk

h)
−1/2Λ̂k

h(Λ
k
h)

−1/2 − I
∥∥∥
2
≤ ϵ,

and therefore

(1− ϵ)Λk
h ⪯ Λ̂k

h ⪯ (1 + ϵ)Λk
h.

Taking a union bound for all (k, h) ∈ [K]× [H], we get the desired result.

Now we bound the number of policy switches. We use the technique presented in Cohen et al.
(2016).
Lemma E.3. Conditioned on the event defined in Lemma E.2, with probability at least 1− δ/4, the
number of policy switches of Algorithm 4 is bounded by

Ñl = C̃sw · dH · log(1 +K/λ) log(dT/λ))/ϵ2

for some absolute constant C̃sw.

Proof. For any fixed h ∈ [H], define

δkh = log det(Λ̂k
h)− log det(Λ̂k−1

h ).

Since we know that det(A + xxT ) = det(A)(1 + xTA−1x) for any vector x and any invertible
matrix A, it holds that

Ei−1[exp(l
i
h/8− δih)]

=pih · el
i
h/8(1 + ϕ(sih, a

i
h)

T (Λ̂i−1
h )−1ϕ(sih, a

i
h)/p

i
h)

−1 + (1− pih) · el
i
h/8

≤pih · (1 + lih/4)(1 + ϕ(sih, a
i
h)

T (Λ̂i−1
h )−1ϕ(sih, a

i
h)/p

i
h)

−1 + (1− pih) · (1 + lih/4).

where the inequality holds due to the fact that ex ≤ 1 + 2x for x ∈ [0, 1]. If clih < 1, we have
pih = clih and lih = (1 + ϵ)ϕ(sih, a

i
h)

T (Λ̂i−1
h )−1ϕ(sih, a

i
h). Thus, it holds that

Ei−1[exp(l
i
h/8− δih)] ≤clih · (1 + lih/4)(1 + 1/(1 + ϵ)c)−1 + (1− clih) · (1 + lih/4)

=(1 + lih/4)(cl
i
h(1 + 1/(1 + ϵ)c)−1 + 1− clih)

≤(1 + lih/4)(1 + clih(1− 1/4c− 1)) ≤ 1
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where the second inequality holds due to the fact that (1 + x)−1 ≤ 1 − x/2 for x ∈ [0, 1] with
0 < 1/(1 + ϵ)c < 1. Otherwise, we have pi = 1 and

Ei−1[exp(l
i
h/8− δih)] ≤(1 + lih/4)(1 + ϕ(sih, a

i
h)

T (Λ̂i−1
h )−1ϕ(sih, a

i
h)/p

i
h)

−1

≤(1 + lih/4)(1 + lih)
−1 ≤ 1

On the other hand, for k ≥ 1, we have

E

[
exp

(
k∑

i=1

lih/8− δih

)]
=E

[
exp

(
k−1∑
i=1

lih/8− δih

)
Ek−1[exp(l

k
h/8− δkh)]

]

≤E

[
exp

(
k−1∑
i=1

lih/8− δih

)]
.

Proceeding recursively, we further have

E

[
exp

(
k∑

i=1

lih/8− δih

)]
≤ 1.

Hence, Markov’s inequality implies

P

(
K∑

k=1

lkh > 8d+ 8

K∑
k=1

δkh

)
≤ e−d.

Since we conditioned on the event defined in Lemma E.2, we have

Λ̂K
h ⪯ (1 + ϵ)ΛK

h ,

which implies

log det(Λ̂K
h ) ≤ d log

(
(1 + ϵ)

∥∥ΛK
h

∥∥2
2

)
≤ d(1 + 2 log

∥∥ΛK
h

∥∥
2
).

Hence, it holds that

K∑
k=1

lkh ≤ 8d+ 8

K∑
h

δkh =8d+ 8(log det(Λ̂K
h )− d log λ)

≤16d+ 8d log(
∥∥ΛK

h

∥∥2
2
/λ))

≤16d+ 8d log(1 +K/λ).

For any (k, h) ∈ [K]× [H], define an event

Ẽkh = {(1− ϵ)Λk
h ⪯ Λ̂k

h ⪯ (1 + ϵ)Λk
h}.

and

Zk
h :=

{
1{Ẽkh} if ϕ(sih, a

i
h) is sampled into Λ̂i

h

0 otherwise.

By Lemma E.2, we have

K∑
k=1

Zk
h ≤

K∑
k=1

pkh ≤
K∑

k=1

clkh ≤
C̃sw

3
d log(1 +K/λ) log(dT/λ))/ϵ2 = Ñl/3H

for sufficiently large C̃sw. Note that Zk
h is adapted to Hk and |Zk

h | ≤ 1. Moreover, we have

Ek−1[Z
k
h ] = pkh,

Ek−1[(Z
k
h − Ek−1[Z

k
h ])

2] = pkh(1− pkh).
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Using Freedman’s inequality(Lemma F.1), we obtain

P

(
K∑

k=1

Zk
h ≥ Ñl/H

)
≤P

(∣∣∣∣∣
K∑

k=1

Zk
h −

K∑
k=1

Ek−1[Z
k
h ]

∣∣∣∣∣ ≥ 2Ñl/3H

)

≤2 exp

(
− (2Ñl/3H)2/2

Ñl/3H + 2N3/9H

)

=2 exp

(
− (C̃swd log(1 +K/λ) log(dT/λ))/9ϵ2

1/3 + 2/9

)
≤δ/4H

Taking a union bound for all h ∈ [H], with probability at least 1− δ/4,for all h ∈ [H], we have

K∑
k=1

Zk
h ≤ Ñl/H.

Thus it holds that
K∑

k=1

H∑
h=1

Zk
h ≤ Ñl.

Conditioned on
⋂K

k=1

⋂H
h=1 Ẽkh , i.e. the event defined in Lemma E.2, the number of policy switches

of Algorithm 4 is less than or equal to
∑K

k=1

∑H
h=1 Z

k
h . This completes the proof.

The following lemma bound the error due to the least square value iteration.
Lemma E.4. With probability at least 1 − δ/2, for all k ∈ [K], h ∈ [H], (s, a) ∈ S × A, it holds
that

|ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)| ≤

β

1 + ϵ
∥ϕ(s, a)∥(Λk

h)
−1

where β is defined by β = C̃ld
3/2H3/2χ̃l(1+ ϵ)/ϵ with χ̃l =

√
log2

(
dT
λ

)
log
(

dT log |A|
δλϵ

)
for some

constant C̃l.

Proof. By Lemma F.4, we can find wk
h such that ϕ(s, a)Twk

h = rh(s, a) + PhV
k
h+1(s, a) for all

(s, a) ∈ S ×A. Therefore, we have

ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)

=ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)[rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)]− ϕ(s, a)Twk

h

=ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)[rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)]

− ϕ(s, a)T (Λk
h)

−1

(
k−1∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

Twk
h + λwk

h

)

=ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V k
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
− λϕ(s, a)T (Λk

h)
−1wk

h

where the second last equality uses the definition of Λk
h.

Now we condition on the event defined in Lemma E.3. Since Lemma E.3 states that the number
of policy switches is bounded by Ñl = C̃swdH log(1 +K/λ) log(dT/λ))/ϵ2, Using Lemma F.12
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with M = Ñl, Lemma F.8, and Lemma F.6, we can bound the covering number of the class of
V -functions:

logN (V, ε) ≤ logN (Q, ε/2) + logN (Π, ε/2H)

≤ logN (Q, ε/2) + Ñl · logN (Q, ε/(16αMH2))

≤
[
d log(1 + 16H

√
dK/λ/ε) + d2 log(1 + 32

√
dβ2/(λε2))

]
+ Ñl

[
d log(1 + 128αMH3

√
dK/λ/ε) + d2 log(1 + 2048α2

√
dβ2M2H4/(λε2))

]
≲
d3H

ϵ2
log

(
1 +

K

λ

)
log

(
dT

λ

)
log

(
1 +

αβdT

λε2

)
Applying this bound to Lemma F.7 with ε = dH

K and α = poly (T, 1/δ, log |A|, d), it holds with
probability at least 1− δ/4 that

|ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
|

≤

∥∥∥∥∥
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]∥∥∥∥∥

(Λk
h)

−1

∥ϕ(s, a)∥(Λk
h)

−1

≲
d3/2H3/2

ϵ

√
log2

(
dT

λ

)
log

(
βdHK log |A|

δλϵ

)
∥ϕ(s, a)∥(Λk

h)
−1 .

On the other hand, by the Cauchy-Schwarz inequality and Lemma F.4, it holds that

|λϕ(s, a)T (Λk
h)

−1wk
h| ≤ λ

∥∥wk
h

∥∥
(Λk

h)
−1 ∥ϕ(s, a)∥(Λk

h)
−1 ≤ 2H

√
d ∥ϕ(s, a)∥(Λk

h)
−1

where we used the fact that (Λk
h)

−1 ⪯ 1
λI . Combining the results above, it follows that

|ϕ(s, a)T ŵk
h − rh(s, a)− PhV

k
h+1(s, a)|

≤ |ϕ(s, a)T (Λk
h)

−1
k−1∑
i=1

ϕ(sih, a
i
h)
[
V i
h+1(s

i
h+1)− PhV

k
h+1(s

i
h, a

i
h)
]
|+ |λϕ(s, a)T (Λk

h)
−1wk

h|

≤ c′ · d
3/2H3/2

ϵ

√
log2

(
dT

λ

)
log

(
βdHK log |A|

δλϵ

)
∥ϕ(s, a)∥(Λk

h)
−1

where c′ is some absolute constant. Now the proof is complete if the following inequality holds:

c′ · d
3/2H3/2

ϵ

√√√√log2
(
dT

λ

)
log

(
(C̃ld3/2H3/2χ̃l(1 + ϵ)/ϵ)dHK log(|A|)

δλϵ

)
∥ϕ(s, a)∥(Λk

h)
−1

≤ β

1 + ϵ
=C̃ld

3/2H3/2χ̃l/ϵ

Since c′ is independent of C̃l, we can find an absolute constant C̃l satisfying this inequality. This
completes the proof.

Lemma E.5. With probability at least 1 − δ/2, for all k ∈ [K], h ∈ [H], (s, a) ∈ S × A, it holds
that

−2β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1 ≤ ξkh(s, a) ≤ 0

where k̄ is the largest index k′ ≤ k on which the policy is switched.

Proof. By Lemma E.4, with probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], we have

|ϕ(s, a)T ŵk
h − rh(s, a)PhV

k
h+1(s, a)| ≤

β

1 + ϵ
∥ϕ(s, a)∥(Λk

h)
−1 .

39



Under review as a conference paper at ICLR 2024

Note that Lemma E.4 implies the results of Lemma E.2 and Lemma E.3. Therefore, for any (s, a) ∈
S ×A, it holds that

ξkh(s, a) = rh(s, a) + PhV
k
h+1(s, a)−Qk

h(s, a)

= rh(s, a) + PhV
k̄
h+1(s, a)−Qk̄

h(s, a)

= rh(s, a) + PhV
k̄
h+1(s, a)−

[
ϕ(s, a)T ŵk̄

h + β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1

]
[0,H−h+1]

≤ rh(s, a) + PhV
k̄
h+1(s, a)− ϕ(s, a)T ŵk̄

h − β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1

≤ β

1 + ϵ
∥ϕ(s, a)∥(Λk̄

h)
−1 − β ∥ϕ(s, a)∥(Λ̂k̄

h)
−1

≤ β

1 + ϵ
∥ϕ(s, a)∥(Λ̂k̄

h)
−1 −

β

1 + ϵ
∥ϕ(s, a)∥(Λk̄

h)
−1 = 0

where the first equality uses the definition of k̄, the first inequality uses the fact that rh(s, a) +
PhV

k
h+1(s, a) ∈ [0, H − h+ 1], and the second last inequality holds due to Lemma E.2. The other

direction can be shown similarly:

−ξkh(s, a) = Qk
h(s, a)− rh(s, a)− PhV

k
h+1(s, a)

= Qk̄
h(s, a)− rh(s, a)− PhV

k̄
h+1(s, a)

=
[
ϕ(s, a)T ŵk̄

h + β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1

]
[0,H−h+1]

− rh(s, a)− PhV
k̄
h+1(s, a)

≤ ϕ(s, a)T ŵk̄
h + β ∥ϕ(s, a)∥(Λ̂k̄

h)
−1 − rh(s, a)− PhV

k̄
h+1(s, a)

≤ β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1 +
β

1 + ϵ
∥ϕ(s, a)∥(Λk̄

h)
−1

≤ β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1 + β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1 = 2β ∥ϕ(s, a)∥(Λ̂k̄
h)

−1

Lemma E.6. With probability at least 1− δ/2 it holds that

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h ≤ 2

√
2H2T log(4/δ)

whereMk
1,h andMk

2,h are defined in Lemma F.3.

Proof. The proof is almost identical to the proof of Lemma C.2, except that Fk
1,h and Fk

2,h are
replaced with Hk

1,h and Hk
2,h.

Combining these lemmas, we prove Theorem E.1.

Proof of Theorem E.1. By Lemma F.3, we have

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

=

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ]

+

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h

+

K∑
k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah)).
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Lemma 3.4 with α ≥ Ω(
√
K log (|A|)) gives

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ] ≤ H

√
K.

By Lemma E.6, with probability at least 1− δ/2, we have
K∑

k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h ≤ 2

√
2H2T log(4/δ).

On the other hand, Lemma E.5 implies that, with probability at least 1− δ/2, we have
K∑

k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah))

≤0 +
K∑

k=1

H∑
h=1

2β
∥∥ϕ(skh, akh)∥∥(Λ̂k̄

h)
−1 =

K∑
k=1

H∑
h=1

2β
∥∥ϕ(skh, akh)∥∥(Λ̂k

h)
−1

≤
K∑

k=1

H∑
h=1

2β

1− ϵ

∥∥ϕ(skh, akh)∥∥(Λk
h)

−1

where the equality holds due to the definition of Λ̂k
h, and the last inequality holds due to Lemma E.2.

Further, it follows that

K∑
k=1

H∑
h=1

2β

1− ϵ

∥∥ϕ(skh, akh)∥∥(Λk
h)

−1 ≤
2β

1− ϵ

H∑
h=1

√
K

√√√√ K∑
k=1

∥∥ϕ(skh, akh)∥∥(Λk
h)

−1

≤ 2β

1− ϵ

√
K

H∑
h=1

√
2 log

det(ΛK
h )

det(Λ1
h)
≤ 2β

1− ϵ
H
√
K

√
2d log

(
1 +

K

λd

)
where the first inequality uses the Cauchy-Schwartz inequality, the second inequality holds due to
Lemma F.9, and the last inequality holds due to Lemma F.11. Combining the inequalities above,
with probability at least 1− δ, we have

Regret(K) ≤H
√
K + 2

√
2H2T log (4/δ) +

2β

1− ϵ
H
√
K

√
2d log

(
1 +

K

λd

)

≲
d2H2

√
T

ϵ(1− ϵ)

√
log3

(
dT

λ

)
log

(
dT log(|A|)

δλϵ

)
since we set β = C̃ld

3/2H3/2

√
log2

(
dT
λ

)
log
(

dT log |A|
δλϵ

)
(1 + ϵ)/ϵ.

F SUPPORTING LEMMAS

Lemma F.1 (Freedman’s inequality, Freedman (1975)). Let {Yk}k∈N be a real-valued martingale
with difference sequence {Xk}k∈N. Assume that the difference sequence is uniformly bounded:

|Xk| ≤ R almost surely for ∀k ∈ N
For a fixed n ∈ N, assume that

n∑
k=1

Ek[X
2
k ] ≤ σ2

for some σ > 0 almost surely. Then for all t ≥ 0, it holds that

P(|Yn − Y0| ≥ t) ≤ 2 exp

(
− t2/2

σ2 +Rt/3

)
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Lemma F.2 (Matrix Freedman’s inequality, Tropp (2011)). Consider a matrix martingale
{Yk}k∈N∪{0} whose values are self-adjoint matrices with dimension d, and let {Xk}k∈N be the
difference sequence. Assume that the difference sequence is uniformly bounded in the sense that

∥Xk∥2 ≤ R almost surely fork = 1, . . . , n.

Define the predictable quadratic variation process of the martingale:

Wk :=

k∑
j=1

Ej−1[X
2
j ], fork = 1, . . . , n.

Then, for all ϵ > 0 and σ2 > 0,

P
(
∃k ≥ 0 : ∥Yk∥2 ≥ t and ∥Wk∥2 ≤ σ2

)
≤ d · exp

(
− t2/2

σ2 +Rt/3

)
Lemma F.3 (Lemma 4.2 in Cai et al. (2020)). It holds that

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

=

K∑
k=1

H∑
h=1

Eπ∗ [⟨Qk
h(sh, ·), π∗

h(· | sh)− πk
h(· | sh)⟩ | s1 = sk1 ]︸ ︷︷ ︸

Policy optimization error

+

K∑
k=1

H∑
h=1

Mk
1,h +

K∑
k=1

H∑
h=1

Mk
2,h︸ ︷︷ ︸

Sum of martingale difference sequences

+

K∑
k=1

H∑
h=1

(Eπ∗ [ξkh(sh, ah) | s1 = sk1 ]− ξkh(sh, ah))︸ ︷︷ ︸
Statistical error

where
Mk

1,h := Ph[V
k
h+1 − V πk

h+1](s
k
h, a

k
h)− [V k

h+1 − V πk

h+1](s
k
h+1),

Mk
2,h := ⟨[Qk

h −Qπk

h ](skh, ·), πk
h(· | skh)⟩ − [Qk

h −Qπk

h ](skh, a
k
h),

ξkh(·, ·) := rh(·, ·) + PhV
k
h+1(·, ·)−Qk

h(·, ·).
Lemma F.4. For any (k, h) ∈ [K]× [H], there exists wk

h ∈ Rd such that ϕ(s, a)Twk
h = rh(s, a) +

PhV
k
h+1(s, a) for all (s, a) ∈ S ×A. Furthermore,

∥∥wk
h

∥∥
2
≤ H
√
d.

Proof. The proof is almost identical to that of Lemma B.1 in Jin et al. (2020). By Assumption 1, we
know

rh(s, a) + PhV
k
h+1(s, a) = ϕ(s, a)Tθh +

∫
S
V k
h+1(s)ϕ(s, a)

T dµh(s) = ϕ(s, a)T
(
θh +

∫
S
V k
h+1(s)dµh(s)

)
which implies wk

h = θh +
∫
S V k

h+1(s)dµh(s). The boundedness assumption gives
∥∥wk

h

∥∥
2

=∥∥θh +
∫
S V k

h+1(s)dµh(s)
∥∥
2
≤ ∥θh∥2 +

∥∥∫
S V k

h+1(s)dµh(s)
∥∥
2
≤
√
d+H

√
d ≤ 2H

√
d

Lemma F.5 (Lemma D.1 in Jin et al. (2020)). Let Λt = λI +
∑t

i=1 ϕiϕ
T
i where ϕi ∈ Rd and

λ > 0. Then we have
∑t

i=1 ϕ
T
i (Λt)

−1ϕi ≤ d.
Lemma F.6. For any (k, h) ∈ [K]× [H], the estimator ŵk

h in Algorithm 1 and Algorithm 4 satisfies∥∥ŵk
h

∥∥
2
≤ 2H

√
dk/λ

Proof. The proof is almost identical to that of Lemma B.2 in Jin et al. (2020). For any vector
x ∈ Rd, we have

|xT ŵk
h| =|xT (Λk

h)
−1

k−1∑
i=1

ϕ(sih, a
i
h)[rh(s

i
h, a

i
h) + V k

h+1(s
i
h+1)]|

≤
k−1∑
i=1

|xT (Λk
h)

−1ϕ(sih, a
i
h)| · 2H ≤ 2H

√√√√[k−1∑
i=1

xT (Λk
h)

−1x

]
·

[
k−1∑
i=1

ϕ(sih, a
i
h)

T (Λk
h)

−1ϕ(sih, a
i
h)

]
≤2H ∥x∥2

√
dk/λ
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where the last inequality holds due to Lemma F.5. Since x is arbitrary, the proof is complete.

Lemma F.7 (Lemma D.4 in Jin et al. (2020)). Let {xt}∞t=1 ∈ S and {ϕt}∞t=1 ∈ Rd be stochastic
processes adapted to filtration {Ft}∞t=1 and ∥ϕt∥2 ≤ 1 for all t. Let Λk = λI +

∑k
t=1 ϕtϕ

T
t .

Then for 0 < δ < 1, with probability at least 1 − δ, for all k ≥ 1, and for any V ∈ V satisfying
supx |V (x)| ≤ H , it holds that∥∥∥∥∥

k∑
t=1

ϕt {V (xt+1)− E[V (xt+1) | Ft]}

∥∥∥∥∥
2

Λ−1
k

≤ 4H2

[
d

2
log

(
1 +

k

λ

)
+ log

N (V, ε)
δ

]
+

8k2ε2

λ

where N (V, ε) is the ε-covering number of V with respect to the distance dist(V, V ′) =
∥V − V ′∥∞.

Lemma F.8 (Lemma D.6 in Jin et al. (2020)). Define a function class

Q =

{
Q(·, ·) =

[
wTϕ(·, ·) + β

√
ϕ(s, a)TΛ−1ϕ(s, a)

]
[0,H−h+1]

: ∥w∥2 ≤ L, β ∈ [0, B], λmin(Λ) ≥ λ

}
where λmin(A) is the minimum eigenvalue of A. Assuming ∥ϕ(s, a)∥2 ≤ 1 for all (s, a), the
ε-covering number N (Q, ε) of the function class Q with respect to the distance dist(Q,Q′) =
∥Q−Q′∥∞ satisfies

logN (Q, ε) ≤ d log(1 + 4L/ε) + d2 log(1 + 8
√
dB2/(λε2)).

Lemma F.9 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {Xt}∞t=1 be a sequence in Rd, and let
V a d× d positive definite matrix and define V̄t = V +

∑t
s=1 XsX

T
s . Assuming ∥Xt∥2 ≤ 1 for all

t, then

log
det
(
V̄n

)
det (V )

≤
n∑

t=1

∥Xt∥2V̄ −1
t−1
≤ 2 log

det
(
V̄n

)
det (V )

Lemma F.10 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B ∈ Rd×d are two positive
definite matrices such that A ≻ B. Then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/ det(B)

Lemma F.11 (Lemma C.1 in Wang et al. (2021)). Let Λ = λI+
∑K

k=1 ϕkϕ
T
k with ∥ϕk∥2 ≤ 1, ∀k ∈

[K]. Then det (Λ) ≤ (λ+K/d)
d.

Lemma F.12 (Covering number, Zhong & Zhang (2023)). Define a policy class

Π =

π(· | ·) =
exp

(∑M
i=1 αQi(·, ·)

)
∑

a∈A exp
(∑M

i=1 αQi(·, a)
) : Qi ∈ Q


where Q is the class of Q-functions. Based on the policy class, define a class of V-functions

V = {V (·) = ⟨Q(·, ·), π(· | ·)⟩ : Q ∈ Q, π ∈ Π} .

Then it holds that

N (V, ε) ≤ N (Q, ε/2) · N (Π, ε/(2H)).

where the covering number of Π is with respect to the distance dist(π, π′) =
sups ∥π(· | s)− π′(· | s)∥1. Furthermore, we can bound the covering number of Π by

N (Π, ε/(2H)) ≤
(
N (Q, ε2/(16αMH2))

)M
Proof. Given any V (·) = ⟨Q(·, ·), π(· | ·)⟩ ∈ V , there exist (Q′, π′) ∈ C(Q, ε/2) × C(Π, ε/2H)
such that

∥Q−Q′∥∞ ≤ ε/2, sup
s∈S
∥π(· | s)− π′(· | s)∥1 ≤ ε/(2H).
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Hence, for V ′(·) = ⟨Q(·, ·), π(· | ·)⟩, we have

∥V − V ′∥∞ = sup
s∈S
|⟨Q(s, ·), π(· | s)⟩ − ⟨Q′(s, ·), π′(· | s)⟩|

≤ sup
s∈S
|⟨Q(s, ·)−Q′(s, ·), π(· | s)⟩|+ sup

s∈S
|⟨Q′(s, ·), π(· | s)− π′(· | s)⟩|

≤ sup
s∈S
∥Q(s, ·)−Q′(s, ·)∥∞ + sup

s∈S
H ∥π(· | s)− π′(· | s)∥1

≤ ε/2 +H · ε/(2H) = ε

where the first inequality holds due to the triangle inequality and supx f(x) + g(x) ≤ supx f(x) +
supx g(x), the second inequality uses Hölder’s inequality with the fact that ∥Q(s, ·)∥∞ ≤ H for all
s ∈ S. Therefore, C(Q, ε/2)× C(Π, ε/2H) is a ε-covering net of V , which implies

N (V, ε) ≤ N (Q, ε/2) · N (Π, ε/2H).

Now we bound the covering number of Π. For any π ∈ Π, π takes the form

π(· | ·) =
exp

(∑M
i=1 αQi(·, ·)

)
∑

a∈A exp
(∑M

i=1 αQi(·, a)
)

where Qi ∈ Q for i ∈ [M ]. We can find Q′
i ∈ C(Q, ε2/(16αMH2)) such that ∥Qi −Q′

i∥∞ ≤
ε2/(16αMH2) for i ∈ [M ], and define

π′(· | ·) =
exp

(∑M
i=1 αQ

′
i(·, ·)

)
∑

a∈A exp
(∑M

i=1 αQ
′
i(·, a)

) .
On the other hand, for any probability distributions π, π′ such that π(·) ∝ exp(Q(·)) and π′(·) ∝
exp(Q′(·)) for some Q,Q′ : A → R+, we have

∥π − π′∥1 ≤
√
2DKL (π∥π′) =

√
2
∑
a∈A

π(a) log
π(a)

π′(a)

=

√√√√2
∑
a∈A

π(a) log

[
exp (Q(a)−Q′(a))

∑
a′∈A exp (Q′(a′))∑
a′∈A exp (Q(a′))

]

≤

√√√√2
∑
a∈A

π(a) log

[
exp (∥Q−Q′∥∞)

exp (∥Q−Q′∥∞)
∑

a′∈A exp (Q(a′))∑
a′∈A exp (Q(a′))

]

=

√
2
∑
a∈A

π(a)2 ∥Q−Q′∥∞ = 2
√
∥Q−Q′∥∞

where the first inequality holds due to Pinsker’s inequality, and the second inequality holds due to
the fact that∑

a′∈A exp (Q′(a′)))∑
a′∈A exp (Q(a′))

=

∑
a′∈A exp (Q′(a′)−Q(a′)) exp (Q(a′))∑

a′∈A exp (Q(a′))
≤

exp (∥Q−Q′∥∞)
∑

a′∈A exp (Q(a′))∑
a′∈A exp (Q(a′))

.

Combining the results, we have

sup
s∈S
∥π(· | s)− π′(· | s)∥1 ≤ sup

s∈S
2

√√√√∥∥∥∥∥
M∑
i=1

αQi(s, ·)−
M∑
i=1

αQ′
i(s, ·)

∥∥∥∥∥
∞

≤ sup
s∈S

2

√√√√α

M∑
i=1

∥Qi(s, ·)−Q′
i(s, ·)∥∞

≤ sup
s∈S

2

√√√√α

M∑
i=1

ε2/(16αMH2) ≤ ε/(2H).
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where the first inequality holds due to the inequality we derived above. Hence, we can construct a
C(Π, ε/2H) from

∏M
i=1 C(Q, ε2/(16αMH2)), which implies

N (Π, ε/(2H)) ≤
(
N (Q, ε2/(16αMH2))

)M
.

Lemma F.13 (Lemma 7 in Kong et al. (2021)). Consider a fixed pair (k, h) ∈ [K]× [H]. Define

Zk
h = {(sτh, aτh)}τ∈[k−1],

and for any V → [0, H], define

Dk
h(V ) = {(sτh, aτh, rτh + V (sτh+1))}τ∈[k−1]

and

f̂V := argmin
f∈F

∥f∥2Dk
h
.

For any V → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least
1− δ, such that conditioned on EV,δ , for any V ′ → [0, H] with ∥V ′ − V ∥∞ ≤ 1/T , we have∥∥∥∥∥f̂V (·, ·)− rh(·, ·)−

∑
s′∈S

Ph(s
′ | ·, ·)V ′(s′)

∥∥∥∥∥
Zk

h

≤ c′ ·H
√
log(1/δ) + logN (F , 1/T )

for some absolute constant c′.
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Figure 3: The “RiverSwim” environment with n states
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Figure 4: The “DeepSea” environment with n× n states
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Figure 3 shows a diagram of the RiverSwim environment. |S| = n states are lined up in a chain,
and the agent starts from the leftmost state s1. In each state, the agent can swim to the left or to the
right. If the agent swims to the left, along the current, it deterministically moves to the left (dotted
arrows). However, swimming to the right causes stochastic transitions, as the agent swims against
the current (solid arrows). If the agent swims to the left at s1, it receives a small reward of 0.05. To
maximize return, the agent should reach the rightmost state sn and then swim to the right, where it
receives a large reward of 1.

The DeepSea environment in Figrue 4 is an n × n grid of states. The agent starts in the top left
corner s1,1, and in each state, the agent can choose to just move down or move down and right.
Moving down and right gives a reward of −0.01/n, and moving down gives zero reward. The
episode terminates after n steps, and if the agent reaches the bottom right corner sn,n, it receives a
large reward of +1. Our implementation is slightly different from Osband et al. (2019), in that the
’moving down’ action leads to just moving down instead of moving down and left.

It is easy to verify that our theoretical guarantees are valid if the stepsize at episode k (say αk) is a
random variable. Hence, we set αk = α0 ·(k− k̄) for the experiments, where k̄ is the largest episode
index k̄ < k on which the policy is switched. To tune the hyperparameters of OPORS, we sweep over
α0 and β, while fixing η = 2. For LSVI-UCB, we sweep over the confidence radius β. We sweep
over the noise level σ for LSVI-PHE while setting the number of sampling M as suggested in Ishfaq
et al. (2021). For OPPO+, we sweep over the stepsize α and the confidence radius β, while fixing the
batch size B as suggested in Zhong & Zhang (2023).
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