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ABSTRACT

Recent advances in ML have leveraged Zero Knowledge Proof protocols to enable
institutions to cryptographically commit to a dataset and subsequently prove, to
external auditors, the integrity of training and the trustworthiness of the resulting
model on the committed data, all while protecting model confidentiality. Such
approaches guarantee that the training algorithm which produced a model was
computed correctly, but remain vulnerable to pre-commitment data tampering. This
is because even if the training algorithm is executed faithfully, an institution can
bypass the audit by manipulating the training data. Likewise, data generators may
degrade a model’s utility via data poisoning.

To address this, we introduce tamper-proof Data Passports that bind data to
verifiable and confidential proofs of authenticity. We leverage Trusted Execution
Environments to issue a certificate of authenticity or ‘passport’ for each data point
produced by a generating process. The generating process passes the data and
passport to the institution. Then, the institution uses a zero-knowledge proof
to verify the validity of the passports to an auditor, as an onboarding step for
downstream proofs of training integrity and model trustworthiness. This unlocks
cryptographic verification of data provenance throughout the ML pipeline.

Our experiments demonstrate that we can create tamper-proof passports for images
taken by users on their smartphones with a very negligible overhead. Agnostic to
data size, a passport can be created at capture time in only 230 ms and consumes
just 4.8 KB; thus, it has minimal impact on compute, storage and network usage.

1 INTRODUCTION

Institutions often collect data from users to train and fine-tune models, subsequently offering machine-
learning-as-a-service in critical applications such as healthcare, criminal justice, hiring, and finance.
Given risks (Angwin et all 2016} |Seyyed-Kalantari et al., 2021} [Buolamwini & Gebru, 2018)
associated with both training and inference, governments have begun regulating Al to ensure that
these technologies are developed and deployed responsibly and ethically (Biden, |2023). Public
verification called for so that an independent external party (auditor) from outside of the institution
verifies whether a model is trustworthy and upholds privacy (Dwork, [2006), fairness (Dwork et al.,
2012; Hardt et al., 2016), and other objectives mandated by law or societal values. In such settings, it
is essential to protect the confidentiality of users’ data and the intellectual property of the institutions.
For example, institutions are not allowed to share users’ medical data, as it is protected by legislation
such as HIPAA in the United States and PIPEDA in Canada.

To address these needs, the institution provides various form of confidential proofs to an auditor—
namely confidential proof of training (Abbaszadeh et al., |2024) to ensure the integrity of the
training stage and prove the institution’s ownership of the model, confidential proof of fair train-
ing (Shamsabadi et al.| [2023} [Franzese et al.,2024; [Yadav et al., 2024; Zhang et al.| 2025)) to prove
that the model satisfies fairness constraint, and confidential proof of differentially-private train-
ing (Shamsabadi et al., |2024])) to establish public trust in the training process and their model. Such
confidential proofs are constructed by leveraging zero-knowledge proofs (Goldwasser et al., 2019
Goldreich et al.l [1991)), allowing the institution to commit to its training dataset and subsequently
prove the correctness of the agreed-upon training algorithm on the committed data to the auditor
while preserving the confidentiality of all the training data, intermediate model updates, and final
trained model thanks to the hiding property of the commitment scheme.
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Although the binding guarantee of the commitment scheme prevents the institution from manipulating
the data being committed without being caught by the auditor, two critical data vulnerabilities
remain: (i) institutional data manipulation—a malicious institution can still manipulate user data
before committing to it; and (ii) user data manipulation—a malicious user can manipulate data before
sharing it with the institution. These vulnerabilities reflect real-world incentives. Institutions may
seek to shape model behavior for profit or strategic advantage in practice. For example, an insurance
company might train a model on skewed data to falsely justify rejecting legitimate claims (Napolitanol,
2023)) while passing fair training verification. Similarly, users may deliberately poison data to
introduce targeted mistakes in the model’s behavior (Carlini et al., [2024)).

Such data vulnerabilities cannot be addressed by post-hoc privacy-preserving input validation ap-
proaches (Bell et al., 2023} [Duddu et al.| |2024) as they can only verify whether the data satisfies
constraints such as [, bounds. A malicious party can still manipulate data while remaining in for
example [, constraint to be unnoticed. Therefore, it is extremely hard to accurately detect manipulated
data post-hoc based on content analysis. To address these issues, we propose to proactively generate
a cryptographic passport of source authenticity directly on the user’s device at the time of the data
generation. We introduce famper-proof Data Passports, a framework for confidentially verifiable
data provenance that enhances data generation with a certificate of provenance information. We
utilize Trusted Execution Environments (TEEs) (Liu et al., [2024; 2022; tru, [a) to construct and
sign provenance information for data generated by the user. Tamper-proof Data Passports contain
the source origin of the data and any post-processing histories, enabling the auditor to verify the
authenticity and integrity of data at the time of its generation without violating data confidentiality
and without allowing any party to silently manipulate the data.

Our proposed passport-based commitments can be combined with existing confidential proof of train-
ing to fix their data vulnerabilities by preventing malicious institutions and users from manipulating
training data. The institution commits to an authenticated dataset and proves in zero knowledge the
correctness of all Data Passports before allowing the data to be included in training, ensuring that
only authenticated data without any modification is used. In addition, our tamper-proof passports
offer a second key advantage: establishing a trusted reference dataset for facilitating efficient ZKP
certification of training through local computations. Proving the entire training process with heavy
cryptographic machinery would be prohibitively expensive in most practical settings. Data Passports
allow the institution to carry out the computationally-intensive training locally, while only the fairness
or calibration (Rabanser et al., [2025) evaluation needs to be performed in ZK on this authenticated
reference dataset and verify that the final locally obtained model meets fairness or calibration criteria.
Finally, Data Passports are beneficial to institutions against malicious users for both inference and
training. Data Passports can be combined with ZKPs of Correct Inference (Weng et al.| [2021)
to prove that inference was computed correctly given an ML model and authenticated data, thus
preventing the model’s susceptibility to adversarial examples created by users. Data Passports allow
institutions to prevent data-poisoning risks introduced by users (Carlini et al.,2024), such as injecting
backdoors|Qi et al.|(2023); |Gu et al.|(2019); [Zhu et al.|(2025), and remove manipulated data from
users who seek to alter the performance of the model during training.

In this paper, through a co-design of TEE and ZKP, we introduce an authenticated user-generated
dataset equipped with confidentially verifiable passports. These Data Passports enable diverse
trustworthiness audits and provide strong assurance to the public that no parties—including users,
institutions, and auditors—can silently manipulate the data, while protecting its confidentiality. We
implement Data Passports and evaluate User-side TEE efficiency and Institution-side ZKP efficiency.
On Samsung Galaxy S20 Plus and Google Pixel 6 Pro smartphones, we measure CPU, memory, and
battery consumptions of user-generated data as well as the storage requirements and execution time
of passport creation. We highlight the following contributions:

* We introduce a new threat model of self-poisoning attacks where the institution manipulates the
training data ifself to pass an audit, highlighting data vulnerabilities in existing ZKP verifications.

* We propose a framework for user-generated data with a confidential passport created at the time of
generation—analogous to a passport issued to a newborn at birth. Confidential passports encode
provenance information— how the data was generated and what modifications were made to it.

* We show that passport-based data commitments are mutually beneficial for all parties, complement
confidential auditing, and mitigate data vulnerabilities.
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» We implement TEE-based Data Passports on user devices and ZKP verification on the institution
side. Data Passports introduces very negligible overhead on user devices. We submitted a demo of
Data Passports as part of the supplementary material.

2 BACKGROUND

In this section, we introduce background concepts in Trusted Execution Environments (TEEs) and
Zero Knowledge Proofs (ZKPs).

Background on TEE. A TEE, sometimes referred to as an enclave, is a secure area of a processor that
provides an isolated computing environment, separate from traditional rich runtime environments such
as an Operating System (OS). A TEE enforces strong hardware-backed guarantees of confidentiality
and integrity for the code and data it hosts. These guarantees are achieved through enforcements
such as dedicated memory accessible only to the TEE. Hardware isolation ensures that even a fully
compromised OS cannot access (either read or write) orx tamper any code or data residing inside the
TEE. In addition to this, TEEs expose unique hardware primitives such as secure boot and remote
attestation to ensure only trusted code is loaded into TEE and external parties being able to verify
the integrity of TEE. TEEs are widely available across various system and processor architectures,
such as TrustZone jarm!| (b)) and Realms |arm| (a)) for ARM, Intel SGX |int (a), TDX |int| (b), and AMD
SEV |amd|for x86, and WorldGuard fris, KeyStone [Lee et al.|(2020), and Penglai [Feng et al.| (2021)
for RISC-V. In this work, we adopt ARM TrustZone for our prototype, as it is widely deployed in
commodity devices such as ARM-based smartphones |tru| (b). As an alternative, we also consider
Android StrongBox [and, a Hardware Security Module (HSM) that has gained popularity in recent
years on select Android devices. Popular StrongBox solutions include Samsung Knox Vault sam
(a) and Google Titan M/M2 jpix. The main difference between such a HSM and TEE is that HSM
is built specifically for cryptographic operations, where TEE is designed to execute code securely.
Since our passport generation process only involves cryptographic operations, both TEE and HSM
can be utilized here. For user devices in our evaluations, we use two representative devices—Samsung
Galaxy S20 Plus and Google Pixel 6 Pro— both of which support TrustZone and StrongBox.

Background on ZKP. In this work, we use ZKPs to verify the validity of data passports to the
auditor, without revealing information about the data. A ZKP is a cryptographic protocol for verifying
properties of hidden data. A ZKP takes place between two parties, a prover P and auditor V. P has a
string of hidden data called a ‘witness’ w, and they would like to prove to V' that w satisfies some
property. The property is encoded as a circuit C', which is known to both parties. P and V' can execute
a ZKP protocol to prove whether C'(w) = 1. A secure ZKP protocol has the following properties: (i)
Completeness — for all w such that C(w) = 1, P can use the ZKP protocol to prove that C'(w) = 1.
(ii) Soundness — if C'(w) # 1, P cannot use the protocol to falsely convince V' that C'(w) = 1 even if
P performs arbitrary malicious behavior during protocol execution. (iii) Zero-Knowledge — V' learns
no information about w other than what is implicitly revealed by knowing that C(w) = 1, even if V'
performs arbitrary malicious behavior during protocol execution.

3 Data Passports

Our framework confidentially verifies that an institution owns data from a set of certified data sources
(users) without any data manipulation while preserving the confidentiality of the data.

3.1 PARTIES

As visualized in Figure(l] we achieve this through a co-design of ZKP and TEE between four parties:
Certificate Authority C.A, Certified Data Sources S, Institution Z, and Auditor V:

* Certificate Authority C.A. A trusted third party that certifies sources of data. Similar to a certificate
authorities that register trusted web domains, C.A obtains confirmation that the data is generated
by an authenticated source. C.A then publishes a list of privacy-preserving certificates, allowing
other parties to verify whether data came from a trusted source. In this work, we realize C.A as the
issuer of tamper-proof TEE devices, but it could also be a government body that verifies identity
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Figure 1: Block diagram of tamper-proof Data Passports for ML onboarding. (D-2): A data source registers
with a certificate authority to obtain certification. (3): The certified data source generates data and shares it with
the institution, along with its passport. @-Q): The institution performs passport-based data commitment to
enable zero-knowledge verification by the auditor. Once the auditor validates the passports, the institution is
authorized to onboard ML tasks (©).

and demographic status of individuals, or a professional organization that certifies reputable data
vendors.

* Certified Data Sources S generates the data. In this work, we realize S as a set of tamper-proof
TEE devices, but they could also be instantiated as certified data brokers or individuals.

¢ Institution Z who wishes to confidentially verify model properties with certified data.

* Auditor V who wishes to verify data provenance and then data-dependent properties of Z’s model.

3.2 OVERVIEW

Our framework consists of six steps: steps (1-3) make sure that S provides the unmodified outputs

of sensors, while steps (4-6) make sure that 7 performs a data-dependent operation (e.g., training,

fine-tuning, auditing) with data from certified sources.

1. Data source registration. Each data source S; € S registers with the certified authority C.A, who
confirms that they are a valid data source.

2. Data source certification. Each S; obtains a certificate authenticating data it generates.

3. Data generation and passport creation. Each data source S; generates a data point data;.
Each S; is in possession of a passport, < {Signature,, Certificate; } containing provenance
information. The certified S; uploads (data;, passport,) to Z.

4. Passport-based data commitments. 7 aggregates data DataBase = ||, data; and passports
PassportBase = ||Y,passport; from S. Z commits to DataBase and PassportBase, and
sends the commitments to V.

5. Zero knowledge data passport verifications. 7 uses a zero-knowledge proof to verify to V that
each passport contains provenance information of its corresponding data point.

6. Onboarding ML. V authorizes Z to onboard ML tasks and use this authentic data to reliably and
verifiably perform data-dependence operations—such as training a model or measuring the fairness
of a model.

Next, we describe data generation and passport creation in TEEs and passport verifications in ZKPs,
in details.

3.3 DATA GENERATION AND PASSPORT CREATION

We aim to construct a confidentially verifiable tamper-proof passport, passport, for authentic data,
data, without revealing any information contained within the data itself.
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Algorithm 1: Data Source Registration at manufacture time

Input: Certified Authority C.A, Data source S
Output: Registered Data source S

1: CA provisions device attestation keypair (pk,, skq) into S

2. CA installs attestation certificate chain Chain, = [Certificate,, ..., Root] on S at manufacture time
3: DeviceMetaData =< “deviceld” : DevicelD, ... >

4:
5
6
;

o, = Sign, _(DeviceMetaData) > S builds attestation statement

. 8 sends (7, 04, Chaing) to CA
. if Verify, (DeviceMetaData,0,) = 1 and Freshness and Policy then

C A registers S and opens a secure TLS connection for it

Algorithm 2: Data Source Certification

Input: Registered Data source S
Output: Certificate, pk, sk

1: (pk, sk) « KeyGen() > & generates a pair secret-public key

2. DeviceMetaData =< “deviceld” : DevicelD, ... >

3:

4. certificate < {Signg_(pk|/DeviceMetaData), pk,, } > CA signs it with its secret

S sends pk and DeviceMetaData to C.A through the secure TLS connection

key

: CA sends certificate to S
- Return: certificate and certified keypairs pk, sk

Algorithm 3: Data Generation and Passport Creation

Input: Certified kerpairs pk, sk, SHA256 Hash function
Output: {data, passport}

1:
2:

data > Generate data on S
passport < {signature = Sign  (SHA256(data)), certificate} > Create Passport on S

We leverage TEEs in the user’s device to issue such passports by incorporating provenance information
at the time of data generation. A TEE provides a secure, isolated execution environment for a security-
critical program. We assume the availability of a TEE on user devices where data is generated. This
TEE can be used to cryptographically sign the data generated by the device.

We define a passport as passport = {signature, certificate }, where signature is a digital signature
computed over data using a secret key associated with a certificate provisioned to TEE:

. Algorithm [T| registers data sources. C.A attests each S; device to ensure it is an authentic (un-

tampered and genuine) device secured by TEE against malicious users. This is done through
performing checks on the integrity of the OS and Application (e.g., Camera), as well as other li-
braries and applications residing on the device. Examples include Google Play Integrity API (goo)
and Samsung Knox Attestation (sam), b)).

. Algorithm 2 certifies data sources. The certified S; device securely (in TEE) generates a new pair

of secret key sk and public key pk, (sk;, pk;), for signing the data and verifying the signature,
respectively. Note that sk; is hidden but pk; will be published through the certificate so that the
auditor knows which sources are certified. The C.A authenticates the new key pair sk by signing
the public key and device metadata and issuing a certificate for this key, certificate.

Algorithm 3| captures data and creates a passport on certified sources. The certified S; proceeds
capturing data in TEE with a specific pre-defined public resolution. We support any sensing data,
including photos, video, and audio. S, uses the certified secret key sk to have a signature of the
captured data in TEE using ECDSA with Secp256r1 curve, which is common and supported by
devices in the real world (details in Section [4.2]).
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Ideal Functionality Fzkp.cr

Participants:
* Input Sources S = ||V, S;
* Institution Z
* Auditor V
Public parameters:
* circuit C
« list of certified public keys PK = ||V, pk;
Functionality:
1. Each S; sends input (data;, passport;)
2. Send DataBase = ||Y,data; and PassportBase = ||¥ ; passport; to Z

3. 7 defines a subset of indices @ C [I,N] and a set of inputs
DataBase’ = {data;};cq, sends DataBase’ and input w

4. If vrfy,, (dataj,passport;) # 1 forany i € Q, thensend 1 to V

5. Otherwise, send true to V if C(w,DataBase’) = 1 or send false to V if
C(w, DataBase’) = 0.

Figure 2: Ideal functionality for Zero-Knowledge Proofs with Certified Inputs (ZKP-CI).

3.4 PASSPORT-BASED DATA COMMITMENTS AND VERIFICATION

To capture our goals formally, we define an abstract cryptographic primitive called a Zero-Knowledge
Proof with Certified Inputs (ZKP-CI). Zero-knowledge proofs are a well-studied cryptographic
primitive, which ensures that a prover executes a publicly known circuit C' on a chosen input w, and
sends its correct output to a verifier. A ZKP-CI modifies this primitive so that certified third parties
can also provide inputs X to the circuit, such that X cannot be modified by the prover. The ideal
functionality Fzkp.cy is provided in Figure |Zl

The functionality is realized by executing a standard zero-knowledge proof with a circuit verifying
the signature associated with each data point, in conjunction with the arbitrary circuit C'. This could
be used to perform e.g. zero-knowledge proofs of correct training while preventing the input-based
vulnerabilities of previous work. We estimate the performance cost of this addition in Section[4.2]

4 EXPERIMENTS

Our principle motivation for introducing tamper-proof Data Passports is to enable auditors to
confidentially verify that institutions use authentic data generated by certified users without any
manipulations. Next, we implement Data Passports and evaluate the novel aspects: i) authentic data
generations with passports; and ii) zero-knowledge passport verifications. Therefore, we empirically
validate efficiency in i) generating data and creating passports on the user device; and ii) performing
zero-knowledge verification of Data Passports between institutions and auditors.

4.1 USERS CAN EFFICIENTLY GENERATE AUTHENTIC DATA WITH PASSPORTS

Implementation. We implement an Android-based prototype camera application. Using Hardware-
backed KeyStore, the application is capable of using both ARM TrustZone and Android StrongBox
to generate keys and provide a cryptographic signature for captured images. For an output image,
the passport is embedded as the metadata of the JPEG file, as this can make our system seamlessly
adopted by existing training pipelines. We use JPEG as it is a widely used standard format for
images. We evaluated the Android-based prototype on two smartphones capable of both TrustZone



Under review as a conference paper at ICLR 2026

Performance
Capture Key Gen Passport Creation
A A A 100 A a
10° /g/ﬂ/ﬂ 107 ro) Lo}
= ° o 4

Time (ms)
\
\\
\
Time (ms)
B
1
I
1
1
I
1
1
I
%
1
1
1
1
1
|
1
|
>t
Time (ms)

-
____________
10? -

o
o
VA
A\
\
\
\
\
Lg
1
1
1
1
1
1
1]
W
B

3x10?

(-3
1920x1080 (1080p) 3840x2160 (2160p) 4032x3024 1920x1080 (1080p) 38402160 (2160p) 4032x3024 1920x1080 (1080p) 3840x2160 (2160p) 4032x3024
Resolution Resolution Resolution
—&— Baseline (Galaxy) —@ - PassportData-T (Galaxy) © - PassportData-S (Galaxy)
—A— Baseline (Pixel) —A - PassportData-T (Pixel) A - PassportData-S (Pixel)

Figure 3: A user can capture image of 1920x1080 (1080p) resolution with a passport in 715 ms.
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Figure 4: An passport-enabled image with a resolution of 1920x1080 (1080p) has a size of 426 KB.

and StrongBox: Samsung Galaxy S20 Plus and Google Pixel 6 Pro, where the former runs Android
13 and the latter runs Android 16.

We have two pipelines: PassportData-T and PassportData-S. They utilize different hardware primitives
to execute the same passport generation sequence, where the former makes use of TrustZone backend,
and the latter relies on StrongBox backend. In addition, we introduce a baseline pipeline, where it
does not have any passport-related code and only takes a photo using the system camera API. We run
all three pipelines on both smartphones across three different resolutions: 4032x3024, 3840x2160,
and 1920x1080. We do want to notice that ML training-related workload usually involves a much
lower resolution (e.g., 512x512); however, the lowest resolution that is supported by both of these
two devices is 1920x1080. Furthermore, in order to learn how our system scales, we pick another
two resolutions for comparison.

Performance. Figure [3]shows how each step in the three pipelines performs under different resolu-
tions. In the left sub-figure, we can see that our system does not bring any overhead to the capture
time itself. The middle sub-figure demonstrates that the key generation time remains the same on
each hardware primitive across different resolutions. In the right sub-figure, the passport creation
process scales linearly to resolutions on all hardware primitives. In terms of the potential effect
brought by the performance overhead of our system, the PassportData-T pipeline introduces overhead
(60 - 300 ms) that should not be noticeable by users, where the PassportData-S pipeline introduces
noticeable overhead (2000 - 9000 ms), but is also good enough for offline use cases.

Storage. Figure ] shows storage overhead. As illustrated by the left sub-figure, the JPEG data size
does not get affected by our system. In the right sub-figure, we can say that the passport size remains
unchanged on each hardware primitive across different resolutions. Overall, our system introduces
negligible amount of storage overhead (~ 5 KB) compared to the size of JPEG images.
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Figure 5: While taking an image of 1920x1080 (1080p) resolution with a passport, the average consumption
is about 18% CPU, 220 MB memory, and 4252 mW power.

Consumptions. The three sub-figures in Figure [5] if we get rid of the errors (as we could only
measure the entire system consumptions with many other running processes), we can clearly see that
our system does not introduce any noticeable overhead in CPU, memory, or battery.

Scalability. In all steps of our system, only the hashing step during passport generation can be
affected by changes in resolution, as lower resolution means a smaller file size and higher resolution
means a larger file size. In both PassportData-T and PassportData-S on the two devices we evaluated
with, time consumed in hashing is linearly related to image resolutions. Therefore, we can conclude
that our system scales linearly in terms of performance overhead, and the storage overhead is constant,
as we observed on various hardware primitives.

In summary, the PassportData-T pipeline has negligible performance overhead on both phones. The
PassportData-S pipeline incurs moderate performance overhead, though this is acceptable as long as
real-time usage is low. On the other hand, both pipelines have negligible storage overhead.

4.2 DATA PASSPORTS CAN BE CONFIDENTIALLY VERIFIED

After collecting all data and their passports, the institution first commits to the data (step @), Figure|I])
and then proves to the auditor that the passport is indeed consistent with the committed data (step
®, Figure[I). The institution performs the verification by generating a zero-knowledge proof of
knowledge of ECDSA signature (steps 4 and 5 in Figure [2)). This passport verification consists of
two steps: 1) hash verification: institution proves that the hash digest of the image is consistent,
and 2) signature verification: the signature of the hash is valid wrt to the signature verification key.
Specifically, The institution generates a zero-knowledge proof that it knows the photo bytes x; whose
hash digest e; both (i) equals hashghags()(xl) and (ii) is consistent under the TEE’s ECDSA public key
pk and signature o, forall i € {1,.

Ell'i, ei,pki e = hashsha256(zi) A Vrfypki (pki, €5, Ui) =1.

We estimate the end-to-end cost of passport verification in zero-knowledge based on the ZK-ECDSA
framework by [Frigo & abhi shelat] (2024). Frigo and shelat present a practical ZK framework that
consists of highly optimized circuits of these two building blocks: (1) a SHA-256 preimage circuit
over a binary field for the hash-consistency check, which corresponds to our hash verification
step, (2) an ECDSA-verify circuit over P-256 that replaces modular inverses with a group-identity
check for efficient verification, which corresponds to our signature verification step, and (3) a
lightweight information-theoretic MAC to ensure the consistency of digest e across the two fields.
In our setting, we use their SHA-256 preimage circuit to prove e = hashg,ps6(m) and their ECDSA-
verify circuit to prove Vrfypk(e, o) = 1. This yields an end-to-end proof that the data passport is
valid: the committed image z is exactly the content whose digest was signed by the issuer’s key and
is consistent with its data passport.

We now estimate the cost of end-to-end passport verification for a single image. We extrapolate costs
directly from the reported measurements in |Frigo & abhi shelat (2024) since their implementation
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Table 1: End-to-end cost of verifying a single data passport in ZK. Estimations are based on the
prover time reported in [Frigo & abhi shelat| (2024). #Blocks is the total number of 64-byte blocks
for each image. Hash is the prover time for hash verification, which costs ~ 9 ms per 64-byte block.
Total is the end-to-end cost of passport verification, which adds a constant ECDSA-verify prover time
(~ 60 ms); the MAC-based cross-field consistency adds negligible overhead. All numbers reported
are prover time, as verifier costs are negligible in comparison.

Image Resolution Device TEE File Size  #Blocks Hash Total

Galaxy S20+ TrustZone 2033.6 KB 32,539  292.851s 292911s
Galaxy S20+ StrongBox 2068.6 KB 33,099 297.891s 297.951s

4032 x 3024 Pixel 6 Pro TrustZone 1214.6 KB 19,434  174.906s 174.966s
Pixel 6 Pro StrongBox 1187.0 KB 18,992  170.928s 170.988s

Galaxy S20+ TrustZone 1189.2KB 19,028 171.252s 171.312s

3840 x 2160 Galaxy S20+ StrongBox 1206.7 KB 19,308  173.772s 173.832s
Pixel 6 Pro TrustZone 1084.5KB 17,352 156.168s 156.228s

Pixel 6 Pro StrongBox 1097.9 KB 17,566  158.094s 158.154s

Galaxy S20+ TrustZone 4219 KB 6,751 60.759s  60.819s

1920 x 1080 Galaxy S20+ StrongBox  451.2 KB 7,221 64.989s  65.049s

Pixel 6 Pro TrustZone  307.2 KB 4,916 44.244s 44.304s
Pixel 6 Pro StrongBox  310.3 KB 4,965 44.685s 44.745s

is not publicly available. Their experiment was conducted on a ¢4 — highcpu — 8 Google Cloud
instance with four Intel Xeon PLATINUM 8581C CPUs@2.30GHz with 16 GB of RAM. Empirically,
their hash verification costs about 9ms per 64-byte block, and signature verification adds about a
constant 60ms. We report the end-to-end cost of verifying a single data passport in Table [I|and break
down the cost model of each step as follows:

* Hash verification: Let |z| be the encoded image size in bytes. With SHA-256 padding (one 0x80
byte and an 8-byte length), the number of 64-byte blocks is n = II(I%Q-‘ . We report the number

of blocks (# blocks) and hash verification time (Hash time) for different image resolutions, devices,
and TEEs in Table [Tl

* Signature verification: Signature verification cost is independent of the image size and adds a
fixed ~ 60 ms prover time for each signature.

* End-to-end passport verification: The end-to-end passport verification cost consists of the
hash and signature verification time and a lightweight consistency check. The hash verification
cost scales linearly with the number of 64-byte blocks at about 9 ms per block, while signature
verification adds a size-independent 60 ms. As shown in Table[I] the total prover time is dominated
by hash verification, while signature verification adds only a small constant overhead. We report
prover time as the verifier has negligible cost in comparison.

5 DISCUSSION AND FUTURE WORK

Our current prototype verifies each data passport independently, so total prover cost scales linearly
with the dataset size: this is mainly due to the hash verification proof, which is inherently linear to
the data size; signature verification contributes only a small constant. While this linear scaling is a
limitation, we comment that the hash verification bottleneck can be avoided through parallelization:
Frigo & abhi shelat| (2024) reports roughly doubled prover time when generating the proof on Pixel
6 pro (= 18 ms per 64-byte block). Therefore, users could generate their own hash-consistency
proofs and upload only ZK proofs plus signatures. This would significantly reduce wall-clock time
without changing trust assumptions. Another future direction would be preventing the institution
from selectively using user data to meet their adversarial need by enabling users to send confidential
signals to the auditor.
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