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ABSTRACT

In many real-world applications, data distributions are often subject to transla-
tion shifts caused by various factors such as changes in environmental conditions,
sensor settings, or shifts in data collection practices. These distribution shifts
pose a significant challenge for measuring the similarity between probability dis-
tributions, particularly in tasks like domain adaptation or transfer learning. To
address this issue, we introduce a new family of distances, relative-translation
invariant Wasserstein distances (RW),), to measure the similarity of two probability
distributions under distribution shift. Generalizing it from the classical optimal
transport model, we show that RW), distances are also real distance metrics defined
on the quotient set P,(R™)/ ~ and invariant to distribution translations, which
forms a family of new metric spaces. When p = 2, the RW, distance enjoys more
exciting properties, including decomposability of the optimal transport model and
translation-invariance of the RW5 distance. Based on these properties, we show
that a distribution shift, measured by Wy distance, can be explained in the bias-
variance perspective. In addition, we propose two algorithms: one algorithm is a
two-stage optimization algorithm for computing the general case of RV, distance,
and the other is a variant of the Sinkhorn algorithm, named RW, Sinkhorn algo-
rithm, for efficiently calculating RW; distance, coupling solutions, as well as Wy
distance. We also provide the analysis of numerical stability and time complexity
for the proposed algorithms. Finally, we validate the RW),, distance metric and the
algorithm performance with two experiments. We conduct one numerical valida-
tion for the RWs Sinkhorn algorithm and demonstrate the effectiveness of using
RW,, under distribution shift for similar thunderstorm detection. The experimental
results report that our proposed algorithm significantly improves the computational
efficiency of Sinkhorn in practical applications, and the RW,, distance is robust to
distribution translations.

1 INTRODUCTION

Optimal transport (OT) theory and Wasserstein distance (Peyré & Cuturi, |2020; Janati et al., | 2020a);
Villani, [2009) provide a rigorous measurement of similarity between two probability distributions.
Numerous state-of-the-art machine learning applications are developed based on the OT formulation
and Wasserstein distances, including domain adaptation, score-based generative model, Wasserstein
generative adversarial networks, Fréchet inception distance (FID) score, Wasserstein auto-encoders,
distributionally robust Markov decision processes, distributionally robust regressions, graph neu-
ral networks based objects tracking, etc (Shen et al., [2017; Pinheiro, 2017} (Courty et al., 2017bj
Damodaran et al., 2018; |Courty et al.,[2017a};|Arjovsky et al., 2017} |Heusel et al., 2017; [Tolstikhin
et al.. 2017 |Clement & Kroer, [2021; |Shafieezadeh-Abadeh et al.| 2015 |(Chen & Paschalidis| [2018;
Yu et al.l 2023 |Sarlin et al} 2019). However, the classical Wasserstein distance has major limitations
in certain machine learning and computer vision applications. For example, a meteorologist often
focuses on identifying similar weather patterns in a large-scale geographical region|Wang et al.[(2023);
Roberts & Lean|(2008); Dixon & Wiener| (1993)), where he/she cares more about the “shapes” of
weather events rather than their exact locations. The weather events are represented as images or point
clouds from the radar reflectivity map. Here the classical Wasserstein distance is not useful since the
relative location difference or relative translation between two very similar weather patterns will add
to the Wasserstein distance value. Another example is the inevitable distribution shift in real-world
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datasets. A distribution shift may be introduced by sensor calibration error, environment changes
between train and test datasets, simulation to real-world (sim2real) deployment, etc. Motivated by
these practical use cases and the limitations of Wasserstein distances, we ask the following research
question:

Can we find a new distance metric and a corresponding efficient algorithm to measure the similarity
between probability distributions (and their supports) regardless of their relative translation?

To answer this research question, we introduce the relative translation optimal transport (ROT)
problem and the corresponding relative-translation invariant Wasserstein distance RW,,. We then
focus on the general case result when p € [1,00) and the quadratic case (p = 2) by identifying
two exciting properties of the RW5 distance. We leverage these properties to design a variant of
the Sinkhorn algorithm to compute RW, distance, coupling solutions, as well as W5 distance. In
addition, we provide analysis and numerical experiment results to demonstrate the effectiveness of
the new RW, distance against translation shifts. Finally, we show the scalability and practical usage
of the RW5 in a real-world meteorological application.

Contributions. The main contributions of this paper are highlighted as follows: (a) we introduce a
family of new similarity metrics, relative-translation invariant Wasserstein (12W,,) distances, which
are real distance metrics like the Wasserstein distance and invariant to the relative translation of
two distributions; (b) we identify two useful properties of the quadratic case RW> to support our
algorithm design: decomposability of the ROT problem and translation-invariance of both the ROT
problem solution and the resulted RW5; (c) we show the non-convexity of general ROT problem
and propose a two-stage algorithm for computing the general RW,, distances; and (d) we propose
an efficient variant of Sinkhorn algorithm, named the RW> Sinkhorn, for calculating RW5 distance,
coupling solutions as well as W5 distance with significantly reduced computational complexity and
enhanced numerical stability. Empirically, we report promising performance from the proposed
RW, distance when the relative translation is large, and the RW5 Sinkhorn algorithm in illustrative
numerical examples and a large-scale real-world task for similar weather detection. Figure[I]shows
our major findings in this work.
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(a) Schematic illustration of the quo- (b) Decomposition of the optimal (c) Pythagorean relationship of the
tient set Pp(R™)/ ~, where 7 stands transport optimization. To move distances. Three types of dis-
for the natural projection from P, (R™) w to v, p can be moved along the tances, Wa, RW> and |5 — 7||2,
to Pp(R™)/ ~ induced by the transla- orbit (equivalence class) [u] to ' are used to measure the minimal
tion relation. The equivalence class first, which is related to the vertical values of the three objective func-
(orbit) [u] is pictured as the blue line optimization V' (s), then moved on tions, E2(P,s), H(P) and V (s),
of 4 and g’ in P,(R™) and it corre- the quotient set P2(R™)/ ~ to the respectively, as shown in the sub-
sponds to a point [u] in the quotient target v, which is related to the hor- figure (b).

set Pp(R™)/ ~. izontal optimization H (P).

Figure 1: The relative translation optimal transport problem and RW,, distances.

Notations. Let P,(R™) be the set of all probability distributions with finite moments of order p
defined on the space R™. For simplicity, we assume p and v represent a pair of source and target
distributions, respectively. Assume that m; and mg are the number of supports when distribution
v and v have finite supports {z;};"; and {y;}%,. Let R**"™2 represents the set of all m; x ms
matrices with non-negative entries. [u] represents the equivalence class (orbit) of p under the
shift equivalence relation in P,(R™). [ and U represents the mean of probability distribution g
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and v, respectively. e, denotes a vector in R™ where all elements are ones. ./ represents the
component-wise vector division.

Related work. Optimal transport theory is a classical area of mathematics with strong connections
to probability theory, diffusion processes and PDEs. Due to the vast literature, we refer readers to
(Villani & Society}, 2003} | Ambrosio et al., 2005} [Villani, [2009; [Ol11, [2014)) for comprehensive reviews.
Computational OT methods have been widely explored, including Greenkhorn algorithm (Altschuler
et al.,[2017), Network Simplex method (Peyré & Cuturil 2020), Wasserstein gradient flow (Mokrov.
et al.| 2021} [Fan et al., 2022), neural network approximation (Chen & Wang, 2023). Significant
research has also been conducted on Wasserstein distances, such as the sliced Wasserstein distance
(Nguyen & Hol 2023} [Mahey et al.| 2023 Nguyen & Ho, [2022), Gromov-Wasserstein distance
(Sejourne et al.l 2021} [Le et al., 2022} |Alvarez-Melis et al.| [2019), etc. Other important topics include
Wasserstein barycenter (Guo et al., [2020; Vaskevicius & Chizat, |2023} Korotin et al.} [2022; [Lin et al.|
2020; Korotin et al.,2021) and unbalanced optimal transport (Nguyen et al., 2024; (Chizat, 2017).

Among these foundational areas, information geometry (Amaril [2016; Liero et al.l 2018} |Janati et al.|
2020b) and the Wasserstein-Bures metric (Chen et al., 2015} Bhatia et al., 2019} [Peyré & Cuturi}
2020; Malago et al., 2018) are closely related to our work, as both provide tools for measuring
variances. However, it is important to note key differences. Unlike information geometry, which
typically employs measures such as Bregman divergence or statistical information, our approach
utilizes the energy transport cost as the primary metric. Additionally, while the Wasserstein-Bures
metric specifically focuses on Gaussian distributions and the W5 metric, our research extends to more
general distributions and considers broader classes of p-norm metrics, offering a more comprehensive
framework for analysis.

2 PRELIMINARIES

Before delving into the details of our proposed method, it is essential to focus on the groundwork with
an introduction to key aspects of classical optimal transport theory and formulations. This foundation
will support the subsequent derivations and proofs presented in Section 3.

2.1 OPTIMAL TRANSPORT THEORY

The optimal transport theory focuses on finding the minimal-cost transport plans for moving one
probability distribution to another probability distribution in a metric space. The core of this theory
involves a cost function, denoted as ¢(z, y), alongside two probability distributions, p(z) and v(y).
The optimal transport problem is to find the transport plans (coupling solutions) that minimize the cost
of moving the distribution u(x) to v(y), under the cost function ¢(x, y). Although the cost function
can take any non-negative form, our focus will be on those derived from the p-norm, expressed as
|z — yl|b for p € [1, 00), since the optimal transport problem is well-defined (Villani, 2009).

Assuming p(z) as the source distribution and v(y) as the target distribution, i, v € P,(R™), we can
formulate the optimal transport problem as a functional optimization problem, detailed below:
Definition 1 (p-norm optimal transport problem (Villani, 2009)).

OT(1,v,p) = min / Iz — yl2dv(z, y), (1)
YET (1,v) JR2n

with T(p1,v) = {y € Pp(R*™)| [ (@, y)dz = v(y), [gn v(2,y)dy = p(z), v(z,y) > 0},

Here ~y(x,y) represents the transport plan (or the coupling solution), indicating the amount of
probability mass transported from source support x to target support y. The objective function is to
minimize the total transport cost, which is the integrated product cost of distance and transported
mass across all source-target pairs (x, y).

After the foundational optimal transport problem is outlined, we can introduce a family of real metrics,
the Wasserstein distances, for measuring the distance between probability distributions on the set
P,(R™). These distances are defined based on the optimal transport problem.

Definition 2 (Wasserstein distances (Villani, [2009)). The Wasserstein distance between . and v is
the pth root of the minimal total transport cost from  to v, denoted as W, p € [1,00):

W,y (11, v) = OT(j1,v,p) 7. (2
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The Wasserstein distance is a powerful tool for assessing the similarity between probability distribu-
tions. It is a real metric admitting the properties of indiscernibility, non-negativity, symmetry, and
triangle inequality |Villani| (2009). Meanwhile, it is well-defined for any probability distribution pairs,
including discrete-discrete, discrete-continuous, and continuous-continuous.

For practical machine learning applications, the functional optimization described in Equation (I
can be adapted into a discrete optimization framework. This adaptation involves considering the
distributions, x and v, as comprised of finite supports, {z;};"'; and {y;}}%,, with corresponding
probability masses {a; };; and {b;}""?,, respectively, where m1 and my are the number of supports
(data points). Since all m4 and mo are finite numbers, we can use an mj X mo matrix C' to represent
the cost between supports, where each entry represents the transporting cost from x; to y;, i.e.,
Cij = || — y;|b. This discrete version of the optimal transport problem can then be expressed as a

linear programming problem, denoted as OT(u, v, p):

mi1 Mo
OT = mi P,iCis, 3
(,U/v v, p) PGIIEII%B,U) ;; J J ( )

with II(p1, v) = {P € R™*™2|Pe,, =a, P e,, = b}, where II(y, v) is the feasible set of this
problem, vectors a and b are the probability masses of u and v, respectively. coupling solutions P;;
indicates the amount of probability mass transported from the source point z; to the target point ;.
This linear programming approach provides a scalable and efficient way for solving discrete optimal
transport problems in various data-driven applications.

2.2  SINKHORN ALGORITHM

Equation formulates a linear programming problem, which is commonly solved by simplex
methods or interior-point methods Peyré & Cuturi| (2020). Because of the special structure of the
feasible set TI(u, v/), another approach for solving this problem is to transform it into a matrix scaling
problem by adding an entropy regularization in the objective function (Cuturi| (2013). The matrix
scaling problem can be solved by the Sinkhorn algorithm, which is an iterative algorithm that enjoys
both efficiency and scalability. In detail, the Sinkhorn algorithm will initially assign ©(*) and v(%)
with vector e,,, and e,,,, then the vector u*) and v(*) (k > 1) are updated alternatively by the
following equations:

ut Y . /Ko®) oD Ty R €]

o5
where K;; = e~ () is the coefficient of the entropy regularized term) and the division is
component-wise. When the convergence precision is satisfied, the coupling solution P will be
calculated by the matrix diag(u) K diag(v). It has been proved the solution calculated by the Sinkhorn
algorithm can converge to the exact coupling solution of the linear programming model, as A goes to
zero (Cominetti & Martin, |1994). One caveat of this calculation is the exponent operation, which
may cause “division by zero", we will show how we can improve the numerical stability in Section 4]

3 RELATIVE TRANSLATION OPTIMAL TRANSPORT AND RV, DISTANCES

Here we present the relative translation optimal transport model and the RW),, distances. We first
introduce the theoretical understanding of the relative translation optimal transport problem and the
RW, distances. We will then focus on computational tractability on those R, distances. Finally,
we focus on the quadratic case (RW5) and its properties. For simplicity, we present the results for
discrete distributions; however, because of the weak convergence property of Wasserstein distances,
these results are also applicable to arbitrary distributions in set P, (R™).

3.1 RELATIVE TRANSLATION OPTIMAL TRANSPORT FORMULATION AND RWP DISTANCES

As discussed in Section 1, the classical optimal transport (OT) problem is not very precise to the case
when there is a relative translation allowed between two distributions (or the two datasets known
as their supports). We introduce the relative translation optimal transport problem, ROT (i, v, p),
which is formulated to find the minimal total transport cost under any translation.

Definition 3 (Relative translation optimal transport problem). Continuing with the previous notations,

ROT(p,v,p) = inf min E,(s, P), 5
(1, v, p) Jnf, pdnin »(s, P) Q)
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where variable s represents the translation of source distribution u, variables P;; represent the
coupling solution between the support x; and the support y;, and E,(s, P) represents the total

transport cost under p norm, i.e. Ey(s, P) = Y™ 37" Pijllzi — y; + sb.

j=
The ROT problem can be viewed as a generalized form of the classical OT in Equation (T)). There are
two stages in this optimization. The inner stage is exactly the classical OT, whereas the outer stage
finds the optimal relative translation for the source distribution to minimize the total transport cost.

Theorem 1 (Compactness and existence of the minimizer). For Equation (), the domain of the
variable s can be restricted on a compact set Q@ = {s € R"| ||s||, < 2max;; ||z; — y;lp}. Thus, we
have

ROT(j1,v,p) = mi in E,(s, P),
(o) = iy i Bolo:P)

where the minimum can be achieved.

The proof of Theorem |l|is provided in Appendix A.

From the perspective of equivalence relation, we could have a better view of which space the ROT
problem is defined on. Assume that ~ is the translation relation on the set P, (R™). When distribution
14 can be translated to distribution i/, we denote it by p ~ /. Because the translation is an equivalence
relation defined on the set P,(R™), we may partition set ,(R™) by the translation relation, which
leads to a quotient set, P,(R"™)/ ~. P,(R™)/ ~ consists of the equivalence class of distributions,
and each equivalence class, denoted by [1], contains all mutually translatable probability distributions.
Therefore, the ROT problem can also be regarded as an OT problem defined on the quotient set,
Pp(R™)/ ~, which tries to find the minimal total transport cost between [u] and [v]. Figure
illustrates this idea. We can see that the value of the ROT problem is invariant to translations of either
source or target distributions.

Building upon the ROT model, we introduce a new family of Wasserstein distances to measure the
minimal total transport cost between different equivalence classes of probability distributions. As
mentioned above, the value of the ROT problem is invariant to any relative translations, thus, we
name the corresponding Wasserstein distances as relative-translation invariant Wasserstein distances,
denoted by RW),:

Definition 4 (Relative-translation invariant Wasserstein distances).

RW, (11, v) = ROT(1, v, p)7.

Similar to the situation where W), is a real metric on 7, (R™), we can obtain the following theorem.
Theorem 2. RW), is a real metric on the quotient set P,(R™)/ ~.

The proof of Theorem[2]is provided in Appendix A. It should be noted that we would not take “relative
rotation” into account in our equation [3} since relative rotation will violate the metric properties.

3.2 RW, METRIC SPACES

One advantage of this family of distances is that it defines a new family of metric spaces (P, (R")/ ~
, RW,,). These spaces differ from the conventional metric spaces (P,(R™), W,,) (Villani, |2009), as
the distances here are solely influenced by the “shape” of the variances, independent of their means.

Classical L,, models show that the L; norm exhibits enhanced robustness to outliers, making it more
appropriate for noisy data applications (Jollitfe, 2002; Zou et al.,[2004). In contrast, the Ly norm does
not induce sparsity, thereby reducing its effectiveness in feature selection. Similarly, RW; distance is
anticipated to offer greater robustness in the presence of noise, whereas RW5 distance is expected to
perform more balanced in cleaner datasets.

3.3 COMPUTATIONAL TRACEABILITY OF RW),

When the problem is defined in one-dimensional space, it is straightforward to confirm that the ROT
problem is convex w.r.t. the variable s for any p € [1, c0), due to the monotonic behavior of their
cumulative distribution functions.

In high-dimensional space, the original ROT problem is no longer consistently computationally

tractable as in one dimension. Some counterexamples reveal that the outer function m%n )Ep(s, pP)
Pell(p,v
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is non-convex w.r.t. the variable s. In addition, we also consider two related reformulated problems,

min min E,(s, P) and min E,(s, P), and several counterexamples also show both function
Pell(u,v)s€R™ (s.P)

m]%n E,(s,P) and ( rr}li)nQEp(s, P) are non-convex w.r.t. variable P and variable (P, s), respectively.
seR™ s,P)e
(All counterexamples as mentioned above are provided in Appendix [C).

Theorem 3 (Closed-form gradient). For the optimization problem , rﬁ%n )m]%n E, (s, P), denoting
€ll(p,v)seR™

the outer function rn]%%n E,(s, P) by F,,(P) , we have:
seR™

VpF,(P)=C(sp),
where Cij(s) = ||x; + s — y;||b and sp satisfies with constraint ;" Z;":Ql P;;sign(z; + sp —
yillzi +sp —y;ll5~" = 0.

The proof of Theorem |3|is provided in Appendix A. Based on the closed-form of the gradient of
F,(P) in Theorem we design our algorithms to compute RW), distances in Section 4.

3.4 QUADRATIC ROT AND PROPERTIES OF THE RW5 DISTANCE

We show two useful properties in the quadratic case of ROT and the resulted RW> distance: decom-
posability of the ROT optimization model (Theorem ), translation-invariance of coupling solutions
of the ROT problem (Corollary [I).
Theorem 4 (Decomposition of the quadratic ROT). The two-stage optimization problem in quadratic
ROT can be decomposed into two independent single-stage optimization problems:
ROT 2) = mi in FEy(s,P) = in H(P i

OTl v 2) = 108 il P20 D) = i) U0 + Vo) ©
where horizontal function H(P) = Y7 37" Pij|lz; — y;|3 and vertical function V (s) =
I3 + 25 - (i — »).

Function Es(s, P), H(P) and V () are illustrated in Figure The proof of Theorem[d]is provided
in Appendix A.

Theorem []is the core idea for the RW algorithm design in Section 4. It indicates that the coupling
solutions P to the OT problem are always the same as its ROT version, and verse versa, i.e.,

Corollary 1 (Translation-invariance of both the ROT solution and RW5). The coupling solutions to
the quadratic ROT problem are invariant to any translation of distributions.

Corollary [[|not only guarantees the robustness of RW> against translational shifts but also suggests
that the coupling solution of an ROT problem (including the classical OT problem) can be calculated
by a “more stable” cost matrix. This helps us improve the numerical stability and reduce the time
complexity in many practical conditions. We provide a detailed analysis in Sectiond]and demonstrate
it in Section

Corollary 2 (Relationship between RW, and Ws). Let s be the minimizer v — [i, it follows that,
W3 (u,v) = [lg = 2[5 + RWS (4, v). )

Corollary [2]indicates that there exists a Pythagorean relationship among three types of distances, W,
RW5, and Lo, as illustrated in Figure This relationship extends the Wasserstein-Bures metric
(Chen et al., [2015; |Bhatia et al., 2019; |[Peyré & Cuturil [2020; Malago et al., [2018), which applies
specifically to Gaussian distributions.

Corollary provides a refinement to understand a distribution shift (measured by W5) from bias and
variance decomposition. The Lo Euclidean distance between the expectations of two distributions
corresponds to the “bias” between two distributions, and the value of RW5 corresponds to the
difference of “variances” or the “shapes” of two distributions.

4 RW, ALGORITHMS AND RW; TECHNIQUE

4.1 RW, ALGORITHMS

Based on the Theorem 3} we propose W), algorithms (p > 1) to compute the general RV, distances
by updating variable P and s alternatively, as shown in Algorithm[I] Note that, when p = 1, we
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can also incorporate Proximal gradient descent (Moreau Envelope) to reduce the non-smooth of
V. E,(t, P). When p = 2, we can take advantage of the Thoorem 4| to speed up.

Algorithm 1 RW,, Algorithms

1: Input: {-’L’i ;(2117 {yJ ;_71:21’ {a/i ?;117 {bj};lzppa €1,€2,71,72.

2: Output: The value of RW,, distance.

3: PO 57,50 0,00 « 0,k + 0

4: repeat

5: repeat

6: fori =1tom; do

7: for j = 1tomy do

8:

o: VieEy(t, P) < 3210 3202, Pijfij
10: tUHD D — 9V, E,(t, P)

11: l—1+1

12: until |V, E,(t, P)||h < e
13 st =4O

14: for: =1tom; do
15: for j = 1tomy do
16: Cij — ||$1 + S(k+1) — ?/J||§

17: P+« argmin OT(a, b, C, P)
P

18: k+—k+1

19: wuntil [|s(") — sE=D||p < e

20: return (Y 04 S Ci(]"“) Pi(f))%

Jj=

fis = sign(w; — y; +tO)||lz; —y; + V)P~

where argmin OT'(a, b, C, P) can be solved by the Sinkhorn algorithm or LP solvers.
P

4.2 RW5 ALGORITHM

Based on Theorem ] and Corollary [T} we
propose the RW, Sinkhorn algorithm for
computing RW5 distance and coupling so-
lution P, which is described in Algorithm@
The key idea of this algorithm involves
precomputing the difference between the
means of two distributions, as shown in
Line 3. Subsequently, it addresses a spe-
cific instance of the optimal transport prob-
lem where the means of the two distribu-
tions are identical by a regular Sinkhorn
algorithm. It is important to note that al-
ternative algorithms, such as the network-
simplex algorithm or the auction algorithm
(Peyré & Cuturi, [2020), can also be em-
ployed to complete the specific instance
procedure.

Algorithm 2 RW, Sinkhorn Algorithm

1:

9:
10:
11:
12:
13:
14:
15:

Input: {z;}}", {y; T:zl’ {aitiZy {bi 5. A e
Output: RW,, P.
s < 202 ysby — 20 wia
for : = 1to m; do

for j = 1 to mo do

Cij < |lwi + s — ;13

K + exp(—=C/\)
u® —ep, VO e, k<0
repeat

u*t) — a./(Kv®)

U(k‘+1) — b./(KTu(’H_l))

P < diag(u*t1D) K diag(v(*t1)

k+—k+1
until || Pe,,, —al|2+ ||PTe,, —b||3 <€
return: ) ;" 370" P;;Cyj, P

4.3 RW5 TECHNIQUE FOR Wy COMPUTATION

With the observation of Corollary 2] we can propose a new improvement to compute the W5 distance
from the right side of the Equation (7). When || — fi||2 is large enough, this improvement performs
better than the original Sinkhorn in terms of numerical stability and time complexity. We analyze
this new approach in the rest of this section. In addition, the experiment in Section 5.1 validates the
analysis of our proposed RWs Sinkhorn algorithm for computing W5 distance.

4.4 NUMERICAL STABILITY AND COMPLEXITY ANALYSIS

The division by zero is a common numerical issue of the Sinkhorn algorithm (Peyré & Cuturi, [2020).
As shown in Equation (@), infinitesimal value often occurs in the exponential process of the (negative)
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cost matrix, K < e~ . The results of the Corollary|l|{suggest that it is possible to switch to another
“mutually translated” cost matrix under a relative translation s to increase the numerical stability
while preserving the same optimal solutions.

To measure the numerical stability of a matrix, we introduce g(K), defined by the product of all
entries. As g(K) increases, most entries K;; deviate from zero, which means numerical computation

will be more stable. Since g(K) = [[/" [T/ Kiy = T2 [172 exp ( — Cii) = exp (-
m

2
=1 E;n=21 ”xi""s_yj H2

3 ), one can verify the maximizer of g(K) is when the relative translation
s =y — Z, which is almost equal to 7 — & when the probability mass of the samples is the same.

Altschuler et al.|(2017)) shows that the time complexity of the optimal transport model by Sinkhorn
algorithm with 7 approximation is O(m?||C||2, (logm)7~3), where ||C| s~ = max;; C;; and as-
suming m = my = my for the sake of simplicity. The following theorem indicates that for a wide
range of distributions, the translated cost matrix has a smaller infinity norm ||C||. Thus, the time
complexity of the algorithm will be reduced.

Theorem 5. Let 11, v be two high-dimensional sub-Gaussian distributions in R™. (X1, Xo, ..., Xi,),
(11,Ys,...,Y,,) are i.id data sampled from (v and v separately. Let i = Ey, v = Ev, X =
Yo X ma, Y =300 Y /mo. Assume ||p— fil| g, < 00, ||V — 7|y, < 0o. Letl = || — |2 be

the distance between the centers of the two distributions. If it satisfies:

> Lﬁ[l = Al + 17— Pl

+L[ log(4m1/6) - [|i = fills, + v/log(4m2/0)) - v = Py, |

where L is an absolute constant, then with probability at least 1 — §, we have
max || X; — X =Y + V|2 < max|[|X; — Yjll2.
0, i,J

Remark 1. Sub-Gaussian distributions represent a broad class of distributions that encompass many
common types, including multivariate normal distribution, multivariate symmetric Bernoulli, and
uniform distribution on the sphere. Theorem [ demonstrates that when the distance between the
centers of the two distributions is significantly large, the maximum absolute entry of the cost matrix
|Cl|sc = max;; |Cy;| after translation tends to decrease. Consequently, our RWy method achieves
better time complexity compared to Wa. This theoretical finding is consistent with our experimental
results, as shown in Figure 3| Detailed proof about Theorem 3 will be postponed to Appendix|B|

5 EXPERIMENTS

To evaluate our proposed methods, we conducted two experiments: numerical validation and weather
pattern detection. The first one validates the computational time and error of the RW, Sinkhorn
algorithm and the second one demonstrates the scalability of RWW, and RW,, for identifying similar
weather patterns in large datasets. Both experiments were run on a 2.60 GHz Intel Core i7 processor
with 16GB RAM.

5.1 NUMERICAL VALIDATION

We first demonstrate the advantages of using the _

RW5 Sinkhorn algorithm to compute W distance /1' \—'4—"17

with specially designed examples. Two data sets, . 5. Translation . )

11 and v, each containing 1,000 samples, are drawn Figure 2: Schematic of the first experiment: two
. . C . sample sets, p and v, are drawn from the same

fr‘?m 1dent1(?a1. dlStrlbuthIlS. To compare Algorlthm@] distribution. To evaluate the performance of the

with the orlglngl Smkhorq, we slightly trqnslate I RWS, algorithm versus the original Sinkhorn, we

by a vector s, with translation lengths ranging from  (ranslate 4 by the vector s = 7 — fi.

[0, 3], as illustrated in Figure

Settings We compare two versions of the Sinkhorn algorithms in W5 error and running time,
repeating each experiment 10 times. We evaluate Gaussian distributions in R (Figure 3(a) and 3(b))
and in R'C (Figure 3(c) and 3(d)). For both algorithms, we set A = 0.1 and € = 1 x 10~ calling
ot.sinkhorn2() function from Python optimal transport package (Flamary et al.,[2021)) to compute.
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Results Figure [3] shows that RW, Sinkhorn algorithm significantly outperforms the regular
Sinkhorn regarding running time. As the length of the translation increases, RW5 Sinkhorn en-
joys higher numerical stability in high dimensional data. We also test the performance of the RW;
Sinkhorn algorithm on other different distributions; further results are provided in Appendix B.

5 \ —— Sinkhorn

\ | 0.04890| _, w2 sinkhomn

| | | »
=4 | | 50.04885
Tg | | 5
=3 | | §0.04880
2 g
=P 30.04875
> £
x 5}
©0.04870
11 —— Sinkhorn
—— RW?2 Sinkhorn 0.04865
0 1 2 3 0 1 2 3
Length of translation s Length of translation s
(a) Both are N'(0,1) on R. (b) Both are A/(0, 1) on R.
100
4 —— Sinkhorn
6 | 8o/ —*— RW2 Sinkhorn
E
w e
T o 60
g* e
- 9o
2 & 40
€2 a
3
« § 20
o{ —— Sinkhorn
—s— RW?2 Sinkhorn 0
0 1 2 3 0 1 2 3
Length of translation s Length of translation s
(c) Both are N(0,1) on R'°. (d) Both are A/(0,1) on R*,

Figure 3: Comparison of the RW, Sinkhorn algorithm and the classic Sinkhorn in running time and
computational error. When the translation is small, the Sinkhorn algorithm with RW5 technique
performs better than the original Sinkhorn algorithm in terms of running time, while keeping almost
the same error. As the translation increases, the Sinkhorn algorithm with RW, technique still enjoys
high numerical stability, whereas error explodes in the regular Sinkhorn algorithm.

5.2 THUNDERSTORM PATTERN DETECTION

We apply W, and general RW,, distances on the real-world thunderstorm dataset, to show that
RW; and general RW), can be used for identifying similar weather patterns and focus more on shape
similarity compared with W, distance. Our data are radar images from MULTI-RADAR/MULTI-
SENSOR SYSTEM (MRMS) in a 300 x 300 km? rectangular area centered at the
Dallas Fort Worth International Airport (DFW), where each pixel represents a 3 x 3 km? area. The
data is assimilated every 10 minutes tracking time from 2016 to 2022, with 205,848 images in total.
Vertically Integrated Liquid Density (VIL density) and reflectivity are two common measurements
for assessing thunderstorm intensity, with threshold values of 3kg - m ™~ and 35d BZ, respectively
(Matthews & Delaura, [2010). We use reflectivity as the main thunderstorm intensity.

We analyze two types of thunderstorm events: snapshots and sequences. Due to page limitation, only

the results for thunderstorm snapshots are presented, and the results of thunderstorm sequences are
provided in Appendix [D.2}

Settings We compute RW, distances, p = {1, 2}, by the RW,, algorithm and RW; Sinkhorn
algorithm, identifying the top five most similar thunderstorms to a reference event, and compare them
with Wy. The RW; Sinkhorn is set with A = 0.1 and € = 0.01, and ot.emd2() from python optimal
transport package (Flamary et al.l 2021) is used as the couplings solver for The RW),, algorithm.
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Additionally, the resolution of the intermediate radar images for retrieving has been downsampled to
20 x 20 pixels to increase computational speed.

Snapshot results Figure ] demonstrates that, for the same reference thunderstorm snapshot, the top
five most similar events identified by IV,, emphasize shape similarity more than those identified by
W,. The pattern retrieved by RW; exhibits more outliers (points significantly distant from the main
region) compared to those retrieved by RW5. RW, offers a balanced consideration of both shape
and distance.

RW1 w2

RW2

Figure 4: Thunderstorm snapshot comparison using W5 and RW), (p = {1, 2}). The leftmost images
in the first column are the same reference thunderstorm events. The rest images show the top five
most similar thunderstorm snapshots identified by W, and RW), sorted in order of distances. The
pattern retrieved by RW; exhibits more outliers (points significantly distant from the main region)
compared to those retrieved by RW,, (for example, the fifth picture of RW; row). RW, offers a
balanced consideration of both shape and distance.

6 CONCLUSIONS

In this paper, we introduce a new family of distances, relative-translation invariant Wasserstein
(RW,,) distances, for measuring the pattern similarity between two probability distributions (and their
data supports). Generalizing from the classical optimal transport model, we show that the proposed
RW, distances are real distance metrics defined on the quotient set P,(R"™)/ ~ and invariant to the
translations. When p = 2, this distance enjoys more useful properties, including decomposability of
the ROT model and translation-invariance of coupling solutions and RWW5. Based on these properties,
we show a distribution shift, measured by W5 distance, which can be explained from the perspective of
bias-variance. In addition, we propose our algorithm for general RW,, distances and W5 Sinkhorn
algorithm, for efficiently calculating RW, distance, coupling solutions, as well as W5 distance.
We provide the analysis of numerical stability and time complexity for the proposed algorithms.
Finally, we validate the R, distance and the algorithm performance with illustrative and real-world
experiments. The experimental results report that our proposed algorithm significantly improves the
computational efficiency of Sinkhorn in practical applications with large translations, and the RW,
distance is robust to distribution translations.
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Appendix

A PROOFS OF THEOREMS

A.1 PROOF OF THEOREMIII

Proof of Theorem([l] 1Itis clear to verify that when [|s||, > 2 max;; ||2; — y;||p, forany 7, j, (1 < i <
my, 1 < j < my), it follows that [z; + s — y;ll, > [Isllp — [lzi — y;ll, = 2maxi; [lz; — y;l, —
llz: — yjillp > llzs — yjllp- In other words, when ||s||, > 2 max;; ||z; — y;||p, the relative distance
between each pair of support z; and y; are always greater than or equal to the non-translated distance,
which implies the total transport cost for the translated case will also greater than or equal to the cost
for the non-translated distance. Since we are trying to find the minimal value, we can only focus on

the compact set {s € R|||s||, < 2max;; ||z; — y;||p}- O

A.2 THEOREM[Z
Proof of Theorem 2] With the previous notations, firstly, we will show that the translation relation ~
is an equivalence relation on set P, (R).

Equivalence relation requires reflexivity, symmetry, and transitivity, and the following observations
show translation relation is indeed an equivalence relation.

* Reflexivity, (z ~ ).

For any distribution p € P,(R™), it can translate to itself with zero vector.

e Symmetry, (x ~y = y ~ ).
For any distribution p, v € Pp(R”), if u can be translated to v, then v can also be translated
to u.

e Transitivity, (z ~yandy ~ 2 = x ~ 2).

For any distribution 1, v, € P,(R™), if 11 can be translated to v, and v can be translated to
7, then p can also be translated to 7.

Based on the property of equivalence relation, it is clear that set P,(R™)/ ~ is well-defined. Let [
be an element in set M/ ~, where p is a representative of [u], i.e. [p] is the set of distributions that
can be mutually translated from p. Noticing that W, (-, -) is a real distance metric on P,(R™) (Villani
& Society, [2003)), it implies that W), (-, -) satisfied with identity, positivity, symmetry, and the triangle
inequality. Based on W, (-, -), we show RW), (-, -) satisfies with identity, positivity, symmetry, and
triangle inequality w.r.t. elements in P,(R™)/ ~.

For any W, v, 1 € Pp(Rn)/ ~

* Identity,
RW,([u], [u]) = in_ [W,(u, )] = 0.

= min
HE[p]neElpn]

* Positivity,
RW, ([, W) = min_ W, ()] 0.

nepl,velv]
¢ Symmetry,
RW,(u,v) = min [W,(u,v)]= min [W,(v, = RW,(v, ).
(k) HE[WE[V][ p(k,v)] VE[VWE[M][ p(v, )] (v, 1)

14
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* Triangle inequality,

RW,(u,v) = mi Wo(u, v
(1, v) el ye[u][ (1, V)]

< min mi W, () + Wo(n,n') + Wy, v
0’ €[Muelu], ue[z/][ p(ﬂ 77) p(n 77) p(n )}

= min Wo(u,n) +0+W,(n',v
ME[M]VE[V]W?G[W][ (k1) p(n's V)]

= min  [Wy(u,n)]+ min [Wy(y,v
UE[H]J’]E[W][ p(ﬂ 77)] ”E[V]JIIE[T]][ p(n )]

= min [Wp(p,n)|+ min [Wy(n,v
ue[u],ne[n][ p(p ) ue[u],ne[n][ p(1 V)

=RW,(p,n) + RWp(n,v).

A.3 THEOREM[3]

Proof of Theorem Given P, because Ep(s, P) is a convex function w.r.t. variable s, the minimum
s must satisfy with

mi Mma

=3 pPysign(ai + 5 — yj)llw+ 5 — g2 = 0. ®)

=1 j=1

For the outer function F'(P) = min E, (s, P), we can remove m}%{n by using the equivalent constraint
sER™

SERN
% =0,1i.e.,
F(P)=minE,(s,P) = E,(sp, P)|ospcsp,r) . 9)
sER™ T—O
Therefore,

OF(P) 0E,(sp,P)
oP,; 0P
_8Ep aSP + 8Ep
881:) (')PU 8PU

=0 x + llzi + s =yl

apw
=llzi + s — y;ll}-
(10)

A.4 PROOF OF THEOREM 4]

Proof of Theoremd] With the previous notations, firstly, we show the two-stage optimization problem,

m]in m%n )Eg (s, P), can be decomposed into two independent one-stage optimization problems,
seR™ Pell(p,v

min H(P) and minV (s).
Pell(p,v) sERn”

15
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For the objective function Fs(s, P), we expand it w.r.t. s,

E2(87P)

mi ma
ZZZPU'”%‘ +s —y;ll3

i=1 j=1

my m2

(11)

>3 Pl = w13 + sl + 25 (s - 3y))

=1 j—1

mi1 Mo mi M2 mi Mm2
=3 Pyl —yll3 + DD Pyllslz 2> 0> Piys- (i — ).

1=15=1 =1 j=1 =1 j=1

We can rewrite the second and the third terms in Equation (IT)) under the condition P € II(u,v),
which implies that,

mi1 Mo

Y>3 p;=1 ZPU _a“ZPU =b;,1 <i<m,1<j<ms.

i=1 j=1

For the second term, it follows that

mi1 Mo m1 M2
DD PyllsliE=slz- QoY Pig) = lsllz - 1= [1sll3-
=1 5=1 =1 j=1

For the third term, it follows that

mi Mz

QZZPUS Nz —yy)
i=1j=1

mi mso

= 2s- Z ZPij(xz
i=1 j=1

my Mz myi M2

sc QD m Py =3 > v Py)

1131 =1 j=1

mo

sz QP = 2w (P
:25‘(2%'01‘*2%'%)

=2s- (g — D).
Thus, we have the following transformation,

min  min FEs(P,s)
seR™ Pell(p,v)

m1 Mmeo mi1 Mmso m1 m2
—min min (YN fai—ysl3P5 + Y > lIslEP; +2> ) s (@ —y;)Py)
seRrPell(ny) 1= i i=1 j=1 i=1 j=1
mi1 Mo mi1 M2 mi1 ma
= min min ZZ T; P;; + min min ZZ P; +QZZS
seR? Pell(ur) o 45 1|| i y]||2 9T SERn Pell(py = 1” sl ij £y o )Pij)
mi1 Mg

= min min ZZIIM yJIIQPUerm(II sll3 +2s - (1 — )

sER™ PeIl(p,v)

=15=1
mi1 Mo
2 . 2 o
— i —yill2Ps 2. (i —
perﬁiﬂu)Z;;Hx y; 3P + min (llsll3 + 25 - (7 — 7))
= min H(P)+ minV(s)
Pell(p,v) sER™
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Since V (s) is a quadratic function of variable s, it is easy to follow that the minimum is achieved
when s = U — [i.

O

17
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B COMPLEXITY ANALYSIS FOR RW5 ALGORITHM UNDER SUB-GAUSSIAN
DISTRIBUTIONS

This section is organized as follows. In section[B.I] we state and prove the theorem regarding the
time complexity of RWs Algorithm. We leave the definitions and theorems used in the proof to
section[B.2l

B.1 THEORETICAL RESULTS OF TIME COMPLEXITY
Proof of Theorem[P] Fori =1,2,...,my, X; — [iis a sub-Gaussian random vector. Using Theorem

and taking a union bound over all the random vectors, we have for all X; with probability at least
1 — 4/4, the following inequality holds

1Xi = fill2 < e(vn + log(4mi /6)) - [l = fill g, - (12)
Similarly, we have for all Y;, with probability at least 1 — 9, the following inequality holds
1Y; = 7ll2 < e(Vn + Vlog(dmz/d)) - [lv = |y, (13)

Using Theorem@ Yot (X, — f) is a sub-Gaussian random vector, with || Y/ (X; — ) [y, <
\/ L™ X, — /1||12/J2 Then using Theorem with probability at least 1 — 6/4, we have

| i_;X || < e(vi+ v/1og(1/9)) - i(Xi - )

2

= e(Vn+Vlog(1/0)) - \ | LY 11X = il
= d(Vn+/1og(1/6)) - v/millu = fill s, (14)

where ¢’ is an absolute constant. Similarly, with probability at least 1 — &, we have

mo

HZYj—mzﬁ‘Lgc’(\/ﬁJr V1og(1/8)) - /malv — 7|, (15)

where ¢’ is an absolute constant. In the following proof, we consider the union bound of all the
high-probability events above, such that (T12)), (I3)), (I4) and (I5) hold. It occurs with probability at
least 1 — 4.

First, for max; ; || X; — Yj||2, we have

e X, — ¥ 2 mae [~ 7l — X, — ll — % — 7
> 1= el + viog(@mi /) - In il

e+ oatama/a) - I - o1

=1 —2cy/n — c\/log(4my /) - || — il y,
— cy/log(4m2/3)) - |v — |y,

where the first inequality holds due to the triangle inequality. The second inequality holds due to (T2)

and (13).
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For max; j ||X7, — ij — Xz + EHQ, we have
max || X; —Yj = Xi + Yjllo < max | Xi — a2 + ¥ — 7]l2
+ 11X = fille + 1Y — 7l
< {c(\/ﬁ + \/log(4m1 /3)) - || — ulw] + [C(\/ﬁ+ Vlog(4mz/5)) - [lv — V”w}
A+ /log(1/6) . N+ /log(1/6) _
+ | I = Blly, | + | ——— ="V = Plly,
NG Vima

e = ally, v ="l
<L n[1+ 2 | }
\F \/ 1M1 \/ Mo

+L {vlog(4m1/5) Al = Bl + /log(4ma/0)) - [lv — 17|¢2] )

where the first inequality holds due to (I2)), (I3), (I4) and (I3). Therefore, we have the following
conclusion: As long as

> Lﬁ[l Tl il + unwz]

L |ViogTm 8] s il + Voa(ma ) - v = 7l
where L is an absolute constant, we can conclude that
masx [ X; = ;= X + Fjlla < max X~ Yo
This completes the proof of Theorem 3] O
B.2 HIGH DIMENSIONAL PROBABILITY BASICS
In this section, we introduce some basic knowledge we have used in the proof of Theorem[5] The

results mainly come from Vershynin|(2018)).
We first introduce a broad and widely used distribution class.

Definition 5 (Sub-Gaussian). A random variable X that satisfies one of the following equivalent
properties is called a subgaussian random variable.

(a) There exists K1 > 0 such that the tails of X satisfy

P{|X| >t} < 2exp(—t?/K}) forall t > 0.

(b) There exists Ko > 0 such that the moments of X satisfy

X ||z = (E|X|P)"P < Kov/pforallp > 1.
(c) There exists K3 > 0 such that the moment-generating function (MGF) of X? satisfies
1
Eexp(A2X?) < exp(K3\?) for all \ such that |\| < o
3
(d) There exists K4 > 0 such that the MGF of X? is bounded at some point, namely,
Eexp(X?/K2?) < 2.

(e) Moreover, if EX = O, the following property is also equivalent. There exists K5 > 0 such
that the MGF of X satisfies

Eexp(AX) < exp(K2\?) forall A € R.
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The parameters K; > 0 appearing in these properties differ from each other by at most an absolute
constant factor.
The sub-gaussian norm of X, denoted || X ||y, is defined to be

X ||y, = inf{t > 0: Eexp(X?/t?) < 2}.

Definition 6. A random vector X € R® is sub-Gaussian if for any vector u € R? the inner product
(X, u) is a sub-Gaussian random variable. And the corresponding 1p2 norm of X is defined as

[ X[y = sup [[{X, w4,
lull2=1

Theorem 6. Let X1, ..., Xy € RY be independent, mean zero, sub-Gaussian random vectors. Then
N . )
> =1 X is also a sub-Gaussian random vector, and

I3 x

9 N

< LY XI5,
2 i=1
where L is an absolute constant.

Proof of Theorem|[f] For any vector u € R, ||ul|z = 1, consider <sz\i1 X;,u). Using independence,
we have for all A,

N N
Eexp ()\ Z(Xi, u>> = HEeXp (/\<Xi, u>)
1= Z;
< TLewp (L0 w),0)

N
= exp (I;)\2 Z ||<X’L’ u>||12/12)’

i=1
where L is an absolute constant and the first inequality holds due to property (e) of the sub-Gaussian

variables. Taking supreme over u, we prove that ) _." , X is also a sub-Gaussian random vector.
Moreover,

N 9 N
HZXZ <LY X3,
i=1 v2 i=1

where L is an absolute constant. ]

Theorem 7. Let X € RY be a sub-Gaussian random vector. Then with probability at least 1 — 0,
1|2 < ¢(Vd + y/10g(1/6)) - | X |y,
Proof. Let B, be the d-dimensional unit ball, N be a 1/2-covering of By in 2-norm with covering
number = N (By, || - ||2,1/2). Therefore,
Vx € Bg,3z € N, s.t. ||x —z| < 1/2.
Using Lemmal[I] we have
N < 5%, (16)
Using the fact [|x||2 = maxy|,<1(X,y), we have
X2 = X
1> = max x, X)

< max(z, X) + a ;X
< max(z, X) ye?ll/gBd@’ )

1
= max(z, X) + 5 max(y, X).
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Therefore, we have

| X2 < 2max(z, X). (17)

Then we can provide a high probability upper bound for the Euclidean norm of the random vector X
by considering the probability P(|| X||2 > t).

zEN

< e (- o)

< Nexp| —c
X112,
ct?

§5dexp(—7),
X112,

where c is an absolute constant. Here the first inequality holds due to (T7). The second inequality
holds due to {maxgen(z, X) > t/2} C {3z € N, (z, X) > t/2}. The third inequality holds due to
the union bound. The fourth inequality holds due to the definition of the sub-Gaussian vector and the
property (a) of a sub-Gaussian variable. The last inequality holds due to (I6).

Finally, let t = \/[dlog5 + log(1/6)]/c - || X ||y5,- We have with probability at least 1 — 4,

1 X]l2 > t.
Finally, using /a + b < \/a + /b, we complete the proof of Theorem O
Definition 7 (e-covering). Let (V, || -||) be a normed space, and © C V. Vi,...,Vy is an e-covering

of © if © C UN.,V;, or equivalently, V0 € ©,3i such that |0 — V;|| < e.
Definition 8 (Covering number). The covering number is defined by
N@©O, | - |I,€) := min{n : Je-covering over © of size n}.

Lemma 1. Let By be the d-dimensional Euclidean unit ball. Consider N (Bg, || - ||2,€). When e > 1,
N(Bg, || - |l2,€) = 1. When € < 1, we have

() = N@Bal o < (142)')

€

21



Under review as a conference paper at ICLR 2025

C COUNTEREXAMPLES

In this section, we provide several counterexamples to show the outer function m%n )E »(s, P) in
Pell(p,v
the original ROT problem is strictly non-convex w.r.t. the variable s in the high dimensional case.
Next, we provide one counterexample to show function m]%n E,(s, P) is non-convex w.r.t. variable
seR™

P. Finally, we show that the optimal translation is not always the same as the difference between the
means of two distributions when p # 2.

C.1 FUNCTION min FE,(s,P)
Pell(p,v)

Assume the underlying space is in two-dimensional space and source and target distribution x and v

are formed by {z; = (cos 2%, sin z’T’T) i=1,2,3} and {y; = (—cos 2T, —sin 2”) j=1,2,3}

with equal masses, respectively, which is shown in the following figure ET(a).

First, we will demonstrate that the outer function mm )E »(8, P) in the original ROT problem is
Pell(p,v
not convex w.r.t. the variable s under the given source and target distributions.

When p = 1, by enumerating the values of s over the 100x100 grid in region [—1.2,1.2]%, we can

plot the contour and function values of m%n )El (s, P) w.rt. the variable s. These results show the
Pell(p,v

non-convexity of function - rﬁ}n )El (s, P), which are illustrated in Figures(b) and (¢).
ell(p,v

r12.40

1.0 CXi 204
Yi 2.08

0.5 Hie2

| a

1176 4

0.0 Hie0g
:1.44
-05 128
—1.12
-1.0 Lo.ge

—i0 —05 00 05 10
(a) Distribution p and v. (b) Contour plot of function (c) Value of the inner function

min El(s P) wrt. the vari- w.rt the variable s, where the

Pell(pv) . coordinate (x,y) represents the
able s, where the cpordlnate (z,y) translation s and Z is the value of
represents the translation s. min (s, P)

, P).

PET(p,v)

Figure 5: Contourplot and value of function P m%n )El (s, P) w.r.t. the variable s, which shows the
ell(p,v

inner function is non-convex when p = 1.

Under the same source and target distributions, we also show the non-convexity of other cases in

Figure [6|when p = {1.2,4,10}. The contourplots and values of function m%n )E »(s, P) w.rt. the
Pell(p,v

variable s show the non-convexity of function b, m}n )E »(8, P), which are illustrated in Figuresﬁ
ell(p,v
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N A A A
mi

(a) Contour plot of the inner function (b) Value of the inner function
w.r.t. variable s when p = 1.2. w.r.t. variable s when p = 1.2.

r71.98
1.86
1.74
1.62

1.26
1.14
1.02
0.90

(c) Contour plot of the inner function  (d) Value of the inner function
w.r.t. variable s when p = 4. w.r.t. variable s when p = 4.

1.0

0.5

y
o
=)

-0.5

-1.0

-1.0 -05

(e) Contour plot of the inner function  (f) Value of the inner function
w.r.t. variable s when p = 10. w.r.t. variable s when p = 10.

Figure 6: Contourplot and value of function » I%Il%n )El (s, P) w.r.t. the variable s, which shows the
EN(p,v

inner function is non-convex when p = {1.2,4,10}.

C.2 FUNCTION m]%nEp(s,P)
seR™

Next, under the given source and target distributions and assume p = 1, we demonstrate that function
Fi(P) = m]%n E; (s, P) in the reformulated ROT problem is also not convex w.r.t. the variable s.
seR™

1 0 0 0 1 0
Let us consider two transport plan, P; and P, where P; = % lO 0 1| and P, = % 0 0 1f.
0 1 0 1 0 0

It is easy to verify that the minimizers of Fy(P;) = m}%{n Ey(s,P1) and Fy(Ps) = m]%n Ey(s, P3)
sER™ seR™

are sp, = (1,0) and sp, = (—0.5,0), respectively. Consequently, we can compute F; (P;) = 1 and
Fi(P) = 3+ 183 Notice that Fy (AP +3P5) = 1+¥23 > 11414+ 18y = 1 (P) + L Fy(Po),
therefore, F'; (P) is not convex w.r.t. variable P.
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C.3 THE OPTIMAL RELATIVE TRANSLATION

In the following, we show that the optimal relative translation is not always the same as the difference
between the means of two distributions when p # 2.

Assume the underlying space is in two-dimensional space and source and target distribution p and
v are formed by {z; = (3,0),22 = (0,0),z3 = (0,3)} and {y; = (—3,0),y2 = (0,0),y3 =
(0, —3)} with equal masses, respectively.

Consider the case when p = 1. Since the mass center (centroid) of distribution y and v in terms
of Ly norm are i = (0,0) and 7 = (0, 0), if we take their difference as a translation, we can get
Wi(p,v) = w = 4. However, this translation is not optimal, since when the translation

so = (=3, —3), the total transport cost is W1 (u + sg, V) = (3;73) =2 < Wi(u,v). Therefore, the
optimal translation might not be the difference between the means of two distributions, when p # 2.
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D ADDITIONAL EXPERIMENT RESULTS

D.1 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.1 - NUMERICAL VALIDATION

~

o
~

» (5]
[

Running time(s)
Running time(s)

w

Running time(s)

w

—— Sinkhorn

—— Sinkhorn —+— Sinkhorn

N

—+— RW2 Sinkhorn 41 —— RW2 Sinkhorn 4] —— RW2 Sinkhorn
0 1 2 3 0 1 2 3 0 1 2 3
Length of translation s Length of translation s Length of translation s

(a) p and v are Poisson distri-  (b) p and v are Geometric dis- (c) p and v are Gamma distri-
bution (A = 1). tribution (p = 3). bution (o = 5 = 2).

—— Sinkhorn
—— RW2 Sinkhorn

—— Sinkhorn 41 —— Sinkhorn
—— RW2 Sinkhorn —— RW2 Sinkhorn

w

0.010

0.005

0.000

Computation errors
Computation errors
Computation errors

—0.005

0 1 2 3 0 1 2 3 0 1 2 3
Length of translation s Length of translation s Length of translation s

(d) p and v are Poisson distribution  (e) wu and v are Geometric dis-  (f) p and v are Gamma distri-
A =1). tribution (p = 3). bution (o = 3 = 2).

Figure 7: Additional results from the experiment in Section 5.1. The first column shows the results
from a pair of Poisson distributions, the second column shows the results from a pair of Geometric
distributions, and the third column shows the results from a pair of Gamma distributions, all of which
are defined on R.

D.2 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.2 - SIMILAR THUNDERSTORM
PATTERN DETECTION

Snapshot results Figure[8|shows the snapshot comparison between RW, and W, for other different
references.
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Figure 8: Additional examples of similar thunderstorm snapshot identification using RW5 and Ws.
The leftmost images in the first column are the reference thunderstorm events, which are 2016-05-
18-10:50, 2016-05-02-10:50, and 2017-05-20-09:20. The other images show the top 5 most similar
thunderstorm snapshots identified by RW, and W, sorted in order of similarity.

Sequence settings Similar to the comparison of individual snapshots, a sequence of thunderstorm
events (a series of thunderstorm snapshots) can also be treated as a probability distribution by
incorporating time as a third-dimensional axis. Given that temporal information is independent of
spatial information, we set the temporal-spatial tradeoff to 1 to balance both information. We present
only the results for W5 and RW, distances since retrieving results.

Sequence results Figure [0 presents the results of identifying similar thunderstorm sequences using
RW5 and Ws. The first row shows the reference thunderstorm sequence, which lasts for 1 hour. The
second through fifth rows display the top four most similar sequences identified by RW5, while the
sixth through ninth rows show the top four most similar sequences identified by W,. Once again,
it is evident that RW5 prioritizes pattern (shape) similarity, whereas W5 tends to be influenced by
location similarity.
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Figure 9: Similar thunderstorm sequence identification using RW5 and Ws. The first row is the
reference thunderstorm sequence with a 1-hour duration. The second to the fifth rows are the top four
most similar thunderstorm sequences identified by RW5. The sixth to the ninth rows are the top four
most similar thunderstorm sequences identified by W5. Again we observe that RWW5 focuses more on
pattern (shape) similarity, and W gets distracted by location similarity.
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