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Abstract

Federated heavy hitter analytics involves the iden-
tification of the most frequent items within dis-
tributed data. Existing methods for this task of-
ten encounter challenges such as compromising
privacy or sacrificing utility. To address these
issues, we introduce a novel privacy-preserving
algorithm that exploits the hierarchical structure
to discover local and global heavy hitters in non-
IID data by utilizing perturbation and similarity
techniques. We conduct extensive evaluations on
both synthetic and real datasets to validate the
effectiveness of our approach. We also present
FedCampus, a demonstration application to show-
case the capabilities of our algorithm in analyzing
population statistics.

1. Introduction
Identifying heavy hitters (frequently occurring items) is
crucial in data mining. However, this task becomes chal-
lenging with distributed and sensitive data due to privacy
and scalability concerns (Jia & Gong, 2018). For example,
analyzing user behaviors across multiple devices (smart-
phones, smartwatches, IoT) requires finding frequent items
while maintaining privacy and efficiency.

The advent of Federated Analytics (FA) has facilitated the
examination of data from disparate entities without the re-
quirement of data centralization (Ramage, 2020; Elkordy
et al., 2023). It follows federated learning (FL) (Li et al.,
2020), where a central server interacts with clients and ag-
gregates their responses to gain global insights. Some algo-
rithms rely on a trusted server and use central differential
privacy (CDP) (Dwork, 2008) to protect data privacy, such
as TrieHH (Zhu et al., 2020) and TrieHH++ (Cormode &
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Figure 1. A hierarchical design for identifying heavy hitters across
non-IID clusters. The intra-cluster level finds local heavy hitters
within each cluster by AuxServer, and the cross-cluster level finds
global heavy hitters across clusters by the FAServer.

Bharadwaj, 2022). These algorithms have shown promis-
ing results in finding heavy hitters while achieving a good
trade-off between accuracy and efficiency. Nonetheless, the
necessity of a trusted server might not be feasible in several
scenarios. Other algorithms employ LDP (Kasiviswanathan
et al., 2011) to protect individual privacy without a trusted
server by perturbing individual’s local data before sending,
such as PEM (Wang et al., 2019), RAPPOR (Erlingsson
et al., 2014), PrivTrie (Wang et al., 2018), TreeHist and Bit-
stogram (Bassily et al., 2017). These approaches normally
need to construct a tree via the data’s prefixes (also known as
“trie”), which, however, may suffer from domain limitation.
In other words, the next level of construction completely
depends on the construction of previous levels, and thus,
this can affect the accuracy and efficiency of identifying
heavy hitters.

Additionally, non-Independent and Identically Distributed
(non-IID) data present unique obstacles to distributed heavy
hitter identification in practical applications. For instance,
variations in user tweets or Reddit comments regarding vo-
cabulary and word frequency, arising from factors such
as topics, communities, and personal preferences, form
clusters that are more homogenous internally than when
compared with different clusters, as illustrated in Figure 1.
Consequently, these data form clusters characterized by
higher similarity within a cluster compared to different clus-
ters. However, existing heavy hitters identification algo-
rithms (Bodon, 2005; Bhaskar et al., 2010; Dwork et al.,
2006a;b; 2010; Bonomi & Xiong, 2013; Bassily et al., 2017;
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Cormode et al., 2018; Acharya et al., 2020; Erlingsson et al.,
2014) do not consider such non-IID scenarios, potentially
reducing the effectiveness of the algorithm. For instance,
when data is clustered by topic, current algorithms tend to
focus on identifying the most common words across all top-
ics, rather than the most distinctive heavy hitters for each
individual topic. This, coupled with the domain limitation
issue in LDP, further decrease informativeness in non-IID
settings.

In response to the above concerns, this paper introduces a
hierarchical FA design to recognize heavy hitters within
non-IID clusters, as depicted in Figure 1. We summarize
the key contributions as follows: (1) We develop an intra-
cluster identification algorithm with a novel LDP-based
intra-cluster algorithm to avoid domain limitation when
identifying local heavy hitters; (2) We propose a cross-
cluster identification algorithm to filter out noisy local heavy
hitters from non-IID data clusters; (3) We evaluate our al-
gorithm on synthetic and real datasets and demonstrate its
superior performance in non-IID settings. Moreover, we
also deploy the algorithm in our demo application FedCam-
pus for a campus-scale population statistics analysis.

2. System Design
This section describes our design of a hierarchical FA algo-
rithm to identify top-k heavy hitters from non-IID data clus-
ters of clients, which consists of two phases: intra-cluster
(IC) identification (§2.1) and cross-cluster (CC) identifica-
tion (§2.2), as shown in Figure 1.

2.1. Intra-Cluster (IC) Identification

In the IC identification, we use LDP-based perturbation
to discover local heavy hitters within each cluster while
preserving privacy. An auxiliary server (i.e., AuxServer in
Figure 1) interacts with clients in each cluster to construct a
trie based on their perturbed data. The trie efficiently stores
and retrieves heavy hitters, facilitating their identification.
However, transmitting individual data to the AuxServer
poses privacy risks, and the identification process may have
domain limitations by excluding data beyond the predefined
domain during trie construction.

GRRX. To tackle the aforementioned challenges, we pro-
pose a novel algorithm called Intra-Cluster (IC) identifica-
tion algorithm (Algorithm 1). Our approach leverages the
GRRX mechanism to perturb clients’ data, ensuring indi-
vidual data privacy while mitigating the domain limitation
issue. GRRX extends the Generalized Random Response
(GRR) technique (Wang et al., 2017) that provides ε-LDP (ε
being the privacy parameter). However, GRR suffers from a
domain limitation problem, potentially omitting data items
falling outside the predefined domain Φ.

Algorithm 1 Intra-cluster Identification (AuxServer)
Input :nκ (No. of clients in cluster κ); b (Required bits);

g (Trie’s maximum depth); L (Maximum bit-length);
Φ (Prefix domain); ε (Privacy parameter)

Output :Ag (Heavy hitters of cluster κ)
1 Partition clients into g disjoint groups G1, . . . Gg

2 Initializes A0 = ∅
3 for i = 1, 2, . . . g do
4 Φi ← Ai Broadcast Φi to Gi, require bi bits prefixes
5 Ai ← AGGREGATION(Gi) //Aggregate prefixes

6 return Ag //Intra-cluster heavy hitters

7 Client Side: y ← GRRX(prefix b(v),Φ) //Random response
8 FUNCTION GRRX(prefix ,Φ)
9 if prefix ∈ Φ: Φ⋆ ← Φ+ {x} //x is randomly generated

10 else Φ⋆ ← Φ+ {prefix}
11 return prefix with p, or y ∈ Φ⋆ \ prefix with q

To overcome domain limitation, we introduce GRRX (cor-
responding to Line 8-11 in Algorithm 1) which enables
each client to add an arbitrary item X to Φ, masking out-
of-domain data and expanding the domain to Φ⋆. Specif-
ically, it perturbs a data item v to another item y, where
the perturbation probability of GRRX depends on the size
of the extended domain Φ⋆, the privacy parameter ε, and
is defined as PrΦ⋆ [v = y] = eε

eε+d for v and y in Φ⋆, and
PrΦ⋆ [v ̸= y] = 1

eε+d for v and y not in Φ⋆, where d repre-
sents the size of the original domain Φ. To determine the
random item X added to the domain, each client ℓ utilizes
its own data vℓ and its prefix. If the prefix is not in Φ, X is
set to vℓ. Otherwise, X is randomly selected from a binary
prefix range [0, 2b], where b denotes the prefix length.

By incorporating GRRX into our algorithm, we can effec-
tively handle any data item without compromising privacy or
accuracy while effectively addressing the domain limitation
inherent in the GRR mechanism.

Incremental Group-size Strategy. To enhance the effec-
tiveness of the IC algorithm, we introduce an incremental
group-size strategy. Traditional approaches such as (Zhu
et al., 2020; Wang et al., 2019) employ a uniform group-size
strategy, where an equal number of clients are assigned to
each group. However, this uniform approach often leads to
a loss in the identification accuracy of heavy hitters.

Our incremental group-size strategy is motivated by the
insight that later groups can benefit from the information ob-
tained by earlier groups, allowing for improved refinement
of prefixes and more precise identification of heavy hitters.
Consequently, we allocate a larger number of clients to the
later groups using a linearly incremental group-size strategy.
In this strategy, the number of clients in each group Gi is
calculated as n

2g + (i− 1) n
g(g−1) , where n denotes the total

number of clients for trie construction, and g represents the
total number of groups. By implementing this incremen-
tal group-size strategy, we enhance both the efficiency and
accuracy of heavy hitter identification within each cluster.
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2.2. Cross-Cluster (CC) Identification

In the previous IC identification subsection, we adopted
LDP-based perturbation to protect the privacy of local heavy
hitters within each cluster. Although the perturbation mech-
anism achieves LDP via adding noise to the local data, it
brings redundancy issue among the local heavy hitters from
different clusters. Moreover, the data across clusters are
non-IID, which makes it more challenging to find global
heavy hitters that are consistent and representative across
clusters. Therefore, we propose a Cross-Cluster (CC) iden-
tification algorithm (Algorithm 2) that aggregates the local
heavy hitters from different clusters to identify global heavy
hitters. The CC Identification algorithm consists of two
main steps: importance calculation and similarity filtering.

Importance Calculation The process of importance calcu-
lation (refer to Line 1 to 4 in Algorithm 2) involves assigning
a score to each local heavy hitter based on its relative fre-
quency within its cluster. This score serves as an indicator
of the representativeness exhibited by the local heavy hitter
for its respective cluster, while simultaneously preserving
those with higher relative frequencies in their clusters.

Similarity Filtering The process of similarity filtering aims
to eliminate redundant or noisy local heavy hitters by evalu-
ating their hamming distance (Norouzi et al., 2012) against a
predetermined threshold, denoted as δ. The selection of this
threshold, along with its underlying rationale, is elaborated
upon in the proof provided in Appendix A.1. By leveraging
the hamming distance, we can quantify the distinctiveness
exhibited by each local heavy hitter relative to the other lo-
cal heavy hitters. This design corresponds to the algorithm
outlined in Line 5 to 16 in Algorithm 2.

By combining these two techniques, our algorithm can find
global heavy hitters across non-IID data by selecting and
filtering consistent and distinctive local heavy hitters from
different clusters. These informative global heavy hitters
reflect the diversity and similarity of the data across clusters,
providing insights into unique and common data patterns.

3. Experiments and Implementation
This section first describes the experiment setting in § 3.1
and then presents the results of our algorithm evaluation in
§ 3.2. Finally, we illustrate our algorithm deployment in our
demo application, called FedCampus in § 3.3.

3.1. Experiment Setting

Datasets. In order to emulate real-world situations char-
acterized by diverse linguistic communities, we employ
a simulation approach to generate synthetic non-IID data.
These clusters, along with their non-IID properties, such
as the number of clients and unique words per cluster, are

Algorithm 2 Cross-cluster Identification (FAServer)

Input :HH
(κ)
local : local heavy hitters from clusters.

Output :HH top : identified heavy hitters among clusters.
1 Initialization: HH local ← ∅; HH top ← ∅ for κ = 1, 2, . . . do
2 for c in HH

(κ)
local do

3 HH local [c]+ = α // Update importance for c

4 HH local ← SORT(HH local ) // Descending order by importance
5 return HH top ← SELECT(HH local , k, δ)
6 FUNCTION SELECT(HH local , k, δ)
7 HH top ← ∅
8 for i = 1, 2, . . . , len(HH local) do
9 c← HH local [i]

10 if c is a noisy result: continue
11 for j = i+ 1, i+ 2, . . . , len(HH local) do
12 c′ ← HH local [j]
13 if HAMMDISTANCE(c, c′) < δ: Mark c′ as a noisy result

14 Add c toHH top

15 if HH top has k items: break
16 return HH top

Table 1. Non-IID Data: Total clients and unique words per dataset.

NO. TOTAL CLIENT NO. UNIQUE WORDS
CLUSTER 1 2000 726
CLUSTER 2 3500 1052
CLUSTER 3 5000 1256
CLUSTER 4 6500 1498
CLUSTER 5 8000 1643
CLUSTER 6 9500 1778

summarized in Table 1 (each client is associated with a sin-
gle word). Additionally, we adhere to the well-established
Zipf’s distribution as described by (Wang et al., 2019) to
determine the frequency distribution of unique words within
each cluster, and these unique words are not shared across
the other clusters.

Metrics. For evaluating the algorithm, we employ the met-
rics of recall and F1 score. Furthermore, we explore the
impact of different privacy parameters ε from 0.5 to 9.5 to
examine the effects on the algorithm’s performance.

3.2. Evaluation

In this section, we conduct experiments to evaluate our
proposed algorithms. In § 3.2.1, we assess the intra-cluster
algorithm to identify local heavy hitters within clusters. In
§ 3.2.2, we examine the cross-cluster algorithm to identify
global heavy hitters across non-IID data clusters. In addition,
we assess the impact of the expected number (k) of heavy
hitters on performance in § 3.2.3.

3.2.1. EVALUATIONS OF THE INTRA-CLUSTER (IC)

This section evaluates the effectiveness of the IC algorithm
for finding local heavy hitters within each cluster. We com-
pare our approach with state-of-the-art FA heavy hitter iden-
tification algorithm, TrieHH (Zhu et al., 2020) and PEM
with GRR (Wang et al., 2019).
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Table 2. Ablation methods for intra-cluster algorithm with different
mechanisms and group size.

MODEL GRR/GRRX GROUP-SIZE STRATEGY

PEM (GTU) GRR UNIFORM
GTF GRR INCREMENTAL
XTU GRRX UNIFORM

OURS (XTF) GRRX INCREMENTAL

Ablation study of GRR/GRRX and group-size strategy.
We conduct an ablation study to measure the impact of per-
turbation mechanism and group-size strategy on top-k local
heavy hitter identification. We compare the perturbation al-
gorithm with three variants (Table 2) that differ in the noise
mechanism (GRR or GRRX) and the group-size strategy
(uniform or incremental). We also include TrieHH, a CDP
algorithm, as a baseline for comparison.

Component Analysis. We compare our method with others
on six synthetic clusters, varying privacy levels (ε). Fig-
ure 2 presents recall and F1 score for cluster sizes of 2, 000
and 9, 500, with similar results for other cluster sizes (see
Appendix A.2). Our algorithm consistently outperforms
other methods across clusters and privacy levels. It excels in
handling non-IID data with GRRX, overcoming domain lim-
itations, and leveraging incremental group-size for increased
information utilization. Moreover, our IC algorithm effec-
tively handles small cluster sizes, ideal for scenarios with
fewer available clients. While similar to XTU, our method
surpasses it due to incremental group-size, enhancing infor-
mativeness. PEM and GTF exhibit poorer performance due
to domain limitations. TrieHH performs well only for the
9, 500 client cluster, indicating sensitivity to cluster size.

Figure 2. Comparison for finding top-5 heavy hitters in clusters
with 2, 000 and 9, 500 clients.

3.2.2. EVALUATIONS OF THE CROSS-CLUSTER (CC)

In this section, we conduct evaluations of our CC algorithm
for the identification of global heavy hitters across non-IID
clusters. We begin by presenting the experimental assess-
ment of our algorithm on synthetic data and subsequently
evaluate its performance on real datasets.

Global heavy hitters identification. We compare the per-
formance of our CC algorithm with TrieHH, a baseline

method that uses CDP, for identifying the global heavy hit-
ters across non-IID clusters. We measure the recall and F1
scores of the methods under different values of the privacy
parameter ε, ranging from 0.5 to 9.5. The global heavy
hitters are the union of the local heavy hitters in each cluster,
and the higher the relative frequency of a local heavy hitter
in its cluster, the more likely it is to be a global result.

Performance comparison for Synthetic Data. We aggre-
gate the same six synthetic clusters (Table 2) used in the
intra-cluster experiment into a single dataset comprising
34, 500 clients. Figure 3 illustrates the recall and F1 scores
of our algorithm and TrieHH at different privacy levels (ε).
Our algorithm consistently outperforms TrieHH across all
privacy levels, underscoring its ability to effectively filter
out noisy local heavy hitters and handle non-IID data.

Figure 3. Comparison of Ours and TrieHH for cross-cluster non-
IID heavy hitters identification at various ε levels.

Performance comparison for Real Data Next, we use
two real datasets, Sentiment140 (Go et al., 2009) and Red-
dit (Ofer, 2018), to simulate two non-IID clusters, each
representing a cluster with non-IID data. To alleviate the
computational and communication burdens and address the
issue of client availability, we employ weighted sampling to
carefully select a total of 20, 000 words from each cluster
while preserving the frequency distribution that is inherent
to the original dataset. This cost-effective design, which
draws inspiration from prior research on Federated Learning
(FL) (Luo et al., 2021; 2022), enables us to make optimal
use of limited resources while ensuring the data remains rep-
resentative. Table 3 shows the number of clients and unique
words before and after sampling. We then apply our algo-
rithm to identify the top-k heavy hitters across the clusters.
The results also indicate that our algorithm consistently out-
performs TrieHH in most cases, demonstrating its superior
accuracy and efficiency in handling real non-IID data. Addi-
tional details on the performance evaluation can be found in
Appendix A.3. However, we observed that our algorithm’s
performance deteriorates when ε is too small. This can be
attributed to the fact that a smaller ε corresponds to a higher
level of privacy protection, which introduces more noise in
the data perturbation and aggregation process under LDP.
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Table 3. Statistics of the Real Datasets Before and After Sampling

DATASET NO.
CLIENTS

NO.
UNIQUE
WORDS

SENTIMENT140 695,524 120,164
REDDIT 256,521 24,164
SAMPLED SENTIMENT140 14,600 6,082
SAMPLED REDDIT 5,400 1,987

3.2.3. IMPACT OF K

We evaluate the impact of k, the number of expected heavy
hitters, on the real datasets. The results of varying k are
shown in Figure 4. We achieve high recall and F1 scores
across different values of k compared to other methods. Our
algorithm has a stable performance when varying k from 3
to 5, and the recall and F1 scores do not change much as
k increases, indicating that it can handle different levels of
granularity and diversity in the data.

Figure 4. Varying k from 3 ∼ 14

3.3. FedCampus Application: Step Count Analysis

This section illustrates the application of our algorithm
within FedCampus, a platform that facilitates privacy-
preserving federated analytics on a campus-wide scale. One
specific application within FedCampus involves analyzing
step counts among distinct participant clusters. Step counts
inherently involve sensitive personal data, necessitating pri-
vacy safeguards. Therefore, we utilize our algorithm to
identify the most prevalent step counts, known as “heavy
hitters”, across various clusters.

Table 4. Collection of Step Count and Device Validity

CLUSTER TOTAL VALID STEPS NO. VALID DEVICES

1 195 30
2 213 31
3 204 31
4 87 20
5 164 25

Data Collection and Preprocessing. Our study involved
participants with varying backgrounds and degrees of physi-
cal activity. Each participant was equipped with a wearable
device configured to register their daily step count auto-
matically. To capture the non-IID nature of the step count

data, we meticulously arranged participant clusters to en-
sure a broad representation of walking routines, lifestyles,
and activity levels (Table 4 presents the statistics of the data
amassed from FedCampus, including the total number of
daily steps for each participant over one week). Each cluster
exhibited a distinct distribution of step counts, thereby en-
capsulating real-world disparities and dependencies. More-
over, all collected data were anonymized through the re-
moval of identifiable user information. Moreover, we con-
ducted rigorous manual scrutiny to eliminate invalid data,
such as missing values or outliers.

To augment privacy safeguards and mitigate data sensitivity,
we applied quantization methodologies at various precision
levels. These strategies partitioned the step count data into
discrete intervals and depicted them with fewer bits. By
approximating interval modes instead of precise values, we
further enhance privacy protection while preserving utility.

Evaluation of Results. We utilized the proposed algorithm
to compute mode intervals for step counts, representing
ranges of frequently occurring values. The chosen precision
level for quantization impacts the balance between utility
and privacy. Figure 5 delineates the mode interval ranges
across disparate quantization levels. Elevated precision lev-
els result in narrower intervals, thus providing enhanced
utility but compromising privacy. Conversely, reduced preci-
sion levels produce broader intervals, forfeiting some utility
to amplify privacy. Additional details regarding FedCampus
can be found in Appendix A.4.

Figure 5. Mode intervals with different levels of quantization.

4. Conclusion and Future Works
In conclusion, we have introduced a federated heavy hitters
identification algorithm for non-IID scenarios. Our hierar-
chical design achieves good performance at identifying local
and global heavy hitters on both synthetic and real datasets,
while effectively managing privacy risks and utility loss.
We also demonstrated FedCampus, our privacy-preserving
campus-scale statistics analysis platform. Our empirical
study reveals successful heavy hitter identification via our
LDP-based perturbation method with uniform privacy pa-
rameters. For future work, we aim to incorporate individ-
ual privacy preferences, conduct a formal privacy analysis.
These efforts will enhance the customization of privacy pro-
tection and contribute to a more rigorous understanding of
the privacy guarantees provided by our approach.
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A. Appendix
A.1. Proof of Theorem

Theorem A.1. Given a dataset consisting of binary strings, a similarity measure based on the Hamming distance can be
established such that, for any pair (c, c′), the similarity threshold δ = 0.5 ∗ len(c), where len(c) denotes the bit length of c,
guarantees avoidance of the degenerate case wherein all items are construed as identical.

Proof. Suppose there are n bit-strings Γ = {c1, c2, . . . , cn}, and the maximum bit length of the strings is represented as
L = max{len(ci), . . . , len(cn)}.

For each pair of ci and cj , if their Hamming distance satisfies d(ci, cj) < δ, ci and cj can be deemed similar. We establish
the similarity threshold as δ = α ∗ len(ci), where α ≥ d(ci,cj)

len(ci)
for similar entities.

To begin, the total Hamming distance of all pairs of (ci, cj) is
∑n

i=1

∑n
j=1 d(ci, cj) =

∑L
i=1 mi(n − mi), where mi

represents the count of 1’s in all ci ∈ Γ for the ith bit position, and n−mi represents the count of 0’s in all ci ∈ Γ for the
ith bit position.

To calculate the expected value of the total Hamming distance, we assume the value (1 or 0) of the ith bit position for all
ci ∈ Γ follows a binomial distribution.

E

 n∑
i=1

n∑
j=1

d(ci, cj)

 = E

[
L∑

i=1

mi(n−mi)

]

=

L∑
i=1

E [mi(n−mi)]

=

L∑
i=1

E [mi]E [n−mi]

= L(
n

2
)2

If all entities in Γ is similar, then we calculate the expectation of α:

E[α] ≥ E[
d(ci, cj)

max{len(ci, cj)}
]

≥ 1

L
E[d(ci, cj)]

=
1

(n(n− 1)/2) ∗ L
E

 n∑
i=1

n∑
j=1

d(ci, cj)


> 0.5

Thus, to discern the discrepancies across all entities in Γ , we can set α = 0.5 as the similarity threshold, i.e., δ = 0.5∗len(ci).

A.2. Experimental Results for Intra-cluster Local Heavy Hitters Identification

In this section, we present the experimental results for our intra-cluster local heavy hitters identification algorithm, which
aims to identify high-frequency words within each cluster while preserving the privacy of the participants. We evaluate our
algorithm using six synthetic datasets with varying numbers of clients and unique words per cluster, as shown in Table 1.
The frequency of the unique words in each cluster follows Zipf’s distribution.
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We compare our algorithm with three variants that differ in the perturbation mechanism (GRR or GRRX) and the group-size
strategy (uniform or incremental), as well as TrieHH, a baseline method that uses CDP. We measure the recall and F1 scores
of the methods under different values of the privacy parameter ε, ranging from 0.5 to 9.5. Figure 6 shows that our algorithm
consistently outperforms the other methods across all clusters and privacy levels, demonstrating its effectiveness for non-IID
data with GRRX, which overcomes the domain limitation, and incremental group-size, which leverages more information
from later groups. We also find that our algorithm can handle small cluster sizes, which means it can work with clusters with
fewer clients and benefit for scenarios with fewer clients. Our method is similar to XTU, but it outperforms XTU because it
uses incremental group-size, increasing informativeness. PEM and GTF are also similar methods, but they perform worse
than ours because they suffer from domain limitations. Furthermore, we observed that TrieHHwith poorly on most clusters,
except for the one with 9, 500 clients, where it achieves high recall and F1 score at high ε values. This suggests that TrieHH
is sensitive to cluster size.

Overall, our algorithm demonstrates superior performance in identifying local heavy hitters within each cluster while
preserving the participants’ privacy.

Figure 6. Comparison for Intra-cluster identification within six different clusters

A.3. Comparative Analysis of Real Data Performance

In this section, we focus on the evaluation of our algorithm with two real-world datasets, specifically Sentiment140 and
Reddit. These datasets facilitate the simulation of two non-IID clusters, with each signifying a unique cluster encompassing
non-IID data.

To mitigate computational and communication burdens and accommodate for client availability, we utilize weighted
sampling to select a total of 20, 000 words from each cluster while upholding the frequency distribution intrinsic to the
original data. Table 3 delineates the number of clients and unique words pre and post-sampling. Subsequent to this, we
implement our algorithm for the identification of the top-k heavy hitters across these clusters. The resultant findings,
as illustrated in Figure 7, indicate that our algorithm consistently outperforms TrieHH in the majority of scenarios, thus
demonstrating its enhanced accuracy and efficiency when dealing with non-IID data. Nevertheless, we noted a degradation in
our algorithm’s performance when ε is excessively diminutive. This can be ascribed to the fact that a smaller ε corresponds
to heightened privacy safeguards, which inadvertently introduces amplified noise and uncertainty within the data perturbation
and aggregation phases under the mechanism of LDP.
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Figure 7. Performance comparison of our algorithm and TrieHH on real data, measured in terms of recall and F1 scores across different
values of the privacy parameter ε.

A.4. FedCampus Demo

FedCampus is a platform that facilitates federated analytics (FA) on data collected from various edge devices, such as
smartphones and smartwatches, within a campus-scale environment. One of the features of this platform is its ability to
maintain the privacy and security of the participants throughout the analytics process. By leveraging advanced privacy-
preserving techniques, FedCampus provides a powerful tool for conducting secure and privacy-preserving analytics on edge
devices. The application’s interface is shown in Figure 8.

Peering into the future, FedCampus aspires to extend its support for federated learning, along with an array of diverse
computational and analytical paradigms, ushering in a new era of privacy-preserving data analysis and machine learning on
the edge. This broad spectrum of capabilities envisages transforming FedCampus into a comprehensive tool for diverse
research and practical applications in distributed, privacy-aware learning and analytics.

Figure 8. FedCampus Demo
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