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ABSTRACT

AlphaFold has transformed protein structure prediction, but emerging applications
such as virtual ligand screening, proteome-wide folding, and de novo binder de-
sign demand predictions at a massive scale, where runtime and memory costs
become prohibitive. A major bottleneck lies in the Pairformer backbone of
AlphaFold3-style models, which relies on computationally expensive triangular
primitives—especially triangle attention—for pairwise reasoning. We introduce
Pairmixer, a streamlined alternative that eliminates triangle attention while pre-
serving higher-order geometric reasoning capabilities that are critical for structure
prediction. Pairmixer substantially improves computational efficiency, matching
state-of-the-art structure predictors across folding and docking benchmarks, deliv-
ering up to 4× faster inference on long sequences while reducing training cost by
34%. Its efficiency alleviates the computational burden of downstream applications
such as modeling large protein complexes, high-throughput ligand and binder
screening, and hallucination-based design. Within BoltzDesign, for example, Pair-
mixer delivers over 2× faster sampling and scales to sequences ∼30% longer than
the memory limits of Pairformer.

1 INTRODUCTION

AlphaFold (Senior et al., 2020; Jumper et al., 2021) has transformed protein structure prediction and
become an indispensable tool across the biological sciences. Yet emerging applications increasingly
demand massive scale. Virtual screening of protein–ligand interactions, modeling of large protein
complexes, proteome-wide folding, and iterative de novo binder design already require millions—and
soon billions—of inference calls. At this scale, runtime and memory efficiency are critical bottlenecks:
for example, Boltz-1 (Wohlwend et al., 2024) requires over 15 minutes to process a single 2048-token
sequence on an A100 GPU (see Section 5.3).

The dominant computational cost comes from pairwise token representations and triangular primitives,
which scale cubically with sequence length L. While triangle multiplication is implemented efficiently
via matrix multiplications, triangle attention requires L attention operations, introducing substantial
memory and runtime overhead.

We introduce Pairmixer, a streamlined alternative to the Pairformer backbone of AlphaFold3 (Abram-
son et al., 2024). By retaining triangle multiplication and feed-forward networks while eliminating
triangle attention, Pairmixer preserves the ability to reason over higher-order geometric interac-
tions—critical for structure prediction but inaccessible to plain transformers—while alleviating the
heavy computational burden of attention. Despite this simplification, Pairmixer performs comparably
on RCSB and CASP15 test sets against state-of-the-art predictors such as AlphaFold, Chai-1, and
Boltz-1, while providing 4× faster inference on long sequences. It matches the performance of
Pairformer backbone across protein folding, protein–protein docking, and protein–ligand docking,
while training in 34% fewer GPU-days across multiple model sizes (see Figure 1).

By reducing both runtime and memory requirements, Pairmixer expands the scope of feasible
applications. It enables modeling of larger protein complexes beyond the limits of triangle attention,
supports high-throughput screening of ligands and binders, and accelerates hallucination-based design
pipelines (Pacesa et al., 2025). Within the BoltzDesign1 (Cho et al., 2025) framework, Pairmixer
provides over 2× faster sampling and scales to sequences beyond 800 amino acids, where BoltzDesign
otherwise fails due to memory overflow.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1019 1020

Training FLOPs

0.66

0.69

0.72

0.75

0.78

M
ea

n 
LD

D
T

100 150 200 250 300 350 400
Training Time (GPU-days)

Pairmixer (Ours) Pairformer (Boltz-1) Transformer

Figure 1: Pairmixer is an efficient architecture for biomolecular structure prediction. Across
multiple model sizes, Pairmixer matches the performance of the leading Pairformer architecture
while delivering greater training efficiency.

2 RELATED WORK

Structure Prediction. Protein structure prediction has advanced rapidly in recent years (Senior et al.,
2020; ByteDance et al., 2025; IntFold et al., 2025; Boitreaud et al., 2024). AlphaFold2 introduced the
Evoformer architecture (Jumper et al., 2021), which couples MSA and pair representations to achieve
unprecedented accuracy in protein structure prediction. Building on this foundation, AlphaFold3
made the Evoformer more efficient by separating MSA processing and introduced the Pairformer
backbone (Abramson et al., 2024), which is now widely used for biomolecular structure prediction.

Numerous efforts have aimed to improve efficiency in protein structure prediction. ESMFold (Lin
et al., 2023) replaces multiple sequence alignments with a single forward pass through a pretrained
protein language model. MiniFold (Wohlwend et al., 2025) streamlines and downsizes the ESMFold
architecture using triangle multiplications. While MiniFold and AlphaFold2 suggest that triangle
multiplication is highly effective at modeling protein structures, our work rigorously tests this at the
scale of current biomolecular structure prediction.

Large-scale applications of structure prediction. There has been a surge of large-scale applications
for biomolecular structure predictors. Resources like the AlphaFold Database (Varadi et al., 2022)
and OpenFold (Ahdritz et al., 2024) have generated massive protein structure datasets, which now
support downstream tasks such as large-scale structure search (Van Kempen et al., 2024), protein
language modeling (Ouyang-Zhang et al., 2024; Hayes et al., 2025), and diffusion-based structure
generation Geffner et al. (2025); Lin et al. (2024); Daras et al. (2025). Structure predictors have
also been employed in drug discovery pipelines to quantify protein–small molecule interactions for
virtual screening (Wong et al., 2022; Shamir & London, 2025; Scardino et al., 2023), as well as in
human health studies to identify previously unknown protein–protein interactions across the entire
proteome Ille et al. (2025). In de novo design, models like BindCraft Pacesa et al. (2025) repeatedly
call structure predictors thousands of times to evaluate candidate structures. Across these settings, the
central bottleneck is the sheer number of predictor calls required, which continues to grow with scale.
Our model directly addresses this challenge by alleviating the runtime burden of repeated structure
prediction.

Attention-free Architectures. While transformers dominate modern deep learning, many works
explore attention-free alternatives for improved scalability. FNet (Lee-Thorp et al., 2021) and related
approaches (Poli et al., 2023; Zhai et al., 2021) leverage Fourier or convolutional mixing for sub-
quadratic scaling. IgFold (Ruffolo et al., 2023) applies triangle operations within GNN layers.
MLP-Mixer (Tolstikhin et al., 2021) uses token- and channel-wise MLPs to achieve competitive
results. Pairmixer fits into this family of mixers (Tu et al., 2022; Chen et al., 2023), removing
attention entirely and instead mixing information with simple matrix multiplications.

For example, Genie2 (Lin et al., 2024) performs structure generation by maintaining a pair representa-
tion that is iteratively updated through triangle multiplications. Similarly, MSA Pairformer (Akiyama
et al., 2025) leverages pair representations and triangle multiplications to extract rich features from
multiple sequence alignments. Our model is similar in that all these methods use triangle multiplica-
tion to extract rich protein representations – we differ in tasks, and we evaluate on structure prediction
task.
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Figure 2: Overview of Biomolecular Structure Prediction. Given a list of sequences, our model
predicts the 3D folded structure of all sequences within a single complex. Input sequences are
first embedded into a single representation for each residue and a pair representation to capture the
relationship between pairs of residues. The MSA Module and Backbone (e.g., Pairformer) extracts
deep pairwise features capturing inter-residue interactions, which are then passed to the diffusion
module to generate the 3D structure. (Additional inputs such as MSAs, conformers, and templates
are omitted for clarity.)

3 PRELIMINARIES

Let x = {x(1), · · · , x(K)} denote a collection of K biomolecular sequences. Each sequence x(k) =

(x
(k)
1 , · · · , x(k)

L(k)) consists of tokens x
(k)
i ∈ T corresponding to an amino acid, a nucleic acid, or

ligand heavy atoms, including metal cations. L(k) denotes the number of tokens in biomolecule
x(k). The goal of biomolecular structure prediction is to map the sequences x to a three-dimensional
structure a = {a(1), · · · , a(K)}, where each biomolecular structure a(k) = (a

(k)
1 , · · · ,a(k)

Nk) consists

of atomic coordinates a
(k)
j ∈ R3, and N (k) denotes the number of atoms in biomolecule k. See

Figure 2 for an overview.

The Input Embedder concatenates the sequences x = {x(1), . . . , x(K)} and embeds it into a “single”
length L =

∑K
k=1 L

k sequence representation sinit ∈ RL×Cs of dimension Cs. Modern structure
predictors (Jumper et al., 2021) additionally initialize a “pair” representation zinit ∈ RL×L×Cz :

zij = si + sj +PE(i, j),

where PE(i, j) is a positional encoding that incorporates both intra- and inter-sequence distances and
Cz is the pair embedding dimension. Intuitively, zij ∈ RCz captures the relational context between
tokens si and sj and allows the model to reason about longer-range couplings. Since pairwise
reasoning is critical for structure prediction, we adopt the same input embedding scheme as prior
work, incorporating both single and pair representations.

The MSA Module encodes evolutionary information that is crucial for structure prediction (Benner
& Gerloff, 1991; Yanofsky et al., 1964; Ovchinnikov et al., 2017; 2014; Morcos et al., 2011; Weigt
et al., 2009). For each amino acid or nucleic acid sequence x(k), we perform a homology search to
construct a multiple sequence alignment (MSA) of related sequences that adopt the same fold. For-
mally, MSA(x(k)) ∈ (T ∪ {−})M

(K)×L(K)

contains M (k) aligned sequences of length L(k). This
alignment establishes positional correspondence across homologous sequences, enabling detection of
conserved sites and co-evolutionary couplings. The resulting MSAs are then paired, concatenated,
and embedded into minit ∈ RM×L×Cm where M is the number of filtered homologous sequences
and Cm is the MSA embedding dimension.

The MSA module takes (minit, zinit) as input, extracts structurally-relevant evolutionary patterns from
minit, and encodes pairwise interactions into zmsa to guide folding. Since processing all M sequences
in the MSA is computationally expensive, AlphaFold3 introduced a shallow 4-layer MSA module
after which the MSA is discarded while the evolutionary-aware pair representation zmsa continues
to be refined. Our model derives zmsa from an MSA module but introduces a more efficient feature
extractor to refine its evolutionary signals.

The Pairformer backbone serves as the primary feature extractor for AlphaFold3 (Abramson
et al., 2024), producing structrually-aware representations that encode geometric constraints between

3
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(a) Pairformer architecture. The de facto biomolecular structure prediction backbone.
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(b) Pairmixer architecture. An efficient yet effective biomolecular structure prediction backbone.

Figure 3: Schematic comparison of the Pairformer and Pairmixer backbones. Pairmixer simplifies
the Pairformer architecture by removing redundancies, resulting in faster training and inference and
expanding the scope of downstream applications.

residues (see Figure 3a). It takes (sinit, zmsa) as input and employs several specialized modules that
iteratively update the sequence and pair representations to produce (sbackbone, zbackbone). See Figure 10
for a more detailed treatment of the entire architecture.

The Pairformer contains two specialized modules for processing the pair representation: triangle
attention and triangle multiplication. These modules treat the pair representation z ∈ RL×L×Cz as
edge features of a fully-connected graph of L nodes and reason over triplets of residues (nodes) to
learn geometric constraints.

Triangle attention computes attention (with pair bias) along every row (and column) of the pair
representation. Formally, the update to row i is

TriAtt(z)i = softmax
(
(WQzi)(WKzi)

⊤ +WBz
)
WV zi

By attending over row i, this module effectively computes attention over all residues while condition-
ing over residue i.

Triangle multiplication performs matrix multiplications to integrate features across different rows
(and columns) of the pair representation. Formally, the update to edge zij is

TriMul(z)ij =

L∑
k=1

(Wazik)⊙ (Wbzjk)

where Wa,Wb are linear projection layers. For each edge zij , triangle multiplication integrates
information about how all nodes k interact with nodes i and j through edges zik and zjk.

Both operations scale cubically with sequence length, making long-sequence processing computa-
tionally expensive. Triangle multiplication is more efficient, as it can be implemented with matrix
multiplications (e.g., torch.einsum), whereas triangle attention incurs the higher cost of full
attention computations. In this work, we streamline the cofolding backbone to its essential compo-
nents and show that triangle multiplication yields representations as powerful as those from triangle
attention, but at substantially lower computational and memory cost. This efficiency expands the
range of downstream applications, enabling the modeling of larger protein complexes beyond the
memory limits of triangle attention, supporting high-throughput virtual screening of thousands of
candidate binders, and accelerating iterative design loops where speed, scalability, and memory
efficiency are critical.
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Algorithm 1 Pairmixer Backbone

Require: Input pair representation zmsa ∈ RL×L×Cz

Require: Number of backbone layers N
Ensure: Updated pair representation zN

1: z0 ← zmsa

2: for l = 0 to N − 1 do
3: zl ← zl +TriMulIncoming(zl)
4: zl ← zl +TriMulOutgoing(zl)
5: zl+1 ← zl + FFN(zl)
6: end for
7: return zN

While the Pairformer is trained with an auxiliary distogram loss that ensures zbackbone accurately
represents all pairwise token distances, it does not yet specify a 3-D structure.

The Diffusion Module samples the atomic coordinates conditioned on (sbackbone, zbackbone). It uses
transformers to derive atomic representations from the token-level sequence and pair representations,
and subsequently denoises all-atom coordinates based on these representations. We leverage the
diffusion module as-is to realize a 3-D structure conditioned on single and pair representations derived
from our efficient backbone.

4 METHOD

We introduce Pairmixer, an attention-free feature extractor for biomolecular structure prediction
and design (see Figure 3). Pairmixer exclusively updates the pair representation zmsa, leaving the
single-sequence representation sinit unchanged. Through triangle multiplication, Pairmixer efficiently
mixes features within the pair representation, facilitating reasoning over residue triplets and their
geometric constraints. When combined with feed-forward networks that process all residue pairs,
this architecture provides an effective and expressive backbone for biomolecular structure prediction.

The full algorithmic specification of Pairmixer is available in Algorithm 1. In developing Pairmixer,
we identified and removed two unnecessary modules from the Pairformer: sequence updates and
triangle attention.
Removing Sequence Updates. In AlphaFold2’s Evoformer, sequence updates were essential because
they processed the MSA to capture evolutionary features. However, AlphaFold3’s MSA Module now
preprocesses the MSA and encodes this evolutionary information directly into the pair representation
zmsa, eliminating the need for sequence updates to provide evolutionary information. Since the pair
updates proved more expressive, we bypass sequence processing entirely and pass the initial sequence
representation directly to the diffusion module (i.e., sbackbone = sinit).
Removing Triangle Attention. Triangle attention reasons over residue triplets by applying attention
to each row of the pair representation zi, using the full z as pairwise bias (see Figure 10b). How-
ever, this approach is computationally expensive, requiring L separate attention operations over L
tokens per layer. Triangle multiplication offers equivalent capability for capturing geometrically
consistent pair representations via a triplet reasoning mechanism, but with significantly lower compu-
tational cost. Since both methods have independently demonstrated strong performance in structure
prediction (Jumper et al., 2021), we adopt the more efficient triangle multiplication approach.

5 RESULTS

5.1 IMPLEMENTATION DETAILS

We implement Pairmixer on top of Boltz-1, an AlphaFold3 reproduction. Following the training
schedule in their paper, we train on 384/3456 token/atom crops for the first 53k iterations using
the PDB and OpenFold distillation dataset. We then finetune for 15k iterations on the PDB dataset
with a larger crop size of 512/4608. To evaluate the generality of our approach, we train models of
multiple sizes. Our large configuration matches Boltz-1, with 48 Pairformer layers and 24 diffusion

5
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Figure 4: Performance curves on RCSB test set across model sizes. We compare three backbone
architectures across three model sizes over training. Our model matches or surpasses the Pairformer
baseline while training more efficiently.

transformer layers. In addition, we develop small and medium variants with 12/24 Pairformer layers
and 6/24 diffusion transformer layers, respectively. During inference, we default to 10 recycling steps
and 200 sampling steps. In our main evaluation, we sample 5 poses and report the metrics on the top
pose (oracle evaluation). Full hyperparameter details are provided in Table 6.

We also introduce a transformer baseline that preserves the sequence update while removing the pair
update in the Pairformer. To ensure this baseline is as strong as possible, we modify the architecture to
allow information to flow properly from the MSA module into the diffusion module (see Section A.2).

5.2 COMPARISONS ON COFOLDING PERFORMANCE ACROSS MODEL SIZES

We evaluate our efficient Pairmixer architecture against two baselines, Pairformer (Abramson et al.,
2024) and a sequence-only Transformer. All models are assessed on the RCSB test set introduced in
Boltz-1 (Wohlwend et al., 2024), which contains 533 structures with at most 40% sequence identity
to the training set, maximum small-molecule similarity of 80%, and resolution better than 4.5 Å.
Models are evaluated at 15, 30, 45, 60, and 68 epochs, totalling 53k iterations. As the Pairformer
has the most expensive backbone, we additionally extend training for the other models until the total
training time matches the Pairformer’s 68-epoch budget for the tiny, small, and medium variants. For
the large variant, all models are further fine-tuned after 68 epochs on larger crops for 20 epochs (15k
iterations). We report the final mean LDDT, averaged across all residues.

Our Pairmixer consistently outperforms or matches the Pairformer across all model sizes (Figure 5).
At the large scale, Pairmixer reaches Pairformer-level accuracy (mean LDDT of 0.78) while requiring
only 66% of the training time. The trend holds at smaller scales: Pairmixer surpasses Pairformer at
the medium scale and matches it at the small scale under equal training budgets. Furthermore, under
the same training time, Pairmixer exceeds the sequence-only Transformer baseline by 5YY LDDT
points on average across scales. These results suggest that a sequence-only Transformer is inadequate
for extracting structural features, while the triangle multiplications and feed-forward networks in
Pairmixer are sufficient to capture rich structural representations. Additional results are provided
in Table 4 and Table 5, and detailed FLOPs analysis is provided in Section B.

5.3 INFERENCE TIME COMPARISONS

Many downstream AlphaFold3 applications require running the model across thousands to millions
of protein–ligand pairs, making inference efficiency critical. In Figure 5, we benchmark Pairmixer
against the Pairformer and a sequence-only transformer under a default setting of 512 tokens, 4608
atoms, MSA depth of 4096, 10 recycles, 48 blocks, and 200 sampling steps.

On this setup, Boltz-1 requires 34 seconds to generate a single sample on a GH200 GPU, while
Pairmixer completes in 21 seconds, yielding a 1.6× speedup. This advantage holds consistently
across different recycle counts, MSA depths, and backbone sizes. The scaling benefits are even more
striking for longer sequences: at 1024 tokens, Pairmixer is 2× faster, and at 2048 tokens, it delivers a
4× speedup, reducing runtime from 1000 seconds to 250 seconds. These results establish Pairmixer
as a scalable and efficient architecture, making large-scale cofolding more practical.
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Figure 5: Inference speed analysis. We measure runtime across architectures and input sizes. While
the Transformer is the fastest overall, Pairmixer achieves substantially lower inference times than
Pairformer, particularly on longer sequences.

5.4 COMPARISONS TO PRIOR WORKS

Figure 6 compares Pairmixer to other cofolding models on the RCSB test set, evaluating protein
folding, protein–protein interactions (DockQ), and protein–ligand interactions (lDDT-PLI and ligand
RMSD < 2). We generate five poses per complex and report both the performance of the best pose
(oracle) and the average across poses. Pairmixer matches Boltz-1 in mean lDDT and protein–ligand
lDDT, slightly improves ligand RMSD < 2 (0.55 vs. 0.54), but lags on DockQ > 0.23 (0.63 vs. 0.64).
These results indicate that even at the largest scale, triangle multiplication and pair FFNs in Pairmixer
are sufficient for cofolding across diverse interaction types. We show similar results on the CASP15
test set in Section C.2.

5.5 COMPARISONS ON BINDER DESIGN (BINDFAST)

BindCraft (Pacesa et al., 2025), BoltzDesign (Cho et al., 2025), and related methods (Frank et al.,
2024; Wicky et al., 2022; Jendrusch et al., 2025; Goverde et al., 2023; Bryant & Elofsson, 2022;
Anishchenko et al., 2021) have recently demonstrated that structure prediction frameworks can be
repurposed as differentiable scoring functions for sequence optimization in the design of de novo
protein binders (hallucination-based design). In these approaches, the input sequence is treated as a set
of learnable parameters and updated by backpropagating through a structure predictor, thereby jointly
refining sequence and structure toward favorable interactions with the target protein or molecule.
While powerful, these methods face several practical limitations: they require extensive inference-
time sampling, high memory demands restrict them to smaller proteins, and low computational
success rates necessitate screening hundreds to thousands of candidates to obtain a handful of suitable
de novo binders for experimental validation. This inefficiency makes the approach prohibitively ex-
pensive, particularly when targeting proteins larger than 300 residues or designing binders exceeding
200 residues. To address these challenges, we introduce BindFast, which replaces BoltzDesign’s
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Figure 6: System-level comparison on the Boltz test set. We evaluate against AlphaFold3, Chai-1,
and Boltz-1 on protein and small-molecule structure prediction. Pairmixer performs competitively
with these state-of-the-art approaches. Error bars denote bootstrapped 95% confidence intervals.
∗Since we do not train a confidence model, results are reported using the first prediction.
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Table 1: Runtime comparison of generating proteins with Pairmixer and Pairformer across
sequence lengths. We generate 3 binders of 110 amino acids using 160 iterations in all settings and
report the averages.

Target PDB_Chain
Complex
Length

Target
Length

Pairmixer
Time (sec)

Pairformer
Time (sec)

Speedup

GIP peptide 2QHK_B 140 30 680.0 337.6 2.01×
Ubiquitin 1UBQ_A 186 76 1113.6 532.8 2.09×
TP53 4MZI_A 303 193 3198.4 1390.4 2.30×
hSDH 1P5J_A 429 319 7289.6 2920 2.50×
hMAO 1GOS_A 607 497 17134.4 6601.6 2.60×
bsDNA Polymerase 3TAN_A 702 592 9184 OOM ∞
hTLR3 1ZIW_A 739 629 10568 OOM ∞
Prostate Antigen (PSA) 1Z8L_A 805 695 OOM OOM –

(a) Pairformer-based predictions (b) Pairmixer-based predictions

Figure 7: Qualitative de-novo binders. PDB code: 1P5J Target is shown in green and binder is
shown in blue.

pairformer-based structure predictor (Boltz-1) with Pairmixer, yielding a more scalable and efficient
framework for gradient-based binder design. We show that our adaptation substantially reduces
the runtime and memory cost of de novo binder generation and aim to accelerate the discovery of
high-quality binders, particularly for large targets.

In Table 1, we benchmark the runtime performance of BindFast against BoltzDesign for generating
110-residue binders across a range of target proteins with biotechnological relevance, using an A100
GPU with 80 GB memory. BoltzDesign failed with out-of-memory (OOM) errors on targets larger
than 500 residues, whereas BindFast extended this limit to 650 residues—a 30% improvement in
target size. For protein targets where both models executed without memory overflow, BindFast
consistently outperformed BoltzDesign, achieving speedups of 2x to 2.6x at total sequence lengths
ranging from 140 to 607, respectively. Qualitative comparisons in Figure 7 further indicate that
BindFast produces designs comparable to those of BoltzDesign, underscoring its potential for faster
in-silico iteration and enabling the design of binders against larger, more biologically relevant targets.

6 ANALYSIS.

A central challenge in protein structure prediction lies in mapping a one-dimensional amino acid
sequence to its three-dimensional fold. Each residue token, drawn from a vocabulary of 20 natural
amino acids, carries limited structural information on its own. Its influence on the final fold is highly
context-dependent, shaped not only by local sequence neighbors but also by residues that are distant
in sequence yet spatially close in the folded protein and additional interactions with the solvent, lipid

8
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Figure 8: Head-to-head comparison between Pairmixer and the Transformer backbone. The
win rate shows how often the Pairmixer architecture achieves a better score than the Transformer
architecture. Pairmixer almost always beats the Transformer on the distance-based lDDT metric,
highlighting that our model’s advantage lies in capturing pairwise interactions.

membranes, post-translational modifications, and other proteins. The challenge is compounded by
the fact that natural proteins rely on a delicate balance of stabilizing and destabilizing interactions to
encode functionally important motifs and dynamics, often yielding folds and complexes that are only
marginally thermodynamically stable (Loell & Nanda, 2018).

State-of-the-art structure predictors sidestep this bottleneck by introducing strong inductive biases
that transform the problem. Rather than requiring attention to directly uncover long-range context,
they augment the representation with explicit pair tokens, one for every residue–residue interaction.
The model then learns to estimate the presence and strength of such interactions directly. This
reformulation converts the challenge from discovering interactions to quantifying them. In Figure 8,
we show a scatterplot of the metric performance of the Pairmixer versus a sequence transformer
baseline. Pairmixer model has a 93.7% win rate on LDDT, a pairwise distance-based metric, showing
that this pair representation is highly effective for learning pairwise interactions. This is in contrast
with a 74.7% win rate on the global RMSD metric.

Although we have evidence that modeling triplet interactions is useful for strong biomolecular
structure prediction, architectural efforts in this space have not rigorously disentangled the necessity
of constructing and acting upon a pair representation and the associated super-linear scaling of
compute and memory with respect to token count. As a first step in isolating the effects of these
two mechanisms, we study a toy analogue of triplet-residue interaction learning via the Match3
problem, a common task in studying the representational power of transformer variants (Sanford
et al., 2023; Kozachinskiy et al., 2025; Roy et al., 2025). In particular, we compare Transformers with
standard self-attention (linear-scaling representations and quadratic-scaling compute), Transformers
with third-order self-attention (linear-scaling representations and cubic-scaling compute), and triangle
multiplication (quadratic-scaling representations and cubic-scaling compute). We find for shallow
models that triangle attention learns more effectively than either Transformer variant, suggesting the
effectiveness of this architecture for learning nonlocal n-token interactions (Figure 13). We hope
these results motivate further study of the representational power of these model classes.

7 CONCLUSION.

We introduce Pairmixer, a simplified, efficient feature extractor for biomolecular structure prediction.
Pairmixer trains 1.5× faster and samples up to 4× faster, enabling large-scale, compute-intensive
applications of structure prediction. The key idea is to explicitly materialize a 2-D pair representation,
updated via triangle multiplications that capture interactions among residue triplets. We hypothesize
that transforming 1-D sequences into 3-D structures is most effective when mediated through this in-
termediate pair representation, which naturally encodes distance information. Triangle multiplication
provides a simple and efficient mechanism to do so.
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Figure 9: Overview of biomolecular structure predictors. We study the effect of varying backbone
architectures while keeping all other modules fixed, except in the Transformer model, where we
adjust the connections between the MSA module outputs and the Diffusion module inputs.

A ARCHITECTURAL BASELINES

The full cofolding pipeline for all methods can be found at Figure 9.

A.1 PAIRFORMER BASELINE

Here we describe the Pairformer architecture in detail. See Figure 10.
Attention Primitive. The Pairformer extends the standard attention mechanism by incorporating a
pairwise bias term derived from the pair representation z. Formally, this update is

AttnWithPairBias(x, z) = softmax
(
(WQx)(WKx)⊤ +WBz

)
WV x,

where x ∈ RL×Cx is a sequence representation, z ∈ RL×L×Cz is a pair representation,
(WQ,WK ,WV ) are standard attention projection matrices, and WB projects the pair represen-
tation into an attention bias term 1.
The Sequence Update first performs attention with pair bias (see Figure 10a) and then apply a
feed-forward network. At layer l, we compute the update

s̃l+1 = sl +AttnWithPairBias(sl, zl)

sl+1 = s̃l+1 + FFN(s̃l+1)

1single head and removed scaling for brevity
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Figure 10: Pairformer Architecture and Module Details. The main architecture (top) outlines the
general Pairformer layer. The detailed module architectures (bottom) illustrate the key components:
(a) Sequence Attention with Pair Bias, (b) Triangle Attention, and (c) Triangle Multiplication modules.

The Pair Update mixes the tokens in pair representation z ∈ RL×L×Cz using triangle attention and
triangle multiplication, then applies a feedforward network.

The Triangle Attention operates on each row of the pair representation zi ∈ RL×Cz as an independent
sequence, applying sequence attention with pair bias to each row separately2 (see Figure 10b).
Formally, the update for row i is defined as

TriAttn(z)i = AttnWithPairBias(zi, z)

The Triangle Multiplication integrates features across different rows of the pair representation 3

(see Figure 10c). Formally, the update for feature zij is defined as

TriMul(z)ij =

L∑
k=1

(Wazik)⊙ (Wbzjk)

where Wa,Wb are linear projection layers.

Both pair operations were introduced to reason over triplets of residues, intuitively enabling the
model to learn to follow geometric constraints in 3-D space (Jumper et al., 2021). Although zbackbone

encodes all pairwise token distances, it does not specify a 3-D structure.

A.2 TRANSFORMER BASELINE

Our transformer baseline removes the pair update from the Pairformer and keeps only the sequence
update. We also modify the MSA module. Instead of outputting only zmsa, it produces an additional
sequence representation smsa, obtained by indexing the first row of the processed MSA representation.
This smsa is fed into the transformer, while zmsa remains as the pair bias. Additionally, the diffusion
module expects both sequence and pair representations. Because the pair features are otherwise less
processed in this baseline, we strengthen them by updating them with the outer sum of the sequence
representation. Formally

zbackbone
ij = zmsa

ij +Ws→zs
backbone
i +Ws→zs

backbone
j

where Ws→z ∈ RCz×Cs is a projection layer. This is illustrated in Figure 9c.
2In practice, another layer of triangle attention is performed on the columns.
3In practice, another layer of triangle multiplication is performed on the columns.
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Module / Operation FLOPs

Backbone / MSA Module
Pair Update

Triangle Attention
Matrix Multiply 8L3Cz

Projection 20L2C2
z

Triangle Multiplication
EinSum 4L3Cz

Projection 24L2C2
z

Pair FFN 24L2C2
z

Sequence Update
Sequence Attention (with Pair Bias)

Matrix Multiply 4L2Cs

Projection 10LC2
s

Sequence FFN 24LC2
s

Diffusion Transformer
Attention (Pair Bias) – Matrix Multiply 4L2Ca

Attention (Pair Bias) – Projection 10LC2
a

Sequence FFN 16LC2
a

Full Modules
MSA Module RDm (12L3Cz + 68L2C2

z )
Pairformer RDp (12L

3Cz + 68L2C2
z + 4L2Cs + 34LC2

s )
Structure Module M Dd (4L

2Ca + 26LC2
a)

Table 2: Breakdown of FLOPs in AlphaFold3 architectural components. Variables: L =
max_tokens, Cz = token_z, Cs = token_s, Ca = 2 × token_z, R = recycles,
Dp = pairformer_depth, Dm = msa_depth, Dd = diffusion_depth, M =
multiplicity.

B FLOPS CALCULATIONS

Our biomolecular structure predictor uses a multi-resolution transformer that denoises atom coordi-
nates at both the token and heavy-atom levels (see Figure 2). In this design, a backbone refines token
representations, which are then processed by a conditional diffusion transformer. The backbone runs
once per sequence, while the diffusion transformer can generate arbitrarily many samples.

In Table 2, we present the mathematical FLOP calculations for each component, and in Table 6 we
report the total training and inference FLOPs for all model architectures.

Boltz-1 Hyperparameters The Boltz-1 architecture is defined by several key components and hyper-
parameters that influence its performance. We identify the following set of critical hyperparameters:

• Input: The input layer is defined by the number of input tokens (L), the single token
dimension (Cs), and the pair token dimension (Cz).

• Feature extractor: The feature extractor consists of pairformer and MSA blocks that
process single and pair representations; its configuration is determined by the number of
pairformer blocks Dp, MSA blocks Dm.

• Diffusion model: The diffusion model is a transformer architecture made up of Multi-Head
Attention (MHA) transformer layers. Its configuration is determined by the number of
diffusion blocks (Dd) and the widths of its layers Ca. We adopt Ca = 2Cz .

Feature extractors. The feature extractors is a concatenation of Dm MSA blocks and Dp pairformer
blocks. Each pairformer block primarily consists of two parallel update paths: the pair representation
path and the single representation path (see Figure 10). Each path is further processed by a FFN.
The pair representation path includes two triangular self-attention updates (applied row-wise and
column-wise) and two triangular multiplication updates. These are analogous to axial attention
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Table 3: Pairmixer ablations experiments. Default settings are marked in grey. See Section C.1 for
details. Dp: number of pairmixer layers. Dd: number of diffusion transformer layers.

(a) FFN Hidden Dimension
dim lDDT DOCKQ>0.49 lDDTPLI RMSD<1

256 0.71 0.38 0.50 0.34
512 0.71 0.42 0.50 0.33
1024 0.74 0.40 0.53 0.35

(b) Triangle Mul Dimension
dim lDDT DOCKQ>0.49 lDDTPLI RMSD<1

64 0.71 0.41 0.50 0.34
128 0.71 0.42 0.50 0.33
256 0.73 0.42 0.52 0.37

(c) Mixing Method
mixer lDDT DOCKQ>0.49 lDDTPLI RMSD<1

FFT 0.66 0.34 0.45 0.27
AvgPool 0.69 0.35 0.48 0.31
TriMul-rows 0.70 0.35 0.49 0.32
TriMul-both 0.71 0.42 0.50 0.33

(d) Diffusion Transformer Depth
Dp Dd lDDT DOCKQ>0.49 lDDTPLI RMSD<1

12 12 0.73 0.43 0.52 0.34
24 24 0.75 0.45 0.54 0.40

mechanisms (Ho et al., 2019) operating over an L×L pair matrix, where each attention pass involves
computations along one length-L dimension for each of the L rows or columns.

Each pair of triangular attention pass incurs a computational cost of O(8L3Cz) FLOPs. The triangle
multiplication einsum operations require a quadratic FLOPs term per input token (total FLOPs
of 4L3Cz). Following the triangle updates, a feed-forward network (FFN) is applied to each pair
representation entry. The single representation path also contributes to the computational load, but its
cost is quadratic in L.

Each MSA block is lighter than the full pairformer blocks and consists of a pair of triangular attention
layers and a pair of triangular operations, followed by a FFN network for pair representation FFN
(Cz), but without a single representation FFN and attention with pair bias. It also includes an
additional OuterProductMean and pair-weighted averaging on the MSA, which we omit from our
FLOPs calculations.

Diffusion Model. Each diffusion module block resembles a standard transformer block with a
standard self-attention mechanism and a conditioning block. As with the trunk block analysis,
we ignore bias terms, gating, and layer normalization for simplicity. We also ignore the cost of
Atom Attention Encoder and Atom Attention Decoder that run on atoms, since those modules adopt
sequence-local attention (Wohlwend et al., 2024) and their computational cost is negligible. The
conditioned transition block of the diffusion model is dominated by dense matrix multiplications
that scale quadratically with the hidden size Ca. The bulk of the compute arises from the SwiGLU
feed-forward pathway, which contributes both a pair of linear projections (4C2

a) and the associated
activation matmul (2C2

a). In addition, cross–path transformations are introduced via the a→ b
and b→ a projections (each 2C2

a), followed by an output projection (2C2
a). Finally, the gating

mechanisms for both the a and b streams contribute another 2C2
a apiece. The total FLOPs per

structure block can therefore be approximated as the sum of the attention, MatMuls, and feed-forward
components (see Table 2).

C RESULTS

C.1 ABLATIONS

Triangle Multiplication vs. Feed-Forward Network We aim to understand how the performance
is affected by the triangle multiplication and pair feed-forward networks, the two core ingredients
of the Pairmixer architecture. In Table 3a and Table 3b, we vary the hidden dimensions of these
components to evaluate model’s sensitivity. For the FFN, we change the hidden dimension that the
model expands to. For triangle multiplication, we instead project the features into higher- or lower-
dimensional spaces before the multiplication and then project them back to the input dimension. We
find that decreasing the FFN hidden dimension does not change performance much, while doubling
the FFN dimension increases the mean lDDT from 0.71 to 0.74. We see a similar trend with triangle
multiplication dimensions – doubling the hidden dimension improves the mean lDDT from 0.71 to
0.73, while reducing the dimensionality does not change lDDT. Other mixing methods. Triangle
multiplication mixes features within the z ∈ RL×L×D pair representation. In Table 3c, we replace
this operation with alternative, simpler mixing functions. First, we ablate the outgoing triangle
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multiplications, retaining only the incoming variant. Second, we introduce an FFT mixer that applies
the discrete Fourier transform along rows and columns, following FNet (Lee-Thorp et al., 2021).
Finally, we test a pooling mixer that averages representations across each row (and column) and adds
the result back to all positions along the corresponding axis.

We find that these simplified approaches are insufficient and underperform compared to vanilla
triangle multiplication. For instance, the FFT mixer likely fails because it mixes features solely based
on sequence position, ignoring discontinuities introduced by multiple chains.
Diffusion Module The diffusion module takes the latent representations as input and decodes the
3-dimensional protein structure using a 24-layer transformer. In Table 3, we evaluate how sensitive
the Pairformer and Pairmixer architectures are to the size of the diffusion module.

C.2 SYSTEM-LEVEL COMPARISONS ON THE CASP15 DATASET

We report results on the CASP15 dataset in Table 11. These numbers differ slightly from Table 5
because we further filter proteins to ensure all methods are evaluated on the same set.

Mean LDDT
(n=66)

DockQ > 0.23
(n=13)

Mean LDDT-PLI
(n=12)

L-RMSD < 2Å
(n=12)
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CASP15 Performance
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Chai-1 oracle
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Boltz-1 oracle
Boltz-1 top-1

Pairmixer (Ours) oracle
Pairmixer (Ours) top-1 *

Figure 11: System-level comparison on the CASP15 test set. We evaluate against AlphaFold3, Chai-
1, and Boltz-1 on protein and small-molecule structure prediction. Pairmixer performs competitively
with these state-of-the-art approaches. Error bars denote bootstrapped 95% confidence intervals.
∗Since we do not train a confidence model, results are reported using the first prediction.

C.3 HEAD-TO-HEAD COMPARISONS BETWEEN PAIRMIXER AND PAIRFORMER

In Figure 12, we show the performance of Pairmixer and Pairformer on the Boltz RCSB test set. We
find that the model’s performance is fairly correlated, indicating that the models have learned similar
representations.

C.4 FULL BIOMOLECULAR STRUCTURE PREDICTION RESULTS

Table 4 and Table 5 report the full set of evaluation metrics across all architectures, along with the
number of complexes evaluated by each metric. In the main paper, we compare with a reproduction
of Boltz-1 for our Pairformer baselines, while here we additionally include comparisons against the
public checkpoint.

D TRAINING HYPERPARAMETERS

Table 6 includes a thorough list of the hyperparameters used for our experiments. This table
additionally includes the training FLOPs for all model architectures and sizes.

E MATCH3 TASK

The Match3 task as defined here is a binary classification task, where given a sequence x ∈ [M ]N for
some sequence length N and positive integer M the model must predict 1 if the sequence contains
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Figure 12: Head-to-head comparison between Pairmixer and the Pairformer backbone. The
win rate shows how often the Pairmixer architecture achieves a better score than the Transformer
architecture. In 89% of cases, the two models’ lDDT scores differ by less than 5 points.

Table 4: Model Performance on the Boltz RCSB test set. The metric is computed on the best-
performing protein out of five samples (oracle).

Architecture Epoch GPU-Days lDDT DOCKQ>0.23 DOCKQ>0.49 lDDTPLI RMSD<1 RMSD<2

(n=539) (n=342) (n=342) (n=250) (n=250) (n=250)

Small
Transformer 68 86 0.68 0.51 0.35 0.47 0.32 0.43
Pairformer (Boltz-1) 68 125 0.74 0.58 0.44 0.52 0.37 0.48
Pairmixer (Ours) 68 98 0.73 0.59 0.44 0.51 0.33 0.45

Medium
Transformer 68 128 0.67 0.50 0.36 0.47 0.33 0.46
Pairformer (Boltz-1) 68 194 0.75 0.60 0.47 0.53 0.36 0.49
Pairmixer (Ours) 68 146 0.76 0.60 0.46 0.54 0.40 0.53

Large
Transformer 68 173 0.69 0.51 0.37 0.48 0.33 0.46
Pairformer (Boltz-1) 68 290 0.76 0.61 0.49 0.54 0.41 0.52
Pairmixer (Ours) 68 192 0.75 0.61 0.46 0.55 0.38 0.51

Large Phase 2
Transformer 20 232 0.70 0.53 0.38 0.51 0.35 0.48
Pairformer (Boltz-1) 20 421 0.78 0.64 0.50 0.57 0.44 0.54
Pairmixer (Ours) 20 269 0.78 0.63 0.49 0.57 0.45 0.55

Boltz-1 public model
Pairformer (Boltz-1) - - 0.79 0.64 0.51 0.58 0.46 0.57

a triple {xi, xj , xk} for i, j, k distinct such that xi + xj + xk ≡ 0 mod M . In this task, we set
N = 16 and M = 64. Models are constructed with a hidden dimension of size 8 and also include
embedding and final projection layers to map representations to the appropriate dimensionality. This
ensures that parameter count between architecture types is comparable, varying from 900 for the
2nd-order attention layer to 1100 for the triangle multiplication layer. We max-pool over tokens to
construct the model’s final classification logits. Each model is trained and tested on a balanced set of
positives and negatives for this task.

We observe that all model architectures do poorly on very data-constrained regimes, but as data and
depth increase, the standard transformer architecture lags behind in performance Figure 13. The
triangle multiplication layer is effective at learning this task quickly, outpacing the 3rd-order attention
methods, which have the same asymptotic computational complexity with respect to sequence length.
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Table 5: Model Performance on CASP15 test set. The metric is computed on the best-performing
protein out of five samples (oracle).

Architecture Epoch GPU-Days lDDT DOCKQ>0.23 DOCKQ>0.49 lDDTPLI RMSD<1 RMSD<2

(n=66) (n=14) (n=14) (n=12) (n=12) (n=12)

Small
Transformer 68 86 0.35 0.22 0.17 0.21 0.06 0.10
Pairformer (Boltz-1) 68 125 0.39 0.46 0.24 0.36 0.10 0.21
Pairmixer (Ours) 68 98 0.37 0.39 0.21 0.35 0.06 0.16

Medium
Transformer 68 128 0.35 0.19 0.16 0.27 0.04 0.15
Pairformer (Boltz-1) 68 194 0.38 0.66 0.35 0.39 0.14 0.23
Pairmixer (Ours) 68 146 0.39 0.49 0.39 0.38 0.12 0.24

Large
Transformer 68 173 0.36 0.29 0.16 0.26 0.06 0.10
Pairformer (Boltz-1) 68 290 0.41 0.68 0.43 0.37 0.12 0.31
Pairmixer (Ours) 68 192 0.38 0.50 0.35 0.34 0.12 0.23

Large Phase 2
Transformer 20 232 0.37 0.34 0.17 0.26 0.11 0.11
Pairformer (Boltz-1) 20 421 0.42 0.64 0.43 0.36 0.10 0.28
Pairmixer (Ours) 20 269 0.41 0.52 0.36 0.34 0.14 0.31

Boltz-1 public model
Pairformer (Boltz-1) - - 0.4 0.68 0.43 0.45 0.23 0.42

Figure 13: Comparison between architecture variants on Match3. We show the classification
accuracy on in-distribution Match2 tasks as a function of the amount of training data and the model
depth.
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Table 6: Hyperparameters of the Boltz1 diffusion protein model. Dashes (-) indicate that the value
is the same as the previous column. The large model uses a multi-stage training approach: first with
smaller crops and mixed data, second with larger crops and PDB-only data.

Hyperparameter Small Medium Large Stage 1 Large Stage 2

Model Architecture

Number of Backbone Layers 12 24 48 48
Number of MSA Layers 4 - - -
Token representation dim (Cs) 384 - - -
Pair representation dim (Cz) 128 - - -
Backbone dropout 0.25 - - -
MSA Module dropout 0.15 - - -
Number of Diffusion Layers 6 24 24 24
Atom representation dim 128 - - -
Atom pair representation dim 16 - - -

Training

Optimizer Adam - - -
Maximum learning rate 1.8× 10−3 - - -
Diffusion multiplicity 16 - - -
Recycling 0-3 - - -
Epochs 68 68 68 20
Training Samples 6.8M 6.8M 6.8M 2M

Data Processing

Data source PDB + OpenFold - - PDB
Maximum tokens 384 384 384 512
Maximum atoms 3,456 3,456 3,456 4,608
Maximum MSA sequences 2,048 - - -
Samples per epoch 100,000 - - -
Total Batch size 128 - - -

Inference

Number of sampling steps 200 - - -
Maximum MSA Sequences 4096 - - -
Recycling 10 - - -
Diffusion samples 5 - - -

Training Infrastructure

GPU Type H200 - - -
Number of GPUs 32 32 32 64

Total Training FLOPs

Pairformer 8.306e+19 1.467e+20 2.707e+20 1.572e+20
Pairmixer 4.817e+19 8.557e+19 1.572e+20 8.716e+19
Transformer 5.784e+18 7.888e+18 8.941e+18 4.205e+18

Inference FLOPs

Boltz1 9.100e+15 1.595e+16 2.964e+16 -
PairMixer 4.474e+15 7.849e+15 1.460e+16 -
Transformer 4.137e+14 4.975e+14 6.652e+14 -
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Figure 14: Pairmixer Performance under different sparse triangle multiplication variants. The
model is trained with standard triangle multiplication and evaluated under various dropout conditions.
While performance degrades rapidly under random dropout, it remains stable when low-norm entries
in the triangle multiplication are zeroed out.

F SPARSITY IN TRIANGLE MULTIPLICATION

Modern structure predictors employ triangle attention and triangle multiplication within the pair rep-
resentation to capture geometric relationships among residue triplets. While triangle attention allows
the model to reason sparsely over interacting residues, triangle multiplication densely aggregates
features across the entire sequence. However, our analysis shows that triangle multiplication also
efficiently captures sparse geometric relationships among residue triplets by adjusting the magnitudes
in the pair representations.

We explicitly sparsify triangle multiplication by introducing dropout during inference. Formally,

TriMulWithDropout(z)ij =

L∑
k=1

(Wazik)⊙ (Wbzjk) ·M(zik)M(zjk)︸ ︷︷ ︸
new dropout masks

where M(zij) ∈ {0, 1} determines whether a particular interaction is active. In random dropout with
dropout rate γ ∈ [0, 1], the masks are sampled independently as M(zik),M(zjk) ∼ Bernoulli(1−γ).
Each term is retained only if both corresponding masks are active, resulting in a higher effective
dropout rate.

We experiment with a low-norm dropout scheme, where the probability of retaining an interaction
(i, j) depends on the magnitude of its pair representation ∥zij∥. With dropout rate γ ∈ [0, 1],

M(zik) =

{
1, if k ∈ Top1−γ({∥zil∥}Ll=1)

0, otherwise.

where the features with the γ smallest magnitudes are dropped out.

Figure 14 shows the performance of the model where both dropout schemes are applied to every
layer with γ = 0, 0.10, 0.25, 0.50, 0.75. We observe that performance starts to degrade rapidly once
the random dropout rate exceeds 25%, indicating that the model is not robust to random removal
of interactions. However, the performance is very similar under the low-norm dropout of 75%.
This suggests that, like attention, triangle multiplication identifies and processes a small subset of
interactions that are essential for accurate folding of biomolecular complexes.

To probe which interactions the model relies on in its sparse representations, we evaluate it using a
local block-dropout scheme. For block size B, we retain interactions only within a local window:

M(zik) =

{
1, if |i− k| ≤ B

0, otherwise.

We assess several values of B in Figure 15. Even at B = 512 performance starts to degrade, and at
B = 256, the drop is substantial. This indicates that triangle multiplication updates features primarily
through sparse, long-range interactions.
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Figure 15: Pairmixer Performance under blockwise dropout. The model is trained with standard
triangle multiplication and evaluated under a local blockwise triangle multiplication. Performance
quickly degrades even for local metrics like lDDT.

G ADDITIONAL EVALUATION ACROSS DIVERSE TASKS

We evaluate Pairmixer across multiple benchmark datasets in Table 7.

Protein-ligand complexes. We evaluate performance on protein–ligand complexes using the Pose-
Buster benchmark. The original PoseBuster dataset contains 428 complexes. After applying a
training-date cutoff of September 30, 2021, 373 complexes remain. After deduplicating redundant
protein–ligand complexes, we are left with 298 structures in the benchmark. Metrics include RMSD <
2 Å, RMSD < 1 Å, and protein–ligand lDDT. Under this setup, we find that Pairmixer performs com-
parably to Pairformer, with at most a 1% drop in performance, while the architecture is dramatically
simpler and more efficient, requiring no attention in the backbone.

Antibody–antigen complexes. We extract the relevant chains from the antibody–antigen dataset
in AlphaFold-3 paper. Of the 71 complexes, 70 pass our data pipeline. We evaluate the Pairformer,
Pairmixer, and Transformer models trained to the same number of iterations using the DockQ >
0.23 metric in Table 7b. We find that Pairmixer matches the performance of Pairformer, while the
sequence-only Transformer clearly lags.

Protein–nucleic acid and RNA-only complexes. Next, we consider the protein–nucleic acid dataset
from the AlphaFold-3 paper. Of the 199 structures, 172 pass the pipeline. We further extract 27
RNA-only structures. For RNA-only complexes we report lDDT in Table 7d, and for protein–nucleic
acid complexes we report Interface Contact Similarity (ICS) and Interface Patch Similarity (IPS)
in Table 7c. On protein–nucleic acid complexes, Pairmixer performs on par with Pairformer, with
the Transformer performing slightly worse. On RNA-only structures, Pairmixer again performs
comparably to Pairformer, while the Transformer performs slightly better, likely due to the limited
availability of RNA structural training data. Notably, Pairmixer achieves performance comparable to
Pairformer despite removing sequence attention in the trunk.

Table 7: Evaluation results across diverse biomolecular structure prediction tasks.
Number of test samples in parenthesis.

(a) PoseBusters (298)
Method RMSD<2 RMSD<1 lDDTPLI

Pairformer (Boltz-1) 0.682 0.456 0.737
Pairmixer (Ours) 0.672 0.449 0.733

(b) Antibody–Antigen Complex (70)
Method DOCKQ>0.23

Pairformer (Boltz1) 0.23
Pairmixer (Ours) 0.23
Transformer 0.08

(c) Protein–Nucleic Acid Complex (172)
Method ICS IPS
Pairformer (Boltz1) 0.50 0.65
Pairmixer (Ours) 0.51 0.66
Transformer 0.48 0.64

(d) RNA Structure (27)
Method lDDT
Pairformer (Boltz1) 0.58
Pairmixer (Ours) 0.59
Transformer 0.61
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H PAIRFORMER MODULE ABLATIONS

We performed ablation experiments on a small Pairformer model to isolate the contributions of
triangle multiplication, triangle attention, and sequence updates in Table 8. The results show that,
under a short training schedule of 60 epochs (3M samples), both triangle multiplication and triangle
attention are essential for performance, while sequence updates have minimal impact. Notably,
Pairmixer recovers performance with additional training.

Table 8: Pairformer Ablation. We remove each module in the Pairformer one at a time.

Ablation GPU days lDDT DOCKQ>0.23 lDDTPLI RMSD<2

- 82 0.74 0.57 0.52 0.50
No Seq Update 80 0.73 0.57 0.54 0.49
No Tri Att 66 0.70 0.55 0.50 0.48
No Tri Mul 71 0.70 0.53 0.49 0.46

I ADDITIONAL ANALYSIS

We rigorously evaluate the model across a variety of experimental settings and protocols to assess its
performance under different conditions.

Distogram Performance. To isolate the backbone’s contribution and remove the influence of the
diffusion module, we assess the 64-bin distogram accuracy on the RCSB test set, both for the full
system and between chains. We also report precision metrics for contact prediction (Moult et al.,
2014). Across all metrics, Pairmixer performs on par with Pairformer, indicating that intermediate
backbone features are equally informative for both models.

Table 9: Distogram Prediction Performance.

Method Top-1 Acc Top-5 Acc Inter-Chain Top-1 Acc Inter-Chain Top-5 Acc

Pairformer (Boltz-1) 0.74 0.89 0.67 0.73
Pairmixer (Ours) 0.73 0.88 0.67 0.73
Transformer 0.72 0.86 0.67 0.72

Method Short Medium Long
P@L P@L/5 P@L P@L/5 P@L P@L/5

Pairformer (Boltz-1) 0.72 0.75 0.72 0.76 0.73 0.81
Pairmixer (Ours) 0.72 0.75 0.72 0.76 0.73 0.80
Transformer 0.69 0.72 0.69 0.74 0.70 0.79

Recycles. We evaluate all models using 0, 1, 3, and 10 recycling steps to ensure that Pairmixer does
not simply perform well due to a greater benefit from recycling. We report Pairformer, Pairmixer and
Transformer results in Table 10. We find that all models perform slightly worse with 0 recycles, and
performance improves as the number of recycles increases. The trends are consistent across models,
indicating that Pairmixer effectively learns features across multiple recycling steps.

MSA Depth and Sequence Length. We investigate whether the strong performance of Pairmixer
occurs only on “easy” examples, such as proteins with few residues or very deep MSAs. To test this,
we stratify the RCSB test set by sequence length and MSA depth, and compare the performance
of Pairformer, Pairmixer, and the Transformer in Figure 16. As expected, accuracy decreases for
longer sequences and shallower MSAs, but this trend holds across all models. Importantly, Pairmixer
performs comparably to Pairformer across all levels of data difficulty.

J LLM USAGE

LLM have been used to refine the prose of the writing, to improve the clarity of the text, and to help
with formatting in latex.
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Table 10: Impact of Recycling Steps. Performance increases but quickly saturates.

Architecture Recycles lDDT DOCKQ>0.23 lDDTPLI RMSD<2

Pairformer (Boltz-1) 0 0.75 0.59 0.55 0.53
Pairformer (Boltz-1) 1 0.77 0.59 0.58 0.56
Pairformer (Boltz-1) 3 0.78 0.62 0.57 0.55
Pairformer (Boltz-1) 10 0.78 0.64 0.57 0.54

Pairmixer (Ours) 0 0.74 0.59 0.54 0.52
Pairmixer (Ours) 1 0.76 0.61 0.56 0.56
Pairmixer (Ours) 3 0.77 0.61 0.56 0.54
Pairmixer (Ours) 10 0.78 0.63 0.57 0.55

Transformer 0 0.62 0.40 0.48 0.47
Transformer 1 0.67 0.49 0.51 0.48
Transformer 3 0.70 0.52 0.52 0.49
Transformer 10 0.70 0.53 0.51 0.48
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(a) Performance stratified by MSA depth.
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(b) Performance stratified by sequence length.

Figure 16: Performance across different data difficulty metrics. Pairmixer maintains comparable
performance to Pairformer across all bins.
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