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Abstract

Recent large reasoning models such as DeepSeek-R1 exhibit strong complex
problems solving abilities by generating long chain-of-thought (CoT) reasoning
steps. It is challenging to directly train small language models (SLMs) to emerge
long CoT ability. Thus, distillation becomes a practical method to enable SLMs for
such reasoning ability. However, the long CoT often contains a lot of redundant
contents (e.g., overthinking steps) which may make SLMs hard to learn considering
their relatively poor capacity. To address this issue, we propose a simple-yet-
effective method to prune unnecessary steps in long CoT, and then employ an
on-policy method for the SLM itself to curate valid and useful long CoT training
data. In this way, SLMs can learn more efficient long CoT reasoning and preserve
competitive performance at the same time. Experimental results across a series of
mathematical reasoning benchmarks demonstrate the effectiveness of the proposed
method in distilling long CoT reasoning ability into SLMs, maintaining competitive
reasoning performance while significantly reducing redundant reasoning steps.

1 Introduction

Chain-of-thought (CoT) prompting has become the
de-facto technique for eliciting multi-step reasoning
in both large and small language models [22] 23] 21]].
Recent breakthroughs such as OpenAl’s ol [15],
DeepSeek-R1 [5)], and Kimi-k1.5 [20] show that
lengthening the CoT trace can further unlock rea-
soning performance on challenging tasks. While
these efforts extend the boundaries of what LLMs
can achieve, they also introduce new challenges to
small language models (SLMs) with about 7B param-
eters which often use distillation methods to learn
such long CoT reasoning [} i4].

While long CoT is necessary in scaling the perfor-
mance of reasoning, its increasing length introduces
significant computational inefficiency. The generated
long CoT traces often contain many redundant rea-
soning steps even to the very simple question such as

Question: 1+1=7?
Answer: 2

DeepSeek-R1

<think>Okay, let's see. The user is asking what 1 plus 1 equals -
(82 tokens omitted)
That would mean 1 + 1 equals 2.

But wait, could there be a different context -+

(89 tokens omitted)

Is there any scenario where 1 + 1 doesn't equal 22 -
(51 tokens omitted)

Another angle: could this be a trick question involving units? -+
(33 tokens omitted)

Maybe the user is testing if | can recognize--

(35 tokens omitted)

Just to recap - (25 tokens omitted)

Therefore, the answer should be 2.

</think>

In ari 1and 1resultsin 2 -+
(39 tokens omitted)

I can provide further details!

ic, adding the

Figure 1: Example of redundant reasoning to
a simple question by DeepSeek-R1 [5]

“1+1=?”, as shown in Figure[I] Those redundant reasoning steps may not only bring unnecessary

* Equal contribution.
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computation burden during test time, but also affect the reasoning performance [[19, (1, 24} [11].
Moreover, long CoT with redundant reasoning steps can make barriers to the distillation process,
since SLMs have relatively poor capability and generalization to such complex and lengthy reasoning
pattern.

Existing works propose to use heuristic rules such as minimum reasoning length with correct final
answer [2]], design length based rewards for reinforcement learning [[1}127,26], or advanced prompting
methods [24} 13} 125] 16} [14]. However, these methods either rely on re-designing the rewards during
reinforcement learning which is often less effective than direct distillation from larger reasoning
models [5}!4] and requires more computation resources, or do not consider the target SLM’s reasoning
ability when selecting the long CoT training data. This leads to the question: How can CoT traces
generated by large reasoning models be efficiently distilled into SLMs?

In this paper, we first observed that SLMs may not need to learn the entire CoT reasoning process,
but rather focus on the essential reasoning steps that lead to the correct answer. Then, we propose a
simple binary cutting method to prune redundant reasoning steps in the long CoT, which searches
the shortest concise CoT steps that lead to the correct answer while maintaining acceptable search
complexity. Further, we introduce an on-policy distillation method to help the aforementioned search
method find tailored long CoT steps for the target SLM. Finally, we use those pruned long CoT data
to fine-tune the target SLM with supervised fine-tuning (SFT) and direct preference optimization
(DPO) [17]. In summary, our contributions are three-fold:

1) We observed that long CoT data generated by large reasoning models often contains unnec-
essary reasoning steps, which can be harmful for direct distilling into SLMs.

2) We propose a simple yet effective method to prune redundant reasoning steps in long CoT,
which uses binary cutting for efficiently searching and on-policy validation that tailors to
the target SLM’s own capability.

3) Experiments and analysis demonstrate the effectiveness of our method in enabling SLMs
with efficient long CoT reasoning, which significantly reduces generating redundant reason-
ing steps while preserving performance.

2 Method

2.1 Background

Large reasoning models (e.g., DeepSeek-R1) are capable of generating long CoT reasoning steps to
solve complex problems. However, these models usually produce excessive reasoning steps, where
many of them are devoted to repeatedly verifying or reconfirming the correctness of an already correct
answer. This behavior leads to unnecessarily long outputs and may also be harmful for the reasoning
performance [11]].

The goal of this paper is to enable open-source SLMs to take advantage of long CoT reasoning ability
while maintaining efficiency. To achieve this, most of existing works introduce length based penalties
into the reward function [1, 26} [2'7]], then train SLMs with similar reinforcement learning adopted by
DeepSeek-R1 [5]. However, this approach is often less effective than direct distillation from larger
reasoning models [5] in terms of both performance and training efficiency. Thus, we choose to search
segments of the long CoT reasoning that meet two constraints: (1) valid, it should be sufficient for
the target SLM to generate the correct final answer, and (ii) efficient, it should be as short as possible
to maximize efficiency. Then, we can use those long CoT segments to fine-tune the target SLM to
achieve efficient long CoT reasoning.

In the following sections, we will first present the curation of streamlined long CoT data which
includes the proposed binary cutting method and on-policy validation method, and then detail the
fine-tuning process for the target SLM. The whole framework is illustrated in Figure ??.

2.2 Streamlining Long CoT
2.2.1 Response Sampling

In this paper, we investigate the long CoT data generated by DeepSeek’s R1, where a model response
typically contains two parts: (1) an intermediate reasoning (i.e., long CoT) segment enclosed in



<think>...</think> tags, and (2) a summary segment that delivers the final answer. And individual
reasoning steps are naturally separated by two consecutive line breaks “\n\n" [5]].

As shown in Figure ??, to collect such data, we adopt simple response sampling from DeepSeek R1:
for an input question @), a full response R is the concatenation of the intermediate reasoning part 7'
and the final-answer summary. We define a reasoning step s as a single unit (delimited by “\n\n"),
yielding T = [s1, . .., 8,]. Together with the ground-truth answer A for the input question @), this
gives the original datasets Dogigina = {(Qs, 15, A} . Our goal is, for each data i, to search and
extract a contiguous subsequence of steps 77/ - [sj, ..., sk) that maximizes reasoning efficiency
(reducing unnecessary steps) while guaranteeing that the generated final answer remains correct.

2.2.2 Binary Cutting

Previous work [2]] proposes First-Correct Solutions (FCS), which truncates the reasoning process to
the minimal prefix yielding a correct answer. FCS requires checking every prefix TH% = [sq, ..., s1]
for k = 1,...,n. While this linear search requires O(n) complexity, an unconstrained search over
all 2" subsequences would be intractable and break the reasoning chain’s coherence. To maintain
contiguity yet improve efficiency, we likewise restrict our search to prefixes, but replace the linear
search with a binary cutting strategy. This reduces the computation complexity to O(log, n) while
still guaranteeing the discovery of the minimal valid prefix. Specifically, at each iteration we compute
m = | (low + high) /2], truncate the original reasoning chain T = [s1, ..., s,] to the prefix T"™,
and invoke the validation function ¢(Q, 7™, A) which decides whether the segment is good and
valid. If the prefix still yields the correct answer (¢ = 1), we update best <— 7™ and set high < m
to search even shorter prefixes. However, if the prefix fails to yield the correct answer (¢ = 0),
we introduce a backtracking mechanism to recover the last valid prefix: resetting low to the last
mid-point and perform a binary search upward toward n, computing m = [(low +n)/ 2} at each step
until ¢ returns true again. The proposed binary cutting method with backtracking mechanism first
aggressively cutting, which guarantees that the selected steps form a contiguous prefix, and recovers
any essential steps that might have been over-pruned. In contrast, as 61.83% of the samples contain
the answer in the last 10 steps, cutting from the beginning is not effective for SLM training. This
approach effectively reduces the search space and time complexity to O(log, n), while ensuring that
the selected reasoning steps are both valid and efficient.

2.2.3 On-Policy Validation

Existing pruning methods such as FCS assume a single “oracle” validation criterion, typically
provided by an additional judge model, to judge whether a truncated CoT remains correct. However,
this ignores the fact that different SLMs exhibit distinct reasoning biases and strengths. To generate
training data that is tailored to the target SLM’s own inductive preferences, we let the SLM M itself
serve as the validator in an on-policy paradigm. Specifically, we construct a specialized prompt
Ppolicy (see Figure 22, part (2)) which asks model M to produce the final answer given only the
question () and a candidate prefix 7%*. We then can define the validation function ¢:

&(Q, TV*, A; M) = 1{ My(Q, T"*, Pporicy) = A}. (1)

During binary cutting, each prefix is accepted only if ¢ = 1 under M. By relying on the target
model’s own outputs rather than an external judge model, we ensure that the distilled CoT segments
align with the SLM’s native reasoning capacity. This on-policy mechanism overlooked by prior
methods yields a more coherent long CoT segment, since each retained prefix is one that the SLM can
already interpret correctly. The whole method for streamlining long CoT is illustrated in Appendix ??.
See Appendix [C] for the full on-policy prompt.

2.3 Fine-tuning SLM

After applying binary cutting and on-policy validation methods, we obtain a distilled dataset Dyg;sin =
{(Qs, R;, Y;)} Y|, where R is the original whole response, and Y is the pruned concise response
containing the pruned thinking part and the final response part. We can use this dataset Dy;giy to
fine-tune SLM to learn efficient long CoT reasoning via supervised fine-tuning (SFT) and direct
preference optimization (DPO) [17].



2.3.1 SFT Training

The most straightforward approach to leverage the obtained distilled data is to apply SFT training on
the target model. Given the distilled dataset Dy, the target SLM M is fine-tuned to maximize the
likelihood of the pruned reasoning R conditioned on the input question () as follows:

Lser = —E(Q,v)~ Dy 108 M (Y|Q). ()

After training, the SLM is expected to generate more concise and efficient reasoning steps while
maintaining the correctness of the final answer.

2.3.2 DPO Training

To help the target model better distinguish between “good” and “bad” reasoning steps, we can
leverage preference learning methods such as DPO to further fine-tune the model. Here, “good” refers
to the pruned response with concise reasoning steps, while “bad” refers to the original response with
redundant reasoning steps. The DPO training objective can be formulated as follows:

Lppo = _E(Q,R,Y)dimn
M(Y|Q) M(R|Q 3)
[log.r (108 5y — 8108 sy )|

where o (x) denotes the logistic function, 8 = 0.1 is a hyperparameter of DPO, and M,y is the frozen
reference model typically the SLM after SFT training. Thanks to the significant difference between
two responses R and Y in terms of the response length, the DPO training can effectively help the
target SLM to learn the preference of concise reasoning steps over redundant ones.

3 Experiments

3.1 Experimental Setup

Datasets. To evaluate not only the reasoning performance but also the efficiency of long CoT
reasoning, we benchmark SLMs on three mathematical reasoning datasets of increasing difficulty:
GSMBSK [3], MATH [7], and AIME [10]. GSMS8k is a primary school level mathematical dataset
requiring basic arithmetic and logic. MATH we used is a widely used subset of original dataset which
contains 500 challenging high school competition-level math problems. AIME consists of extremely
difficult math problems spanning from 1983 to 2025, aiming to test model’s generalization ability.

Models. We conducted experiments mainly on two popular open-source SLMs, Llama-3.1-8B-
Instruct [12]], Qwen2.5-7B-Instruct [16], and Qwen2.5-14B-Instruct [[16], which do not originally
own the long CoT reasoning ability.

Baselines Methods. In experiments, we mainly compare our method with the following baseline
methods: (1) “Base”, using the original SLM, as the baseline performance. (2) “Full”, as described
in Guo et al. [3]], we directly use the original long CoT which may contain redundant reasoning steps
for training, in order to directly show the necessity to remove such redundant steps. (3). “Short
CoT”, using the normal CoT data without scaling length to train the SLM, in order to demonstrate
the effectiveness of scaling CoT. (4). “FCS”, First-Correct Solutions strategy [2] which linearly
search the first occurred segment of long CoT with the correct final answer, in order to demonstrate
the superiority of our method in pruning unnecessary reasoning steps and enhancing long CoT of
SLMs. Following original implementations, we use a LLM Qwen2.5-14B-Instruct [[16] to segment
the thinking part instead of nature line break.

Implementation Details. We use a long CoT data Digina OpenR1-Math-220k [4] EI, which has
220k math problems from NuminaMath 1.5 [8], each paired with two to four long CoT reasoning
generated by DeepSeek-R1 [5]. To form the distilled dataset, we perform binary cutting search with
on-policy validation on the “train” split of this dataset which has about 93.7k samples. During this
process we (1) discard any instance for which the model still fails to reach the correct answer even
when the full chain is provided, (2) remove chains longer than 200 steps, and (3) constrained by

2https://huggingface.(:o/datasf:ts/open—r1/OpenR 1-Math-220k


https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

limited compute resources retain only those whose token count after cutting is below 4,096. After
these filters we obtain the pruned long-CoT set Dy;isinn about 40k samples for training. In most cases,
the target SLM is fine-tuned by SFT training in 3 epochs, and DPO training in 1 epoch, with a
learning rate of 1e — 6. We also observed that DPO alone can reduce the likelihood of the preferred
response; therefore we blend the SFT loss into the DPO objective for stability. The mixing weight is
chosen according to model scale: 0.3 for Llama-7B and Qwen-7B (trained on 5k DPO samples), and
0.1 for Qwen-14B (trained on 10k DPO samples).

Table 1: Main Results. Note that only Base and Short CoT report the full token counts, while all
other methods count only tokens within <think>. . .</think>. The subscripts of Acc and Token
indicate the percentage of decline or rise of the model relative to the model with SFTg,; method.

Model Method ‘ GSMSK MATH AIME
| Ace(%) #Token | Acc(%) #Token | Acc(%) #Token
Base 77.33 173 36.60 374 9.97 505
SFTEun 87.11 1049 58.80 4887 11.15 11190
SFTshort cot 60.0531.1%))  314¢m00%y | 23400602%))  1522(688%)) | 4.82¢68%1) 226979791
Llama SFTkcs 83.93 379y  619u1.0%) 52.44109%y  1587w675%,) | 9.11 183%y) 30497274
SFT+DPOrcs | 87.570s5%1)  598usowy) | 50.20046%))  1392¢715%) | 134000291 — 2135s0.99%)
SFTours ‘ 86.05 (12%)  627402%) ‘ 57.00 319y 372323.8%) ‘ 11.25 o9ty 8623(229%)
SFT+DPOous | 86.20 (1.0%y)  438(ss2%y) | 57.20 279y  2006(s539%,) | 15.433384%1) 50885450
Base 85.75 290 75.00 615 23.15 1504
SFTEu 89.31 1721 74.60 4398 25.29 11412
SFTshort coT 64.6727.6%.) 125927%)) | 4320019 487899 | 13.61us0a) 98791.4%1)
Qwen-T7b SFTrcs 56.63 6% 66001.6%1) | 3940 @20y 10643550 | 17.26 Gra%y)  239979.0%)
SFT+DPOgcs | 78.24(124%))  524@o5%)) | 4940338%)) 19146501 | 21220619  4131638%))
SFTours 89.46 (0.29.1) 856(503%y) | 7520 oswp)  2413usiey) | 24.65 250y 5655(50.491)
SFT+DPOoqur | 87.34 00%))  705s0.0%1) | 72.20 3o%))y  857w0s5%y) | 25.40 4%t 28947469
Base 84.69 256 74.60 730 26.15 1814
SFTEun 92.12 1203 79.20 3950 34.73 10144
Qwen-14b  SFTgcs 88.17 43zl  2477(1059%1) | 6940 (124%,)  6348c07%1) | 20.79 wo1%y  1365134.6%1)
SFTours 92.57 os%1)  654wus6%l) 80.04 (1151 15236149 | 34.62 3%y 10008 (34,
SFT+DPOous | 90.60 (1.6%,) 3097439 83.80 s.8%1)  942016.1%)) | 33.44 Gawy  2382(76.5%y)

3.2 Main Results

Table [T] shows the reasoning performance and efficiency of different methods.

Scaling CoT improves reasoning. All the long CoT based methods including “Full”, “FCS” and
“Ours” surpasses the model with “short CoT”, which validates the effectiveness of scaling CoT length
in mathematical reasoning.

Long CoT contains redundant steps. First, we shot that, for the easy reasoning task GSMS8K, “Full”
requires an average of 1051 tokens for reasoning, while does not show obvious better performance
than other methods which often need less than half of the generation. Figure[3]clearly shows that about
40% long CoT data can be streamlined over 50% redundant reasoning steps by our method. This
supports the perspective that long CoT contains redundant steps especially for the easy tasks. Then,
compared to “Full”, our method significantly decreases the number of generated thinking tokens,
while only slightly decreases the reasoning performance for most cases. For example, our Llama
achieves 54.00% accuracy on MATH after SFT, slightly lower than full long-CoT SFT (54.80%),
while reducing average number of tokens by 29.07%. Qwen model after distillation exhibits a modest
decrease in accuracy compared to “Full” on AIME dataset, that might because Qwen is strong enough
on this dataset as the base model.

Our method achieves efficient long CoT. Compared to the baseline method “Full” and another
long CoT pruning method “FCS”, ours often show better reasoning performance than “FCS”, while
significantly increases the efficiency in long CoT reasoning. We also find that DPO training contributes
the most to reducing the tokens, however, it harms the reasoning performance for hard tasks. We
further stat the results when at the same on-policy condition in Table [/} For two target SLMs,
Llama and Qwen, our method reduces the number of tokens to an average of 61.83% and 50.75%,



respectively. However, the FCS and Random baseline methods retain more tokens, suggesting that
the proposed binary cutting method is both efficient and effective in searching valid segments of long
CoT reasoning. Additionally, We evaluate the impacts of SFT loss weights in Appendix [B1}

4 Analysis

Table 2: Ablation study results.

Model  Method GSMSK MATH AIME
Acc (%) #Token Acc (%) #Token Acc (%) #Token
Qwen-14b SFTours 92.57 654 80.04 1523 34.62 10008
SFTRandom 9045 23%1)  1514a31501)  70.00 1250y 5035030691 2347 32290yy 119290102001

4.1 Ablation Study

We conduct two types of ablation studies to evaluate the effectiveness of design choices of our method,
shown in Table[2] First, we want to show that our binary cutting with backtracking mechanism can
effectively identify redundant reasoning steps instead of randomly deleting. Thus, we introduce
“Random” variant which randomly delete intermediate steps before applying SFT training. From the
results, we can find that random deletion leads to a substantial drop in accuracy across all datasets,
indicating that preserving informative reasoning steps is essential for reasoning. Second, to assess the
role of our on-policy validation, we train Qwen using concise CoT generated by the Llama model.
The performance is clearly inferior to our on-policy method, highlighting the importance of policy
alignment between SLM’s own reasoning capacity and long CoT data. More result on 3b model are
in Appendix[B.2]

In addition, we compare our method with other
reinforcement learning based methods [18|9] for
long CoT reasoning, results are shown in table

Table 3: Comparison with reinforcement learn-
ing based methods on Qwen-7b.

Bl RL methods have shown promise in optimiz-  yjo4el A G%MS#(T L M(;ATI;T s I:‘}IMET .
ing reasoning paths by learning from feedback cc(%) #Tok|Acc(%) #Tok|Acc(%) #To
GRPO-length| 90.60 284 | 7520 804 | 21.22 1656

signals. However, they often require extensive

na . ! ol-Pruner | 90.52 1305| 67.60 5539| 14.15 13623
training and fine-tuning on specn.ic.tasks. In con- SFTon 3046 856 | 7520 2413| 2465 5655
trast, our approach leverages existing long CoT  DPOous 87.34 705 | 7220 489 | 2540 2894

data and focuses on efficient pruning, making it
more adaptable to various SLMs without heavy retraining. Preliminary results indicate that while RL
methods can achieve high accuracy, our method maintains competitive performance with significantly
lower computational overhead.

Question: The sum of the minuend, subtrahend, and difference is 25. Find the minuend. Answer: 12.5

Full Long-CoT

Binary Cutting

{ Okay, so | need to solve this problem where
the sum of the minuend, subtrahend, and
difference is 25 - Let me simplify that. The b
and -b should cancel out. So:a+b+a-b=
25. But since c is the difference, which is a - b,
maybe | can substitute that into the
equation . - Wait, could there be a case where
the difference is negative? --- But let me
confirm with an example ‘- So unless there's a
trick or something I'm missing here, | think
that's the solution ‘- So yeah, the answer is
12.5-:- *+Final Answer** The minuend is 12.5.

# Token: 1968 (High)

{ Okay, 5o | need to solve this problem where

the sum of the minuend, subtrahend, and
difference is 25, and | have to find the
minuend Hmm, let me start by recalling what
those terms mean - So, if we have a
subtraction equation like a - b = ¢, then a is
the minuend, b is the subtrahend, and c is
the difference. The problem says that the
sum of these three numbers is 25. So,a + b +
c = 25. But since c is the difference, which is a
- b, maybe | can substitute that into the
equation.

# Token: 179 (Low)
_ Direct Inference Answer: 25

But since c is the difference, which is a - b,
maybe | can substitute that into the
equation. Let me write that down. Leta
be the minuend, b be the subtrahend, and
¢ be the difference. Then according to the
problem:a-b=c..(l)anda+b+c=

25 ...(2) So, if | substitute equation (1) into
equation (2), replacing ¢ with (a - b), then
equation (2) becomes a + b + (a - b) = 25.
Let me simplify that. The b and -b should
cancelout.Sota+b+a-b=25

# Token: 304 (Medium) _
Direct Inference Answer: 12.5

Figure 2: A case study of streamlining process of long CoT using our method. Underlined parts
are the segments retained after binary cutting and are consistent across all three versions. Red
text indicates steps removed during binary cutting. Green text marks reasoning steps restored in
backtracking.



4.2 Quality of Streamlined CoT

We use GPT-4.1 as a LLM-as-a-Judge to automatically evaluate the quality of CoT reasoning
streamlined by different methods. A reward-based scoring prompt available at Appendix [C]
guides GPT-4.1 to rate each reasoning sample based on its correctness, completeness, concise-
ness and reasoning quality. We report the average scores from GPT-4.1 over 100 randomly
selected examples. At the same time, we conduct human evaluation where annotators are
asked to rank the four long CoT outputs into top-1 choice, middle two choice, and bottom one
choice, based on overall reasoning quality and reasoning conciseness. This ranking scheme
provides a coarse but interpretable assessment of human preference across different methods.
As shown in Table[d] we find that “Full” long CoT achieves

the highest score due to its completeness. Among the other Table 4: LLM judgment and human
three streamlining methods, “Random” strategy performs preference ranking on different long
poorly due to its natureal drawback in logical coherence, CoT data. T, M, B denote top-1,
while FCS receives lower scores in conciseness. Our method, middle-2, bottom-1, respectively.

while less complete than “Full”, achieves better balance  Method LLM T% M% B%

between conciseness and logical consistency in reasoning.

. . . Full 4.89 61 34 5
Human evaluations are generally consistent with the LLM- FCS 420 13 57 30
based evaluation: “Ful'l method is most freguently ranked  po oo 404 > 54 44
at the top one due to its completeness, while our method s 444 24 55 21

receives significantly more top and middle rankings than the
other baseline methods, thanks to its backtracking mechanism and on-policy validation.

4.3 Case Study

Figure 2]illustrates an example of streamlining a long CoT sample by our method with binary cutting
and backtracking mechanism. The original full long CoT can prompt the SLM to infer the correct
answer directly, but it comes with the overthinking issue. After several rounds of binary cutting, the
over-concise CoT is no longer sufficient to make SLM arrive at the correct final answer. We are
surprising to find that in the backtracking stage, our method restores part of previously removed
steps, which successfully guides the SLM to generate the correct answer. More examples are in

Appendix D]

5 Conclusion

In this paper, we tackle the challenge of distilling long CoT reasoning from large reasoning models
into SLMs. To address the issue of redundant Chain-of-Thought (CoT) in LLM reasoning, we propose
a binary cutting algorithm with backtracking, which locates the shortest contiguous prefix of the
original reasoning that still yields a correct final answer in only O(log, n) complexity. Crucially,
we further introduce on-policy validation that uses the target SLM itself as the judge of whether a
truncated segment of reasoning remains valid and useful for generating the final answer, thereby
adapting the distilled data to the SLM’s own reasoning strengths. Extensive experiments on multiple
math reasoning datasets demonstrate that our approach preserves competitive reasoning performance
while significantly reducing the redundant tokens in long CoT reasoning.
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A

Pseudo code

Algorithm 1 Streamlining Long CoT.

Require: Triplet (Q, T, A) where T' = [s1, ..., S,], target model M, Validate function ¢
Ensure: Shortest valid contiguous long CoT segment 7'':

1:
2:
3:

°

10:
: end while
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

AN A

low <+ 1, high <+ n, best« Tt
while low < high do
mid < | (low + high)/2]
T Tl:mid
if (Q,T', A, M) is true then
best < T’
high < mid > can still shorten
else
break > enter backtracking
end if

low < mid, high <+ n > Backtracking: recover any over-pruned steps
while low < high do
mid < [(low + high)/2]
T Tl:mid
if 5(Q,T', A, M) is true then
return 7’ > found minimal valid prefix
else
low < mid+ 1
end if
end while
return best
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B More Experiment Details

B.1 DPO Training Settings

Table 5] presents the hyperparameters used in DPO training under different settings, including loss
weights and data configurations.

Table 5: Experimental results of DPO with different SFT loss weights and data sizes.

Model+Method  SFT,.; 4,/ #Data GSMSK MATH AIME
Acc (%) #Token Acc (%) #Token Acc(%) #Token

0.1/5K 85.97 332 6020 1557 1350 3906
02/5K 86.88 350 5960 1787 1350 4335

Llama-70+DPO 5 5 86.73 386 5620 1887 1318 4726
0.1/ 10K 8500 434 5800 1890 1372 4604
0.2/ 10K 86.66 424 5840 1916 1383 50359
03/ 10K 8620 438 5720 2006 1543 5088
0.1/5K 8650 714 6880 445 1865 1234

Owen-7bsppo 027K 86.43 719 7360 696 2069 2011
03/5K 8734 705 72.20 857 2540 2894
0.1/ 10K 87.41 508 7260 907 2208 3090

B.2 Results on tiny model

After experimenting with the Llama-3.2-3b-instruct, we observed that the proposed method fails. We
attribute this to two main factors: (1) the 3B model’s capacity is too limited, and (2) our training set is
insufficient—only about 40 k effective examples are available. Detailed results are shown in Table [6]

Table 6: 3b model results. We also conducted experiments on Llama-3.2-3b-instruct

Model  Method GSMBK MATH AIME
Acc (%) #Token Acc(%) #Token Acc(%) #Token
Llama3p Base 67.85 158 40.00 442 16.93 782
SFTows ~ 47.38 1440 22.20 3075 1.82 8879

B.3 Distribution of remaining tokens

Figure [3| shows the percentage distribution of remaining tokens when streamlined by two target
models. About 40% CoT data contains over 50% redundant reasoning segments that can be removed
by our method.
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Figure 3: Distribution of the remaining tokens ratio across different percentage intervals after
streamlining.

B.4 Performance of streamling method

Table[7]compares the remaining tokens of different streamling methods. Our method reduce more
redundant tokens than the FCS and Random baseline methods, which shows that our binary cutting
method is both effective and efficient in finding the valid reasoning segments in long CoT.

Table 7: Average token usage and remaining ratio by different streamlining methods. Note that
the discrepancy in original token counts arises because, to ensure comparable training data across
methods, only data deemed valid by the on-policy method is reused by FCS.

Method Model #Orig #Remaining Ratio
Llama 3659.45 2531.68 69.18%

FCS Qwen 3875.14 2695.19 69.55%
Random Llama 4665.98 2333.51 50.01%
Qwen 4919.19 2466.74 50.15%
Llama 3660.35 2263.17 61.83%
Ours

Qwen  3875.96 1967.19 50.75%

C Prompt Examples

We provide representative prompt examples used in different stages of our pipeline, including
on-policy generation and evaluation with LL.M-as-a-Judge.

On-policy Prompt. Figure[d]shows a typical prompt used to generate a final answer directly.

LLM-as-a-Judge Prompt. Figure[5]shows how we guide the LLM to score CoT based on prede-
fined rules.
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( A
On-policy answering prompt

Given a mathematical problem and a series of thinking steps, your task is to determine the final
answer based on the provided steps.

Instructions:

- Follow the given thinking steps exactly to derive the answer.

- Do not add any explanations, reasoning, or modifications.

- Output only the final answer in the specified format.

Formatting Requirement:

- The output should be strictly formatted as:

###Answer: <final_answer>

Now, here is the problem: {question}

The thinking steps are given below: {thinking_steps}

.

Figure 4: On-policy answering prompt format.

LLM-as-a-judge prompt

Review the user’s question and the corresponding chain-of-thought (CoT) reasoning using the
additive 5-point scoring system described below. Points are accumulated based on the satisfaction
of each criterion:

- Add 1 point if the CoT is relevant and initiates a reasoning process related to the user’s inquiry,
even if it is incomplete or contains some irrelevant steps.

- Add another point if the CoT addresses a substantial portion of the reasoning needed for the
question, but does not completely resolve it or contains gaps in logic.

- Award a third point if the CoT outlines the basic logical structure needed to solve the problem,
demonstrating generally sound reasoning without unnecessary tangents.

- Grant a fourth point if the CoT is clearly and logically structured, with each step building on
the last. The reasoning should be easy to follow, focused on solving the user’s question, and
reasonably efficient, though not necessarily optimal in brevity or precision. It’s acceptable to stop
the reasoning early if the remaining steps are obvious or strongly implied.

- Bestow a fifth point if the CoT provides a complete, correct, and concise line of reasoning that
leads efficiently to the final answer. It should include all necessary intermediate steps and be
of appropriate length—neither too brief to omit key logic nor too long to include redundant or
tangential content—reflecting expert-level clarity, precision, and efficiency.

User: {question}

<response>{response }</response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words. Focus on relevance, logical completeness,
clarity, and whether only the necessary reasoning steps were included without redundancy.

- Conclude with the score using the format: “Score: <total points>”

Remember to assess from the AI Assistant perspective, utilizing web search knowledge as
necessary. To evaluate the response in alignment with this additive scoring model, systematically
attribute points based on the outlined criteria.

(.

Figure 5: LLM-as-a-judge prompt format.
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D Examples of Streamlined CoT

We show qualitative examples of how our method removes redundant reasoning steps while
preserving essential logic and the final answer. The green part is the CoT after binary cutting,

the blue part marks the restored steps in backtracking, while the red part is removed redundant part.

Question
A normal magic square of order n is an arrangement of the integers from 1 to n? in a square such that the n
numbers in each row, each column, and each of the two diagonals sum to a constant, called the magic sum of
the magic square. Compute the magic sum of a normal magic square of order 8.
Response of DeepSeek-R1
Okay, so I need to find the magic sum of a normal magic square of order 8. Hmm, let me think. A magic
square is a square grid where the numbers in each row, column, and both main diagonals add up to the
same number, called the magic sum.

Since it’s a normal magic square, it uses the numbers from 1 to n?, where n is the order. In this case, n is 8,
so the numbers go from 1 to 64.

First, I remember there’s a formula for the magic sum of a normal magic square. Let me try to recall. I
think it involves the total sum of all the numbers in the square divided by the number of rows (or columns),
since each row needs to add up to the magic sum. Let me check if that makes sense.

The total sum of numbers from 1 to n? can be calculated using the formula for the sum of the first m

. . 2 2 .
integers: w Here, m is n?, so the total sum would be % Then, since there are n rows, each

row must add up to the total sum divided by n. So the magic sum .S should be "2“2172“) Simplifying that,

— n(@’+1)
we get S = AL

For example, a 3x3 magic square. The magic sum should be 15. Plugging n = 3 into the formula:
2
w = @ = % = 15. That checks out. What about a 4x4? The magic sum should be 34. Let’s

see: 74(42;1) = 4(162“) = X7 — 34,
Therefore, for n = 8, substituting into the formula: S = w. First, calculate 8 squared: 8 X 8 = 64.

Then add 1: 64 4+ 1 = 65. Multiply by 8: 8 x 65 = 520. Then divide by 2: 53—0 = 260.

Wait, just to be thorough, let me recast the problem another way. Instead of using the formula, maybe
I can compute the sum of numbers from 1 to 64 and then divide by 8. Let’s see. The sum from 1 to 64
is 8408 — 480 — 2080. Then divide by 8 (since there are 8 rows) to get the magic sum: 2%% = 260.
Same result.

A sanity check: in a magic square, the magic sum is also equal to the number of the square (n) multiplied

by the average of the first and last numbers. Since the numbers run from 1 to n?, the first number is 1

. . . 2 . 2 .
and the last is n°. Their average is *£"~. So magic sum should be S = n x =, Wait, that’s the

same as the formula we had earlier: S = @ Yep, that’s exactly the same. So plugging in n = 8:

S =8x % =8 X % = % X 65 = 4 x 65 = 260. Perfect, same answer.

So all these different approaches lead to the same result, 260. Therefore, I can be confident that the magic
sum for an 8x8 normal magic square is 260.

**Final Answer** The magic sum of a normal magic square of order 8 is .

|\ J/

Figure 6: It can be observed that with proper CoT prefix, the SLM can infer 260 without explicit
calculation
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Question

Today is January 31, 2015, welcome to the 2015 "Spring Cup" Final. The calculation result of the expression
2015/1+42015/0.31 is:

140.31 :
Response of DeepSeek-R1
2015/1+2015/0.31
1+0.31

The denominator is 1 4 0.31. Maybe I can simplify each

Okay, so I need to calculate this expression:

2015 2015
) +
0.31°

. Hmm, let me break this down step by step.

First, let’s look at the numerator:
part separately before combining them

Starting with the numerator. The first term is 2015 < 1, which is straightforward. Dividing any number
by 1 gives the number itself, so that’s just 2015. The second term is 2015 <+ 0.31. Hmm, dividing by a
decimal. Let me think how to compute that.

Dividing by 0.31 is the same as multiplying by ﬁ Let me calculate 1 = 0.31. Well, 0.31 x 3 = 0.93,
and 0.31 x 3.2 would be 0.992. So 1 + 0.31 is approximately 3.2258. But I should probably do this more
accurately. Let’s do the division: 1 + 0.31.

Alternatively, I can write 0.31 as a fraction, which is ﬁ Sol+ % = 100 . So M = 2015 x 100 . Let
me compute that.

2015 x 100 = 201500. Then, 20%@. Let me do that division. 31 x 6000 = 186000. Then 201500 —

186000 = 15500. 31 x 500 = 15500. So total is 6000 + 500 = 6500. So % = 65007 Wait, really?
Let me check that again.

31 x 6500 : 31 x 6000 = 186000, 31 x 500 = 15500. Adding them together gives 186000 + 15500 =
201500. Wait, but 2°12 = 2015 x 222 = 20590 Wait, 31 x 6500 = 2015007 Wait, 31 x 6500. Let
me compute 31 x 6000 — 186000 and 31 x 500 = 15500. Then 186000 -+ 15500 — 201500. So yes,
31 x 6500 = 201500. But 2015 x 100 = 201500. So 2% js indeed 6500. So that part is correct.

Therefore, 2°12 = 6500.

So the numerator is 2015 4 6500. Let’s add those together. 2000 + 6500 = 8500, and then the remaining
15 makes it 8515. So the numerator is 8515.

Now the denominator is 1 + 0.31 = 1.31. So the entire expression simplifies to fiséf

Hmm, so 8515 + 1.31. Let’s see if we can compute that. Maybe there’s a simplification here. Let me check
if 1.31 x 6500 = 8515. Let me compute 1.31 x 6500.

First, 1 x 6500 = 6500. Then 0.31 x 6500. Let me compute 0.3 X 6500 = 1950. Then 0.01 x 6500 = 65.
S0 1950 + 65 = 2015. Then 6500 + 2015 = 8515. So yes, 1.31 x 6500 = 8515.

Therefore, % = 6500.

Wait a minute, so the entire expression simplifies to 6500? That seems too straightforward. Let me recap to

check for any mistakes. Original expression: 2015/1+2015/0.31 Nymerator: 20154 2213 = 2015+ 6500 =

1+0.31 0.31
8515 Denominator: 1.31 ?55’ = 6500

Yes, that seems correct. The key was recognizing that both the numerator and the denominator could be
related through the same factor. Alternatively, maybe factor out 2015 from the numerator? Let me try that
approach to verify.

Numerator: 2015 (1 + L) = 2015 (1 + 122) = 2015 (2:£120) = 2015 (121)

Denominator: 1.31 = %

2019 5T — 9015 131 190 — 9015 100 — 201500 _ 50,

Same result. So that confirms 1t Therefore the answer is 6500. But Just to make sure, let’s do the division
8515 + 1.31 step by step. First, write 153}15 To eliminate the decimal, multiply numerator and denominator
by 100 to get 851135100.

Now compute %. Let’s see how many times 131 goes into 851500.

But earlier, we saw that 131 x 6500 = 851500. Because 131 x 100 = 13100, so 131 x 6500 =
131 x (65 x 100) = (131 x 65) x 100. Wait, 131 x 65. Let’s compute that.

131 x 60 = 7860 and 131 x 5 = 655. So 7860 4+ 655 = 8515. So 131 x 65 = 8515. Therefore,

131 x 6500 = 8515 x 100 = 851500. Therefore, 851135100 = 6500. So everything checks out. Therefore,

the result of the expression is 6500. Final Answer: | 6500

So the entire expression is

. J/

Figure 7: It can be observed that the model has completed the inference before the original step "Let
me check that again.", and the subsequent parts become redundant for the actual answer.
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