
Published as a conference paper at ICLR 2023

NONLINEAR RECONSTRUCTION FOR OPERATOR
LEARNING OF PDES WITH DISCONTINUITIES

Samuel Lanthaler
Computing and Mathematical Science
California Institute of Technology
Pasadena, CA, USA
slanth@caltech.edu

Roberto Molinaro, Patrik Hadorn & Siddhartha Mishra
Seminar for Applied Mathematics
ETH Zurich
Zurich, Switzerland
{roberto.molinaro,siddhartha.mishra}@ethz.ch

ABSTRACT

A large class of hyperbolic and advection-dominated PDEs can have solutions
with discontinuities. This paper investigates, both theoretically and empirically,
the operator learning of PDEs with discontinuous solutions. We rigorously prove,
in terms of lower approximation bounds, that methods which entail a linear re-
construction step (e.g. DeepONet or PCA-Net) fail to efficiently approximate
the solution operator of such PDEs. In contrast, we show that certain methods
employing a nonlinear reconstruction mechanism can overcome these fundamental
lower bounds and approximate the underlying operator efficiently. The latter class
includes Fourier Neural Operators and a novel extension of DeepONet termed
shift-DeepONet. Our theoretical findings are confirmed by empirical results for
advection equation, inviscid Burgers’ equation and compressible Euler equations
of aerodynamics.

1 INTRODUCTION

Many interesting phenomena in physics and engineering are described by partial differential equations
(PDEs) with discontinuous solutions. The most common types of such PDEs are nonlinear hyperbolic
systems of conservation laws (Dafermos, 2005), such as the Euler equations of aerodynamics, the
shallow-water equations of oceanography and MHD equations of plasma physics. It is well-known
that solutions of these PDEs develop finite-time discontinuities such as shock waves, even when
the initial and boundary data are smooth. Other examples include the propagation of waves with
jumps in linear transport and wave equations, crack and fracture propagation in materials (Sun &
Jin, 2012), moving interfaces in multiphase flows (Drew & Passman, 1998) and motion of very
sharp gradients as propagating fronts and traveling wave solutions for reaction-diffusion equations
(Smoller, 2012). Approximating such (propagating) discontinuities in PDEs is considered to be
extremely challenging for traditional numerical methods (Hesthaven, 2018) as resolving them could
require very small grid sizes. Although bespoke numerical methods such as high-resolution finite-
volume methods, discontinuous Galerkin finite-element and spectral viscosity methods (Hesthaven,
2018) have successfully been used in this context, their very high computational cost prohibits their
extensive use, particularly for many-query problems such as UQ, optimal control and (Bayesian)
inverse problems (Lye et al., 2020), necessitating the design of fast machine learning-based surrogates.

As the task at hand in this context is to learn the underlying solution operator that maps input
functions (initial and boundary data) to output functions (solution at a given time), recently developed
operator learning methods can be employed in this infinite-dimensional setting (Higgins, 2021).
These methods include operator networks (Chen & Chen, 1995) and their deep version, DeepONet
(Lu et al., 2019; 2021), where two sets of neural networks (branch and trunk nets) are combined in a

1

Published as a conference paper at ICLR 2023

linear reconstruction procedure to obtain an infinite-dimensional output. DeepONets have been very
successfully used for different PDEs (Lu et al., 2021; Mao et al., 2020b; Cai et al., 2021; Lin et al.,
2021). An alternative framework is provided by neural operators (Kovachki et al., 2021a), wherein
the affine functions within DNN hidden layers are generalized to infinite-dimensions by replacing
them with kernel integral operators as in (Li et al., 2020a; Kovachki et al., 2021a; Li et al., 2020b). A
computationally efficient form of neural operators is the Fourier Neural Operator (FNO) (Li et al.,
2021a), where a translation invariant kernel is evaluated in Fourier space, leading to many successful
applications for PDEs (Li et al., 2021a;b; Pathak et al., 2022).

Currently available theoretical results for operator learning (e.g. Lanthaler et al. (2022); Kovachki et al.
(2021a;b); De Ryck & Mishra (2022b); Deng et al. (2022)) leverage the regularity (or smoothness) of
solutions of the PDE to prove that frameworks such as DeepONet, FNO and their variants approximate
the underlying operator efficiently. Although such regularity holds for many elliptic and parabolic
PDEs, it is obviously destroyed when discontinuities appear in the solutions of the PDEs such as
in the hyperbolic PDEs mentioned above. Thus, a priori, it is unclear if existing operator learning
frameworks can efficiently approximate PDEs with discontinuous solutions. This explains the paucity
of theoretical and (to a lesser extent) empirical work on operator learning of PDEs with discontinuous
solutions and provides the rationale for the current paper where,

• using a lower bound, we rigorously prove approximation error estimates to show that operator
learning architectures such as DeepONet (Lu et al., 2021) and PCA-Net (Bhattacharya et al.,
2021), which entail a linear reconstruction step, fail to efficiently approximate solution
operators of prototypical PDEs with discontinuities. In particular, the approximation error
only decays, at best, linearly in network size.

• We rigorously prove that using a nonlinear reconstruction procedure within an operator
learning architecture can lead to the efficient approximation of prototypical PDEs with
discontinuities. In particular, the approximation error can decay exponentially in network
size, even after discontinuity formation. This result is shown for two types of architectures
with nonlinear reconstruction, namely the widely used Fourier Neural Operator (FNO) of
(Li et al., 2021a) and for a novel variant of DeepONet that we term as shift-DeepONet.

• We supplement the theoretical results with extensive experiments where FNO and shift-
DeepONet are shown to consistently outperform DeepONet and other baselines for PDEs
with discontinuous solutions such as linear advection, inviscid Burgers’ equation, and both
the one- and two-dimensional versions of the compressible Euler equations of gas dynamics.

2 METHODS

Setting. Given compact domains D ⊂ Rd, U ⊂ Rd′
, we consider the approximation of operators

G : X → Y , where X ⊂ L2(D) and Y ⊂ L2(U) are the input and output function spaces. In the
following, we will focus on the case, where ū 7→ G(ū) maps initial data ū to the solution at some
time t > 0, of an underlying time-dependent PDE. We assume the input ū to be sampled from a
probability measure µ ∈ Prob(X).

DeepONet. DeepONet (Lu et al., 2021) will be our prototype for operator learning frameworks
with linear reconstruction. To define them, let x := (x1, . . . , xm) ∈ D be a fixed set of sensor points.
Given an input function ū ∈ X , we encode it by the point values E(ū) = (ū(x1), . . . , ū(xm)) ∈ Rm.
DeepONet is formulated in terms of two neural networks: The first is the branch-net β, which maps
the point values E(ū) to coefficients β(E(ū)) = (β1(E(ū)), . . . , βp(E(ū)), resulting in a mapping

β : Rm → Rp, E(ū) 7→ (β1(E(ū)), . . . , βp(E(ū)). (2.1)

The second neural network is the so-called trunk-net τ (y) = (τ1(y), . . . , τp(y)), which is used to
define a mapping

τ : U → Rp, y 7→ (τ1(y), . . . , τp(y)). (2.2)

While the branch net provides the coefficients, the trunk net provides the “basis” functions in an
expansion of the output function of the form

NDON(ū)(y) =

p∑
k=1

βk(ū)τk(y), ū ∈ X , y ∈ U, (2.3)

2

Published as a conference paper at ICLR 2023

with βk(ū) = βk(E(ū)). The resulting mapping NDON : X → Y , ū 7→ NDON(ū) is a DeepONet.

Although DeepONet were shown to be universal in the class of measurable operators (Lanthaler et al.,
2022), the following fundamental lower bound on the approximation error was also established,

Proposition 2.1 (Lanthaler et al. (2022, Thm. 3.4)). Let X be a separable Banach space, Y a separable
Hilbert space, and let µ be a probability measure on X . Let G : X → Y be a Borel measurable
operator with Eū∼µ[∥G(ū)∥2Y] <∞. Then the following lower approximation bound holds for any
DeepONet NDON with trunk-/branch-net dimension p:

E (NDON) = Eū∼µ

[
∥NDON(ū)− G(ū)∥2Y

]1/2 ≥ Eopt :=

√∑
j>p

λj , (2.4)

where the optimal error Eopt is written in terms of the eigenvalues λ1 ≥ λ2 ≥ . . . of the covariance
operator ΓG#µ := Eu∼G#µ[(u⊗ u)] of the push-forward measure G#µ.

We refer to SM A for relevant background on the underlying principal component analysis (PCA)
and covariance operators, as well as an example illustrating the connection between sharpness of
gradients and the decay of the PCA eigenvalues λj (SM A.1). The same lower bound (2.4) in fact
holds for any operator approximation of the form N (ū) =

∑p
k=1 βk(ū)τk, where βk : X → R are

arbitrary functionals. In particular, this bound continues to hold for e.g. the PCA-Net architecture
of Hesthaven & Ubbiali (2018); Bhattacharya et al. (2021). We will refer to any operator learning
architecture of this form as a method with “linear reconstruction”, since the output function N (ū) is
restricted to the linear p-dimensional space spanned by the τ1, . . . , τp ∈ Y . In particular, DeepONet
are based on linear reconstruction. To overcome the lower bound (2.4) which sets fundamental
limitations on DeepONets, the basis τ therefore needs to additionally depend on the input u.

shift-DeepONet. The lower bound (2.4) shows that there are fundamental barriers to the expressive
power of operator learning methods based on linear reconstruction. This is of particular relevance
for problems in which the optimal lower bound Eopt in (2.4) exhibits a slow decay in terms of
the number of basis functions p, due to the slow decay of the eigenvalues λj of the covariance
operator. It is well-known that even linear advection- or transport-dominated problems can suffer
from such a slow decay of the eigenvalues (Ohlberger & Rave, 2013; Dahmen et al., 2014; Taddei
et al., 2015; Peherstorfer, 2020), which could hinder the application of linear-reconstruction based
operator learning methods to this very important class of problems. In view of these observations,
it is thus desirable to develop a nonlinear variant of DeepONet which can overcome such a lower
bound in the context of transport-dominated problems. We propose such an extension below.

A shift-DeepONet N sDON : X → Y is an operator of the form

N sDON(ū)(y) =

p∑
k=1

βk(ū)τk

(
Ak(ū)y + γk(ū)

)
, (2.5)

where the input function ū is encoded by evaluation at the sensor points E(ū) ∈ Rm. We retain the
DeepONet branch- and trunk-nets β, τ defined in (2.1), (2.2), respectively, and we have introduced
a scale-net A = (Ak)

p
k=1, consisting of matrix-valued functions

Ak : Rm → Rd′×d′
, E(ū) 7→ Ak(ū) := Ak(E(ū)),

and a shift-net γ = (γk)
p
k=1, with

γk : Rm → Rd′
, E(ū) 7→ γk(ū) := γk(E(ū)),

All components of a shift-DeepONet are represented by deep neural networks, potentially with
different activation functions.

Remark 2.2. The form of shift-DeepONet (2.5) is very natural from a theoretical perspective. Practical
experimentation indicates that an extended architecture based on a trunk-net τ ∗ : Rd′×p → Rp,
depending jointly on all values A1(ū)y + γ1(ū), . . . ,Ap(ū)y + γp(ū) and defining a mapping

N sDON∗
(ū)(y) :=

p∑
k=1

βk(ū)τ
∗
k

(
A(ū)y + γ(ū)

)
, (2.6)

3

Published as a conference paper at ICLR 2023

with concatenated input A(ū)y + γ(ū) :=
(
A1(ū)y + γ1(ū), . . . ,Ap(ū)y + γp(ū)

)
achieves better

accuracy. Our numerical results will be reported for (2.6). We emphasize that all theoretical results in
this work apply to both architectures, (2.5) and (2.6).

Since shift-DeepONets reduce to DeepONets for the particular choice A ≡ 1 and γ ≡ 0, the
universality of DeepONets (Theorem 3.1 of Lanthaler et al. (2022)) is clearly inherited by shift-
DeepONets. However, as shift-DeepONets do not use a linear reconstruction (the trunk nets in
(2.5) depend on the input through the scale and shift nets), the lower bound (2.4) does not directly
apply, providing possible space for shift-DeepONet to efficiently approximate transport-dominated
problems, especially in the presence of discontinuities.

Fourier neural operators (FNO). An FNO NFNO (Li et al., 2021a) is a composition

NFNO : X 7→ Y : NFNO = Q ◦ LL ◦ · · · ◦ L1 ◦R, (2.7)

consisting of a ”lifting operator” ū(x) 7→ R(ū(x), x), where R is represented by a (shallow) neural
network R : Rdu × Rd → Rdv with du the number of components of the input function, d the
dimension of the domain and dv the ”lifting dimension” (a hyperparameter), followed by L hidden
layers Lℓ : v

ℓ(x) 7→ vℓ+1(x) of the form

vℓ+1(x) = σ
(
Wℓ · vℓ(x) + bℓ(x) +

(
Kℓv

ℓ
)
(x)
)
,

with Wℓ ∈ Rdv×dv a weight matrix (residual connection), x 7→ bℓ(x) ∈ Rdv a bias function and
with a convolution operator Kℓv

ℓ(x) =
´
Td κℓ(x− y)vℓ(y) dy, expressed in terms of a (learnable)

integral kernel x 7→ κℓ(x) ∈ Rdv×dv . The output function is finally obtained by a linear projection
layer vL+1(x) 7→ NFNO(ū)(x) = Q · vL+1(x).

The convolution operators Kℓ add the indispensable non-local dependence of the output on the input
function. Given values on an equidistant Cartesian grid, the evaluation of Kℓv

ℓ can be efficiently
carried out in Fourier space based on the discrete Fourier transform (DFT), leading to a representation

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNv

ℓ(k)
)
,

where FNv
ℓ(k) denotes the Fourier coefficients of the DFT of vℓ(x), computed based on the given

N grid values in each direction, Pℓ(k) ∈ Cdv×dv is a complex Fourier multiplication matrix indexed
by k ∈ Zd, and F−1

N denotes the inverse DFT. In practice, only a finite number of Fourier modes
can be computed, and hence we introduce a hyperparameter kmax ∈ N, such that the Fourier
coefficients of bℓ(x) as well as the Fourier multipliers, b̂ℓ(k) ≡ 0 and Pℓ(k) ≡ 0, vanish whenever
|k|∞ > kmax. In particular, with fixed kmax the DFT and its inverse can be efficiently computed in
O(((2kmax + 1)N)d) operations (i.e. linear in the total number of grid points). The output space of
FNO (2.7) is manifestly nonlinear as it is not spanned by a fixed number of basis functions. Hence,
FNO constitute a nonlinear reconstruction method.

3 THEORETICAL RESULTS.

Context. Our aim in this section is to rigorously prove that the nonlinear reconstruction methods
(shift-DeepONet, FNO) efficiently approximate operators stemming from discontinuous solutions of
PDEs whereas linear reconstruction methods (DeepONet, PCA-Net) fail to do so. To this end, we
follow standard practice in numerical analysis of PDEs (Hesthaven, 2018) and choose two prototypical
PDEs that are widely used to analyze numerical methods for transport-dominated PDEs. These are
the linear transport or advection equation and the nonlinear inviscid Burgers’ equation, which is the
prototypical example for hyperbolic conservation laws. The exact operators and the corresponding
approximation results with both linear and nonlinear reconstruction methods are described below.
The computational complexity of the models is expressed in terms of hyperparameters such as the
model size, which are described in detail in SM B.

Linear Advection Equation. We consider the one-dimensional linear advection equation

∂tu+ a∂xu = 0, u(· , t = 0) = ū (3.1)

4

Published as a conference paper at ICLR 2023

on a 2π-periodic domain D = T, with constant speed a ∈ R. The underlying operator is Gadv :
L1(T) ∩ L∞(T) → L1(T) ∩ L∞(T), ū 7→ Gadv(ū) := u(· , T), obtained by solving the PDE (3.1)
with initial data ū up to any final time t = T . We note that X = L1(T)∩L∞(T) ⊂ L2(T). As input
measure µ ∈ Prob(X), we consider random input functions ū ∼ µ given by the square (box) wave
of height h, width w and centered at ξ,

ū(x) = h1[−w/2,+w/2](x− ξ), (3.2)

where h ∈ [h, h̄], w ∈ [w, w̄] ξ ∈ [0, 2π] are independent and uniformly identically distributed. The
constants 0 < h ≤ h̄, 0 < w ≤ w̄ are fixed.

DeepONet fails at approximating Gadv efficiently. Our first rigorous result is the following lower
bound on the error incurred by DeepONet (2.3) in approximating Gadv,

Theorem 3.1. Let p,m ∈ N. There exists a constant C > 0, independent of m, p and T , such that for
any DeepONet NDON (2.3), with supū∼µ ∥NDON(ū)∥L∞ ≤M <∞, we have the lower bound

E = Eū∼µ

[
∥Gadv(ū)−NDON(ū)∥L1

]
≥ C

min(m, p)
.

Consequently, to achieve E (NDON) ≤ ϵ with DeepONet, we need p, m ≳ ϵ−1 trunk and branch net
basis functions and sensor points, respectively, entailing that size(NDON) ≳ pm ≳ ϵ−2 (cp. SM B).

The detailed proof is presented in SM D.2. It relies on two facts. First, following Lanthaler et al.
(2022), one observes that translation invariance of the problem implies that the Fourier basis is optimal
for spanning the output space. As the underlying functions are discontinuous, the corresponding
eigenvalues of the covariance operator for the push-forward measure decay, at most, quadratically
in p. Consequently, the lower bound (2.4) leads to a linear decay of error in terms of the number
of trunk net basis functions. Second, roughly speaking, the linear decay of error in terms of sensor
points is a consequence of the fact that one needs sufficient number of sensor points to resolve the
underlying discontinuous inputs.

Shift-DeepONet approximates Gadv efficiently. Next and in contrast to the previous result on
DeepONet, we have following efficient approximation result for shift-DeepONet (2.5),

Theorem 3.2. There exists a constant C > 0, independent of T , such that for any ϵ > 0 there exists a
shift-DeepONet N sDON

ϵ (2.5) such that

E = Eū∼µ

[
∥Gadv(ū)−N sDON

ϵ (ū)∥L1

]
≤ ϵ, (3.3)

with uniformly bounded p ≤ C, and with the number of sensor points m ≤ Cϵ−1. Furthermore, we
have

width(N sDON
ϵ) ≤ C, depth(N sDON

ϵ) ≤ C log(ϵ−1)2, size(N sDON
ϵ) ≤ Cϵ−1.

The detailed proof, presented in SM D.3, is based on the fact that for each input, the exact solution
can be completely determined in terms of three variables, i.e., the height h, width w and shift ξ of
the box wave (3.2). Given an input ū, we explicitly construct neural networks for inferring each of
these variables with high accuracy. These neural networks are then combined together to yield a
shift-DeepONet that approximates Gadv , with the desired complexity. The nonlinear dependence of
the trunk net in shift-DeepONet (2.5) on the input is the key to encode the shift in the box-wave (3.2)
and this demonstrates the necessity of nonlinear reconstruction in this context.

FNO approximates Gadv efficiently. Finally, we state an efficient approximation result for Gadv

with FNO (2.7) below, where the constant C > 0 is again independent of the final time T :

Theorem 3.3. There exists C > 0, such that for any ϵ > 0, there exists an FNO NFNO
ϵ (2.7) with

Eū∼µ

[
∥Gadv(ū)−NFNO

ϵ (ū)∥L1

]
≤ ϵ,

with grid size N ≤ Cϵ−1, and with Fourier cut-off kmax, lifting dimension dv , depth and size:

kmax = 1, dv ≤ C, depth(NFNO
ϵ) ≤ C log(ϵ−1)2, size(NFNO

ϵ) ≤ C log(ϵ−1)2.

5

Published as a conference paper at ICLR 2023

A priori, one recognizes that Gadv can be represented by Fourier multipliers (see SM D.4). Conse-
quently, a single linear FNO layer would in principle suffice in approximating Gadv. However, the
size of this FNO would be exponentially larger than the bound in Theorem 3.3. To obtain a more
efficient approximation, one needs to leverage the nonlinear reconstruction within FNO layers. This
is provided in the proof, presented in SM D.4, where the underlying height, wave and shift of the
box-wave inputs (3.2) are approximated with high accuracy by FNO layers. These are then combined
together with a novel representation formula for the solution to yield the desired FNO.
Comparison. Observing the complexity bounds in Theorems 3.1, 3.2, 3.3, we note that the DeepONet
size scales at least quadratically, size ≳ ϵ−2, in terms of the error in approximating Gadv , whereas for
shift-DeepONet and FNO, this scaling is only linear and logarithmic, respectively. Thus, we rigor-
ously prove that for this problem, the nonlinear reconstruction methods (FNO and shift-DeepONet)
can be more efficient than DeepONet and other methods based on linear reconstruction. Moreover,
FNO is shown to have a smaller approximation error than even shift-DeepONet for similar model size.
We provide two remarks on extensions of these results to the approximation of the time-evolution
and to higher dimensions in SM C.

Inviscid Burgers’ equation. Next, we consider the inviscid Burgers’ equation in one-space di-
mension, which is considered the prototypical example of nonlinear hyperbolic conservation laws
(Dafermos, 2005):

∂tu+ ∂x

(
1

2
u2
)

= 0, u(· , t = 0) = ū, (3.4)

on the 2π-periodic domain D = T. It is well-known that discontinuities in the form of shock
waves can appear in finite-time even for smooth ū. Consequently, solutions of (3.4) are interpreted
in the sense of distributions and entropy conditions are imposed to ensure uniqueness (Dafermos,
2005). Thus, the underlying solution operator is GBurg : L1(T) ∩ L∞(T) → L1(T) ∩ L∞(T),
ū 7→ GBurg(ū) := u(· , T), with u being the entropy solution of (3.4) at final time T . Given
ξ ∼ Unif([0, 2π]), we define the random field

ū(x) := − sin(x− ξ), (3.5)

and we define the input measure µ ∈ Prob(L1(T) ∩ L∞(T)) as the law of ū. We emphasize that the
difficulty in approximating the underlying operator GBurg arises even though the input functions are
smooth, in fact analytic. This is in contrast to the linear advection equation.

DeepONet fails at approximating GBurg efficiently. First, we recall the following result, which
follows directly from Lanthaler et al. (2022) (Theorem 4.19) and the lower bound (2.4),

Theorem 3.4. Assume that GBurg = u(· , T), for T > π and u is the entropy solution of (3.4) with
initial data ū ∼ µ. There exists a constant C > 0, such that the L2-error for any DeepONet NDON

with p trunk-/branch-net output functions is lower-bounded by

E (NDON) = Eū∼µ

[
∥GBurg(ū)−NDON(ū)∥L1

]
≥ C

p
. (3.6)

Consequently, achieving an error E (NDON
ϵ) ≲ ϵ requires at least size(NDON

ϵ) ≥ p ≳ ϵ−1.

shift-DeepONet approximate GBurg efficiently. In contrast to DeepONet, we have the following
result for efficient approximation of GBurg with shift-DeepONet,

Theorem 3.5. Assume that T > π. There is a constant C > 0, such that for any ϵ > 0, there exists a
shift-DeepONet N sDON

ϵ such that

E (N sDON
ϵ) = Eū∼µ

[
∥GBurg(ū)−N sDON

ϵ (ū)∥L1

]
≤ ϵ, (3.7)

with a uniformly bounded number p ≤ C of trunk/branch net functions, the number of sensor points
can be chosen m = 3, and we have

width(N sDON
ϵ) ≤ C, depth(N sDON

ϵ) ≤ C log(ϵ−1)2, size(N sDON
ϵ) ≤ C log(ϵ−1)2.

The proof, presented in SM D.5, relies on an explicit representation formula for GBurg, obtained
using the method of characteristics (even after shock formation). Then, we leverage the analyticity
of the underlying solutions away from the shock and use the nonlinear shift map in (2.5) to encode
shock locations. Careful inspection of the proof implies that the constant C is independent of T > π.

6

Published as a conference paper at ICLR 2023

FNO approximates GBurg efficiently Finally we prove (in SM D.6) the following theorem,

Theorem 3.6. Assume that T > π, then there exists a constant C (again independent of T), such that
for any ϵ > 0 and grid size N ≥ 3, there exists an FNO NFNO

ϵ (2.7), such that

E (NFNO
ϵ) = Eū∼µ

[
∥GBurg(ū)−NFNO

ϵ (ū)∥L1

]
≤ ϵ,

and with Fourier cut-off kmax, lifting dimension dv and depth satisfying,

kmax = 1, dv ≤ C, depth(NFNO
ϵ) ≤ C log(ϵ−1)2, size(NFNO

ϵ) ≤ C log(ϵ−1)2.

Comparison. A perusal of the bounds in Theorems 3.4, 3.5 and 3.6 reveals that after shock formation,
the accuracy ϵ of the DeepONet approximation of GBurg scales at best as ϵ ∼ n−1, in terms of
the total number of degrees of freedom n = size(NDON) of the DeepONet. In contrast, shift-
DeepONet and FNO based on a nonlinear reconstruction can achieve an exponential convergence rate
ϵ ≲ exp(−cn1/2) in the total number of degrees of freedom n = size(N sDON), size(NFNO), even
after the formation of shocks. This again highlights the expressive power of nonlinear reconstruction
methods in approximating operators of PDEs with discontinuities.

ResNet FCNN DeepONet Shift - DeepONet FNO

Advection
Equation 14.8% 11.6% 7.95% 2.76% 0.71%

Burgers’
Equation 20.16% 23.23% 28.5% 7.83% 1.57%

Shocktube
Problem 4.47% 8.83% 4.22% 2.76% 1.56%

2D Riemann
Problem 2.6% 0.19% 0.89% 0.12% 0.12%

Table 1: Relative median-L1 error computed over 128 testing samples for different benchmarks with
different models.

4 EXPERIMENTS

In this section, we illustrate how different operator learning frameworks can approximate solution
operators of PDEs with discontinuities. To this end, we will compare DeepONet (2.3) (a prototypical
operator learning method with linear reconstruction) with (the extended) shift-DeepONet (2.6) and
FNO (2.7) (as nonlinear reconstruction methods). Moreover, two additional baselines (described in
detail in SM E.1) are also used, namely the well-known ResNet architecture of He et al. (2016) and a
fully convolutional neural network (FCNN) of Long et al. (2015). Below, we present results for the
best performing hyperparameter configuration, obtained after a grid search, for each model while
postponing the description of details for the training procedures, hyperparameter configurations and
model parameters to SM E.1.

Linear Advection. We start with the linear advection equation (3.1) in the domain [0, 1] with wave
speed a = 0.5 and periodic boundary conditions. The initial data is given by (3.2) corresponding
to square waves, with initial heights uniformly distributed between h = 0.2 and h = 0.8, widths
between w = 0.05 and w = 0.3 and shifts between 0 and 0.5. We seek to approximate the solution
operator Gadv at final time T = 0.25. The training and test samples are generated by sampling the
initial data and the underlying exact solution, given by translating the initial data by 0.125, sampled
on a very high-resolution grid of 2048 points (to keep the discontinuities sharp), see SM Figure 10
for examples of the input and output of Gadv. The relative median test error for all the models are
shown in Table 1. We observe from this table that DeepONet performs relatively poorly with a high
test error of approximately 8%, although its outperforms the ResNet and FCNN baselines handily.
As suggested by the theoretical results of the previous section, shift-DeepONet is significantly more
accurate than DeepONet (and the baselines), with at least a two-fold gain in accuracy. Moreover, as
predicted by the theory, FNO significantly outperforms even shift-DeepONet on this problem, with
almost a five-fold gain in test accuracy and a thirteen-fold gain vis a vis DeepONet.

7

Published as a conference paper at ICLR 2023

Inviscid Burgers’ Equation. Next, we consider the inviscid Burgers’ equation (3.4) in the domain
D = [0, 1] and with periodic boundary conditions. The initial data is sampled from a Gaussian
Random field i.e., a Gaussian measure corresponding to the (periodization of) frequently used
covariance kernel,

k(x, x′) = exp

(
−|x− x′|2

2ℓ2

)
,

with correlation length ℓ = 0.06. The solution operator GBurg corresponds to evaluating the entropy
solution at time T = 0.1. We generate the output data with a high-resolution finite volume scheme,
implemented within the ALSVINN code Lye (2020), at a spatial mesh resolution of 1024 points.
Examples of input and output functions, shown in SM Figure 11, illustrate how the smooth yet
oscillatory initial datum evolves into many discontinuities in the form of shock waves, separated by
Lipschitz continuous rarefactions. Given this complex structure of the entropy solution, the underlying
solution operator is hard to learn. The relative median test error for all the models is presented in
Table 1 and shows that DeepOnet (and the baselines Resnet and FCNN) have an unacceptably high
error between 20 and 30%. In fact, DeepONet performs worse than the two baselines. However,
consistent with the theory of the previous section, this error is reduced more than three-fold with
the nonlinear Shift-DeepONet. The error is reduced even further by FNO and in this case, FNO
outperforms DeepOnet by a factor of almost 20 and learns the very complicated solution operator
with an error of only 1.5%

Compressible Euler Equations. The motion of an inviscid gas is described by the Euler equations
of aerodynamics. For definiteness, the Euler equations in two space dimensions are,

Ut+F(U)x+G(U)y = 0, U =

 ρ
ρu
ρv
E

 , F(U) =

 ρu
ρu2 + p
ρuv

(E + p)u

 , G(U) =

 ρv
ρuv

ρv2 + p
(E + p)v

 ,

(4.1)
with ρ, u, v and p denoting the fluid density, velocities along x-and y-axis and pressure. E represents
the total energy per unit volume

E =
1

2
ρ(u2 + v2) +

p

γ − 1

where γ = cp/cv is the gas constant which equals 1.4 for a diatomic gas considered here.

Shock Tube. We start by restricting the Euler equations (4.1) to the one-dimensional domain
D = [−5, 5] by setting v = 0 in (4.1). The initial data corresponds to a shock tube of the form,

ρ0(x) =

{
ρL x ≤ x0
ρR x > x0

u0(x) =

{
uL x ≤ x0
uR x > x0

p0(x) =

{
pL x ≤ x0
pR x > x0

(4.2)

parameterized by the left and right states (ρL, uL, pL), (ρR, uR, pR), and the location of the initial
discontinuity x0. As proposed in Lye et al. (2020), these parameters are, in turn, drawn from the
measure; ρL = 0.75 + 0.45G(z1), ρR = 0.4 + 0.3G(z2), uL = 0.5 + 0.5G(z3), uR = 0, pL =
2.5 + 1.6G(z4), pR = 0.375 + 0.325G(z5), x0 = 0.5G(z6), with z = [z1, z2, . . . z6] ∼ U

(
[0, 1]6

)
and G(z) := 2z − 1. We seek to approximate the operator G : [ρ0, ρ0u0, E0] 7→ E(1.5). The
training (and test) output are generated with ALSVINN code Lye (2020), using a finite volume
scheme, with a spatial mesh resolution of 2048 points and examples of input-output pairs, presented
in SM Figure 12 show that the initial jump discontinuities in density, velocity and pressure evolve
into a complex pattern of (continuous) rarefactions, contact discontinuities and shock waves. The
(relative) median test errors, presented in Table 1, reveal that shift-DeepONet and FNO significantly
outperform DeepONet (and the other two baselines). FNO is also better than shift-DeepONet and
approximates this complicated solution operator with a median error of ≈ 1.5%.

Four-Quadrant Riemann Problem. For the final numerical experiment, we consider the
two-dimensional Euler equations (4.1) with initial data, corresponding to a well-known four-quadrant
Riemann problem (Mishra & Tadmor, 2011) with U0(x, y) = Usw, if x, y < 0, U0(x, y) = Use,
if x < 0, y > 0, U0(x, y) = Unw, if x > 0, y < 0 and U0(x, y) = Une, if x, y > 0,
with states given by ρ0,ne = ρ0,sw = p0,ne = p0,sw = 1.1, ρ0,nw = ρ0,se = 0.5065,

8

Published as a conference paper at ICLR 2023

p0,nw = p0,se = 0.35 [u0,ne, u0,nw, v0,ne, v0,se] = 0.35[G(z1), G(z2), G(z3), G(z4)]
and [u0,se, u0,sw, v0,nw, v0,sw] = 0.8939 + 0.35[G(z5), G(z6), G(z7), G(z48], with
z = [z1, z2, . . . z8] ∼ U

(
[0, 1]8

)
and G(z) = 2z − 1. We seek to approximate the opera-

tor G : [ρ0, ρ0u0, ρ0v0, E0] 7→ E(1.5). The training (and test) output are generated with the
ALSVINN code, on a spatial mesh resolution of 2562 points and examples of input-output pairs,
presented in SM Figure 13, show that the initial planar discontinuities in the state variable evolve
into a very complex structure of the total energy at final time, with a mixture of curved and planar
discontinuities, separated by smooth regions. The (relative) median test errors are presented in
Table 1. We observe from this table that the errors with all models are significantly lower in this
test case, possibly on account of the lower initial variance and coarser mesh resolution at which the
reference solution is sampled. However, the same trend, vis a vis model performance, is observed i.e.,
DeepONet is significantly (more than seven-fold) worse than both shift-DeepONet and FNO. On the
other hand, these two models approximate the underlying solution operator with a very low error of
approximately 0.1%.

5 DISCUSSION

Related Work. Although the learning of operators arising from PDEs has attracted great interest
in recent literature, there are very few attempts to extend the proposed architectures to PDEs with
discontinuous solutions. Empirical results for some examples of discontinuities or sharp gradients
were presented in Mao et al. (2020b) (compressible Navier-Stokes equations with DeepONets) Kissas
et al. (2022) (Shallow-Water equations with an attention based framework) and in Seidman et al.
(2022) (free-surface waves based on a “operator learning manifold hypothesis”). However, with the
notable exception of Lanthaler et al. (2022) where the approximation of scalar conservation laws with
DeepONets is analyzed, theoretical results for the operator approximation of PDEs are not available.
Hence, this paper can be considered to be the first where a rigorous analysis of approximating
operators arising in PDEs with discontinuous solutions has been presented, particularly for FNOs. On
the other hand, there is considerably more work on the neural network approximation of parametric
nonlinear hyperbolic PDEs such as the theoretical results of De Ryck & Mishra (2022a) and empirical
results of Lye et al. (2020; 2021). Also related are results with physics informed neural networks
or PINNs for nonlinear hyperbolic conservation laws such as De Ryck et al. (2022); Jagtap et al.
(2022); Mao et al. (2020a). However, in this setting, the input measure is assumed to be supported on
a finite-dimensional subset of the underlying infinite-dimensional input function space, making them
too restrictive for operator learning as described in this paper.

Conclusions.

A priori, it could be difficult to approximate operators that arise in PDEs with discontinuities. Given
this context, we have proved a rigorous lower bound to show that any operator learning architecture,
based on linear reconstruction, may fail at approximating the underlying operator efficiently. In
particular, this result holds for the popular DeepONet architecture.

On the other hand, we rigorously prove that the incorporation of nonlinear reconstruction mechanisms
can break this lower bound and pave the way for efficient learning of operators arising from PDEs
with discontinuities. We prove this result for an existing widely used architecture i.e., FNO, and
a novel variant of DeepONet that we term as shift-DeepONet. For instance, we show that while
the approximation error for DeepONets can decay, at best, linearly in terms of model size, the
corresponding approximation errors for shift-DeepONet and FNO decays exponentially in terms of
model size, even in the presence or spontaneous formation of discontinuities.

These theoretical results are backed by experimental results where we show that FNO and shift-
DeepONet consistently beat DeepONet and other ML baselines by a wide margin, for a variety of
PDEs with discontinuities.

Moreover, we also find theoretically (compare Theorems 3.2 and 3.3) that FNO is more efficient
than even shift-DeepONet. This fact is also empirically confirmed in our experiments. The non-local
as well as nonlinear structure of FNO is instrumental in ensuring its excellent performance in this
context, see Theorem 3.3 and SM E.2 for further demonstration of the role of nonlinear reconstruction
for FNOs.

9

Published as a conference paper at ICLR 2023

REFERENCES

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model
Reduction And Neural Networks For Parametric PDEs. The SMAI journal of computational
mathematics, 7:121–157, 2021.

Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis. Deepm&mnet:
Inferring the electroconvection multiphysics fields based on operator approximation by neural
networks. Journal of Computational Physics, 436:110296, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995.

C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics (2nd Ed.). Springer Verlag,
2005.

Wolfgang Dahmen, Christian Plesken, and Gerrit Welper. Double greedy algorithms: Reduced basis
methods for transport dominated problems. ESAIM: Mathematical Modelling and Numerical
Analysis, 48(3):623–663, 2014.

T. De Ryck and S. Mishra. Error analysis for deep neural network approximations of parametric
hyperbolic conservation laws. arXiv preprint arXiv:2207.07362, 2022a.

T. De Ryck, S. Mishra, and R. Molinaro. wpinns:weak physics informed neural networks for
approximating entropy solutions of hyperbolic conservation laws. arXiv preprint arXiv:2207.08483,
2022.

Tim De Ryck and Siddhartha a Mishra. Generic bounds on the approximation error for physics-
informed (and) operator learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022b.

Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis. Ap-
proximation rates of deeponets for learning operators arising from advection–diffusion equa-
tions. Neural Networks, 153:411–426, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2022.06.019. URL https://www.sciencedirect.com/science/article/
pii/S0893608022002349.

D. A. Drew and S. L. Passman. Theory of Multicomponent Fluids. Springer Verlag, New York, 1998.

Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep neural network
approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

J. S. Hesthaven. Numerical methods for conservation laws: From analysis to algorithms. SIAM,
2018.

Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems
using neural networks. Journal of Computational Physics, 363:55–78, 2018.

Irina Higgins. Generalizing universal function approximators. Nature Machine Intelligence, 3(3):
192–193, 2021.

Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed
neural networks for inverse problems in supersonic flows. Journal of Computational Physics,
466:111402, October 2022. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111402. URL https:
//www.sciencedirect.com/science/article/pii/S0021999122004648.

10

https://www.sciencedirect.com/science/article/pii/S0893608022002349
https://www.sciencedirect.com/science/article/pii/S0893608022002349
https://www.sciencedirect.com/science/article/pii/S0021999122004648
https://www.sciencedirect.com/science/article/pii/S0021999122004648

Published as a conference paper at ICLR 2023

Georgios Kissas, Jacob H Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J Pappas,
and Paris Perdikaris. Learning operators with coupled attention. Journal of Machine Learning
Research, 23(215):1–63, 2022.

N. Kovachki, Z. Li, B. Liu, K. Azizzadensheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481v3,
2021a.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22:Art–No, 2021b.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for DeepONets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,
6(1):tnac001, 2022. URL https://academic.oup.com/imatrm/article-pdf/6/
1/tnac001/42785544/tnac001.pdf.

Zongyi Li, Nikola B Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. CoRR, abs/2003.03485, 2020a.

Zongyi Li, Nikola B Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew M Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 6755–6766. Curran
Associates, Inc., 2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021a. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis. Operator
learning for predicting multiscale bubble growth dynamics. The Journal of Chemical Physics, 154
(10):104118, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

K. 0. Lye. Computation of Statistical Solutions of hyperbolic systems of conservation laws. ETH
Dissertation N. 26728, 2020.

Kjetil O Lye, Siddhartha Mishra, and Deep Ray. Deep learning observables in computational fluid
dynamics. Journal of Computational Physics, pp. 109339, 2020.

Kjetil O Lye, Siddhartha Mishra, Deep Ray, and Praveen Chandrashekar. Iterative surrogate model
optimization (ISMO): An active learning algorithm for pde constrained optimization with deep
neural networks. Computer Methods in Applied Mechanics and Engineering, 374:113575, 2021.

Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for high-speed flows.
Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020a.

11

https://academic.oup.com/imatrm/article-pdf/6/1/tnac001/42785544/tnac001.pdf
https://academic.oup.com/imatrm/article-pdf/6/1/tnac001/42785544/tnac001.pdf
https://openreview.net/forum?id=c8P9NQVtmnO

Published as a conference paper at ICLR 2023

Z. Mao, L. Lu, O. Marxen, T. Zaki, and G. E. Karniadakis. DeepMandMnet for hypersonics:
Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network
approximation of operators. Preprint, available from arXiv:2011.03349v1, 2020b.

Siddhartha Mishra and Eitan Tadmor. Constraint preserving schemes using potential based fluxes-
ii: Genuinely multi-dimensional schemes for systems of conservation laws,. SIAM Journal on
Numerical Analysis, 49:1023–1045, 2011.

Mario Ohlberger and Stephan Rave. Nonlinear reduced basis approximation of parameterized
evolution equations via the method of freezing. Comptes Rendus Mathematique, 351(23):901–
906, 2013. ISSN 1631-073X. doi: https://doi.org/10.1016/j.crma.2013.10.028. URL https:
//www.sciencedirect.com/science/article/pii/S1631073X13002847.

J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall,
Z. Li, K. Azizzadenesheli, p. Hassanzadeh, K. Kashinath, and A. Anandkumar. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv
preprint arXiv:2202.11214, 2022.

Benjamin Peherstorfer. Model reduction for transport-dominated problems via online adaptive bases
and adaptive sampling. SIAM Journal on Scientific Computing, 42(5):A2803–A2836, 2020.

Jacob H Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. NOMAD: Nonlinear
manifold decoders for operator learning. arXiv preprint arXiv:2206.03551, 2022.

J. Smoller. Shock waves and reaction-diffusion equations. Springer, 2012.

C.T. Sun and Z-H. Jin. Fracture Mechanics. Elsevier, 2012.

Tommaso Taddei, Simona Perotto, and ALFIO Quarteroni. Reduced basis techniques for nonlinear
conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 49(3):787–814,
2015.

Qingcan Wang et al. Exponential convergence of the deep neural network approximation for analytic
functions. Science China Mathematics, 61(10):1733–1740, 2018.

Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:
103–114, 2017. Publisher: Elsevier.

12

https://www.sciencedirect.com/science/article/pii/S1631073X13002847
https://www.sciencedirect.com/science/article/pii/S1631073X13002847

Published as a conference paper at ICLR 2023

Supplementary Material for:
Nonlinear Reconstruction for operator learning of PDEs with discontinuities.

A PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) provides a complete answer to the following problem (see e.g.
Bhattacharya et al. (2021); Lanthaler et al. (2022) and references therein for relevant results in the
infinite-dimensional context):

Given a probability measure ν ∈ Prob(Y) on a Hilbert space Y and given p ∈ N, we would like
to characterize the optimal linear subspace V̂p ⊂ Y of dimension p, which minimizes the average
projection error

Ew∼ν

[
∥w −ΠV̂p

w∥2Y
]
= min

dim(Vp)=p
Ew∼ν

[
∥w −ΠVpw∥2Y

]
, (A.1)

where ΠVp
denotes the orthogonal projection onto Vp, and the minimum is taken over all p-

dimensional linear subspaces Vp ⊂ X .

Remark A.1. A characterization of the minimum in A.1 is of relevance to the present work, since
the outputs of DeepONet, and other operator learning frameworks based on linear reconstruction
N (u) =

∑p
k=1 βk(u)τk, are restricted to the linear subspace Vp := span{τ1, . . . , τp}. From this, it

follows that (Lanthaler et al. (2022)):

Eu∼µ

[
∥G(u)−N (u)∥2Y

]
≥ Eu∼µ

[
∥G(u)−ΠVp

G(u)∥2Y
]
= Ew∼G#µ

[
∥w −ΠVp

w∥2Y
]
,

is lower bounded by the minimizer in (A.1) with ν = G#µ the push-forward measure of µ under G.

To characterize minimizers of (A.1), one introduces the covariance operator Γν : Y → Y , by
Γν := Ew∼ν [w ⊗ w], where ⊗ denotes the tensor product. By definition, Γν satisfies the following
relation

⟨v′,Γνv⟩Y = Ew∼ν [⟨v′, w⟩Y⟨w, v⟩Y] , ∀ v, v′ ∈ Y.
It is well-known that Γν possesses a complete set of orthonormal eigenfunctions ϕ1, ϕ2, . . . , with
corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. We then have the following result (see e.g. (Lanthaler
et al., 2022, Thm. 3.8)):

Theorem A.2. A subspace V̂p ⊂ Y is a minimizer of (A.1) if, and only if, V̂p = span{ϕ1, . . . , ϕp}
can be written as the span of the first p eigenfunctions of an orthonormal eigenbasis ϕ1, ϕ2, . . . of
the covariance operator Γν , with decreasing eigenvalues λ1 ≥ λ2 ≥ Furthermore, the minimum
in (A.1) is given by

E 2
opt = min

dim(Vp)=p
Ew∼ν

[
∥w −ΠVpw∥2Y

]
=
∑
j>p

λj ,

in terms of the decay of the eigenvalues of Γν .

A.1 ILLUSTRATIVE EXAMPLE

To illustrate the close connection between the decay of PCA eigenvalues and the sharpness of
gradients in that distribution, we consider the solution operator G : L2(T) → L2(T) of the advection
equation ∂tu+ a∂xu = 0 with a = 1, mapping the initial data ū 7→ G(ū) = u(t = 1) to the solution
at time t = 1. We consider the input probability measure µ(0) ∈ P(L2) which is defined as the
law of random indicator functions ū = 1[−w/2,w/2](x− ξ) on the periodic torus T = [0, 2π], where
w ∈ [π/4, 3π/4] and ξ ∈ [0, 2π] are drawn uniformly at random and independently. For δ > 0,
we define a “smoothened” probability measure µ(δ) on input functions, whose law is obtained by
mollifying random draws ū from µ(0) against a Gaussian mollifier gδ(x) with Fourier coefficients
ĝδ(k) = exp(−δ2k2), i.e.

µ(δ) = law
(
ū ∗ gδ(y) | u ∼ µ(0)

)
.

13

Published as a conference paper at ICLR 2023

(a) Representative sample from ν(δ) (b) Decay of PCA eigenvalues λ(δ)
k

Figure 1: Sharper gradients (at length scale δ) can cause a slow decay of the corresponding PCA
eigenvalues λ(δ)k .

We denote by ν(δ) = G#µ
(δ) the push-forward measure under the solution operator G. Observing

that ν(δ) is a translation-invariant probability measure, and following (Lanthaler et al., 2022, Proof
of Lemma 4.14), we note that the PCA eigenbasis is given by the standard Fourier basis, and the
eigenvalue associated with the eigenfunction eikx is given by

λ̃
(δ)
k =

2π

∆w

ˆ 3π/4

π/4

|ψ̂(δ)
w (k)|2 dw, ψ(δ)

w (x) = 1[−w/2,w/2] ∗ gδ(x), (A.2)

where ψ̂(δ)
w (k) = (2π)−1

´ 2π

0
ψ
(δ)
w (x)e−ikx dx denotes the k-th Fourier coefficient of ψ(δ)

w , and
∆w = π/2 is a normalizing factor. We approximate λ̃(δ)k numerically by a (trapezoidal) quadrature in
w with Nw = 4001 quadrature points. For each value of w, we approximate the Fourier coefficients
ψ̂
(δ)
w (k) via the fast Fourier transform of ψ(δ)

w (x) computed on a fine grid of N = 104 equidistant
points. The approximate PCA eigenvalues are finally obtained by sorting the so computed eigenvalues
in decreasing order and retaining only the first 1000, which yields a decreasing sequence λ(δ)1 ≥
λ
(δ)
2 ≥ · · · ≥ λ

(δ)
1000.

Figure 1 compares and contrasts the decay of the PCA eigenvalues for the probability measures
ν(δ) with gradients at different length scales δ ∈ {0, 0.05, 0.2, 0.5}. We note that the theoretically
predicted asymptotic λk ∼ Ck−2 decay is recovered for δ = 0.

B MEASURES OF COMPLEXITY FOR (SHIFT-)DEEPONET AND FNO

As pointed out in the main text, there are several hyperparameters which determine the complexity
of DeepONet/shift-DeepONet and FNO, respectively. Table 2 summarizes quantities of major
importance for (shift-)DeepONet and their (rough) analogues for FNO. These quantities are directly
relevant to the expressive power and trainability of these operator learning architectures, and are
described in further detail below.

(shift-)DeepONet FNO
spatial resolution m ∼ Nd

“intrinsic” function space dim. p ∼ kdmax · dv
trainable parameters size(N) size(N)

depth depth(N) depth(N)

width width(N) ∼ kdmax · dv

Figure 2: Approximate correspondence between measures of the complexity (d=dimension of the
domain D ⊂ Rd of input/output functions).

14

Published as a conference paper at ICLR 2023

(shift-)DeepONet: Quantities of interest include the number of sensor points m, the number of
trunk-/branch-net functions p and the width, depth and size of the operator network. We first recall
the definition of the width and depth for DeepONet,

width(NDON) := width(β) + width(τ),

depth(NDON) := max {depth(β),depth(τ)} ,
where the width and depth of the conventional neural networks on the right-hand side are defined
in terms of the maximum hidden layer width (number of neurons) and the number of hidden layers,
respectively. To ensure a fair comparison between DeepONet, shift-DeepONet and FNO, we define
the size of a DeepONet assuming a fully connected (non-sparse) architecture, as

size(NDON) := (m+ p)width(NDON) + width(NDON)2depth(NDON),

where the second term measures the complexity of the hidden layers, and the first term takes into
account the input and output layers. Furthermore, all architectures we consider have a width which
scales at least as width(NDON) ≳ min(p,m), implying the following natural lower size bound,

size(NDON) ≳ (m+ p)min(p,m) + min(p,m)2depth(NDON). (B.1)

We also introduce the analogous notions for shift-DeepONet:

width(N sDON) := width(β) + width(τ) + width(A) + width(γ),

depth(N sDON) := max {depth(β),depth(τ),depth(A),depth(γ)} ,
size(N sDON) := (m+ p)width(NDON) + width(NDON)2depth(NDON).

FNO: Quantities of interest for FNO include the number of grid points in each directionN (for a total
of O(Nd) grid points), the Fourier cut-off kmax (we retain a total of O(kdmax) Fourier coefficients in
the convolution operator and bias), and the lifting dimension dv . We recall that the lifting dimension
determines the number of components of the input/output functions of the hidden layers, and hence
the “intrinsic” dimensionality of the corresponding function space in the hidden layers is proportional
to dv . The essential informational content for each of these dv components is encoded in their Fourier
modes with wave numbers |k| ≤ kmax (a total of O(kdmax) Fourier modes per component), and hence
the total intrinsic function space dimension of the hidden layers is arguably of order ∼ kdmaxdv . The
width of an FNO layer is defined in analogy with conventional neural networks as the maximal width
of the weight matrices and Fourier multiplier matrices, which is of order ∼ kdmax · dv. The depth
is defined as the number of hidden layers L. Finally, the size is by definition the total number of
tunable parameters in the architecture. By definition, the Fourier modes of the bias function bℓ(x)
are restricted to wavenumbers |k| ≤ kmax (giving a total number of O(kdmaxdv) parameters), and the
Fourier multiplier matrix is restricted to wave numbers |k| ≤ kmax (giving O(kdmaxd

2
v) parameters).

Apriori, it is easily seen that if the lifting dimension dv is larger than the number of components of
the input/output functions, then (Kovachki et al., 2021b)

size(NFNO) ≲
(
d2v + d2vk

d
max + dvN

d
)
depth(NFNO),

where the first term in parentheses corresponds to size(Wℓ) = d2v, the second term accounts for
size(Pℓ) = O(d2vk

d
max) and the third term counts the degrees of freedom of the bias, size(bℓ(xj)) =

O(dvN
d). The additional factor depth(NFNO) takes into account that there are L = depth(NFNO)

such layers.

If the bias bℓ is constrained to have Fourier coefficients b̂ℓ(k) ≡ 0 for |k| > kmax (as we assumed
in the main text), then the representation of bℓ only requires size(̂bℓ(k)) = O(dvk

d
max) degrees of

freedom. This is of relevance in the regime kmax ≪ N , reducing the total FNO size from O(d2vN
dL)

to

size(NFNO) ≲ d2vk
d
maxdepth(NFNO). (B.2)

Practically, this amounts to adding the bias in the hidden layers in Fourier k-space, rather than
physical x-space.

C EXTENSIONS OF THEORETICAL RESULTS

In this section, we remark on two straight-forward extensions of our theoretical results in Section 3.

15

Published as a conference paper at ICLR 2023

C.1 TIME-EVOLUTION

We first consider the approximation of the time-evolution t 7→ u(· , t) for solutions of the linear
advection equation

∂tu+ a∂xu = 0, u(· , t = 0) = ū, (C.1)

with ū drawn from the probability measure µ specified in (3.2) in the main text.

One way to apply neural operators to this time-evolution setting is by recursive application, where one
fixes ∆t > 0, and learns an approximation N (ū) ≈ S∆t(ū) for the given time-step, with ū 7→ S∆t(ū)
given by the data-to-solution mapping ū 7→ u(· ,∆t) of the PDE (C.1). Given ū, an approximation of
the time-evolution u(· , tj) at the discrete time-steps tj = j∆t for j = 1, . . . , NT with NT∆t = T ,
is then obtained by iterative evaluations

u(· , tj) ≈ Nj(ū) := (N ◦ · · · ◦ N)︸ ︷︷ ︸
j times

(ū).

In this context, Theorems 3.1, 3.2 and 3.3, can be extended to show that

• For DeepONets, we have a lower bound

E = sup
j=1,,̇NT

Eū∼µ

[
∥Stj (ū)−NDON

j (ū)∥L1

]
≥ C

min(m, p)
,

with C > 0 independent of T,∆t. Consequently to achieve an error E < ϵ requires
p,m ≳ ϵ−1 trunk and branch net basis functions and sensor points, entailing a lower size
bound size(NDON) ≳ mp ≳ ϵ−2.

• For shift-DeepONets, there exists a constant C > 0, independent of ∆t and NT , such that
for any ϵ > 0 there exists a shift-DeepONet N sDON such that

E = sup
j=1,...,NT

Eū∼µ

[
∥Stj (ū)−N sDON

j (ū)∥L1

]
≤ ϵ,

with uniformly bounded p ≤ C, with number of sensor points m ≤ CNT /ϵ and
size(N sDON) ≤ CNT /ϵ.

• For FNO, there exists C > 0 independent of ∆t and NT , such that for any ϵ > 0, there
exists an FNO NFNO with

E = sup
j=1,...,NT

Eū∼µ

[
∥Stj (ū)−N sDON

j (ū)∥L1

]
≤ ϵ,

with grid size N ≤ CNT /ϵ, Fourier cut-off kmax = 1, lifting dimension dv ≤ C and
size(NFNO) ≤ C log(NT /ϵ)

2.

The additional factors of NT in these estimates stem from the fact that the errors over iterative
time-steps accumulate, requiring an accuracy of order ϵ/NT per time-step in order to achieve an
cumulative error of at most ϵ.

The above results imply that for any fixed choice of ∆t and T = NT∆t, shift-DeepONets and FNO
can approximate the time-evolution of (C.1) more efficiently than DeepONets. As an avenue for
future work, it would be interesting to consider the approximation of the solution operator S : ū 7→ u,
where the output function u = u(x, t) depends on both position x, as well as on time t. But this is
outside of the scope of the present work.

C.2 EXTENSION TO HIGHER DIMENSIONS

While the analysis becomes considerably more cumbersome in higher dimensions, the main insights
of this work also apply to problems on higher-dimensional domains, as we indicate for the linear
advection example in the following: We consider the PDE

∂tu+

d∑
j=1

aj∂xj
u = 0, u(· , t = 0) = ū, (C.2)

16

Published as a conference paper at ICLR 2023

where ū = ū(x1, . . . , xd) is a function defined on the d-dimensional torus Td, which we assume to
be given by a random box wave of the form

ū(x1, . . . , xd) = h

d∏
j=1

1[−wj/2,wj/2](xj − ξj). (C.3)

Here h ∈ [h, h], wj ∈ [w,w], and ξj ∈ [0, 2π] are independent, uniform random variables. As in the
1-dimensional case, we consider the input probability measure µ defined as the law of this random
box-wave in d-dimensions. Fixing T > 0, and by a slight abuse of notation, we will write the solution
operator of (C.2) as Gadv(ū) = u(· , T).
DeepONet: Following an analysis analogous to the one-dimensional case, it can be shown that the
d-dimensional Fourier basis provides an optimal PCA basis for the push-forward measure Gadv,#µ.
Furthermore, an argument based on the decay of the Fourier coefficients of the box wave (C.3) implies
that the PCA eigenvalues λk satisfy the lower bound λk ≳ k−2. In particular, this provides a similar
lower bound on the number of required basis functions p for the DeepONet approximation also in the
d-dimensional case. Furthermore, an extension of the argument in the proof of Proposition D.10 also
provides a similar lower bound in terms of m, i.e. if ess supū∼µ ∥Gadv(ū)∥L∞ ≤M , then

E = Eū∼µ

[
∥Gadv(ū)−NDON(ū)∥L1

]
≥ C

min(m, p)
,

for a constant C = C(M) > 0 that is independent of p and T . Again this shows that a large number
of basis functions is necessary to approximation Gadv by a DeepONet. We note that we can only
establish a lower bound ≳ 1/m rather than ≳ 1/m1/d, as one might have expected to appear from
the “curse of dimensionality” associated with higher-dimensional problems.

shift-DeepONet: In contrast to the case of DeepONet, for shift-DeepONet it can be shown that there
exists a constant C = C(d) > 0, such that for any ϵ > 0, there exists a shift-DeepONet N sDON such
that

E = Eū∼µ

[
∥Gadv(ū)−N sDON(ū)∥L1

]
≤ ϵ,

and with a bounded number of basis functions p ≤ C, a number of sensor points m ≤ Cϵ−1, and
such that size(N sDON) ≤ Cϵ−1.

Sketch of proof: The idea underlying this construction is to first reduce the multi-d problem to d one-
dimensional problems, to apply the known result in the one-dimensional case (along each coordinate)
and to finally reconstruct the output wave-form from the solutions of the one-dimensional problems.
To reduce to the one-dimensional case, we fix a coarse uniform grid xcoarseℓ , ℓ = 1, . . . , Ncoarse, on
T = [0, 2π) with step size < w (smaller than the smallest possible box width in (C.3)), as well as
a fine uniform grid xfineℓ , ℓ = 1, . . . , Nfine, on T = [0, 2π) with step size ∼ ϵ. In terms of these
one-dimensional grids, and for any given coordinate direction j ∈ {1, . . . , d}, we fix sensor points

x
(j)
ℓ1,...,ℓd

= (xcoarseℓ1 , . . . , xcoarseℓj−1
xfineℓj , xcoarseℓj+1

, . . . , xcoarseℓd
) ∈ Td,

where ℓj = 1, . . . , Nfine, and where the other ℓk (k ̸= j) run over the coarse index set ℓk =
1, . . . , Ncoarse. Since Ncoarse is independent of ϵ, while Nfine ∼ ϵ−1, the total number m of sensor
points {

x
(j)
ℓ1,...,ℓd

∣∣∣ j ∈ {1, . . . , d}, ℓj ∈ {1, . . . , Nfine}, ℓk ∈ {1, . . . , Ncoarse} for k ̸= j
}
,

can be bounded by m ≤ Cϵ−1, where C = C(d,w) is independent of ϵ.

Importantly for the reduction to the one-dimensional case:

• the height h of the d-dimensional box wave can be obtained by taking the maximum over
the sensor values ū(x(j)

ℓ1,...,ℓd
), with ℓ1, . . . , ℓd belonging to a coarse subset of indices (cp.

Step 1 in the proof in SM D.3; this requires a neural network of size O(ϵ−1)),
• for any box wave of the form (C.3), and for any direction j = 1, . . . , d, a summation over

the coarse indices (i.e. sum over ℓk for k ̸= j) of the encoded values ū(xℓ1,...,ℓd) combined
with a ReLU truncation, allows us to construct a DNN mapping

ū = h

d∏
k=1

1[−wk/2,wk/2](xk − ξk) 7→ 1[−wj/2,wj/2](xj − ξj),

17

Published as a conference paper at ICLR 2023

where the output function is encoded by evaluation at the fine grid points xfineℓ , ℓ =
1, . . . , Nfine.

Given this reduction to the one-dimensional case, we can then apply our one-dimensional results to
find suitable approximations of h, wj , ξj , (j = 1, . . . , d) as in the one-dimensional case. Based on
this, we construct an approximation of the box wave solution u(· , T) = h

∏d
j=1 1[−wj/2,wj/2](xj −

ξj − ajT) by defining the trunk net as a suitable approximation of the d-dimensional unit box
τ(x) ≈

∏d
j=1 1[−1,1](xj), defining the scale-net to scale each coordinate direction by A(ū) ≈

diag(1/w1, . . . , 1/wd), setting the shift-net to be a shift by γ(ū) ≈ (ξj + ajT), and finally defining
the branch net to be equal to the box height β(ū) = h, so that

u(· , T) = h

d∏
j=1

1[−wj/2,wj/2](xj − ξj − ajT) ≈ β(ū)τ (A(ū) · x+ γ(ū)) ,

provides the desired approximation of the box wave solution. We will not provide the precise details
and required estimates here.

FNO: Similarly, for FNO it can be shown that there exists a constant C = C(d) > 0, such that for
any ϵ > 0, there exists an FNO NFNO such that

E = Eū∼µ

[
∥Gadv(ū)−NFNO(ū)∥L1

]
≤ ϵ,

and with a bounded truncation parameter kmax = 1, lifting dimension dv ≤ C, a number of grid
points N ≤ Cϵ−d, and such that size(NFNO) ≤ C log(ϵ−1)2.

Sketch of proof: The idea is very similar to the case of shift-DeepONet, and follows by a reduction to
the one-dimensional case. Note that in this case, a fine grid needs to be chosen in each coordinate
direction (requiring many grid points, of order ∼ ϵ−d), but crucially the number of weights and biases
of the FNO architecture is independent of this discretization parameter. Hence this does not affect the
overall size. In the case of FNOs, we furthermore note that the box wave

ū(x) = h

d∏
j=1

1[−wj/2,wj/2](xj − ξj),

can be uniquely reconstructed (by a nonlinear reconstruction procedure) from knowledge of it’s
Fourier coefficients

F ū(k1, . . . , kd), for k1, . . . , kj−1, kj+1, . . . , kd = 0, kj ∈ {−1, 0, 1}, and j ∈ {1, . . . , d},

following the same approach detailed in the one-dimensional case in SM D.4, below.

Therefore, given the Fourier coefficients F ū(k) = F ū(k1, . . . , kd), for k = (k1, . . . , kd) with |k| ≤
1, we can first compute the corresponding Fourier coefficients of the solution u(· , T) = ū(· − aT),
by a simple phase shift F [u(· , T)](k) = F ū(k)e−i(k·a)T , and then reconstruct ū(· − aT) from
knowledge of these Fourier coefficients. Thus kmax = 1 also suffices in this case (corresponding to
∼ 3d Fourier coefficients which are retained). The lifting dimension dv of the detailed construction
outlined above scales linearly in the dimension of the domain d, but is independent of ϵ.1

D MATHEMATICAL DETAILS

In this section, we provide detailed proofs of the Theorems in Section 3. We start with some
preliminary results below,

D.1 RELU DNN BUILDING BLOCKS

In the present section we collect several basic constructions for ReLU neural networks, which will be
used as building blocks in the following analysis. For the first result, we note that for any δ > 0, the

1Similar to the one-dimensional case, additional shifted copies of these basis functions are needed in practice
to account for the 2π-periodicity of the output function.

18

Published as a conference paper at ICLR 2023

following approximate step-function

ζδ(x) :=


0, x < 0,
x
δ , 0 ≤ x ≤ δ,

1, x > δ,

can be represented by a neural network:

ζδ(x) = σ
(x
δ

)
− σ

(
x− δ

δ

)
,

where σ(x) = max(x, 0) denotes the ReLU activation function. Introducing an additional shift ξ,
multiplying the output by h, and choosing δ > 0 sufficiently small, we obtain the following result:

Proposition D.1 (Step function). Fix an interval [a, b] ⊂ R, ξ ∈ [a, b], h ∈ R. Let h 1[x>ξ] be a step
function of height h. For any ϵ > 0 and p ∈ [1,∞), there exist a ReLU neural network Φϵ : R → R,
such that

depth(Φϵ) = 1, width(Φϵ) = 2,

and
∥Φϵ − h 1[x>ξ]∥Lp([a,b]) ≤ ϵ.

The following proposition is an immediate consequence of the previous one, by considering the linear
combination Φδ(x− a)− Φδ(x− b) with a suitable choice of δ > 0.

Proposition D.2 (Indicator function). Fix an interval [a, b] ⊂ R. Let 1[a,b](x) be the indicator function
of [a, b]. For any ϵ > 0 and p ∈ [1,∞), there exist a ReLU neural network Φϵ : R → R, such that

depth(Φϵ) = 1, width(Φϵ) = 4,

and
∥Φϵ − 1[a,b]∥Lp([a,b]) ≤ ϵ.

Figure 3: Illustration of partition of unity network for J = 5, [a, b] = [0, 1].

A useful mathematical technique to glue together local approximations of a given function rests on
the use of a “partition of unity”. In the following proposition we recall that partitions of unity can
be constructed with ReLU neural networks (this construction has previously been used by Yarotsky
(2017); cp. Figure 3):

Proposition D.3 (Partition of unity). Fix an interval [a, b] ⊂ R. For J ∈ N, let ∆x := (b− a)/J , and
let xj := a+ j∆x, j = 0, . . . , J be an equidistant grid on [a, b]. Then for any ϵ ∈ (0,∆x/2], there
exists a ReLU neural network Λ : R → RJ , x 7→ (Λ1(x), . . . ,ΛJ(x)), such that

width(Λ) = 4J, depth(Λ) = 1,

19

Published as a conference paper at ICLR 2023

each Λj is piecewise linear, satisfies

Λj(x) =


0, (x ≤ xj−1 − ϵ),

1, (xj−1 + ϵ ≤ x ≤ xj − ϵ),

0, (x ≥ xj + ϵ),

and interpolates linearly between the values 0 and 1 on the intervals [xj−1 − ϵ, xj−1 + ϵ] and
[xj − ϵ, xj + ϵ]. In particular, this implies that

• supp(Λj) ⊂ [xj−1 − ϵ, xj + ϵ], for all j = 1, . . . , J ,

• Λj(x) ≥ 0 for all x ∈ R,

• The {Λj}j=1,...,J form a partition of unity, i.e.

J∑
j=1

Λj(x) = 1, ∀x ∈ [a, b].

We also recall the well-known fact that the multiplication operator (x, y) 7→ xy can be efficiently
approximated by ReLU neural networks (cp. Yarotsky (2017)):

Proposition D.4 (Multiplication, (Yarotsky, 2017, Prop. 3)). There exists a constant C > 0, such that
for any ϵ ∈ (0, 12], M ≥ 2, there exists a neural network ×̂ϵ,M : [−M,M]× [−M,M] → R, such
that

width(×̂ϵ,M) ≤ C, depth(×̂ϵ,M) ≤ C log(Mϵ−1), size(×̂ϵ,M) ≤ C log(Mϵ−1),

and
sup

x,y∈[−M,M]

|×̂ϵ,M (x, y)− xy| ≤ ϵ.

We next state a general approximation result for the approximation of analytic functions by ReLU
neural networks. To this end, we first recall

Definition D.5 (Analytic function and extension). A function F : (α, β) → R is analytic, if for any
x0 ∈ (α, β) there exists a radius r > 0, and a sequence (ak)k∈N0 such that

∑∞
k=0 |ak|rk <∞, and

F (x) =

∞∑
k=0

ak(x− x0)
k, ∀ |x− x0| < r.

If f : [a, b] → R is a function, then we will say that f has an analytic extension, if there exists
F : (α, β) → R, with [a, b] ⊂ (α, β), with F (x) = f(x) for all x ∈ [a, b] and such that F is analytic.

We then have the following approximation bound, which extends the main result of Wang et al.
(2018). In contrast to Wang et al. (2018), the following theorem applies to analytic functions without
a globally convergent series expansion.

Theorem D.6. Assume that f : [a, b] → R has an analytic extension. Then there exist constants
C, γ > 0, depending only on f , such that for any L ∈ N, there exists a ReLU neural network
ΦL : R → R, with

sup
x∈[a,b]

|f(x)− ΦL(x)| ≤ C exp(−γL1/2),

and such that
depth(ΦL) ≤ CL, width(ΦL) ≤ C.

20

Published as a conference paper at ICLR 2023

Proof. Since f has an analytic extension, for any x ∈ [a, b], there exists a radius rx > 0, and an
analytic function Fx : [x− rx, x+ rx] → R, which extends f locally. By the main result of (Wang
et al., 2018, Thm. 6), there are constants Cx, γx > 0 depending only on x ∈ [a, b], such that for any
L ∈ N, there exists a ReLU neural network Φx,L : R → R, such that

sup
|ξ−x|≤rx

|F (ξ)− Φx,L(ξ)| ≤ Cx exp(−γxL1/2),

and depth(Φx) ≤ CxL, width(Φx) ≤ Cx. For J ∈ N, set ∆x = (b − a)/J and consider the
equidistant partition xj := a + j∆x of [a, b]. Since the compact interval [a, b] can be covered by
finitely many of the intervals (x− rx, x+ rx), then by choosing ∆x sufficiently small, we can find
x(j) ∈ [a, b], such that [xj−1, xj] ⊂ (x(j) − rx(j) , x(j) + rx(j)) for each j = 1, . . . , J .

By construction, this implies that for C̄ := maxj=1,...,J Cx(j) , and γ̄ := minj=1,...,J γx(j) , we have
that for any L ∈ N, there exist neural networks Φj,L(= Φx(j),L) : R → R, such that

sup
x∈[xj−1,xj]

|f(x)− Φj,L(x)| ≤ C̄ exp(−γ̄L1/2),

and such that depth(Φj,L) ≤ C̄L, width(Φj,L) ≤ C̄.

Let now Λ : R → RJ be the partition of unity network from Proposition D.3, and define

ΦL(x) :=

J∑
j=1

×̃M,ϵ (Λj(x),Φj,L(x)) ,

where ×̃M,ϵ denotes the multiplication network from Proposition D.4, with M := 1 + C̄ exp(−γ̄) +
supx∈[a,b] |f(x)|, and ϵ := J−1C̄ exp(−γ̄L1/2). Then we have

depth(ΦL) ≤ depth(×̃M,ϵ) + depth(Λ) + max
j=1,...,J

depth(Φj,L)

≤ C ′ log(Mϵ−1) + 1 + C̄L

≤ C(1 + L),

where the constantC > 0 on the last line depends on supx∈[a,b] |f(x)|, γ̄ and on C̄, but is independent
of L. Similarly, we find that

width(ΦL) ≤ width(Λ) + max
j=1,...,J

width(Φj,L) ≤ 4J + C̄,

is bounded independently of L. After potentially enlarging the constant C > 0, we can thus ensure
that

depth(ΦL) ≤ CL, width(ΦL) ≤ C,

with a constant C > 0 that depends only on f , but is independent of L. Finally, we note that

|ΦL(x)− f(x)| ≤
J∑

j=1

∣∣×̃M,ϵ (Λj(x),Φj,L(x))− Λj(x)f(x)
∣∣

≤
J∑

j=1

∣∣×̃M,ϵ (Λj(x),Φj,L(x))− Λj(x)Φj,L(x)
∣∣

+

J∑
j=1

Λj(x) |Φj,L(x)− f(x)| .

By construction of ×̃M,ϵ, and since |Φj,L(x)| ≤M , Λj ≤M , the first sum can be bounded by Jϵ =
C̄ exp(−γ̄L1/2). Furthermore, each term in the second sum is bounded by Λj(x)C̄ exp(−γ̄L1/2),
and hence

J∑
j=1

Λj(x)|Φj,L(x)− f(x)| ≤

 J∑
j=1

Λj(x)

 C̄ exp(−γ̄L1/2) = C̄ exp(−γ̄L1/2),

21

Published as a conference paper at ICLR 2023

for all x ∈ [a, b]. We conclude that supx∈[a,b] |ΦL(x)− f(x)| ≤ 2C̄ exp(−γ̄L1/2), with constants
C̄, γ̄ > 0 independent of L. Setting γ := γ̄ and after potentially enlarging the constant C > 0 further,
we thus conclude: there exist C, γ > 0, such that for any L ∈ N, there exists a neural network
ΦL : R → R with depth(ΦL) ≤ CL, width(ΦL) ≤ C, such that

sup
x∈[a,b]

|ΦL(x)− f(x)| ≤ C exp(−γL1/2).

This conclude the proof of Theorem D.6

By combining a suitable ReLU neural network approximation of division a 7→ 1/a based on
Theorem D.6 (division is an analytic function away from 0), and the approximation of multiplication
by Yarotsky (2017) (cp. Proposition D.4, above), we can also state the following result:

Proposition D.7 (Division). Let 0 < a ≤ b be given. Then there exists C = C(a, b) > 0, such that
for any ϵ ∈ (0, 12], there exists a ReLU network ÷̃a,b,ϵ : R× R → R, with

depth(÷̃a,b,ϵ) ≤ C log
(
ϵ−1
)2
, width(÷̃a,b,ϵ) ≤ C, size(÷̃a,b,ϵ) ≤ C log

(
ϵ−1
)2
,

satisfying

sup
x,y∈[a,b]

∣∣∣∣÷̃a,b,ϵ(x; y)−
x

y

∣∣∣∣ ≤ ϵ.

We end this section with the following result.

Lemma D.8. There exists a constant C > 0, such that for any ϵ > 0, there exists a neural network
Ξϵ : R → R, such that

sup
ξ∈[0,2π−ϵ]

|ξ − Ξϵ(cos(ξ), sin(ξ))| ≤ ϵ,

with Ξϵ(cos(ξ), sin(ξ)) ∈ [0, 2π] for all ξ ∈ [0, 2π], and such that

depth(Ξϵ) ≤ C log(ϵ−1)2, width(Ξϵ) ≤ C.

Sketch of proof. We can divide up the unit circle {(cos(ξ), sin(ξ)) | ξ ∈ [0, 2π]} into 5 subsets, where

ξ ∈ [0, π/4], ⇐⇒ x ≥ 1/
√
2, y ≥ 0,

ξ ∈ (π/4, 3π/4], ⇐⇒ y > 1/
√
2,

ξ ∈ [3π/4, 5π/4], ⇐⇒ x ≤ −1/
√
2,

ξ ∈ (5π/4, 7π/4), ⇐⇒ y < −1/
√
2,

ξ ∈ [7π/4, 2π), ⇐⇒ x ≤ −1/
√
2, y < 0,

On each of these subsets, one of the mappings

x ∈
[
− 1√

2
,
1√
2

]
→ R, x = cos(ξ) 7→ ξ,

or

y ∈
[
− 1√

2
,
1√
2

]
→ R, y = sin(ξ) 7→ ξ,

is well-defined and possesses an analytic, invertible extension to the open interval (−1, 1) (with
analytic inverse). By Theorem D.6, it follows that for any ϵ > 0, we can find neural networks
Φ1, . . . ,Φ5, such that |Φj(cos(ξ), sin(ξ)) − ξ| ≤ ϵ on an open set containing the corresponding
domain, and

depth(Φj) ≤ C log(ϵ−1)2, width(Φj) ≤ C.

By a straight-forward partition of unity argument based on Proposition D.3, we can combine these
mappings to a global map,2 which is represented by a neural network Ξϵ : R2 → [0, 2π], such that

sup
ξ∈[0,2π−ϵ]

|Ξϵ(cos(ξ), sin(ξ))− ξ| ≤ ϵ,

2this step is where the ϵ-gap at the right boundary 2π− ϵ is needed, as the points at angles ξ = 0 and ξ = 2π
are identical on the circle.

22

Published as a conference paper at ICLR 2023

and such that

depth(Ξϵ) ≤ C log(ϵ−1)2, width(Ξϵ) ≤ C.

D.2 PROOF OF THEOREM 3.1

The proof of this theorem follows from the following two propositions,

Proposition D.9 (Lower bound in p). Consider the solution operator Gadv : L1 ∩ L∞(T) → L1 ∩
L∞(T) of the linear advection equation, with input measure µ given as the random law of box
functions of height h ∈ [h, h], width w ∈ [w,w] and shift ξ ∈ [0, 2π]. Let M > 0. There exists
a constant C = C(M,µ) > 0, depending only on µ and M , with the following property: If
N (ū) =

∑p
k=1 βk(ū)τk is any operator approximation with linear reconstruction dimension p, such

that supū∼µ ∥N (ū)∥L∞ ≤M <∞, then

Eū∼µ[∥N (ū)− Gadv(u)∥L1] ≥ C

p
.

Sketch of proof. The argument is an almost exact repetition of the lower bound derived in Lanthaler
et al. (2022), and therefore we will only outline the main steps of the argument, here: Since the
measure µ is translation-invariant, it can be shown that the optimal PCA eigenbasis with respect to the
L2(T)-norm (cp. SM A) is the Fourier basis. Consider the (complex) Fourier basis {eikx}k∈Z, and
denote the corresponding eigenvalues {λ̃k}k∈Z. The k-th eigenvalue λ̃k of the covariance-operator
Γµ = Eu∼µ[(u⊗ u)] satisfies

Γµ

(
e−ikx

)
= λ̃ke

−ikx.

A short calculation, as in (Lanthaler et al., 2022, Proof of Lemma 4.14), then shows that

λ̃k =

ˆ h

h

ˆ w

w

h2|ψ̂w(k)|2
dw

∆w

dh

∆h
≥ h2

ˆ w

w

|ψ̂w(k)|2
dw

∆w
,

where ψ̂w(k) denotes the k-th Fourier coefficient of ψw(x) := 1[−w/2,w/2](x). Since ψw(x) has a
jump discontinuity of size 1 for any w > 0, it follows from basic Fourier analysis, that the asymptotic
decay of |ψ̂w(k)| ∼ C/|k|, and hence, there exists a constant C = C(h,w,w) > 0, such that

λ̃k ≥ C|k|−2.

Re-ordering these eigenvalues λ̃k in descending order (and renaming), λ1 ≥ λ2 ≥ . . . , it follows
that for some constant C = C(h,w,w) > 0, we have∑

j>p

λj ≥ C
∑
j>p

j−2 ≥ Cp−1.

By Theorem 2.1, this implies that (independently of the choice of the functionals βk(ū)!), in the
Hilbert space L2(T), we have

Eū∼µ

[
∥N (ū)− G(ū)∥2L2

]
≥
∑
j>p

λj ≥
C

p
,

for a constant C > 0 that depends only on µ, but is independent of p. To obtain a corresponding
estimate with respect to the L1-norm, we simply observe that the above lower bound on the L2-norm
together with the a priori bound supū∼µ ∥Gadv(ū)∥L∞ ≤ h on the underlying operator and the
assumed L∞-bound supū∼µ ∥N (ū)∥L∞ ≤M , imply

C

p
≤ Eū∼µ

[
∥N (ū)− G(ū)∥2L2

]
≤ Eū∼µ

[
∥N (ū)− G(ū)∥L∞∥N (ū)− G(ū)∥L1

]
≤ (M + h)Eū∼µ [∥N (ū)− G(ū)∥L1] .

This immediately implies the claimed lower bound.

23

Published as a conference paper at ICLR 2023

Proposition D.10 (Lower bound in m). Consider the solution operator Gadv : L1(T) ∩ L∞(T) →
L1(T) ∩ L∞(T) of the linear advection equation, with input measure µ given as the law of random
box functions of height h ∈ [h, h], width w ∈ [w,w] and shift ξ ∈ [0, 2π]. There exists an absolute
constant C > 0 with the following property: If NDON is a DeepONet approximation with m sensor
points, then

Eū∼µ [∥N (ū)− Gadv(ū)∥L1] ≥ C

m
.

Proof. We recall that the initial data ū is a randomly shifted box function, of the form

ū(x) = h1[−w/2,+w/2](x− ξ),

where ξ ∈ [0, 2π], h ∈ [h, h̄] and w ∈ [w, w̄] are independent, uniformly distributed random
variables.

Let x1, . . . , xm ∈ (0, 2π] be an arbitrary choice of m sensor points. In the following, we denote
ū(X) := (ū(x1), . . . , ū(xm)) ∈ Rm. Let now (x, ū(X)) 7→ Φ(x; ū(X)) be any mapping, such
that x 7→ Φ(x; ū(X)) ∈ L1(T) for all possible random choices of ū (i.e. for all ū ∼ µ). Then we
claim that

Eū∼µ[∥Gadv(ū)− Φ(· ; ū(X))∥L1] ≥ C

m
, (D.1)

for a constant C = C(h,w) > 0, holds for all m ∈ N. Clearly, the lower bound (D.1) immediately
implies the statement of Proposition D.10, upon making the particular choice

Φ(x; ū(X)) = N (ū)(x) ≡
p∑

k=1

βk(ū(x1), . . . , ū(xm))τk(x).

To prove (D.1), we first recall that ū(x) = ū(x;h,w, ξ) depends on three parameters h, w and ξ,
and the expectation over ū ∼ µ in (D.1) amounts to averaging over h ∈ [h, h], w ∈ [w,w] and
ξ ∈ [0, 2π). In the following, we fix w and h, and only consider the average over ξ. Suppressing the
dependence on the fixed parameters, we will prove that

1

2π

ˆ 2π

0

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ ≥ C

m
, (D.2)

with a constant that only depends on h, w. This clearly implies (D.1).

To prove (D.2), we first introduce two mappings ξ 7→ I(ξ) and ξ 7→ J(ξ), by

I(ξ) = i⇔ ξ − w

2
∈ [xi, xi+1), J(ξ) = j ⇔ ξ +

w

2
∈ [xj , xj+1),

where we make the natural identifications on the periodic torus (e.g. xm+1 is identified with x1 and
ξ±w/2 is evaluated modulo 2π). We observe that both mappings ξ 7→ I(ξ), J(ξ) cycle exactly once
through the entire index set {1, . . . ,m} as ξ varies from 0 to 2π. Next, we introduce

Aij := {ξ ∈ [0, 2π) | I(ξ) = i, J(ξ) = j}, ∀ i, j ∈ {1, . . . ,m}.

Clearly, each ξ ∈ [0, 2π) belongs to only one of these sets Aij . Since ξ 7→ I(ξ) and ξ 7→ J(ξ) have
m jumps on [0, 2π), it follows that the mapping ξ 7→ (I(ξ), J(ξ)) can have at most 2m jumps. In
particular, this implies that there are at most 2m non-empty sets Aij ̸= ∅ (these are all sets of the
form AI(ξ),J(ξ), ξ ∈ [0, 2π)), i.e.

#{Aij ̸= ∅ | i, j ∈ {1, . . . ,m}} ≤ 2m. (D.3)

Since ū(x; ξ) = h 1[−w/2,w/2](x− ξ), one readily sees that when ξ varies in the interior of Aij , then
all sensor point values ū(X; ξ) remain constant, i.e. the mapping

interior(Aij) 7→ Rm, ξ 7→ ū(X; ξ) = const.

We also note that Aij = [xi + w/2, xi+1 + w/2) ∩ [xj − w/2, xj+1 − w/2) is in fact an interval.
Fix i, j such that Aij ̸= ∅ for the moment. We can write Aij = [a−∆, a+∆) for some a,∆ ∈ T,

24

Published as a conference paper at ICLR 2023

and there exists a constant Ū ∈ Rm such that Ū ≡ ū(X; ξ) for ξ ∈ [a−∆, a+∆). It follows from
the triangle inequality that

ˆ
Aij

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ =

ˆ a+∆

a−∆

∥ū(x; ξ)− Φ(x; Ū)∥L1 dξ

=

ˆ ∆

0

∥ū(x; a− ξ′)− Φ(x; Ū)∥L1 dξ′

+

ˆ ∆

0

∥ū(x; a+ ξ′)− Φ(x; Ū)∥L1 dξ′

≥
ˆ ∆

0

∥ū(x; a+ ξ′)− ū(x; a− ξ′)∥L1 dξ′.

Since ū(x; ξ) = h 1[−w/2,w/2](x− ξ), we have, by a simple change of variables

∥ū(x; a+ ξ′)− ū(x; a− ξ′)∥L1 = h

ˆ
T
|1[−w/2,w/2](x)− 1[−w/2,w/2](x+ 2ξ′)| dx.

The last expression is of order ξ′, provided that ξ′ is small enough to avoid overlap with a periodic
shift (recall that we are on working on the torus, and 1[−w/2,w/2](x) is identified with its periodic
extension). To avoid such issues related to periodicity, we first note that ξ′ ≤ ∆ ≤ π, and then we
choose a (large) constant C0 = C0(w), such that for any ξ′ ≤ π/C0 and w ≤ w, we have

ˆ
T
|1[−w/2,w/2](x)− 1[−w/2,w/2](x+ 2ξ′)| dx =

ˆ −w/2

−w/2−2ξ′
1 dx+

ˆ w/2

w/2−2ξ′
1 dx = 4ξ′.

From the above, we can now estimateˆ
Aij

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ ≥
ˆ ∆

0

∥ū(x; a+ ξ′)− ū(x; a− ξ′)∥L1 dξ′

≥
ˆ ∆/C0

0

∥ū(x; a+ ξ′)− ū(x; a− ξ′)∥L1 dξ′

≥ h

ˆ ∆/C0

0

4ξ′ dξ′

= 2h
∆2

C2
0

≥ C|Aij |2,

where C = C(h,w) is a constant only depending on the fixed parameters h,w.

Summing over all Aij ̸= ∅, we obtain the lower bound
ˆ 2π

0

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ =
∑

Aij ̸=∅

ˆ
Aij

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ

≥ C
∑

Aij ̸=∅

|Aij |2.

We observe that [0, 2π) =
⋃
Aij is a disjoint union, and hence

∑
Aij ̸=∅ |Aij | = 2π. Furthermore,

as observed above, there are at most 2m non-zero summands |Aij | ̸= 0. To finish the proof, we
claim that the functional

∑2m
k=1 |αk|2 is minimized among all α1, . . . , α2m satisfying the constraint∑2m

k=1 |αk| = 2π if, and only if, |α1| = · · · = |α2m| = π/m. Given this fact, it then immediately
follows from the above estimate that

1

2π

ˆ 2π

0

∥ū(x; ξ)− Φ(x; ū(X; ξ))∥L1 dξ ≥ C
∑

Aij ̸=∅

|Aij |2 ≥ 2Cπ2

m
.

where C = C(h,w) > 0 is independent of the values of w ∈ [w,w] and h ∈ [h, h]. This suffices to
conclude the claim of Proposition D.10.

25

Published as a conference paper at ICLR 2023

It remains to prove the claim: We argue by contradiction. Let α1, . . . , α2m be a minimizer of∑
k |αk|2 under the constraint

∑
k |αk| = 2π. Clearly, we can wlog assume that 0 ≤ α1 ≤ · · · ≤

α2m are non-negative numbers. If the claim does not hold, then there exists a minimizer, such that
α1 < α2m. Given δ > 0 to be determined below, we define βk by

β1 = α1 + δ, β2m = α2m − δ,

and βk = αk, for all other indices. Then, by a simple computation, we observe that∑
k

α2
k −

∑
k

β2
k = 2δ(α2m − α1 − δ).

Choosing δ > 0 sufficiently small, we can ensure that the last quantity is > 0, while keeping βk ≥ 0
for all k. In particular, it follows that

∑
k |βk| =

∑
k |αk| = 2π, but∑

k

α2
k >

∑
k

β2
k,

in contradiction to the assumption that α1, . . . , α2m minimize the last expression. Hence, any
minimizer must satisfy |α1| = · · · = |α2m| = π/m.

D.3 PROOF OF THEOREM 3.2

Proof. We choose equidistant grid points x1, . . . , xm for the construction of a shift-DeepONet
approximation to Gadv. We may wlog assume that the grid distance ∆x = x2 − x1 < w, as the
statement is asymptotic in m→ ∞. We note the following points:

Step 1: We show that h can be efficiently determined by max-pooling. First, we observe that for any
two numbers a, b, the mapping(

a
b

)
7→

(
max(0, a− b)
max(0, b)
max(0,−b)

)
7→ max(0, a− b) + max(0, b)−max(0,−b) ≡ max(a, b),

is exactly represented by a ReLU neural network m̃ax(a, b) of width 3, with a single hidden layer.
Given k inputs a1, . . . , ak, we can parallelize O(k/2) copies of m̃ax, to obtain a ReLU network of
width ≤ 3k and with a single hidden layer, which maps

a1
a2
...

ak−1

ak

 7→

 max(a1, a2)
...

max(ak−1, ak)

 .

Concatenation of O(log2(k)) such ReLU layers with decreasing input sizes k, ⌈k/2⌉, ⌈k/4⌉, . . . , 1,
provides a ReLU representation of max-poolinga1...

ak

 7→

 max(a1, a2)
...

max(ak−1, ak)

 7→

 max(a1, a2, a3, a4)
...

max(ak−3, ak−2, ak−1, ak)

 7→ · · · 7→ max(a1, . . . , ak).

This concatenated ReLU network maxpool : Rk → R has width ≤ 3k, depth O(log(k)), and size
O(k log(k)).

Our goal is to apply the above network maxpool to the shift-DeepONet input u(x1), . . . , u(xm) to
determine the height h. To this end, we first choose ℓ1, . . . , ℓk ∈ {1, . . . ,m}, such that xℓj+1

−xℓj ≤
w, with k ∈ N minimal. Note that k is uniformly bounded, with a bound that only depends on w (not
on m). Applying the maxpool construction above the u(xℓ1), . . . , u(xℓk), we obtain a mappingu(x1)

...
u(xm)

 7→

u(xℓ1)...
u(xℓk)

 7→ maxpool(u(xℓ1), . . . , u(xℓk)) = h.

26

Published as a conference paper at ICLR 2023

This mapping can be represented by O(log(k)) ReLU layers, with width ≤ 3k and total (fully
connected) size O(k2 log(k)). In particular, since k only depends on w, we conclude that there exists
C = C(w) > 0 and a neural network h̃ : Rm → R with

depth(h̃) ≤ C, width(h̃) ≤ C, size(h̃) ≤ C, (D.4)

such that

h̃(ū(X)) = h, (D.5)

for any initial data of the form ū(x) = h1[−w/2,w/2](x − ξ), where h ∈ [h, h], w ∈ [w,w], and
ξ ∈ [0, 2π].

Step 2: To determine the width w, we can consider a linear layer (of size m), followed by an
approximation of division, ÷̃(a; b) ≈ a/b (cp. Proposition D.7):

ū(X) 7→ ∆x

m∑
j=1

ū(xj) 7→ ÷̃

∆x

m∑
j=1

ū(xj); h̃(ū(X))


Denote this by w̃(ū(X)). Then

|w − w̃| =

∣∣∣∣∣∣ 1h
ˆ 2π

0

ū(x) dx− ∆x

h

∑
j

ū(xj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∆xh
∑
j

ū(xj)− ÷̃h,h,ϵ

∆x

m∑
j=1

ū(xj);h

∣∣∣∣∣∣
≤ 2π

m
+ ϵ.

And we have depth(w̃) ≤ C log(ϵ−1)2, width(w̃) ≤ C, size(w̃) ≤ C
(
m+ log(ϵ−1)2

)
, by the

complexity estimate of Proposition D.7.

Step 3: To determine the shift ξ ∈ [0, 2π], we note that

∆x

m∑
j=1

ū(xj)e
−ixj =

ˆ 2π

0

ū(x)e−ix dx+O

(
1

m

)

= 2 sin(w/2)e−iξ +O

(
1

m

)
.

Using the result of Lemma D.8, combined with the approximation of division of Proposition D.7,
and the observation that w ∈ (w, π) implies that sin(w/2) ≥ sin(w/2) > 0 is uniformly bounded
from below for all w ∈ [w,w], it follows that for all ϵ ∈ (0, 12], there exists a neural network
ξ̃ : Rm → [0, 2π], of the form

ξ̃(ū(X)) = Ξϵ

÷̃
∆x

m∑
j=1

u(xj)e
−ixj ; ×̃M,ϵ

(
h̃, 2s̃in(w̃/2)

)
such that ∣∣∣ξ − ξ̃(ū(X))

∣∣∣ ≤ ϵ,

for all ξ ∈ [0, 2π − ϵ), and

depth(ξ̃) ≤ C log(ϵ−1)2, width(ξ̃) ≤ C, size(ξ̃) ≤ C
(
m+ log(ϵ−1)2

)
.

Step 4: Combining the above three ingredients (Steps 1–3), and given the fixed advection velocity
a ∈ R and fixed time t, we define a shift-DeepONet with p = 6, scale-net Ak ≡ 1, and shift-net γ

27

Published as a conference paper at ICLR 2023

with output γk(ū) ≡ ξ̃ + at, as follows:

N sDON(ū) =

p∑
k=1

βk(ū)τk(x− γk(ū))

:=

1∑
j=−1

h̃1̃ϵ[0,∞)

(
x− ξ̃ − at+ w̃/2 + 2πj

)

−
1∑

j=−1

h̃1̃ϵ[0,∞)

(
x− ξ̃ − at− w̃/2 + 2πj

)
,

where h̃ = h̃(ū(X)), w̃ = w̃(ū(X)), and ξ̃ = ξ̃(ū(X)), and where 1̃ϵ[0,∞) is a sufficiently accurate
L1-approximation of the indicator function 1[0,∞)(x) (cp. Proposition D.2). To estimate the approxi-
mation error, we denote 1̃ϵ[−w̃/2,w̃/2](x) := 1̃ϵ[0,∞)(x+ w̃/2)− 1̃ϵ[0,∞)(x− w̃/2) and identify it with
it’s periodic extension to T, so that we can more simply write

N sDON(ū)(x) = h̃1̃ϵ−[w̃/2,w̃/2](x− ξ̃ − at).

We also recall that the solution u(x, t) of the linear advection equation ∂tu+ a∂xu = 0, with initial
data u(x, 0) = ū(x) is given by u(x, t) = ū(x − at), where at is a fixed constant, independent of
the input ū. Thus, we have

Gadv(ū)(x) = ū(x− at) = h 1[−w/2,w/2](x− ξ − at).

We can now write

|Gadv(ū)(x)−N sDON(ū)(x)| =
∣∣∣h 1[−w/2,w/2](x− ξ − at)− h̃ 1̃ϵ[−w̃/2,w̃/2](x− ξ̃ − at)

∣∣∣ .
We next recall that by the construction of Step 1, we have h̃(ū) ≡ h for all inputs ū. Furthermore,
upon integration over x, we can clearly get rid of the constant shift at by a change of variables.
Hence, we can estimate

∥Gadv(ū)−N sDON(ū)∥L1 ≤ h

ˆ
T

∣∣∣1[−w/2,w/2](x− ξ)− 1̃ϵ[−w̃/2,w̃/2](x− ξ̃)
∣∣∣ dx. (D.6)

Using the straight-forward bound∣∣∣1[−w/2,w/2](x− ξ)− 1̃ϵ[−w̃/2,w̃/2](x− ξ̃)
∣∣∣ ≤ ∣∣∣1[−w/2,w/2](x− ξ)− 1[−w/2,w/2](x− ξ̃)

∣∣∣
+
∣∣∣1[−w/2,w/2](x− ξ̃)− 1[−w̃/2,w̃/2](x− ξ̃)

∣∣∣
+
∣∣∣1[−w̃/2,w̃/2](x− ξ̃)− 1̃ϵ[−w̃/2,w̃/2](x− ξ̃)

∣∣∣ ,
one readily checks that, by Step 3, the integral over the first term is bounded by

∥(I)∥L1 ≤ C

ˆ 2π−ϵ

0

|ξ − ξ̃| dξ +
ˆ 2π

2π−ϵ

2 dξ ≤ (C + 2)ϵ.

where C = C(w,w) > 0. By Step 2, the integral over the second term can be bounded by
∥(II)∥L1 ≤ C|w − w̃| ≤ C (1/m+ ϵ) .

Finally, by Proposition D.1, by choosing ϵ sufficiently small (recall also that the size of 1̃ϵ is
independent of ϵ), we can ensure that

∥(III)∥L1 = ∥1̃ϵ[−w̃/2,w̃/2] − 1[−w̃/2,w̃/2]∥L1 ≤ ϵ,

holds uniformly for any w̃. Hence, the right-hand side of (D.6) obeys an upper bound of the form

Eū∼µ

[
∥Gadv(ū)−N sDON(ū)∥L1

]
=

 h

h

dh

 w

w

dw

T
dξ ∥Gadv(ū)−N sDON(ū)∥L1

≤ h

2π

 w

w

dw

ˆ 2π

0

dξ {∥(I)∥L1 + ∥(II)∥L1 + ∥(III)∥L1}

≤ C

(
ϵ+

1

m

)
,

28

Published as a conference paper at ICLR 2023

for a constant C = C(w,w, h) > 0. We also recall that by our construction,

depth(N sDON) ≤ C log(ϵ−1)2, width(N sDON) ≤ C, size(N sDON) ≤ C
(
m+ log(ϵ−1)2

)
.

Replacing ϵ by ϵ/2C and choosing m ∼ ϵ−1, we obtain

Eū∼µ

[
∥Gadv(ū)−N sDON(ū)∥L1

]
≤ ϵ,

with

depth(N sDON) ≤ C log(ϵ−1)2, width(N sDON) ≤ C, size(N sDON) ≤ Cϵ−1,

where C depends only on µ, and is independent of ϵ. This implies the claim of Theorem 3.2.

D.4 PROOF OF THEOREM 3.3

For the proof of Theorem 3.3, we will need a few intermediate results:

Lemma D.11. Let ū = h 1[−w/2,w/2](x − ξ) and fix a constant at ∈ R. There exists a constant
C > 0, such that given N grid points, there exists an FNO with

kmax = 1, dv ≤ C, depth ≤ C, size ≤ C,

such that
sup
h,w,ξ

∣∣NFNO(ū)(x)− sin(w/2) cos(x− ξ − at)
∣∣ ≤ C

N
.

Proof. We first note that there is a ReLU neural network Φ consisting of two hidden layers, such that

Φ(ū(x)) = min(1, h−1ū(x)) = min
(
1, h−1h1[−w/2,w/2](x)

)
= 1[−w/2,w/2](x),

for all h ∈ [h, h]. Clearly, Φ can be represented by FNO layers where the convolution operator
Kℓ ≡ 0.

Next, we note that the k = 1 Fourier coefficient of ũ := 1[−w/2,w/2](x− ξ) is given by

FN ũ(k = ±1) =
1

N

N∑
j=1

1[−w/2,w/2](xj − ξ)e∓ixj

=
1

2π

ˆ 2π

0

1[−w/2,w/2](x− ξ)e∓ix dx+O(N−1)

=
sin(w/2)e∓iξ

π
+O(N−1),

where the O(N−1) error is bounded uniformly in ξ ∈ [0, 2π] and w ∈ [w,w]. It follows that the
FNO NFNO defined by

ū 7→ Φ(ū) 7→ σ
(
F−1

N PFNΦ(ū)
)
− σ

(
F−1

N (−P)FNΦ(ū)
)
,

where P implements a projection onto modes |k| = 1 and multiplication by e±iatπ/2 (the complex
exponential introduces a phase-shift by at), satisfies

sup
x∈T

∣∣NFNO(ū)(x)− sin(w/2) cos(x− ξ − at)
∣∣ ≤ C

N
,

where C is independent of N , w, h and ξ.

Lemma D.12. Fix 0 < h < h and 0 < w < w. There exists a constant C = C(h, h, w,w) > 0 with
the following property: For any input function ū(x) = h 1[−w/2,w/2](x − ξ) with h ∈ [h, h] and
w ∈ [w,w], and given N grid points, there exists an FNO with constant output function, such that

sup
h,w,ξ

∣∣NFNO(ū)(x)− w
∣∣ ≤ C

N
,

and with uniformly bounded size,

kmax = 0, dv ≤ C, depth ≤ C, size ≤ C.

29

Published as a conference paper at ICLR 2023

Proof. We can define an FNO mapping

ū 7→ 1[−w/2,w/2](x) 7→
2π

N

N∑
j=1

1[−w/2,w/2](xj) = w +O(N−1),

where we observe that the first mapping is just ū 7→ max(h−1ū(x), 1), which is easily represented
by an ordinary ReLU NN of bounded size. The second mapping above is just projection onto the
0-th Fourier mode under the discrete Fourier transform. In particular, both of these mappings can
be represented exactly by an FNO with kmax = 0 and uniformly bounded dv,depth and size. To
conclude the argument, we observe that the error O(N−1) depends only on the grid size and is
independent of w ∈ [w,w].

Lemma D.13. Fix 0 < w < w. There exists a constant C = C(w,w) > 0, such that for any ϵ > 0,
there exists an FNO such that for any constant input function ū(x) ≡ w ∈ [w,w], we have∣∣∣∣NFNO(ū)(x)− 1

2
sin(w)

∣∣∣∣ ≤ ϵ, ∀x ∈ [0, 2π],

and
kmax = 0, dv ≤ C, depth ≤ C log(ϵ−1)2, size ≤ C log(ϵ−1)2.

Proof. It follows e.g. from (Elbrächter et al., 2021, Thm. III.9) (or also Theorem D.6 above) that
there exists a constant C = C(w,w) > 0, such that for any ϵ > 0, there exists a ReLU neural
network Sϵ with size(Sϵ) ≤ C log(ϵ−1)2, depth(Sϵ) ≤ C log(ϵ−1)2 and width(Sϵ) ≤ C, such that

sup
w∈[w,w]

∣∣∣∣Sϵ(w)−
1

2
sin(w)

∣∣∣∣ ≤ ϵ.

To finish the proof, we simply note that this ReLU neural network Sϵ can be easily represented by an
FNO Sϵ with kmax = 0, dv ≤ C, depth(Sϵ) ≤ C log(ϵ−1)2 and size(Sϵ) ≤ C log(ϵ−1)2; it suffices
to copy the weight matrices Wℓ of Sϵ, set the entries of the Fourier multiplier matrices Pℓ(k) ≡ 0,
and choose constant bias functions bℓ(x) = const. (with values given by the corresponding biases in
the hidden layers of Sϵ).

Lemma D.14. Let ū = h 1[−w/2,w/2](x− ξ). Assume that 2π/N ≤ w. For any ϵ > 0, there exists
an FNO with constant output function, such that

sup
h,w,ξ

∣∣NFNO(ū)(x)− h
∣∣ ≤ ϵ,

and
kmax = 0, dv ≤ C, depth ≤ C log(ϵ−1)2.

Proof. The proof follows along similar lines as the proofs of the previous lemmas. In this case, we
can define an FNO mapping

ū 7→
[
h 1[−w/2,w/2](x)
1[−w/2,w/2](x)

]
7→

[
h
∑N

j=1 1[−w/2,w/2](xj)∑N
j=1 1[−w/2,w/2](xj)

]
7→ ÷̃ϵ

h N∑
j=1

1[−w/2,w/2](xj),

N∑
j=1

1[−w/2,w/2](xj)

 .

The estimate on kmax, dv , depth follow from the construction of ÷̃ in Proposition D.7.

Proof of Theorem 3.3. We first note that (the 2π-periodization of) 1[−w/2,w/2](x− ξ − at) is = 1 if,
and only if

cos(x− ξ − at) ≥ cos(w/2) ⇐⇒ sin(w/2) cos(x− ξ − at) ≥ 1

2
sin(w). (D.7)

The strategy of proof is as follows: Given the input function ū(x) = h 1[−w/2,w/2](x − ξ) with
unknown w ∈ [w,w], ξ ∈ [0, 2π] and h ∈ [h, h], and for given a, t ∈ R (these are fixed for this
problem), we first construct an FNO which approximates the sequence of mappings

ū 7→

[
h
w

sin(w/2) cos(x− ξ)

]
7→

 h
1
2 sin(w)

sin(w/2) cos(x− ξ − at)

 7→
[

h
sin(w/2) cos(x− ξ − at)− 1

2 sin(w)

]
.

30

Published as a conference paper at ICLR 2023

Then, according to (D.7), we can approximately reconstruct 1[−w/2,w/2](x−ξ−at) by approximating
the identity

1[−w/2,w/2](x− ξ − at) = 1[0,∞)

(
sin(w/2) cos(x− ξ − at)− 1

2
sin(w)

)
,

where 1[0,∞) is the indicator function of [0,∞). Finally, we obtain Gadv(ū) = h 1[−w/2,w/2](x− ξ−
at) by approximately multiplying this output by h. We fill in the details of this construction below.

Step 1: The first step is to construct approximations of the mappings above. We note that we can
choose a (common) constant C0 = C0(h, h, w,w) > 0, depending only on the parameters h, h, w
and w, such that for any grid size N ∈ N all of the following hold:

1. There exists an FNO HN with constant output (cp. Lemma D.14), such that for ū(x) =
h 1[−w/2,w/2](x− ξ),

sup
w,h

|HN (ū)− h| ≤ 1

N
. (D.8)

and with

kmax ≤ 1, dv ≤ C0, depth ≤ C0 log(N)2, size ≤ C0 log(N)2.

2. Combining Lemma D.12 and D.13, we conclude that there exists an FNO SN with constant
output, such that for ū(x) = h 1[−w/2,w/2](x− ξ), we have

sup
w∈[w−1,w+1]

∣∣∣∣SN (ū)− 1

2
sin(w)

∣∣∣∣ ≤ C0

N
. (D.9)

and with

kmax = 0, dv ≤ C0, depth ≤ C0 log(N)2, size ≤ C0 log(N)2.

3. There exists an FNO CN (cp. Lemma D.11), such that for ū = h 1[−w/2,w/2],

sup
x,ξ,w

|CN (ū)(x)− sin(w/2) cos(x− ξ − at)| ≤ C0

N
, (D.10)

where the supremum is over x, ξ ∈ [0, 2π] and w ∈ [w,w], and such that

kmax = 1, dv ≤ C0, depth ≤ C0, size ≤ C0.

4. There exists a ReLU neural network 1̃N[0,∞) (cp. Proposition D.1), such that

∥1̃N[0,∞)∥L∞ ≤ 1, 1̃N[0,∞)(z) =

{
0, (x < 0),

1, (x ≥ 1
N).

(D.11)

with
width(1̃N[0,∞)) ≤ C0, depth(1̃N[0,∞)) ≤ C0.

5. there exists a ReLU neural network ×̃N (cp. Proposition D.4), such that

sup
a,b

|×̃N (a, b)− ab| ≤ 1

N
, (D.12)

where the supremum is over all |a|, |b| ≤ h+ 1, and

width(×̃N) ≤ C0, depth(×̃N) ≤ C0 log(N).

Based on the above FNO constructions, we define

NFNO(ū) := ×̃N

(
HN (ū), 1̃N[0,∞)

(
CN (ū)− SN (ū)

))
. (D.13)

31

Published as a conference paper at ICLR 2023

Taking into account the size estimates from points 1–5 above, as well as the general FNO size estimate
(B.2), it follows that NFNO can be represented by an FNO with

kmax = 1, dv ≤ C, depth ≤ C log(N)2, size ≤ C log(N)2. (D.14)

To finish the proof of Theorem 3.3, it suffices to show that NFNO satisfies an estimate

sup
ū∼µ

∥NFNO(ū)− Gadv(ū)∥L2 ≤ C

N
,

with C > 0 independent of N .

Step 2: We claim that if x ∈ [0, 2π] is such that∣∣∣∣sin(w/2) cos(x− ξ)− 1

2
sin(w)

∣∣∣∣ ≥ 2C0 + 1

N
,

with C0 the constant of Step 1, then

1̃N[0,∞)(CN (ū)(x)− SN (ū)) = 1[−w/2,w/2](x− ξ).

To see this, we first assume that

sin(w/2) cos(x− ξ)− 1

2
sin(w) ≥ 2C0 + 1

N
> 0.

Then

CN (ū)(x)− SN (ū) ≥ sin(w/2) cos(x− ξ)− 1

2
sin(w)

− |CN (ū)(x)− sin(w/2) cos(x− ξ)| −
∣∣∣∣SN (ū)− 1

2
sin(w)

∣∣∣∣
≥ 2C0 + 1

N
− C0

N
− C0

N
=

1

N
> 0.

Hence, it follows from (D.11) that

1̃N[0,∞)(CN (ū)(x)− SN (ū)) = 1

= 1[0,∞)

(
sin(w/2) cos(x− ξ)− 1

2
sin(w)

)
= 1[−w/2,w/2](x).

The other case,

sin(w/2) cos(x− ξ)− 1

2
sin(w) ≤ −2C0 + 1

N
,

is shown similarly.

Step 3: We note that there exists C = C(w,w) > 0, such that for any δ > 0, the Lebesgue measure

meas

{
x ∈ [0, 2π]

∣∣∣∣ ∣∣∣∣sin(w/2) cos(x− ξ)− 1

2
sin(w)

∣∣∣∣ < δ

}
≤ Cδ.

Step 4: Given the previous steps, we now write

Gadv(ū)−NFNO(ū) = h 1[−w/2,w/2](x)− ×̃N

(
HN , 1̃

N
[0,∞)

(
CN − SN (ū)

))
=
[
h 1[−w/2,w/2](x)− h1̃N[0,∞)(CN − SN)

]
+ (h−HN)1̃N[0,∞)(CN − SN)

+HN 1̃N[0,∞)

(
CN − SN (ū)

)
− ×̃N

(
HN , 1̃

N
[0,∞)

(
CN − SN (ū)

))
=: (I) + (II) + (III).

32

Published as a conference paper at ICLR 2023

The second (II) and third (III) terms are uniformly bounded by N−1, by the construction of ×̃N

and HN . By Steps 2 and 3 (with δ = (2C0 +1)/N), we can estimate the L1-norm of the first term as

∥(I)∥L1 ≤ 2hmeas{
∣∣sin(w/2) cos(x− ξ)− 2−1 sin(w)

∣∣ < δ} ≤ C/N,

where the constant C is independent of N , and only depends on the parameters h, h, w and w. Hence,
NFNO satisfies

sup
ū∼µ

∥NFNO(ū)− Gadv(ū)∥L1 ≤ C

N
,

for a constant C > 0 independent of N , and where we recall (cp. (D.14) above):

kmax = 1, dv ≤ C, depth(NFNO) ≤ C log(N)2, size(NFNO) ≤ C log(N)2.

The claimed error and complexity bounds of Theorem 3.3 are now immediate upon choosing
N ∼ ϵ−1.

D.5 PROOF OF THEOREM 3.5

To motivate the proof, we first consider the Burgers’ equation with the particular initial data ū(x) =
− sin(x), with periodic boundary conditions on the interval x ∈ [0, 2π]. The solution for this initial
datum can be constructed via the well-known method of characteristics; we observe that the solution
u(x, t) with initial data ū(x) is smooth for time t ∈ [0, 1), develops a shock discontinuity at x = 0
(and x = 2π) for t ≥ 1, but remains otherwise smooth on the interval x ∈ (0, 2π) for all times. In
fact, fixing a time t ≥ 0, the solution u(x, t) can be written down explicitly in terms of the bijective
mapping (cp. Figure 4)

Ψt : [xt, 2π − xt] → [0, 2π], Ψt(x0) = x0 − t sin(x0),

where {
xt = 0, for t ≤ 1,

xt > 0 is the unique solution of xt = t sin(xt), for t > 1.
(D.15)

We note that for given x0, the curve t 7→ Ψt(x0) traces out the characteristic curve for the Burgers’
equation, starting at x0 (and until it collides with the shock). Following the method of characteristics,
the solution u(x, t) is then given in terms of Ψt, by

u(x, t) = − sin
(
Ψ−1

t (x)
)
, for x ∈ [0, 2π]. (D.16)

We are ultimately interested in solutions for more general periodic initial data of the form ū(x) =
− sin(x − ξ); these can easily be obtained from the particular solution (D.16) via a shift. We
summarize this observation in the following lemma:

Lemma D.15. Let ξ ∈ [0, 2π) be given, fix a time t ≥ 0. Consider the initial data ū(x) = − sin(x−ξ).
Then the entropy solution u(x, t) of the Burgers’ equations with initial data ū is given by

u(x, t) =

{
− sin(Ψ−1

t (x− ξ + 2π)), (x < ξ),

− sin(Ψ−1
t (x− ξ)), (x ≥ ξ),

(D.17)

for x ∈ [0, 2π], t ≥ 0.

Lemma D.16. Let t > 1, and define U : [0, 2π] → R by U(x) := − sin(Ψ−1
t (x)). There exists

∆t > 0 (depending on t), such that x 7→ U(x) can be extended to an analytic function Ū :
(−∆t, 2π +∆t) → R, x 7→ Ū(x); i.e., such that Ū(x) = U(x) for all x ∈ [0, 2π].

33

Published as a conference paper at ICLR 2023

(a) t 7→ Ψt(x0) (b) Ψt(x0) at t = 0.8 (c) Ψt(x0) at t = 1.4

Figure 4: Illustration of Ψt(x0): (a) characteristics traced out by t 7→ Ψt(x0) (until collision
with shock), (b) Ψt(x0) before shock formation, (c) Ψt(x0) after shock formation, including the
interval [xt, 2π − xt] (red limits) and the larger domain (blue limits) allowing for bijective analytic
continuation, (∆t, 2π −∆t).

Corollary D.17. Let U : [0, 2π] → R be defined as in Lemma D.16. There exists a constant C > 0,
such that for any ϵ > 0, there exists a ReLU neural network Φϵ : R → R, such that

sup
x∈[0,2π]

|Φϵ(x)− U(x)| ≤ ϵ,

and

depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C,

Proof. By Lemma D.16, U can be extended to an analytic function Ū : (−∆t, 2π+∆t) → R. Thus,
by Theorem D.6, there exist constants C, γ > 0, such that for any L ∈ N, there exists a neural
network

Φ̃L : R → R,
such that

sup
x∈[0,2π]

|U(x)− Φ̃L(x)| ≤ C exp(−γL1/2),

depth(Φ̃L) ≤ CL, width(Φ̃L) ≤ C.

Given ϵ > 0, we can thus choose L ≥ γ−2 log(ϵ−1)2, to obtain a neural network Φϵ := Φ̃L, such
that supx∈[0,2π] |U(x)− Φϵ(x)| ≤ ϵ, and

depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C,

for a constant C > 0, independent of ϵ.

Lemma D.18. Let t > 1, and let U : [−2π, 2π] → R be given by

U(x) :=

{
− sin(Ψ−1

t (x+ 2π)), (x < 0),

− sin(Ψ−1
t (x)), (x ≥ 0).

There exists a constant C = C(t) > 0, depending only on t, such that for any ϵ ∈ (0, 12], there exists
a neural network Φϵ : R → R, such that

depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C,

and such that
∥Φϵ − U∥L1([−2π,2π]) ≤ ϵ.

Proof. By Corollary D.17, there exists a constant C > 0, such that for any ϵ > 0, there exist neural
networks Φ−,Φ+ : R → R, such that

depth(Φ±) ≤ C log(ϵ−1)2, width(Φ±) ≤ C,

and
∥Φ−(x)− U(x)∥L∞([−2π,0]) ≤ ϵ, ∥Φ+(x)− U(x)∥L∞([0,2π]) ≤ ϵ.

34

Published as a conference paper at ICLR 2023

This implies that ∥∥U −
[
1[−2π,0)Φ

− + 1[0,2π]Φ
+
]∥∥

L∞([−2π,2π])
≤ ϵ.

By Proposition D.2 (approximation of indicator functions), there exist neural networks χ±
ϵ : R → R

with uniformly bounded width and depth, such that∥∥χ−
ϵ − 1[−2π,0]

∥∥
L1 ≤ ϵ,

∥∥χ+
ϵ − 1[0,2π]

∥∥
L1 ≤ ϵ.

and ∥χ±
ϵ (x)∥L∞ ≤ 1. Combining this with Proposition D.4 (approximation of multiplication), it

follows that there exists a neural network

Φϵ : R → R, Φϵ(x) = ×̃ϵ(χ
+
ϵ ,Φ

+) + ×̃ϵ(χ
−
ϵ ,Φ

−),

such that ∥∥∥Φϵ−
[
1[−2π,0)Φ

− + 1[0,2π]Φ
+
] ∥∥∥

L1([−2π,2π])

≤
∥∥∥×̃M,ϵ(χ

+,Φ+)− 1[0,2π]Φ
+
∥∥∥
L1([−2π,2π])

+
∥∥∥×̃M,ϵ(χ

−,Φ−)− 1[−2π,0)Φ
−
∥∥∥
L1([−2π,2π])

By construction of ×̃M,ϵ, we have∥∥∥×̃M,ϵ(χ
+,Φ+)− 1[0,2π]Φ

+
∥∥∥
L1

≤
∥∥∥×̃M,ϵ(χ

+,Φ+)− χ+Φ+
∥∥∥
L1

+
∥∥∥ (χ+ − 1[0,2π]

)
Φ+
∥∥∥
L1

≤ 4πϵ+ ∥χ+ − 1[0,2π]∥L1∥Φ+∥L∞

≤ (4π + 2) ϵ.

And similarly for the other term. Thus, it follows that∥∥∥Φϵ −
[
1[−2π,0)Φ

− + 1[0,2π]Φ
+
] ∥∥∥

L1([−2π,2π])
≤ 2(4π + 2)ϵ,

and finally,

∥U − Φϵ∥L1([−2π,2π]) ≤ 4π
∥∥U −

[
1[−2π,0)Φ

− + 1[0,2π]Φ
+
]∥∥

L∞([−2π,2π])

+
∥∥[1[−2π,0)Φ

− + 1[0,2π]Φ
+
]
− Φϵ

∥∥
L1([−2π,2π])

≤ 4πϵ+ 2(4π + 2)ϵ = (12π + 4)ϵ.

for a neural network Φϵ : R → R of size:

depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C.

Replacing ϵ with ϵ̃ = ϵ/(12π + 4) yields the claimed estimate for Φϵ̃.

Based on the above results, we can now prove the claimed error and complexity estimate for the
shift-DeepONet approximation of the Burgers’ equation, Theorem 3.5.

Proof of Theorem 3.5. Fix t > 1. Let U : [−2π, 2π] → R be the function from Lemma D.18. By
Lemma D.15, the exact solution of the Burgers’ equation with initial data ū(x) = − sin(x− ξ) at
time t, is given by

u(x, t) = U(x− ξ), ∀x ∈ [0, 2π].

From Lemma D.18 (note that x− ξ ∈ [−2π, 2π]), it follows that there exists a constant C > 0, such
that for any ϵ > 0, there exists a neural network Φϵ : R → R, such that

∥u(· , t)− Φϵ(· − ξ)∥L1([0,2π]) ≤ ϵ,

and
depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C.

35

Published as a conference paper at ICLR 2023

We finally observe that for equidistant sensor points x0, x1, x2 ∈ [0, 2π), xj = 2πj/3, there exists a
matrix A ∈ R2×3, which for any function of the form g(x) = α0 + α1 sin(x) + α2 cos(x) maps

[g(x0), g(x1), g(x2)]
T 7→ A · [g(x0), g(x1), g(x2)]T = [−α1, α2]

T .

Clearly, the considered initial data ū(x) = − sin(x− ξ) is of this form, for any ξ ∈ [0, 2π), or more
precisely, we have

ū(x) = − sin(x− ξ) = − cos(ξ) sin(x)− sin(ξ) cos(x),

so that
A · [ū(x0), ū(x1), ū(x2)]T = [cos(ξ), sin(ξ)].

As a next step, we recall that there exists C > 0, such that for any ϵ > 0, there exists a neural network
Ξϵ : R2 → [0, 2π] (cp. Lemma D.8), such that

sup
ξ∈[0,2π−ϵ)

|ξ − Ξϵ(cos(ξ), sin(ξ))| < ϵ,

such that Ξϵ(cos(ξ), sin(ξ)) ∈ [0, 2π] for all ξ, and

depth(Ξϵ) ≤ C log(ϵ−1)2, width(Ξϵ) ≤ C.

Based on this network Ξϵ, we can now define a shift-DeepONet approximation of N sDON(ū) ≈
GBurg(ū) of size:

depth(N sDON) ≤ C log(ϵ−1)2, width(N sDON) ≤ C,

by the composition

N sDON(ū)(x) := Φϵ(x− Ξϵ(A · ū(X))), (D.18)

where ū(X) := [ū(x0), ū(x1), ū(x2)]
T , and we note that (denoting Ξϵ := Ξϵ(A · ū(X))), we have

for ξ ∈ [0, 2π − ϵ]:

∥GBurg(ū)−N sDON(ū)∥L1 = ∥U(· − ξ)− Φϵ(· − Ξϵ)∥L1

≤ ∥U(· − ξ)− U(· − Ξϵ)∥L1

+ ∥U(· − Ξϵ)− Φϵ(x− Ξϵ)∥L1

≤ C|ξ − Ξϵ|+ ϵ

≤ (C + 1)ϵ,

where C only depends on U , and is independent of ϵ > 0. On the other hand, for ξ > 2π − ϵ, we
have

∥GBurg(ū)−N sDON(ū)∥L1 = ∥U(· − ξ)− Φϵ(· − Ξϵ)∥L1

≤ ∥U(· − ξ)∥L1 + ∥Φϵ(· − Ξϵ)∥L1

≤ 2π (∥U(· − ξ)∥L∞ + ∥Φϵ(· − Ξϵ)∥L∞)

≤ 6π,

is uniformly bounded. It follows that

Eū∼µ

[
∥GBurg(ū)−N sDON(ū)∥L1

]
=

ˆ 2π−ϵ

0

+

ˆ 2π

2π−ϵ

∥GBurg(ū)−N sDON(ū)∥L1 dξ

≤ 2π(C + 1)ϵ+ 6πϵ,

with a constant C > 0, independent of ϵ > 0. Replacing ϵ by ϵ̃ = ϵ/C ′ for a sufficiently large
constant C ′ > 0 (depending only on the constants in the last estimate above), one readily sees that
there exists a shift-DeepONet N sDON, such that

E (N sDON) = Eū∼µ

[
∥GBurg(ū)−N sDON(ū)∥L1

]
≤ ϵ,

and such that
width(N sDON) ≤ C, depth(N sDON) ≤ C log(ϵ−1)2,

and size(N sDON) ≤ C log(ϵ−1)2, for a constant C > 0, independent of ϵ > 0. This concludes our
proof.

36

Published as a conference paper at ICLR 2023

D.6 PROOF OF THEOREM 3.6

Proof. Step 1: Assume that the grid size is N ≥ 3. Then there exists an FNO N1, such that

N1(ū) = [cos(ξ), sin(ξ)],

and depth(N1) ≤ C, dv ≤ C, kmax = 1.

To see this, we note that for any ξ ∈ [0, 2π], the input function ū(x) = − sin(x − ξ) =
− cos(ξ) sin(x) − sin(ξ) cos(x) can be written in terms of a sine/cosine expansion with coeffi-
cients cos(ξ) and sin(ξ). For N ≥ 3 grid points, these coefficients can be retrieved exactly by a
discrete Fourier transform. Therefore, combining a suitable lifting to dv = 2 with a Fourier multiplier
matrix P , we can exactly represent the mapping

ū 7→ F−1
N (P · FN (R · ū)) =

[
cos(ξ) sin(x)
sin(ξ) cos(x)

]
,

by a linear Fourier layer. Adding a suitable bias function b(x) = [sin(x), cos(x)]T , and composing
with an additional nonlinear layer, it is then straightforward to check that there exists a (ReLU-)FNO,
such that

ū 7→
[
cos(ξ) sin(x) + sin(x)
sin(ξ) cos(x) + cos(x)

]
=

[
(cos(ξ) + 1) sin(x)
(sin(ξ) + 1) cos(x)

]
7→
[
| cos(ξ) + 1|| sin(x)|
| sin(ξ) + 1|| cos(x)|

]
7→

[
| cos(ξ) + 1|

∑N
j=1 | sin(xj)|

| sin(ξ) + 1|
∑N

j=1 | cos(xj)|

]

7→
[
| cos(ξ) + 1| − 1
| sin(ξ) + 1| − 1

]
=

[
cos(ξ)
sin(ξ)

]
.

Step 2: Given this construction of N1, the remainder of the proof follows essentially the same
argument as in the proof D.5 of Theorem 3.5: We again observe that the solution u(x, t) with initial
data ū(x) = − sin(x− ξ) is well approximated by the composition

NFNO(ū)(x) := Φϵ(x− Ξϵ(N1(ū))),

such that (by verbatim repetition of the calculations after (D.18) for shift-DeepONets)

E (NFNO) = Eū∼µ

[
∥GBurg(ū)−NFNO(ū)∥L1

]
≤ ϵ,

and where Φϵ : R → R is a ReLU neural network of width

depth(Φϵ) ≤ C log(ϵ−1)2, width(Φϵ) ≤ C,

and Ξϵ : R2 → [0, 2π] is an ReLU network with

depth(Ξϵ) ≤ C log(ϵ−1)2, width(Ξϵ) ≤ C.

Being the composition of an FNO N1 satisfying kmax = 1, dv ≤ C, depth(N1) ≤ C with the two
ordinary neural networks Φϵ and Ξϵ, it follows that NFNO can itself be represented by an FNO with
kmax = 1, dv ≤ C and depth(NFNO) ≤ C log(ϵ−1)2. By the general complexity estimate (B.2),

size(NFNO) ≲ d2vk
d
maxdepth(NFNO),

we also obtain the claimed an upper complexity bound size(NFNO) ≤ C log(ϵ−1)2.

E DETAILS OF NUMERICAL EXPERIMENTS AND FURTHER EXPERIMENTAL
RESULTS.

E.1 TRAINING AND ARCHITECTURE DETAILS

Below, details concerning the model architectures and training are discussed.

37

Published as a conference paper at ICLR 2023

E.1.1 FEED FORWARD DENSE NEURAL NETWORKS

Given an input y ∈ Rm, a feedforward neural network (also termed as a multi-layer perceptron),
transforms it to an output, through a layer of units (neurons) which compose of either affine-linear
maps between units (in successive layers) or scalar nonlinear activation functions within units
Goodfellow et al. (2016), resulting in the representation,

uθ(y) = CL ◦ σ ◦ CL−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y). (E.1)

Here, ◦ refers to the composition of functions and σ is a scalar (nonlinear) activation function. For
any 1 ≤ ℓ ≤ L, we define

Cℓzℓ =Wℓzℓ + bℓ, forWℓ ∈ Rdℓ+1×dℓ , zℓ ∈ Rdℓ , bℓ ∈ Rdℓ+1 ., (E.2)

and denote,
θ = {Wℓ, bℓ}Lℓ=1, (E.3)

to be the concatenated set of (tunable) weights for the network. Thus in the terminology of machine
learning, a feed forward neural network (E.1) consists of an input layer, an output layer, and L hidden
layers with dℓ neurons, 1 < ℓ < L. In all numerical experiments, we consider a uniform number of
neurons across all the layer of the network dℓ = dℓ−1 = d, 1 < ℓ < L. The number of layers L,
neurons d and the activation function σ are chosen though cross-validation.

E.1.2 RESNET

A residual neural network consists of residual blocks which use skip or shortcut connections to
facilitate the training procedure of deep networks He et al. (2016). A residual block spanning k layers
is defined as follows,

r(zℓ, zℓ−k) = σ(Wℓzℓ + bℓ) + zℓ−k. (E.4)

In all numerical experiments we set k = 2.

The residual network takes as input a sample function ū ∈ X , encoded at the Cartesian grid points
(x1, . . . , xm), E(ū) = (ū(x1), . . . , ū(xm)) ∈ Rm, and outputs the output sample G(ū) ∈ Y encoded
at the same set of points, E(G(ū)) = (G(ū)(x1), . . . ,G(ū)(xm)) ∈ Rm. For the compressible Euler
equations the encoded input is defined as

E(ū) =
(
ρ0(x1), . . . , ρ0(xm), ρ0(x1)u0(x1), . . . , ρ0(xm)u0(xm), E0(x1), . . . , E0(xm)

)
∈ R3m

E(ū) =
(
ρ0(x1), . . . , ρ0(xm2), ρ0(x1)u0(x1), . . . , ρ0(xm2)u0(xm2),

ρ0(x1)v0(x1), . . . , ρ0(xm2)v0(xm2)E0(x1), . . . , E0(xm2)
)
∈ R4m2

(E.5)
for the 1d and 2d problem, respectively.

E.1.3 FULLY CONVOLUTIONAL NEURAL NETWORK

Fully convolutional neural networks are a special class of convolutional networks which are inde-
pendent of the input resolution. The networks consist of an encoder and decoder, both defined by a
composition of linear and nonlinear transformations:

Eθe(y) = Ce
L ◦ σ ◦ Ce

L−1 . . . ◦ σ ◦ Ce
2 ◦ σ ◦ Ce

1(y),

Dθd(z) = Cd
L ◦ σ ◦ Cd

L−1 . . . ◦ σ ◦ Cd
2 ◦ σ ◦ Cd

1 (z),

uθ(y) = Dθd ◦ Eθe(y).

(E.6)

The affine transformation Cℓ commonly corresponds to a convolution operation in the encoder, and
transposed convolution (also know as deconvolution), in the decoder. The latter can also be performed
with a simple linear (or bilinear) upsampling and a convolution operation, similar to the encoder.

The (de)convolution is performed with a kernel Wℓ ∈ Rkℓ (for 1d-problems, and Wℓ ∈ Rkℓ×kℓ

for 2d-problems), stride s and padding p. It takes as input a tensor zℓ ∈ Rwℓ×cℓ (for 1d-problems,
and zℓ ∈ Rwℓ×hℓ×cℓ for 2d-problems), with cℓ being the number of input channels, and computes

38

Published as a conference paper at ICLR 2023

Figure 5: Fully convolutional neural network architecture for the linear advection equation and shock
tube benchmarks. B(z) = BN ◦ σ ◦ Ce(z), with BN denoting a batch normalization and Ce a
convolution defined by the tuple (3, 2, 1, cin, c), with cin = 1 for the advection equation and cin = 3
shocktube benchmarks. F (z) = BN ◦ σ ◦ Ce

4 ◦ BN ◦ σ ◦ Ce
3 ◦ BN ◦ σ ◦ Ce

2 ◦ BN ◦ σ ◦ Ce
1(z),

with Ce
1 , Ce

2 , Ce
3 , Ce

4 identified with (3, 2, 1, cin, 2cin), (1, 1, 0, 2cin, 2cin), (1, 1, 0, 2cin, 2cin),
(3, 2, 1, 2cin, 2cin). H(z) = BN ◦σ ◦Cd

4 ◦BN ◦σ ◦Cd
3 ◦BN ◦σ ◦Cd

2 ◦BN ◦σ ◦Cd
1 (z), with Cd

1 ,
Cd

2 , Cd
3 , Cd

4 transposed convolutions defined by (3, 2, 1, cin, cin), (1, 1, 0, cin, cin), (1, 1, 0, cin, cin),
(3, 2, 1, cin, 0.5cin). G is a transposed convolution defined by the tuple (3, 2, 1, c, 1).

Figure 6: Fully convolutional neural network architecture for the Burgers’ equation benchmark: B, F ,
G follow the same definition as in the caption of figure 5. H(z) = σ ◦BN ◦Ce

4 ◦UP ◦σ ◦BN ◦Ce
3 ◦

UP ◦σ ◦BN ◦Ce
2 ◦UP ◦σ ◦BN ◦UP ◦Ce

1(z), with Ce
1 , Ce

2 , Ce
3 , Ce

4 being standard convolutions
defied by the tuples (3, 2, 1, cin, cin), (1, 1, 0, cin, cin), (1, 1, 0, cin, cin), (3, 2, 1, cin, 0.5cin), and
UP denoting up-sampling operation with scaling factor 2.

Figure 7: Fully convolutional neural network architecture for the 2-dimensional Riemann problem.
B(z) = σ ◦BN ◦ Ce

2 ◦ σ ◦BN ◦ Ce
1 , with Ce

1 and Ce
2 being standard convolutions defined by the

tuples (3, 1, 0, cin, 2cin), (3, 1, 0, 2cin, 2cin). D(z) = B(z) ◦MP (z), with MP being a max pool
with kernel size 2. U(Z) = B(z) ◦ UP (z), where UP denotes an up-sampling with scale factor 2.
G is a convolution defined by (1, 1, 0, c, 1)

zℓ+1 ∈ Rwℓ+1×cℓ+1 (for 1d-problems, and zℓ+1 ∈ Rwℓ+1×hℓ+1×cℓ+1 for 2d-problems). Therefore, a
(de)convolutional affine transformation can be uniquely identified with the tuple (kℓ, s, p, cℓ, cℓ+1).

The main difference between the encoder’s and decoder’s transformation is that, for the encoder
hℓ+1 < hℓ, wℓ+1 < wℓ, cℓ+1 > cℓ and for the decoder hℓ+1 > hℓ, wℓ+1 > wℓ, cℓ+1 < cℓ.

For the linear advection equation and the Burgers’ equation we employ the same variable encoding
of the input and output samples as ResNet. On the other hand, for the compressible Euler equations,
each input variable is embedded in an individual channel. More precisely, E(ū) ∈ Rm×3 for the
shock-tube problem, and E(ū) ∈ Rm×m×4 for the 2d Riemann problem. The architectures used in
the benchmarks examples are shown in figures 5, 6, 7.

In the experiments, the number of channel c (see figures 5, 6, 7 for an explanation of its meaning)
and the activation function σ are selected with cross-validation.

39

Published as a conference paper at ICLR 2023

E.1.4 DEEPONET AND SHIFT-DEEPONET

The architectures of branch and trunk are chosen according to the benchmark addressed. In particular,
for the first two numerical experiments, we employ standard feed-forward neural networks for both
branch and trunk-net, with a skip connection between the first and the last hidden layer in the branch.

On the other hand, for the compressible Euler equation we use a convolutional network obtained as a
composition of L blocks, each defined as:

B(zℓ) = BN ◦ σ ◦ Cℓ(zℓ), 1 < ℓ < L, (E.7)

with BN denoting a batch normalization. The convolution operation is instead defined by kℓ = 3,
s = 2, p = 1, cℓ = cℓ+1 = d, for all 1 < ℓ < L − 1. The output is then flattened and forwarded
through a multi layer perceptron with 2 layer with 256 neurons and activation function σ.

For the shift and scale-nets of shift-DeepONet, we use the same architecture as the branch.

Differently from the rest of the models, the training samples for DeepONet and shift-DeepONet are
encoded at m and n uniformly distributed random points, respectively. Specifically, the encoding
points represent a randomly picked subset of the grid points used for the other models. The number
of encoding points m and n, together with the number of layers L, units d and activation function of
trunk and branch-nets, are chosen through cross-validation.

E.1.5 FOURIER NEURAL OPERATOR

We use the implementation of the FNO model provided by the authors of Li et al. (2021a). Specifically,
the lifting R is defined by a linear transformation from Rdu×m to Rdv×m, where du is the number
of inputs, and the projection Q to the target space performed by a neural network with a single
hidden layer with 128 neurons and GeLU activation function. The same activation function is used
for all the Fourier layers, as well. Moreover, the weight matrix Wℓ used in the residual connection
derives from a convolutional layer defined by (kℓ = 1, s = 1, p = 0, cℓ = dv, cℓ+1 = dv), for all
1 < ℓ < L− 1. We use the same samples encoding employed for the fully convolutional models. The
lifting dimension dv , the number of Fourier layers L and kmax, defined in 2, are the only objectives
of cross-validation.

E.1.6 TRAINING DETAILS

For all the benchmarks, a training set with 1024 samples, and a validation and test set each with 128
samples, are used. The training is performed with the ADAM optimizer, with learning rate 5 · 10−4

for 10000 epochs and minimizing the L1-loss function. We use the learning rate schedulers defined
in table 2. We train the models in mini-batches of size 10. A weight decay of 10−6 is used for ResNet
(all numerical experiments), DON and sDON (linear advection equation, Burgers’ equation, and
shock-tube problem). On the other hand, no weight decay is employed for remaining experiments and
models. At every epoch the relative L1-error is computed on the validation set, and the set of trainable
parameters resulting in the lowest error during the entire process saved for testing. Therefore, no
early stopping is used. The models hyperparameters are selected by running grid searches over a
range of hyperparameter values and selecting the configuration realizing the lowest relative L1-error
on the validation set. For instance, the model size (minimum and maximum number of trainable
parameters) that are covered in this grid search are reported in Table 3.

The results of the grid search i.e., the best performing hyperparameter configurations for each model
and each benchmark, are reported in tables 4, 5, 6, 7 and 8.

E.2 FURTHER EXPERIMENTAL RESULTS.

In this section, we present some further experimental results which supplement the results presented
in Table 1 of the main text. We start by presenting more statistical information about the median errors
shown in Table 1. To this end, in Table 9, we show the errors, for each model on each benchmark,
corresponding to the 0.25 and 0.75 quantiles, within the test set. We observe from this table that
the same trend, as seen in Table 1, also holds for the statistical spread. In particular, FNO and
shift-DeepONet outperform DeepONet and the other baselines on every experiment. Similarly, FNO

40

Published as a conference paper at ICLR 2023

ResNet FCNN DeepONet Shift - DeepONet FNO

Advection
Equation

Step-wise decay
100 steps,
γ = 0.999

Step-wise Decay
50 steps,
γ = 0.99

Step-wise decay
100 steps,
γ = 0.999

Exponential decay
γ = 0.999

None

Burgers’
Equation

Step-wise decay
100 steps,
γ = 0.999

Step-wise Decay
50 steps,
γ = 0.99

Step-wise decay
100 steps,
γ = 0.999

Exponential decay
γ = 0.999

None

Shocktube
Problem

Step-wise decay
100 steps,
γ = 0.999

Step-wise Decay
50 steps,
γ = 0.99

Step-wise decay
100 steps,
γ = 0.999

Exponential decay
γ = 0.999

None

2D Riemann
Problem

Step-wise decay
100 steps,
γ = 0.999

Step-wise Decay
50 steps,
γ = 0.99

Exponential decay
γ = 0.999

Exponential decay
γ = 0.999

None

Table 2: Learning rate scheduler for different benchmarks and different models: γ denotes the
learning rate decay factor

ResNet FCNN DeepONet Shift - DeepONet FNO

Advection
Equation

576,768
1,515,008

1,156,449
1,8240,545

519,781
892,561

1,018,825
1,835,297

22,945
352,961

Burgers’
Equation

313,600
989,696

1,155,025
18,219,489

519,781
892,561

1,018,825
1,835,297

22,945
352,961

Shocktube
Problem

1,101,056
2,563,584

1,156,497
18,240,737

1,344,357
3,190,673

3,492,553
8,729,633

23,009
353,089

2D Riemann
Problem

42,059,008
84,416,000

442,985
7,066,529

361,157
2,573,513

821,961
7,082,785

268,833
13,132,737

Table 3: Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable parameters
among the grid-search hyperparameters configurations.

Advection
Equation

Burgers’
Equation

Shocktube
Problem

2D Riemann
Problem

σ Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU
L 4 8 8 8
d 128 256 256 256

Trainable
Params 576,768 989,696 2,563,584 84,416,000

Table 4: ResNet best performing hyperparameters configuration for different benchmark problems.

Advection
Equation

Burgers’
Equation

Shocktube
Problem

2D Riemann
Problem

σ Leaky ReLU Leaky ReLU Leaky ReLU ReLU
c 8 16 16 16

Trainable
Params 1,156,449 4,576,033 4,581,537 1,768,401

Table 5: Fully convolutional neural network best performing hyperparameters configuration for
different benchmark problems.

41

Published as a conference paper at ICLR 2023

Advection
Equation

Burgers’
Equation

Shocktube
Problem

2D Riemann
Problem

m 256 512 512 642

n 512 256 256 2562

p 200 50 200 100
Lbranch 3 3 3 3
Ltrunk 6 4 6 6
dbranch 256 256 256 32
dtrunk 256 256 256 256
σbranch Leaky ReLU Leaky ReLU Leaky ReLU SoftSign
σtrunk Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU

Trainable
Params 761,233 618,085 3,190,673 607,433

Table 6: DeepONet best performing hyperparameters configuration for different benchmark problems.

Advection
Equation

Burgers’
Equation

Shocktube
Problem

2D Riemann
Problem

m 512 512 512 2562

n 512 512 512 1282

p 50 200 100 50
Lbranch 3 4 4 3
Ltrunk 6 6 6 6
dbranch 256 256 256 32
dtrunk 256 256 256 256
σbranch Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU
σtrunk Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU

Trainable
Params 1,445,321 1,835,297 6,047,633 6,851,785

Table 7: Shift DeepONet best performing hyperparameters configuration for different benchmark
problems.

Advection
Equation

Burgers’
Equation

Shocktube
Problem

2D Riemann
Problem

kmax 15 19 7 15
dv 64 32 32 64
L 2 4 4 4

Trainable
Params 148,033 90,593 41,505 8,414,145

Table 8: Fourier neural operator best performing hyperparameters configuration for different bench-
mark problems.

42

Published as a conference paper at ICLR 2023

ResNet FCNN DeepONet Shift - DeepONet FNO

Advection
Equation 10.1% - 22.8% 8.2%− 17.3% 4.9%− 13.8% 1.4%− 5.4% 0.35%− 1.25%

Burgers’
Equation 18.8%− 22% 20.3%− 25.7% 25.4%− 32.4% 6.7%− 9.6% 1.3%− 1.9%

Shocktube
Problem 3.6%− 5.6% 7.0%− 10.25% 3.4%− 5.4% 2.0%− 3.75% 1.2%− 2.1%

2D Riemann
Problem 2.4%− 2.9% 0.17%− 0.21% 0.77%− 1.1% 0.10%− 0.15% 0.10%− 0.14%

Table 9: 0.25 and 0.75 quantile of the relative L1 error computed over 128 testing samples for
different benchmarks with different models.

Test Samples ResNet FCNN DeepONet Shift - DeepONet FNO

128 10.1, 14.8, 22.8 8.2, 11.6, 17.3 4.9, 8.0, 13.8 1.4, 2.8, 5.4 0.25, 0.71, 1.25

256 11.1, 15.5, 22.8 8.0, 11.6, 16.8 5.4, 9.2, 15.1 1.5, 2.8, 5.1 0.36, 0.63, 1.3

512 11.3, 15.9, 23.6 8.3, 11.6, 16.8 5.4, 9.6, 15.2 1.4, 2.8, 6.5 0.36, 0.65, 1.36

1024 11.0, 15.25, 23.1 8.0, 11.35, 16.0 5.4, 9.1, 15.4 1.4, 2.8, 5.9 0.35, 0.62, 1.29

2048 11.31, 15.7, 24.0 8.2, 11.5, 16.8 5.4, 9.3, 15.8 1.5, 2.9, 6.6 0.36, 0.67, 1.37

Table 10: 0.25, 0.5 and 0.75 quantile of the relative L1 error computed over 128, 256, 512, 1024 and
2048 testing samples for the linear advection equation with different models.

kmax L dv Trainable Params FNO - Median
Testing L1-error

FFT - Median
L1-error

0 3 192 247,169 2.30% 164.2 %

1 3 160 252,097 1.21 % 137.9 %

3 3 128 263,169 0.48 % 63.3 %

7 3 92 241,113 0.54 % 38.9 %

Table 11: Testing error obtained by training FNO with different number of modes for the linear
advection problem and corresponding error obtained with linear Fourier projection.

kmax L dv Trainable Params FNO - Median
Training L1-error

FNO - Median
Testing L1-error

FFT - Median
L1-error

0 3 64 33,409 2.2% 2.38% 164.2 %

1 3 64 45,697 0.70% 0.80 % 137.9 %

3 3 64 70,273 0.54% 0.55 % 63.3 %

7 3 64 119,425 0.42% 0.46 % 38.9 %

Table 12: Training and testing error obtained by training FNO with different number of modes for the
linear advection problem and corresponding error obtained with linear Fourier projection.

43

Published as a conference paper at ICLR 2023

p
Trainable Parameters

DON / SDON
DON - Median

Training L1-error
SDON - Median

Training L1-error
DON - Median

Testing L1-error
SDON - Median
Testing L1-error

1 658947 / 1054213 100.1% 4.1% 100.1% 13.1%

2 659461 / 1055497 100.0% 3.5% 100.0% 5.0%

4 660489 / 1058065 40.9% 2.5% 37.5% 5.0%

8 662545 / 1063201 26.6% 1.6% 29.7% 4.1%

16 666657 / 1073473 16.5% 3.1% 15.6% 4.1%

32 674881 / 1094017 10.9% 3.0% 9.8% 4.6%

64 691329 / 1135105 10.8% 2.2% 11.1% 3.9%

Table 13: Training and testing error obtained by training DON and SDON for the linear advection
problem with different number of basis functions.

Figure 8: Testing error obtained by training DON and SDON with different number of basis function
p for the linear advection problem.

outperforms shift-DeepONet handily on each experiment, except the four-quadrant Riemann problem
associated with the Euler equations of gas dynamics.

The results presented in Table 9 further demonstrate that FNO is the best performing model on all
the benchmarks. In order to further understand the superior performance of FNOs, we consider
the linear advection equation. As stated in the main text, given the linear nature of the underlying
operator, a single FNO Fourier layer suffices to represent this operator. However, the layer width will
grow linearly with decreasing error, requiring kmax ∼ ϵ−1 Fourier modes. Hence, it is imperative to
use the nonlinear reconstruction, as seen in the proof of Theorem 3.3, to obtain good performance.
To empirically illustrate this, we compare FNO with different kmax (number of Fourier modes)
with corresponding error obtained by simply projecting the outputs of the operator into the linear
space spanned by the corresponding number of Fourier modes. This projection onto Fourier space
amounts to the action of a linear version of FNO. The errors, presented in Table 11 (keeping the
total number of degrees of freedom roughly constant) and Table 12 (keeping the lifting dimension
dv = 64 fixed), clearly show that as predicted by the theory, very few Fourier modes with a kmax = 1
are enough to obtain an error of approximately 1%. On the other hand, the corresponding error
with just the linear projection is two orders of magnitude higher. In fact, one needs to project onto
approximately 500 Fourier modes to obtain an error of approximately 1% with this linear method.
This stark contrast is further illustrated in Figure 9, which shows that FNOs relying on a nonlinear
reconstruction mechanism can outperform a competing method based on linear Fourier reconstruction
(Fourier linear projection) by one to two orders of magnitude in terms of approximation accuracy.
This experiment clearly brings out the role of the nonlinearities in FNO in enhancing its expressive
power on advection-dominated problems.

44

Published as a conference paper at ICLR 2023

Figure 9: Testing error obtained by training FNO with different number of modes for the linear
advection problem and corresponding error obtained with linear Fourier projection.

Besides our analysis of FNOs, we have shown by means of approximation theoretical arguments
that shift-DeepONets, which are based on a nonlinear reconstruction, can overcome the fundamental
limitations faced by DeepONets. Clearly, the approximation theoretic arguments employed in this
work neglect some aspects of the practical training of neural operators, most notably possible errors
due to a finite number of training samples and errors due to numerical optimization procedure
(e.g. convergence to sub-optimal local minima, etc.). In order to further understand the superior
performance of shift-DeepONets over DeepONets, we carry out a scan in the number of basis
functions p.

For the linear advection problem, we first recall that the fundamental limitation of DeepONets is due
to the lower bound of Theorem 3.1, which shows that DeepONets can achieve at-best a linear decay
error ∼ 1/p in terms of the number of DeepONet basis functions p. To compare this theoretical
prediction with empirical observation, we carry out a scan over different choices of p = 1, 2, 4, . . . , 64
in Table 13. The table clearly shows that the DeepONet training/testing errors both decrease with
increasing p. Furthermore, inspection of the corresponding Figure 8 reveals that this decrease follows
an approximately linear decay, which is only slightly worse than the (optimal) lower bound ∼ 1/p,
consistent with approximation theory.

In contrast, our approximation theoretic result shows that shift-DeepONets can overcome the
lower bound, and achieve high accuracy even with a bounded number of basis functions p ≤
C (cp. Theorem 3.2). This is reflected by the almost immediate saturation of the error as a
function of p, in Figure 8 (cf. also Table 13). Consistent with the theoretical insight, our numerical
experiment demonstrates that (a) the error for shift-DeepONets (based on nonlinear reconstruction) is
considerably smaller than the corresponding error for DeepONets (based on linear reconstruction),
and (b) increasing the number of basis functions beyond very moderate values of p ∼ 4, 8 does not
improve the accuracy of shift-DeepONets, consistent with the fact that a uniformly bounded number
p ≤ C is sufficient.

45

Published as a conference paper at ICLR 2023

Figure 10: Illustration of two input (blue) and output (orange) samples for the advection equation.

Figure 11: Illustration of two input (blue) and output (orange) samples for the Burgers’ equation.

46

Published as a conference paper at ICLR 2023

(a) Sample 1

(b) Sample 2

Figure 12: Illustration of two input (blue) and output (orange) samples for the shock-tube problem.

47

Published as a conference paper at ICLR 2023

(a) Sample 1

(b) Sample 2

Figure 13: Illustration of two input (left) and output (right) samples for the 2-dimensional Riemann
problem.

48

	Introduction
	Methods
	Theoretical Results.
	Experiments
	Discussion
	Principal component analysis
	Illustrative example

	Measures of complexity for (shift-)DeepONet and FNO
	Extensions of theoretical results
	Time-evolution
	Extension to higher dimensions

	Mathematical Details
	ReLU DNN building blocks
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Details of Numerical Experiments and Further Experimental Results.
	Training and Architecture Details
	Feed Forward Dense Neural Networks
	ResNet
	Fully Convolutional Neural Network
	DeepONet and shift-DeepONet
	Fourier Neural Operator
	Training Details

	Further Experimental Results.

