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Abstract

Information Retrieval (IR) methods aim to iden-001
tify documents relevant to a query, which have002
been widely applied in various natural language003
tasks. However, existing approaches typically004
consider only the textual content within docu-005
ments, overlooking the fact that documents can006
contain multiple modalities, including images007
and tables. Also, they often segment each long008
document into multiple discrete passages for009
embedding, which prevents them from captur-010
ing the overall document context and interac-011
tions between paragraphs. To address these two012
challenges, we propose a method that holisti-013
cally embeds documents interleaved with mul-014
tiple modalities by leveraging the capability of015
recent vision-language models that enable the016
processing and integration of text, images, and017
tables into a unified format and representation.018
Moreover, to mitigate the information loss from019
segmenting documents into passages, instead020
of representing and retrieving passages individ-021
ually, we further merge the representations of022
segmented passages into one single document023
representation, while we additionally introduce024
a reranking strategy to decouple and identify025
the relevant passage within the document if nec-026
essary. Then, through extensive experiments027
on diverse IR scenarios considering both the028
textual and multimodal queries, we show that029
our approach substantially outperforms rele-030
vant baselines, thanks to the consideration of031
the multimodal information within documents.032

1 Introduction033

Information Retrieval (IR) is the task of fetching034

relevant documents from a large corpus in response035

to a query, which plays a critical role in various real-036

world applications including web search engines037

and question-answering systems (Shah et al., 2019;038

Lewis et al., 2020; Guu et al., 2020). Over the years,039

IR methods have evolved significantly, broadly cat-040

egorized into sparse and dense retrieval paradigms.041

Specifically, sparse retrieval methods (Robertson042

et al., 1994; Jones, 2004) focus on lexical overlap 043

between queries and documents; meanwhile, dense 044

retrieval methods (Karpukhin et al., 2020; Xiong 045

et al., 2021) utilize neural embeddings to repre- 046

sent queries and documents in a continuous vector 047

space. Note that, recently, dense retrieval methods 048

have gained more popularity over sparse methods 049

due to their capability to capture semantic nuances 050

and context beyond simple keyword matching. 051

Despite their successes, existing (dense) retrieval 052

methods face a couple of severe challenges. First, 053

they primarily rely on the textual data for docu- 054

ment embedding and retrieval, overlooking the fact 055

that modern documents often contain multimodal 056

content, including images and tables (beyond the 057

plain text), which can carry information that may 058

be essential for accurately understanding and re- 059

trieving the relevant documents (Li et al., 2024c). 060

For instance, a diagram within a medical article 061

can more effectively represent the structure of a 062

molecule or the progression of a disease, offering 063

more clarity that would be difficult to achieve with 064

text alone, and omitting such multimodal content 065

can lead to an incomplete understanding (and poten- 066

tially inaccurate retrieval) of the documents. Also, 067

the segmentation of long documents into discrete 068

passages, which is commonly employed by exist- 069

ing retrieval models to handle the length limitation 070

for embeddings (Karpukhin et al., 2020; Xiong 071

et al., 2021), may prevent models from capturing 072

the full context and the intricate relationships be- 073

tween different parts of the document, ultimately 074

leading to suboptimal retrieval performance (Dong 075

et al., 2024; Jiang et al., 2024b). Notably, concur- 076

rent to our work, while there has been recent work 077

that screen captures the document and then embed 078

its screenshots (to consider different modalities in 079

a unified format) (Faysse et al., 2024; Ma et al., 080

2024), not only its content (such as paragraphs, im- 081

ages, and tables) can be fragmented into different 082

sub-images, leading to the loss of contextual coher- 083
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Figure 1: Comparison of different IR approaches. (a): Conventional methods use a small portion of the text within the document
for its representation. (b): Recent methods use first-page screenshot images to represent the document. (c): Our approach
leverages the full contextual information within documents interleaved with multiple modalities by considering them in their
original format, and is further capable of pinpointing relevant sections for the query.

ence across the entire document, but also the visual084

representation of text may hinder the model’s abil-085

ity to capture the semantic relationships present in086

the original textual data, and increasing image res-087

olution raises concerns on memory requirements.088

To tackle these challenges, we introduce a novel089

approach to holistically represent documents for IR,090

representing and retrieving documents interleaved091

with multiple modalities in a unified manner (illus-092

trated in Figure 1). Specifically, it revolves around093

the recent advance of Vision-Language Models094

(VLMs), which enable the processing and integra-095

tion of multimodal content (such as text, images,096

and tables) directly into a single token sequence,097

thereby preserving the context and relationships be-098

tween various parts of the document, unlike prior099

methods that rely on the fragmented visual repre-100

sentations. Additionally, in cases where the number101

of tokens in a document is large and exceeds the102

capacity of a single context window of VLMs, we103

propose a strategy to segment the document into104

passages, each represented within the token limit,105

and combine these passage embeddings into a uni-106

fied document representation. This strategy differs107

from existing approaches that independently rep-108

resent and retrieve at the passage level, potentially109

losing the overall document context. Lastly, to ac-110

curately identify only the relevant sections within111

the retrieved lengthy document, we introduce a112

reranking mechanism that is trained to pinpoint the113

passage most pertinent to the query (among all the114

other passages within the document), allowing for115

both the coarse-grained document-level matching116

and fine-grained passage-level retrieval. We refer117

to our overall framework as Interleaved Document118

Information Retrieval System (IDentIfy).119

We experimentally validate the effectiveness of 120

IDentIfy on four benchmark datasets, considering 121

both text-only and multimodal queries. On a bat- 122

tery of tests conducted, we observe that our ap- 123

proach substantially outperforms relevant baselines 124

that consider only the uni-modality or certain facets 125

of multi-modality, thanks to the holistic consider- 126

ation of interleaved multimodal contents. Further- 127

more, we find that the strategy to represent the 128

whole document with its single representation (by 129

merging embeddings of its splits) is superior to the 130

approach of individually representing them for doc- 131

ument retrieval, but also performing reranking over 132

the sections of the retrieved document is superior 133

to the approach of directly retrieving those sections, 134

confirming the efficacy of proposed coarse-to-fine 135

retrieval and reranking pipeline for document and 136

passage retrieval, respectively. 137

2 Related Work 138

Information Retrieval IR involves finding doc- 139

uments relevant to a query, which plays a crucial 140

role in applications such as search and question- 141

answering (Zhu et al., 2023; Gao et al., 2023; Ram 142

et al., 2023; Shi et al., 2024; Jeong et al., 2024a). 143

Earlier IR approaches measured the similarity be- 144

tween queries and documents based on their lexical 145

term matching, such as BM25 and TF-IDF (Robert- 146

son et al., 1994; Jones, 2004). However, these meth- 147

ods struggled to capture semantic nuances beyond 148

surface-level term overlaps. Recently, along with 149

advancements in language models (Devlin et al., 150

2019; Liu et al., 2019), there have been dense re- 151

trieval methods that embed both queries and docu- 152

ments into a shared dense vector space (Karpukhin 153

et al., 2020; Xiong et al., 2021), enabling the cal- 154
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culation of semantic similarity between them more155

effectively by capturing the deeper contextual in-156

formation. Yet, previous studies have mainly fo-157

cused on enhancing the textual representations of158

queries and documents, while overlooking the mul-159

timodal nature of documents beyond text, which160

can provide richer context and aid in more accurate161

retrieval (Liu et al., 2021; Jeong et al., 2024b).162

Multimodal Information Retrieval Recent stud-163

ies in IR have expanded the focus from purely text-164

based retrieval models to those that consider other165

modalities, such as images (Radford et al., 2021;166

Xiao et al., 2024), tables (Herzig et al., 2021; Chen167

et al., 2024) and graphs (Baek et al., 2023); how-168

ever, the majority of these approaches (Zhou et al.,169

2024; Long et al., 2024; Lerner et al., 2024; Nowak170

et al., 2024; Caffagni et al., 2024) have primarily171

explored how to process the multimodal queries,172

and overlooked the equally important multimodal173

characteristics of the documents being retrieved.174

In efforts to handle diverse multimodal elements175

within documents, there are concurrent studies that176

have proposed to capture screenshots of documents,177

such as PDFs (Faysse et al., 2024; Cho et al., 2024)178

or Wikipedia web pages (Ma et al., 2024), and179

subsequently encoding them through vision mod-180

els (Ding et al., 2024). Yet, these methods are not181

only limited by factors, such as image resolution182

and computational memory, constraining their ap-183

plication to documents longer than a single page1,184

but also fall short by treating the diverse modal-185

ities within a document as a single visual entity,186

leading to document representations that may fail187

to effectively capture the nuanced interdependence188

between text and images. Also, while there are con-189

current studies (Jiang et al., 2024d; Lin et al., 2024)190

that consider images and text as retrieval targets,191

they primarily focus on representing image-text192

pairs and their retrieval, rather than addressing the193

holistic representation of documents that include194

multiple images and another modality (tables). Fi-195

nally, all the aforementioned work does not address196

the issue of splitting documents into smaller frag-197

ments (passages or sub-images), which may disrupt198

the holistic contextual view of the entire document.199

Vision-Language Models Recently developed200

VLMs have emerged as a powerful tool for jointly201

processing visual and textual data, which com-202

1It requires processing 9.8k image tokens just to process a
single-page document, and it results in 2TB of storage for han-
dling the entire Wikipedia corpus, which may not be practical.

bine the image understanding capabilities of vi- 203

sual encoders (Radford et al., 2021; Zhai et al., 204

2023) with the advanced reasoning abilities of lan- 205

guage models (OpenAI, 2022, 2023a). They have 206

achieved remarkable performance across diverse 207

vision-language tasks (such as image captioning 208

and visual question answering) (Dai et al., 2023; 209

OpenAI, 2023b), with the substantially limited at- 210

tention on their applications to IR. We note that the 211

latest developments in this field have particularly 212

focused on enabling VLMs to handle interleaved, 213

multimodal content, involving a mixed sequence 214

of images and text (Zhang et al., 2023; Li et al., 215

2024b). In particular, LLaVA-NeXT-Interleave (Li 216

et al., 2024b) introduces a fine-tuning approach that 217

specifically enhances the VLMs’ capacity to under- 218

stand complex interleavings of multiple images and 219

text within a single context. Drawing inspiration 220

from these advances, we propose to harness their 221

capabilities to create unified embeddings for docu- 222

ments interleaved with text and images (and tables). 223

224
3 Method 225

We present IDentIfy to holistically represent docu- 226

ments interleaved with multimodal elements. 227

3.1 Preliminaries 228

We begin with formally explaining IR and VLMs. 229

Information Retrieval IR is the task of identify- 230

ing a set of relevant documents {d1,d2, . . . ,dk} ⊆ 231

D from a large corpus D, given a query q. Here, 232

each query q and document d are represented as a 233

sequence of tokens, e.g., q = [q1, . . . , qn], and tra- 234

ditional IR approaches typically consider these to- 235

kens as purely textual elements. However, we pro- 236

pose to extend this assumption to have the tokens 237

of both the textual and visual content, to capture the 238

multimodal nature of many real-world documents. 239

Then, this new extension raises important questions 240

of how can both the textual and visual content be 241

represented within a unified token framework, and 242

how can these multimodal tokens be seamlessly in- 243

tegrated and encoded for document representations. 244

245Vision-Language Models To answer them, we 246

now turn to describing VLMs, which are designed 247

to jointly encode the textual and visual information 248

in a unified token framework. These models are 249

generally comprised of two main components: a vi- 250

sual encoder and a language model, interconnected 251

through a projection layer. Specifically, given the 252

document that may contain interleaved modalities 253

(e.g., text and images), the visual encoder extracts 254
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Figure 2: Overview of the proposed IDentIfy. (a): In our document retriever, a query encoder represents a query (purple),
and sections are encoded with a section encoder whose embeddings are averaged to form a document representation (blue).
Contrastive learning loss (red) is used for training the document retriever. (b): Reranker scores query-section relevance with the
concatenation of the query and section, trained using Binary Cross-Entropy loss.

high-level visual features from images embedded255

within the document, mapping them into a latent256

space. Then, these visual features are transformed257

into a sequence of visual tokens via the projection258

layer, represented as follows: V∈RV×demb , where259

V denotes the visual token length and demb is the260

token dimension size. Similarly, for the textual con-261

tent embedded within the document, the language262

model uses a word embedding layer to convert the263

input text into a sequence of tokens, as follows:264

L∈RL×demb , where L denotes the text token length.265

In this work, we also propose to account for ta-266

bles that are the integral modality to holistically267

represent the full content of documents. Yet, unlike268

text and images that have dedicated processing lay-269

ers within VLM architectures, tables do not have a270

specific representation layer. Nevertheless, we ar-271

gue that VLMs are pre-trained on diverse web data,272

and subsequently learned implicitly to handle the273

table structures formatted in HTML. Consequently,274

we treat HTML-format table data as a linearized275

sequence of HTML words, applying the same word276

embedding layer as is used for plain text. To be277

formal, this process converts the table content into278

table tokens, as follows: T∈ RT×demb , where T is279

the token length of the table. Lastly, once extracted,280

the visual tokens, text tokens, and table tokens are281

concatenated (into a unified token sequence) and282

then passed through the remaining layers of VLMs,283

to capture both uni- and cross-modal relationships284

across different modalities, ultimately enabling the285

comprehensive understanding of the documents.286

3.2 Retriever287

We now explain how we design a retriever specifi-288

cally tailored for multimodal interleaved document289

retrieval. In particular, our approach leverages a 290

VLM capable of processing text, images, and ta- 291

bles within a single document. Further, following 292

the standard practice of existing retrieval architec- 293

tures (Karpukhin et al., 2020; Xiong et al., 2021), 294

we use a dual-encoder structure, which consists of 295

a query encoder and document (or section) encoder, 296

both are based on VLMs, illustrated in Figure 2 (a). 297

Specifically, thanks to the use of the VLM, our 298

query encoder can take either purely textual queries 299

q = LQ or multimodal queries consisting of text 300

and visual elements q=[VQ, LQ]. Also, to obtain 301

the final query representation, we use a learnable 302

token called ‘End of Query’, [EoQ]∈Rdemb , which 303

is appended to the end of the query tokens q. The fi- 304

nal concatenated tokens [q, [EoQ]] are then passed 305

through the query encoder. Lastly, the model output 306

corresponding to [EoQ] is used as the final query 307

representation, as follows: ZQ∈Rdemb . 308

For documents, we represent each of them d as a 309

sequence of sections: d=[si]
S
i=1 (with a total of S 310

sections), where each section si is derived by divid- 311

ing the document according to its subtitles. si can 312

contain a combination of text tokens LSi, visual 313

tokens from embedded images VSi, and table to- 314

kens TSi, denoted as follows: si=[VSi , LSi , TSi ]. 315

Then, to obtain a section-level representation, simi- 316

lar to the query representation, we introduce a learn- 317

able token, called ‘End of Section’: [EoS]∈Rdemb , 318

which is appended at the end of each section. We 319

then forward concatenated tokens [si, [EoS]] to 320

the section encoder, and, after that, the output cor- 321

responding to [EoS] is used to form the section rep- 322

resentation, as follows: ZSi ∈Rdemb . Additionally, 323

the overall document representation is obtained by 324

averaging the representations of all sections within 325
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the document, as follows: ZD= 1
S

∑S
i=1 ZSi .326

The remaining step is to train those two query327

and section encoders. Recall that the goal of the328

retriever is to assess a relevance score between the329

query and the document. To achieve this, we use a330

contrastive learning loss based upon the query and331

document representations, whose objective is to as-332

sign higher similarity scores to relevant documents333

(positive samples) and lower scores to irrelevant334

ones (negative samples) for the query, as follows:335

Lretriever=− 1

B

B∑
i=1

log

(
ϕ (ZQi ,ZDi)∑B

j=1 ϕ
(
ZQi ,ZDj

)) ,336

ϕ (a, b)=exp

(
a⊤b

∥a∥∥b∥

)
, (1)337

where B is the batch size. By minimizing Lretriever,338

the retriever learns to optimize the similarity be-339

tween queries and their relevant documents, en-340

abling the retrieval of the most pertinent documents341

for the given input query during inference.342

3.3 Reranker343

To enable fine-grained retrieval within documents344

beyond the retrieval of documents themselves, we345

introduce a section-level reranking mechanism that346

identifies the section most relevant to the query. In347

particular, once the document is retrieved, the ob-348

jective of the reranker fR is to pinpoint the specific349

sections within the document that best match the350

query. We also note that this reranker is similarly351

operationalized with the VLM along with a binary352

classifier on top of it, which directly measures the353

relevance of each query-section pair (Figure 2 (b)).354

Formally, for a retrieved document, we take each355

of its sections si with a learnable token for section356

embedding [EoS] attached to the end and concate-357

nate it with query q , forming the input sequence of358

[q, si, [EoS]]. The concatenated tokens are then359

processed through the reranker, and its output corre-360

sponding to [EoS] captures the relevance between361

the query and section, which is further subsequently362

passed to a binary classifier. Through this, the clas-363

sifier outputs a probability score indicating the like-364

lihood of the section being relevant to the query,365

i.e., a score close to one denotes a high relevance.366

To train this reranker, we use the binary cross-367

entropy loss, formulated as follow:368

Lreranker=
B∑
i=1

Si∑
j=1

1

BSi
ℓ
(
ysi,j , fR ([q, ŝi,j ])

)
,369

ℓ (y,ŷ)=− [y log ŷ+(1−y) log(1−ŷ)] , (2)370

where Si is the number of sections in the i-th docu- 371

ment, ysi,j is the label for the j-th section of the i- 372

th document si,j (with its value of one if relevant to 373

the query q, otherwise zero), ŝi,j = [si,j , [EoS]], 374

and B is the batch size during training. Also, dur- 375

ing training, the sections not labeled as relevant to 376

the query are considered negative samples. Then, 377

by minimizing Lreranker, the reranker learns to pre- 378

dict section relevance for any query, thereby refin- 379

ing our overall retrieval process by allowing the 380

retrieval of not just whole documents but also their 381

most relevant sections, for multiple use cases of IR. 382

4 Experiments 383

4.1 Experimental Setups 384

Datasets We evaluate the proposed IDentIfy on 385

four benchmark datasets designed for multimodal 386

IR that require understanding of both textual and 387

visual cues within queries and documents, as fol- 388

lows: Encyclopedic-VQA (Mensink et al., 2023) 389

is a large-scale benchmark for multimodal Visual 390

Question Answering (VQA) with queries linked 391

to specific Wikipedia sections and includes both 392

textual and multimodal queries; InfoSeek (Chen 393

et al., 2023) is a knowledge-intensive VQA dataset 394

with multimodal questions generated from Wiki- 395

data triples that include diverse entities such as 396

landmarks, animals, and food; ViQuAE (Lerner 397

et al., 2022) involves both textual and multimodal 398

queries about human entities, linked to annotated 399

Wikipedia sections, making it ideal for evaluating 400

section reranking; Open-WikiTable (Kweon et al., 401

2023) targets open-domain table QA by identifying 402

documents or sections containing relevant tables. 403

Baselines To comprehensively validate IDentIfy, 404

we compare it against two categories of baselines: 405

• Conventional VLM Baselines: We consider ear- 406

lier VLMs, which are not capable of jointly pro- 407

cessing text and images, such as CLIP (Radford 408

et al., 2021) and BLIP (Li et al., 2022). Also, 409

we consider the approaches, such as UniIR (Wei 410

et al., 2024), which is built on top of them and 411

fine-tuned with a contrastive loss (Equation (1)). 412

These baselines serve as reference points to as- 413

sess performance gains from recent VLM ad- 414

vances rather than serving as direct competitors. 415

• Baselines with Different Document Represen- 416

tations: We further consider existing approaches, 417

representing documents in various ways. Entity 418

and Abstract baselines retrieve documents based 419

on their titles and summaries, respectively, us- 420
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Method R@1 R@10 R@100 MRR@10

CLIP-VIT-L-14
Zero-Shot 1.9 6.3 13.9 3.1
UniIR + Text-Only 3.8 20.6 50.3 7.7
UniIR + Text & Image 5.8 21.5 48.5 10.0

BLIP-Large
Zero-Shot 0.0 0.0 0.0 0.0
UniIR + Text-Only 9.8 36.9 71.4 16.3
UniIR + Text & Image 9.9 23.9 60.7 13.5

LLaVA-NeXT-Interleave-0.5B
Entity 3.1 15.5 39.7 6.1
Abstract 13.4 41.3 66.5 21.6
Text-Only 12.5 37.8 68.7 19.8
Text & Table 12.6 38.6 68.5 19.9
Text & Image 16.4 45.4 77.1 25.3
IDentIfy (Ours) 20.5 50.0 78.0 29.4

Table 1: Results with different document retrievers.

ing high-level textual cues. Text-only baselines421

utilize the full textual content of documents for422

retrieval (Caffagni et al., 2024; Wang et al., 2024).423

Text & Table and Text & Image baselines lever-424

age tables and first image of documents along-425

side the text, respectively (Jiang et al., 2024a;426

Lin et al., 2024; Jiang et al., 2024d). IDentIfy is427

our model that holistically represents multimodal428

content (text, images, and tables) in documents.429

All baselines share the same recent VLMs as430

IDentIfy, allowing for a controlled comparison431

focused on document representation strategies.432

Evaluation Metrics To evaluate our approach,433

we use standard metrics: Recall@K (R@K) mea-434

sures whether the relevant document or section ap-435

pears within the top-K results; MRR@K measures436

how early the first relevant item is ranked (within437

top-K) by averaging its inverse rank across queries.438

Implementation Details We use LLaVA-NeXT-439

Interleave (Li et al., 2024b) as the basis VLM for440

both the retriever and reranker, and also use LLaVA-441

OneVision (Li et al., 2024a) as an additional basis442

VLM to show the robustness of IDentIfy. Follow-443

ing the convention of using the basis of retrieval444

with less than 1B parameters to balance computa-445

tional efficiency and retrieval performance (Rad-446

ford et al., 2021; Zhou et al., 2024; Wei et al., 2024),447

we choose 0.5B-parameter versions of the VLMs.448

During training, documents are represented using449

randomly selected four sections, while in inference,450

we consider all sections within each document. For451

section-level retrieval, all sections within the top452

25 retrieved documents are reranked. Experiments453

are conducted on a single H100 GPU.454

4.2 Experimental Results and Analyses455

Main Results We report retrieval performance on456

the Encyclopedic-VQA dataset in Table 1, where457

Granularity R@1 R@10 R@20 MRR@10

Passage* 3.9 16.9 22.0 7.5
Passage 28.6 36.4 37.8 31.2
Document (Ours) 35.1 50.8 53.6 40.3

Table 2: Comparison of different IR strategies for section
retrieval. Document (Ours) performs document retrieval and
section reranking, whereas Passage performs passage retrieval
and reranking. * denotes the model without reranking.

queries include both text and images. IDentIfy sig- 458

nificantly outperforms all baselines built on VLMs 459

such as CLIP and BLIP, which are limited to han- 460

dling a single image alongside text and encoding 461

image-text representations independently, making 462

them suboptimal for understanding multimodal in- 463

teractions within documents. We also observe that 464

IDentIfy achieves the best performance, improving 465

R@1 scores by 53.0%, 64.0%, 62.7%, and 25.0% 466

over Abstract, Text-Only, Text & Table and Text & 467

Image retrieval baselines, respectively, with similar 468

trends observed for other metrics. These results 469

demonstrate the effectiveness of integrating multi- 470

modal content holistically into a unified represen- 471

tation. To further illustrate the advantages of our 472

approach, we provide case studies in Appendix E. 473

We further examine the impact of our pipeline 474

of document retrieval and section reranking. In 475

Table 2, the passage retriever represents individual 476

sections as separate retrieval units, whereas the doc- 477

ument retriever (ours) aggregates multiple section 478

representations into a single representation. Then, 479

we perform reranking over the retrieved sections or 480

the sections from the retrieved documents, and then 481

report the results in Table 2 (where * denotes the 482

model without reranking). From this, we observe 483

that the passage retriever without reranking (Pas- 484

sage*) achieves suboptimal retrieval performance, 485

highlighting the challenge in pinpointing the most 486

relevant section within a document using traditional 487

retrieval methods. In contrast, when the reranker is 488

used alongside the document retriever, the perfor- 489

mance significantly surpasses the passage retrieval, 490

demonstrating the effectiveness of our coarse-to- 491

fine document-to-section retrieval strategy. 492

Interleaved format enhances document retrieval 493

across modalities. We further expand our exper- 494

iments to two additional datasets, InfoSeek and 495

ViQuAE, and report document retrieval results. As 496

shown in Table 3 Left, our model consistently out- 497

performs the Text-document baseline for both the 498

multimodal and textual queries. We attribute these 499

gains to the integration of multimodal content, al- 500

lowing the VLM to capture richer alignments and 501

leverage pre-existing knowledge for more effective 502
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Document Retrieval Section Reranking
Dataset Query Type Method R@1 R@10 R@100 MRR@10 R@1 R@10 R@20 MRR@10

Enc-VQA
Multimodal Text-Only 12.5 37.8 68.7 19.8 40.7 52.8 55.5 44.8

IDentIfy (Ours) 20.5 50.0 78.0 29.4 42.4 53.6 55.7 46.3

Textual Text-Only 62.7 76.3 87.4 67.0 68.1 79.4 80.2 72.3
IDentIfy (Ours) 65.4 76.8 87.8 69.0 69.7 80.1 80.6 73.6

ViQuAE
Multimodal Text-Only 13.5 40.4 67.4 20.9 12.6 31.7 37.7 18.2

IDentIfy (Ours) 17.5 46.0 69.4 26.3 11.4 32.1 39.2 17.5

Textual Text-Only 55.8 71.5 83.0 60.9 27.8 50.2 57.7 35.0
IDentIfy (Ours) 56.5 72.2 83.0 61.6 29.9 50.9 59.8 36.7

InfoSeek Multimodal Text-Only 6.8 23.6 52.5 11.2 N/A N/A N/A N/A
IDentIfy (Ours) 10.2 30.4 57.3 15.7 N/A N/A N/A N/A

Table 3: Performance on document retrieval and section reranking for multimodal and textual queries on Encyclopedic-VQA
(Enc-VQA), ViQuAE, and InfoSeek. We compare the approach that solely uses textual information from documents (Text-Only)
and our approach of leveraging interleaved multimodal contents from the documents (IDentIfy) over various scenarios.

(a) Document Retrieval for Tables
Method R@1 R@10 R@100 MRR@10
Zero-shot 29.4 58.0 86.0 38.1
Finetuned 55.8 84.1 93.5 66.1

(c) Tabular Classification
Method Random Zero-shot Finetuned

Acc@1 11.9 9.3 56.5

(b) Section Reranking for Tables

Dataset Target Method R@1 R@10 R@20 MRR@10

ViQuAE Text
Zero-shot 20.3 49.0 57.7 28.9
Finetuned 29.9 50.9 59.8 36.7

OWT Table
Zero-shot 5.9 20.5 29.4 9.1
Finetuned 8.4 36.7 52.8 15.2

Table 4: Retrieval results for tables, where Zero-shot denotes a model trained on Encyclopedic-VQA but not on the target
dataset. Finetuned refers to additional training of the model on the target dataset. (a): Results for tabular document retrieval on
Open-WikiTable (OWT). (b): Textual and tablular section reranking results on ViQuAE and OWT datasets, respectively. (c):
Reranker accuracy of a classification task that identifies the section containing the query-associated table given a gold document.

document representation (Xu et al., 2024).503

Interleaved format is also beneficial in section504

retrieval. Similarly, we evaluate section retrieval505

performance on Encyclopedic-VQA and ViQuAE506

datasets, for both multimodal and textual queries.507

As shown in Table 3 Right, our model outperforms508

the Text-document baseline in most cases. How-509

ever, the performance gains over the baseline are510

smaller compared to the document retrieval setup.511

This is likely because section reranking focuses on512

evaluating the relationship between a single sec-513

tion and a query (rather than leveraging the holistic514

context of the entire document), and individual sec-515

tions may lack the diverse multimodal information516

necessary for fully capturing the intent of queries.517

Retrieving tables interleaved within documents518

is challenging. We explore the retrieval task for519

tabular data, aiming to identify documents or sec-520

tions containing query-relevant tables, and compare521

models trained on Encyclopedic-VQA (Zero-shot)522

with those additionally trained on Open-WikiTable523

(Finetuned). As shown in Table 4 (a), the Fine-524

tuned retriever outperforms the Zero-shot retriever525

on retrieving documents containing query-relevant526

tables. However, more fine-grained section rerank-527

ing results (identifying sections containing query-528

relevant tables) in Table 4 (b) may reveal a notable529

modality-specific challenge: the performance of530

Zero-shot and Finetuned rerankers is considerably 531

lower on table retrieval compared to their perfor- 532

mance on text retrieval, despite both the text and 533

tables being represented with word tokens. To bet- 534

ter understand this, we design a classification task, 535

where rerankers are tasked with identifying the cor- 536

rect section containing the target table within the 537

golden document. Then, as shown in Table 4 (c), 538

the Zero-shot reranker performs comparably to ran- 539

dom selection, while the Finetuned reranker shows 540

modest improvements. These findings highlight the 541

intrinsic challenge of tabular retrieval, suggesting 542

the need for table-specific modules to more holisti- 543

cally represent multimodal interleaved documents. 544

More sections enhance document retrieval per- 545

formance but raise computational costs. To see 546

how the number of sections used for representing 547

each document impacts performance, we evaluate 548

document retrieval on the InfoSeek dataset by vary- 549

ing the sections per document during training. As 550

shown in Figure 3, incorporating more sections 551

improves MRR@10 from 7.5 to 15.7 due to lever- 552

aging richer multimodal and contextual informa- 553

tion. However, this comes at the cost of increased 554

computational requirements, as processing more 555

sections raises GPU memory consumption. 556

BCE loss is the most effective to train the sec- 557

tion reranker. In our reranker design, we use a 558
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Figure 3: Trade-off between perfor-
mance (MRR@10) and training cost
(GPU Memory) for retrieval.

Quesry Type Train Loss R@1 R@10 R@20 MRR@10

Multimodal
Contrastive 3.6 15.0 21.3 6.5
Doc + BCE 13.6 29.6 32.9 24.1
Sec + BCE (Ours) 42.4 53.6 55.7 46.3

Textual
Contrastive 13.6 37.7 45.1 20.6
Doc + BCE 23.8 43.4 47.2 39.1
Sec + BCE (Ours) 69.7 80.1 80.6 73.6

Table 5: Comparison of training objectives for the reranker: Contrastive uses con-
trastive loss similar to the document retriever training; Doc + BCE concatenates the
query with multiple sections from the same document and uses the BCE loss; Sec +
BCE trains the reranker by concatenating the query with each section individually.

Negative R@1 R@20 MRR@10

Top-K 38.1 55.3 44.4
In-batch 39.5 55.4 45.0
In-document (Ours) 42.4 55.7 46.3

Table 6: Comparison of negative sample selection strate-
gies for reranker training: Top-K (top-k retrieved sections),
In-batch (sections from other samples in the batch), and
In-document (sections in the same document).

Format R@1 R@10 R@100 MRR@10

Entity 2.3 10.3 29.7 4.3
Abstract 7.6 24.7 55.7 12.0
Text-Only 7.0 24.1 50.4 11.7
Text & Table 6.9 26.3 54.9 12.1
Text & Image 9.3 31.4 61.9 15.4
IDentIfy (Ours) 12.1 36.1 62.5 18.2

Table 7: Results with another base model (LLaVA-OneVision-0.5B)
for document retrieval (with different document formats).

binary cross-entropy (BCE) loss by concatenating559

the query with each document section individually560

(Section + BCE), allowing the model to directly as-561

sess query-section relevance. As an alternative, we562

also explore a contrastive loss (Contrastive), which563

models section reranking similarly to document re-564

trieval but uses sections as the retrieval units, and a565

variant of BCE loss (Document + BCE), where the566

query is concatenated with multiple sections (both567

positive and negative) from the same document.568

As shown in Table 5, the Section + BCE reranker569

outperforms both alternatives. Specifically, con-570

trastive loss performs the worst, suggesting that571

direct concatenation of query and section provides572

clearer relevance signals, consistent with conven-573

tional reranking approaches. Moreover, while Doc-574

ument + BCE leverages inter-section context, its575

performance might be hindered by training con-576

straints as the model processes fewer sections dur-577

ing training (Jiang et al., 2024c; Lee et al., 2024),578

and addressing it would be interesting future work.579

Sections from the same document act as effec-580

tive negatives to enhance reranker performance.581

In training the reranker, we investigate whether582

considering sections from the same document as583

negative examples (called In-document) is effective584

than other strategies, such as Top-K negatives (top-585

K retrieved sections based on their similarity with586

the input query) and In-batch negatives (positive587

sections from other samples in the same batch). As588

shown in Table 6, we observe that the In-document589

approach achieves superior performance especially590

on R@1, demonstrating its ability to effectively591

identify the most pertinent section among highly592

similar sections within the same document, i.e., its593

training objective can encourage the reranker to 594

focus on fine-grained distinctions between closely 595

related sections (within the same document). 596

Our IDentIfy is Versatile with Different VLMs. 597

To ensure the effectiveness and robustness of IDen- 598

tIfy across VLMs, we evalulate its performance 599

with another VLM, LLaVA-OneVision (Li et al., 600

2024a), with 0.5 billion parameters, in addition to 601

LLaVA-NeXT-Interleave (Li et al., 2024b) used in 602

our main experiments. Results in Table 7 show that 603

ours continues to outperform baselines, achieving a 604

notable 30.1% gain in R@1 over the best baseline. 605

5 Conclusion 606

In this paper, we introduced IDentIfy, a novel IR 607

framework designed to address the limitations of 608

conventional methods that rely on textual content 609

of documents and their segmented passages. Our 610

approach sits on top of recent VLMs, which en- 611

ables integration and representation of diverse mul- 612

timodal content (including text, images, and tables) 613

into a unified document representation. Also, un- 614

like prior strategies that segment documents at the 615

passage level, our method merges these segments 616

to maintain the document’s structural coherence, 617

while further introducing a reranking strategy for 618

precise identification of relevant sections. Exten- 619

sive experiments across various IR datasets show 620

that IDentIfy consistently outperforms baselines, 621

confirming the value of interleaved multimodal rep- 622

resentation for both document and section retrieval. 623

We believe IDentIfy represents a crucial step to- 624

ward more comprehensive and contextually aware 625

IR systems, capable of handling the increasing mul- 626

timodality of modern information sources. 627
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Limitations628

Due to the constraints of a single H100 GPU that629

we have, we represent documents by sampling a630

limited number of sections and averaging their cor-631

responding embeddings (See Figure 3). While this632

reduces the computational demands, our findings633

suggest that capturing a broader document context634

leads to improved retrieval performance. Hence,635

leveraging the long context window of LVLMs with636

a greater number of sections could further enhance637

document retrieval by capturing more comprehen-638

sive information within the full document. Addi-639

tionally, while using the basis model size of 0.5B640

(or less than 1B) parameters is a standard practice641

in IR literature, scaling up the basis VLMs remains642

an avenue for future work; however, although larger643

models can yield performance gains, they come at644

the cost of increased computational requirements.645

Moreover, our reranker design follows the conven-646

tional approach of concatenating the input query647

with individual sections. However, we believe pro-648

viding the reranker with all sections together would649

allow the model to better leverage the contextual650

information from the entire document, potentially651

resulting in improved performance, and we leave652

explorations on this for future work.653

Ethics Statement654

In this work, we use a publicly available retrieval655

corpus for information retrieval tasks. However, the656

retrieval corpus may contain private, harmful, or657

biased content. Such undesirable features could un-658

intentionally be reflected in the behavior of retriev-659

ers and rerankers trained on this data, potentially660

leading to ethical concerns during real-world de-661

ployment. However, current information retrieval662

techniques, including ours, do not address the re-663

trieval of undesirable content. We recognize the664

critical need for safeguards to mitigate this issue.665

This is essential to ensure that information retrieval666

systems are reliable, fair, and safe for deployment.667
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A Details of Experimental Setups965

Dataset configuration Table 8 summarizes the966

key properties of the datasets used in our experi-967

ment, including query modality, target item, entity968

domain, number of entities, and whether a section969

ID is provided to indicate the section containing970

the answer. Additionally, we provide the number of971

samples in the training, evaluation, and test splits,972

as well as the size of the corpus. We provide a973

more detailed explanation of the datasets below.974

• Encyclopedic-VQA (Mensink et al., 2023) is975

a large-scale visual question-answering (VQA)976

benchmark dataset, widely used for measur-977

ing the performance of multimodal IR models.978

Each query is linked to a specific section of a979

Wikipedia document (containing an answer for980

it) and is manually annotated by humans. Also,981

this dataset offers both text-only and multimodal982

queries. In addition to this, the queries are re-983

lated to fine-grained properties of species and984

landmarks. Our experiments focus on the single-985

hop category where questions can be answered986

in a single retrieval step.987

• InfoSeek (Chen et al., 2023) is a dataset designed988

for knowledge-intensive VQA, covering a wide989

range of entities (such as landmarks, animals, and990

food). Questions are generated by filling human-991

written templates with knowledge triples (subject,992

relation, object) available from Wikidata, which993

involve only the multimodal queries. As the test994

dataset is not available, we use the validation995

set as our test set, and split the training set into996

training and validation subsets with a 9:1 ratio.997

• ViQuAE (Lerner et al., 2022) is a dataset focused998

about human entities. It provides both textual and999

multimodal queries, with each query linked to1000

a specific section of a Wikipedia document that1001

contains an answer annotated by humans, which1002

makes it an ideal benchmark for section retrieval.1003

• Open-WikiTable (Kweon et al., 2023) is an ex-1004

tension of WikiSQL (Zhong et al., 2017) and1005

WikiTableQuestions (Pasupat and Liang, 2015),1006

designed for open-domain table question answer-1007

ing that requires retrieval of the most relevant ta-1008

ble from a broader corpus. For our experiments,1009

we adapt the WikiTableQuestions subset of Open-1010

WikiTable, aiming at identifying the document1011

or document section containing the target table.1012

Dataset pre-processing In our study, we lever- 1013

age interleaved multimodal content from Wikipedia 1014

documents. However, existing corpora associated 1015

with IR datasets often lack this content, typically 1016

only including the first few words of each docu- 1017

ment. Therefore, we download the HTML file of 1018

each Wikipedia document for corpus augmentation. 1019

If the dataset provides Wikipedia URLs for its 1020

corpus, we use them to download the HTML files. 1021

Alternatively, if only entity names are provided, we 1022

generate Wikipedia URLs using those names. If a 1023

Wikipedia URL is deprecated, we remove the cor- 1024

responding document from the corpus along with 1025

any associated queries. From the HTML files, we 1026

extract text, image URLs, and tables. We then split 1027

the contents by subtitles in the document where 1028

each chunk corresponds to a section. For the im- 1029

ages, we use the image URLs to download the 1030

corresponding images, removing any invalid URLs. 1031

This process produces a dictionary that organizes 1032

text, images, and tables by section. 1033

Since downloading contents for all documents 1034

across datasets is time- and memory-intensive, we 1035

preprocess subsets of each corpus, including docu- 1036

ments relevant to queries in the training, evaluation, 1037

and test splits, along with unrelated documents. 1038

Implementation Details To take advantage of 1039

larger batch sizes (while reducing GPU memory 1040

usage), we apply LoRA (Hu et al., 2022). Also, 1041

to further optimize the GPU usage, we scale each 1042

image down to half of its original height and width 1043

and then combine four scaled-down images into 1044

a single composite image. All experiments are 1045

conducted using a single H100 GPU. 1046

B Multi-modality Statistics in Documents 1047

We calculate the statistics related to multi-modality 1048

in Wikipedia documents, and find that both images 1049

and tables are evenly distributed across the whole 1050

documents. To be specific, except for the first sec- 1051

tion of documents, which contains 1.2 images on 1052

average, the distribution of images is consistent 1053

across the other sections, containing an average of 1054

0.27 images per section. Also, tables appear less 1055

frequently, averaging 0.23 per section, but they are 1056

uniformly distributed across all sections. 1057

C Efficiency of IDentIfy 1058

During the retrieval process, the computational ef- 1059

ficiency (i.e., the retrieval latency) of our approach 1060
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Dataset Query Modality Target Domain Entities Section ID Train Eval Test Corpus size

Encyclopedic-VQA Text, Text-Image Text Species, Landmarks 17k ◦ 177k 2.2k 3.8k 100k
InfoSeek Text-Image Text Diverse 11k × 209k 23k 74k 500k
ViQuAE Text, Text-Image Text Human 1k ◦ 1.2k 1.2k 1.2k 100k
Open-WikiTable Text Table Table - ◦ 3.3k 0.4k 0.4k 1.8k

Table 8: Information retrieval datasets summary.

remains the same regardless of the number of inter-1061

leaved modalities and their compositions, as each1062

document representation (averaged from its section1063

embeddings) is encoded into a fixed-sized vector,1064

whose size is the same as the case where we en-1065

code only the text. Also, even if we consider the1066

efficiency within the document embedding process1067

(which is typically not a concern for IR tasks as1068

it can be done offline in parallel), the computa-1069

tional costs and memory usage when embedding1070

multimodal documents are similar to the case of1071

embedding text-only documents, as the factors that1072

impact efficiency are not the number of multimodal1073

content but the number of tokens within documents.1074

D Additional Experimental Results1075

Data Requirements for Models We analyze the1076

effect of different dataset sizes for training on re-1077

triever and reranker performance. To achieve this,1078

we randomly prune samples in the Encyclopedic-1079

VQA dataset at various ratios and report the perfor-1080

mance of models trained on these subsets. In Fig-1081

ure 4 (a), we observe that too many samples can1082

degrade retrieval performance. Also, retrieval of1083

textual queries requires fewer samples to reach its1084

optimal performance compared to multimodal re-1085

trieval. Similarly, in Figure 4 (b), section retrieval1086

for multimodal queries requires 10% of the dataset1087

to achieve 80% of the full-dataset performance,1088

while section retrieval for textual queries needs1089

only 5%. These observations suggest that addi-1090

tional modalities increase the need for more data.1091

This accounts for the inferior performance of the1092

interleaved format in the ViQuAE experiments (Ta-1093

ble 3 Right). The ViQuAE dataset, at only 2.2% of1094

the size of Encyclopedic-VQA, may be small for1095

the reranker to effectively learn multimodal query-1096

section alignments. We also observe that section1097

retrieval is more challenging, with more samples1098

improving the reranker’s performance. This ex-1099

plains why the ViQuAE reranker has much lower1100

section retrieval scores compared to the one trained1101

on the Encyclopedic-VQA (Table 3 Right). Given1102

the challenge of obtaining large query-section pair 1103

samples, exploring more effective reranker training 1104

pipelines is necessary. 1105

E Case Study 1106

We conduct case studies to demonstrate the ad- 1107

vantages of our approach in document retrieval 1108

with textual and multimodal queries. In Figure 5 1109

and Figure 6, we illustrate the instances where 1110

our approach, which leverages interleaved mul- 1111

timodal contents (e.g., images, tables, and text) 1112

within documents, retrieved correct documents for 1113

given queries, while the conventional one, which 1114

represents documents using only textual data, re- 1115

trieved documents that appeared to be relevant but 1116

were not actually related to the queries. 1117

In Figure 5, a textual query asks for the name 1118

of the park located on the north shore of Foster 1119

Reservoir. The conventional approach retrieved a 1120

document containing unrelated information about 1121

a different reservoir. While this document includes 1122

terms such as "Peak District National Park" and 1123

"North America farm," which make the document 1124

superficially relevant, it fails to answer the query. 1125

In contrast, our approach identified the document 1126

containing the correct answer to the given query. 1127

The advantages of integrating multimodal con- 1128

tent into document representation become more 1129

apparent in document retrieval with multimodal 1130

queries, as shown in Figure 6. For a query con- 1131

sisting of an image of a town hall in Hanover and 1132

a textual question about its designer, both our ap- 1133

proach and the conventional one retrieved docu- 1134

ments about town halls in Germany. However, 1135

our approach pinpointed the exact document about 1136

the town hall in Hanover, indicating that Hermann 1137

Eggert designed the building. The conventional 1138

method retrieved a document about a town hall 1139

in Munich, which is somewhat related but not an 1140

exact match to the query image or question. 1141

These cases underscore the benefits of leverag- 1142

ing multimodal content in information retrieval. 1143

Integrating interleaved multimodal elements, our 1144
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(a) Retriever performance
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Figure 4: Retrieval performance with different dataset sizes for training. (a): When training a retriever, large datasets rather
deteriorate the retrieval performance as it may be overfitted, resulting in low generalization. (b): On the other hand, a larger
dataset size is beneficial to training a re-ranker.

approach aligns more effectively with the input1145

query, resulting in more accurate and fine-grained1146

retrieval. This superiority is supported by Xu et al.1147

(2024), which highlights that models perform better1148

when prompted with rich multimodal information,1149

enabling them to capture alignments across modali-1150

ties and enhance the representation of given inputs.1151
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Q: What is the name of the park on the north shore of foster reservoir?

(a) Interleaved Multimodal Document Retrieval (b) Text-only Document Retrieval
Figure 5: Retrieved documents across different document formats for document retrieval with a given textual query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document
retrieved when using only textual format
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Q: Who designed this building?

(a) Interleaved Multimodal Document Retrieval (b) Text-only Document Retrieval
Figure 6: Retrieved documents across different document formats for document retrieval with a given multimodal query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document
retrieved when using only textual format
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