
Online Submission ID: 10

OpenTeleView: An Open 3D Teleconferencing Research Platform
Category: Research

ABSTRACT

Recent demonstrations of 3D telepresence provide a glimpse into
a future where 2D video communication is replaced with photo-
realistic virtual avatars rendered on 3D displays. However, the exist-
ing technology demonstrations typically run on expensive dedicated
devices that require the calibration of multiple cameras by experts
and the underlying reconstruction, compression, transmission, and
rendering methods remain proprietary. We describe our open plat-
form for real-time end-to-end 3D teleconferencing using commodity
hardware coupled with a modular software structure for inserting
advanced computer vision algorithms supporting research and de-
velopment. We demonstrate the utility of our modular end-to-end
approach by integrating state-of-the art modules and improving them
based on an analysis of current bottlenecks targeting low-latency pro-
cessing. We include a baseline implementation supporting real-time
3D teleconferencing that provides a new benchmark for evaluation
of current and future algorithms. We demonstrate the practicality of
our approach with a baseline, a 3D teleconferencing system running
at 25 frames per second with 172 ms latency on consumer GPUs that
applies to a single RGB camera input and various 3D display tech-
nologies. Our 3D teleconferencing platform is open source, which
paves the way for computer vision, computer graphics and HCI re-
search to continue innovating together to make 3D teleconferencing
the telecommunication standard.

1 INTRODUCTION

With the dramatically accelerated shift to online meetings from the
impact of the COVID-19 pandemic, there has been a resurgence in
the need of new teleconferencing technology that creates a more
real and in-person experience. One major challenge is to make tele-
conferencing have feeling of presence including eye contact and
situational awareness of each person’s real-world space, such that
pointing, and gesture are coordinated. Hence, more research effort is
appearing for teleconferencing that allows the user to appear in 3D
and maintain direct eye contact with multiple speakers to enhance
the overall communication experience and improve the information
transmission efficiency [25]. Virtual Reality (VR) and Augmented
Reality (AR) are the two main trends to create 3D experiences in
recent years. These trends use three different types of hardware:
headsets (HMDs) that connect to your PC, 2D semi-transparent dis-
plays like Google Glasses, and standalone 3D display devices. These
displays support view-dependent rendering such as used in Fish Tank
Virtual Reality (FTVR) that creates an effective method to support
presence with stereo and motion parallax depth cues. However,
these systems require rendering a person’s likeness from different
viewpoints which is not available without using some mechanism
to capture and transmit the users’ 3D characteristics. A number of
proprietary systems have been proposed to achieve this goal, e.g.,
Google Starline project [26], Microsoft Holoportation [35], and [36],
but each has either closed systems or large scale proprietary or pro-
hibitively expensive hardware. Likewise, they are unavailable for
researchers to perform perceptual evaluation to determine how well
they achieve a sense of presence. Furthermore, the complex infras-
tructure to test proposed new research algorithms for supporting
different aspects of the 3D teleconferencing pipeline is not readily
accessible; thus, researcher results are typically reported in isolation
without the opportunity to stress test it within the ecosystem of an
end-to-end system. Our contribution fills this missing piece.

We describe OpenTeleView (actual name hidden for review) plat-

Figure 1: OpenTeleView modular End-to-End 3D teleconferencing
in action. The Sender side camera captured image (left) is encoded
to a neural 3D model. Its parameters are sent to the receiver side
where a photo-realistic view-dependent rendering is shown on the
Receiver’s 3D display (right). Being modular, research results on
different encoders can be substituted for analysis and comparison on
real-world 3D teleconferencing experiences.

form that provides an end-to-end platform that supports researchers
to include specific contributions to different parts of the pipeline in a
3D teleconferencing system. Within the platform, each component’s
performance can be tested within a perceptually suitable 3D telecon-
ferencing system for benchmarking and optimization. We provide
the end-to-end system that uses off the shelf (OTS) components
along with our own adaptations of existing algorithmic approaches
in the literature to demonstrate: a) an accessible, low-cost, replicable
end-to-end 3D teleconferencing system with the latest advances in
research included as a benchmark; b) interface descriptions that
provide connections for research as well as the needed scaffolding
to enable end-to-end functional and perceptual performance testing;
c) a modular interface for researchers to connect to common devel-
opment platforms like PyTorch and Unity; and, d) a high-resolution
offline recording at 60 fps with novel-view ground truth to establish
a public benchmark for 3D teleconferencing quality. Figure 1 shows
an example of a user talking while showing her 3D image at the
receiver’s view-dependent display.

We provide results from experiments with the baseline implemen-
tation and variations to demonstrate how the platform can be used
to help identify and optimize different types of algorithmic bottle-
necks. Our implementation has an end-to-end latency of 172 ms with
a sustained frame rate on average of 25 frames per second (FPS)
providing an excellent reference point for innovative algorithms
to be tested against. Besides as an algorithmic research platform,
the technical performance is suitable for qualitative perceptual test-
ing allowing different modules to be compared with each other in
real-world user testing.

2 RELATED WORK

Research in teleconferencing has moved from 2D video to 3D. While
significant research has gone into developing algorithms to make
these systems feasible, we focus on the systems as a whole.

1



Online Submission ID: 10

2.1 Talking Head Models
Parametric head models [2, 28] are widely used in face genera-
tion [16, 42] and reenactment [46–48]. These parametric models
consume a low dimension vector that drives avatars to control the
subjects. Following this line of work, we leverage the parametric
model FLAME [28] in our baseline implementation and surround it
with communication and rendering modules.

2.2 Neural Rendering
Different from traditional rendering methods [23], neural rendering
does not necessarily need the explicit mesh and texture. It can
be achieved by implicit neural representation [32], and Generative
Adversarial Networks [24]. However, they usually focus on image
quality for novel view synthesis [33,34] and object editing [7,14,43],
both of which rely on very deep neural networks that only run at low
frame rates. We utilize a parametric mesh model with the deferred
neural rendering method [44, 45], aiming at high-resolution high-
fidelity face synthesis at high frame rates and extend it to work
alongside the other modules to form a complete teleconferencing
system.

2.3 3D Teleconferencing
Gibbs et al. design a room-scale system which uses a single cam-
era, a view tracking system, and IR emitter to render perspectively
correct mono or stereo images on a wall-sized display [17]. Fol-
lowing that, [22] leverage a fast-rotating, convex mirror as a 3D
display along with a high-speed projector to display a 3D image of
a user. [29, 54] design a fully GPU-accelerated data processing and
rendering pipeline and use a set of Microsoft Kinect color-plus-depth
cameras to allow head-tracked stereo views to be rendered for a par-
allax barrier autostereoscopic display. [9, 36] design a room-scale
telepresence setup which uses an array of color and depth cameras,
and displays in two locations to synthesize images of users in both
rooms with correct eye gaze. [25] use a single Microsoft Kinect
depth camera and an RGB camera to render users from novel views
without the need of a large camera array. This rendering is then
shown on a 3D display over a 3D background. [53] use an array of
IR cameras and lasers, RGB and Microsoft Kinect depth cameras to
develop a system for three-person teleconferencing with proper eye
gazes. Another line of work uses avatars or figures [6] as surrogates
that circumvents the challenge of rendering a virtual avatar. More
recently, [27] developed an end-to-end system which utilizes an
array of cameras (IR, RGB, and tracking) and an autostereoscopic
display among other contributions to enable face-to-face teleconfer-
encing better than 2D alternatives. [30] uses a depth camera, and
its ’inpainting’ only supports moderate view changes. [52] and [31]
are 2D, not capable of novel view synthesis. [50] could replace
our FLAME-based encoder-decoder, but is not open source and the
runtime is not stated. However, all of the recent live systems are
proprietary and there is no publicly available offline benchmark.

3 END-TO-END PIPELINE

The challenge of 3D teleconferencing is finding compatible modules
and connecting them to efficiently infer, transmit, and render a
realistic 3D head model so that convincing 3D motion parallax and
stereo depth cues are maintained as if the Sender appears at the
Receiver’s location [57]. Figure 2 illustrates the main components
of our OpenTeleView platform, with the Sender/Receiver hardware
configuration, Encoder and Decoder, Persistent Data Storage (PDS)
and communication module. The diagram shows the data flow
from a Sender to a Receiver which would be duplicated for the
bi-directional system; though they may have different camera and
display configurations. The heart of the research for end-to-end
3D teleconferencing are the matched Encoder and Decoder for the
encoding/compression of the input video signal and the subsequent
decoding and view dependent rendering.

Figure 2: The main components needed by our OpenTeleView plat-
form to define a 3D teleconferencing system are: 1. Sender/Receiver
hardware, 2. Encoder, 3. Decoder, and 4. Persistent Data Storage
needs. Our platform provides network scaffolding and communication
interfaces, including optional access to the Receiver ’s tracked posi-
tion by the Encoder and Decoder, to support a range of end-to-end
3D teleconferencing research for performance testing, analysis and
comparison.

We structured the OpenTeleView system to capture the main com-
ponents that are necessary for an end-to-end 3D teleconferencing
system and designed it to be modular, with the expectation that
researchers will be able to add their own hardware assumptions
with associated encoding and decoding approaches to strike differ-
ent tradeoffs between quality and resources, e.g., for real-world
perception testing as well as measurements of efficiency and qual-
ity of service. We provide sufficient scaffolding to accommodate
a range of hardware assumptions, such as different display types,
camera inputs and tracking technologies for rendering while pro-
viding software interfaces for supporting encoders and decoders
doing frame-by-frame processing but also have access to persistent
memory, accessed at start up when a connection is made between
Sender and Receiver to exchange pre-trained models.

The communication infrastructure provides interfaces for inter-
process communication to support modules to be run on different
computers as well be written in different languages appropriate for
the research.

We provide a baseline implementation with the OpenTeleView
platform using a pre-trained head model and a neural render trained
on Sender video data collected offline. Figure 3 shows the different
components, each explained in detail in the subsequent sections.
The Encoder generates a small set of 3D head parameters of the
Sender that is sent to the Decoder. The head parameters capture
enough 3D content so that the Decoder can recreate the head of the
user along with a neural renderer trained on the Sender’s data that
provides a photo-realistic, view-dependent render that can appear on
the Receiver’s display. The neural renderer can continue rendering
different view-points as the Receiver moves around their display as
needed. To represent the Sender 3D head parameters, we use the
FLAME [28] model because it is low-dimensional and more expres-
sive than other representations, e.g., FaceWarehouse model [4] and
Basel Face Model [37]. It is easy to fit to data and commonly used
by many algorithms (e.g. RingNet [41]; DECA [13]; CoMA [38]).

FLAME’s head representation include geometry parameters
Since FLAME does not have an appearance model, like previous
method [13], we adapt the Basel Face Model [37] to be compat-
ible with FLAME to give albedo parameters α ∈ R50. Together,
the Encoder (see Figure 3.3) computes these head parameters for
every frame of the Sender and transmits these along with camera
matrix c and lighting parameters l to the Decoder. The Decoder

2



Online Submission ID: 10

Figure 3: Baseline 3D Teleconferencing Architecture: Encoder and Decoder use a compact (2.5kB/frame) 3D head model that represents the
Sender ’s head using shape (β ), expression (ψ), pose (θ ), albedo (α), camera matrix (c), and lighting parameters (l). These are computed every
frame by the Encoder, transmitted to the Decoder and decoded from a single RGB image. Using the Receiver ’s viewpoint, the neural renderer
renders a view-dependent photo-realistic image of the Sender on the Receiver ’s 3D display.

(see Figure 3.4) then used them to reconstruct the 3D head model of
the Sender. The neural renderer then maps the 3D head model to a
photo-realistic version of the Sender, though, from the viewpoint of
the Receiver.

3D head models and their rendering is an active research area for
3D teleconferencing, thus, our OpenTeleView platform makes it easy
to analyse different approaches relative to each other in a real-world
end-to-end 3D teleconferencing scenario.

3.1 Sender Hardware

Our example implementation uses a single RGB camera (Logitech
C920 Webcam HD Pro, 30 FPS, 1080p) and one computer with
a GPU (NVIDIA GeForce RTX 3080) on the Sender side. The
Sender side camera gives an RGB image per frame to the Encoder
to perform face detection and head parameter extraction with neural
networks executed on the GPU.

3.2 Head Model and Persistent Data Storage

Our OpenTeleView platform provides a Persistent Data Storage
(PDS) model for data created by processes that are not run syn-
chronously with the frame-by-frame streaming, such as a person-
alized head model; however, it can be accessed synchronously if
desired; with the corresponding potential impact to performance.

Figure 2 illustrates one of the main use cases we envision: the
Encoder is generic, trained once on a large dataset, and its parameters
stored in the PDS and loaded at installation time; the Decoder is
personalized (to the Sender), trained on the Sender side or external
cloud, stored on the PDS, and network weights (354.4MB total size)
are transmitted when a connection is made.

3.2.1 Head Model Predictor Training

In our illustration, the Encoder is generic as it is trained on a public
data set with a range of people set rather than on a specific user.
To show the modularity of our platform, we use either the self-
supervised AutoLink [20] method or DECA [13], a pre-trained
model for a generic 3D head model predictor. DECA is trained
on over 21k subjects and 2 Million images from three publicly
available datasets: VGGFACE2 [5], BUPT-Balancedface [49] and
VoxCeleb2 [8]. The DECA model is learned in an analysis-by-
synthesis way: input a 2D image I, encode the image to a latent
code, decode this to synthesize a 2D image Ir, and minimize the
difference between the synthesized image and the input.

3.2.2 Neural Renderer Training

The Decoder is personalized and we experiment with the architec-
tures in [20] and [51]. The former is using a UNet neural network
and the latter uses a more complex deferred renderer [45] with a
caching mechanism to improve speed and runtime [51] (see Sec-
tion 3.4). Both are trained using a short RGB video (approximately
5min) of the Sender. Videos are shot with a single fixed camera
with the subject talking casually while performing small head mo-
tions, with a resolution of 1920x1080 at 60 FPS. The previously
introduced Encoder models are used to obtain the driving motion
from the Sender’s talking head video, specifically, AutoLink [20]
extracts 2D keypoints and DECA [13] extracts the 3D head param-
eters. These head parameters are passed as inputs to the 2022 to
reconstruct the encoded RGB image. Once training on this autoen-
coder objective is complete, the parameters of the neural renderer
and the FLAME head shape parameters are stored in the PDS.

3



Online Submission ID: 10

3.3 Encoder–Sender
The Encoder is a two-step process for each Sender frame to com-
pute the Head Parameters: 1. finding the face of the Sender in the
image and 2. using a pre-trained head model to compute the head
parameters from the cropped Sender’s face image.

3.3.1 Step 1: 2D Face Tracking
We extend a common approach to find a face bounding box around
the Sender’s face in the input image from a set of 68 2D face key-
points [18].

Previous methods [10, 11, 13, 15, 39, 47], run face detection, such
as FAN [3], on every single frame, which is time-consuming and
computationally heavy, leading to increased latency as 2D detection
has to run before 3D reconstruction.

Instead, to achieve high FPS and low-latency head reconstruction
on videos, we utilize

that there is a high temporal coherence of video data and propose
to reuse the 2D face keypoints extracted from our reconstructed
3D head model of the previous frame to draw the face bounding
box of the current frame. As this can lead to misalignment for fast
motions, we further approximate the movement of the keypoints
using a velocity estimate from the past two frames to extrapolate the
position of current bounding box. A full face detection is performed
when the bounding box displacement exceeds a threshold. This
approach is robust to mispredictions and significantly reduces the
time needed to detect and crop the face.

ices are projected into the image as v= sΠ(Mi)+t, where Mi ∈R3

is a vertex in M, Π ∈ R2×3 is the orthographic 3D-2D projection
matrix, and s ∈ R and t ∈ R2 denote isotropic scale and 2D trans-
lation respectively. The parameters s and t are summarized as an
orthographic camera model c.

3.3.2 Step 2: Extracting Head Parameters
With the cropped Sender face as input, a Head Parameter Extractor
estimates fine-grained keypoint locations using a ResNet50 [19]
followed by a fully connected layer to produce a latent code e,
dependent on the used model, 2D keypoint locations p ∈ R32 and
edge weights w ∈ 64 or FLAME parameters, consisting of geometry
(β ,ψ,θ) ∈ R156, albedo coefficients α ∈ R50, camera matrix c, and
lighting parameters l. This amounts to at most 2.5 KBytes/frame
for encoding the 3D head model of a Sender’s image. As only
the time-varying pose information need to be sent every frame, the
information sent for the 3D reconstruction is substantially less than
what would be needed to send a whole 3D model of the Sender,
greatly reducing network transmission time.

3.4 Decoder–Receiver
The Decoder is responsible for using the Receiver’s position p
and parameters e predicted by the Encoder to reconstruct a view-
dependent RGB image of the Sender. For the simpler 2D case, the
decoder is a single network. Below we explain the 3D version that
includes additional, view-dependent rendering steps.

There are two main steps in the process. First, the latent code
e is used to reconstruct the 3D head mesh of the Sender. Second,
we use the personalized neural renderer to take the coarse 3D Head
mesh, rotate it to the Receiver’s position, and generate a photo-
realistic image of the Sender, view-dependent to appear on the
view-dependent display.

3.4.1 3D Neural Head Renderer
In the 3D setting, given the estimated FLAME parameters from
the Encoder, the Decoder reconstructs the FLAME 3D head mesh
using linear blend skinning (LBS) on parameters e. To ensure that
head is consistently centered in the Receiver’s display, we rotate
the mesh to the viewpoint p and subtract the midpoint of vertices
on each ear from all vertices on the mesh. One of our preliminary

baselines uses the coarse albedo parameters to texture and render
the mesh. However, simple texture mapping is not photorealistic.
Hence, we apply deferred neural rendering and first render the 3D
mesh with UV coordinates as the texture. This UV map rendering
then conditions the subsequent neural renderer along with a subset
of the e parameters. Lastly, because the FLAME parameters are
predicted from a single image, we apply a small, one-sided box-filter
to the pose (θ ) and the shape (β ) parameters during online system
evaluation.

3.4.2 Cached 3D Neural Renderer
To accommodate for the the lower latency required for 3D telecon-
ferencing, we use an optimized version [51] of the deferred neural
renderer [45]. It is composed of two neural networks: a deep caching
network that turns personalized neural textures to frame specific neu-
ral feature maps and a lightweight warping network that warps the
feature maps cached from the previous frame.

The larger caching network can therefore be run sparingly, al-
lowing to reduce the latency while minimally decreasing the visual
quality of the generated image. On a multi-GPU machine, this
method parallelizes and also increases the rendering frame-rate.
Note that because this neural renderer is grounded with a 3D mesh,
we are able to rotate the mesh (and thereby the UV map) to per-
form viewpoint-dependent rendering at inference time, based on the
Receiver’s tracking data. Multiple viewpoints can be rendered for
different display configurations, such as right/left perspectives for
stereo.

3.5 Receiver Hardware
For our proof-of-concept implementation, the Receiver side hard-
ware includes a spherical view-dependent display [55], a computer
with a GPU, and a tracking system. In our current implementation,
we explore the modularity of the platform by running the Decoder
and Display processes on separate computers to illustrate that the
display may be a self-contained system or the Decoder may be run-
ning using cloud services. However, they can also be run on a single
computer. In Section 4.2, we analyze the timings of the different
system components; thus, separating them allows us to consider this
particular scenario.

3.5.1 Spherical View-dependent Display + Computer
We use a large spherical view-dependent display [55], also known
as a fish-tank virtual reality (FTVR) display. It uses a 24-inch plexi-
glass spherical screen with a mosaic of 4 registered mini projectors
projecting through an 18-inch diameter hole at the bottom. This par-
ticular display is well suited for showing a view-dependent rendering
of a Sender’s head because the spherical shape allows the Receiver
to walk around the display and there are no seams. The mosaic
of projectors provides a high-resolution, bright image. It has also
been shown to be the most effective type of display for representing
size and shape constancy which are important for human faces [57].
Lastly, the size of the sphere is large enough that a 1:1 aspect ratio
is possible for human heads allowing for investigating whether the
size of a 3D rendering of a speaker plays a role in perceived quality
of presence. The display supports both view dependent and stereo
depth cues. If such display is not available, our system also supports
rendering to a flat screen.

3.5.2 Tracking System
The tracking system provides Receiver’s position and viewing angle
to the view-dependent display to achieve view-dependent rendering.
The quality of view-dependent rendering is sensitive to errors in
viewpoint tracking since it contributes significantly to the eye angular
error pixels on a spherical view-dependent display [12, 56]. For our
proof-of-concept implementation, we use OptiTrack (NaturalPoint
Inc., Corvallis, OR) Prime-41 cameras to capture Receiver’s position

4



Online Submission ID: 10

and orientation. This system uses retroreflective markers mounted
on the Receiver’s shutter glasses. The current tracking system has
less than 0.2 mm of measurement error and the real-time streaming
application connected with Unity has less than 10ms latency. The
tracker data is used both by the Decoder and the Display Renderer
(see 3.5.3). The Decoder uses Receiver’s position and orientation to
render perspective dependent images for display.

3.5.3 Receiver Display Render
The rendering pipeline for the spherical display [12] is implemented
in Unity (Unity Technologies, San Francisco, CA). It features a
two-pass rendering approach: 1. render the image from a Receiver’s
perspective, and 2. render the pixels on the output display. This
separation enables the neural renderer to be trained display agnos-
tic for planar frontal views while mapping to the desired display
at runtime. For the spherical display, the second pass involves a
mapping between 2D projector pixels to 3D surface positions on
a non-planar surface. This warping transformation is achieved by
sampling the 2D image texture in a shader program and using of
the multiple-projector calibration matrix [55]. The same rendering
pipeline also supports several different display modes, including
mosaic display on the FTVR sphere, flatscreen display, and virtual
display where you can freely move around the rendered objects in
a virtual scene; thus, is versatile for researchers to experiment with
different view-dependent display types.

We build on top of the two-pass rendering to further integrate
the neural rendering into the pipeline by adding a rotating plane in
the scene that is always normal facing the user and vertical. The
neural renderer only requires the Receiver’s position and the thereby
requested view is always up-right and onto a virtual planar image
plane without distortion. To the user, they will always see the
view corrected image based on their tracked position and display
geometry. When they move around, this image and its orientation
will be updated in real time by different aspects of the reconstructed
talking head through neural rendering. This technique creates a
sense of viewing 3D object while only rendering flat 2D images.

3.6 Tele-Communication Network
The goal of the telecommuncation network is to provide flexibility
for where the computational resources are for each of the mod-
ules while at the same time providing an end-to-end infrastructure
that mimics real-world conditions to support stress testing different
modules used for 3D teleconferencing. Thus, we use a WebRTC
backbone for communication with a ZMQ wrapper for each of the
components in the platform. These are described next.

3.6.1 Internet backbone
We use the WebRTC protocol [40] using the libdatachannel [1] im-
plementation to negotiate a direct peer-to-peer connection between
the Encoder-Sender and the Decoder-Receiver over the internet. A
WebRTC UDP configured data channel [21] facilitates the real-time
transfer of 3D head parameters between the Sender and the Receiver.
The 3D head parameters corresponding to a single frame are seri-
alized using Protocol Buffers in order to be transmissible over the
data channel. The UDP data channels are also used for data transfer
between and Persistent Data Storage that is not local as well as the
Tracker data to the Decoder. All the data channels are wrapped
with a ZeroMQ [58] wrapper to provide a common interface for
all the interprocess communication including support for different
languages.

As the communication channels use UDP/IP with a ZeroMQ
wrapper for all the communication interfaces, all the components
of the end-to-end system can run on different machines as needed.
Likewise, the interfaces between components have definitions for
different language support enabling researchers to have flexibility
in using C++, python or other languages to implement specific

Figure 4: View-dependent rendering examples at different viewpoints:
the first row shows the Receiver ’s perspective and the second row
shows the different positions of the Receiver by a fixed camera loca-
tion. (a) Viewpoint at left of origin, seeing the right side of the Sender ’s
face (b) Viewpoint at origin, seeing the front side of the Sender ’s face
(c) Viewpoint at the right side of origin, seeing the left side of the
Sender ’s face.

algorithms. For example, in our current proof-of-concept imple-
mentation the networking is C++, the Encoder is implemented in
Python/PyTorch, and the Decoder is Python/PyTorch.

Wrapping the communication channels supports the ability to
send data structures seamlessly between different processes with
different languages freeing the researcher to focus on using their
preferred tool while the infrastructure takes care of the scaffolding
needed to get the end-to-end system working for doing the analysis.
Using this approach also ensures that components that are running
on the same machine will do the data exchange locally.

4 MODULE EVALUATION IN OpenTeleView
We present results from analysis of each of our baseline modules
when operating independently and as a part of the end-to-end system.
The intent is to illustrate that performance analytics available within
the end-to-end platform are effective to uncover inter-dependencies
between components within the overall system and help to determine
where bottlenecks in performance are coming from to guide algo-
rithm development. The experiments reported here demonstrate the
utility of testing modules in the OpenTeleView framework to address
limitations otherwise unseen in isolated modules. We also show
that our baseline end-to-end 3D teleconferencing implementation,
along with the variations used for illustrating affects of changes to
different modules, provide a good baseline for comparing future
encoders/decoders/cameras and displays.

4.1 Module Evaluation Dataset
To illustrate evaluating performance of our individual modules, we
recorded a 1920x1080 resolution, 60 FPS, stereo-view talking head
dataset (main and side views) of one woman test subject. A second
view is recorded to evaluate the Decoder’s view-point dependent
rendering capabilities. We include 5 sub-sequences in this dataset
used for training, validation, and testing the Decoder, a sequence
of fast-moving head motions for the Encoder, and a sequence for
calibrating the cameras. We will make this dataset publicly available
so others can evaluate their modules on the same data.

4.2 Baseline System Latency
Figure 5 shows the end-to-end live transmission system pipeline
with FPS and latency of each corresponding component. The FPS
results are generated by measuring the run time of each individual

5



Online Submission ID: 10

Figure 5: System Latency Breakdown: The blue coded parts are
major system components, green coded parts are inter-transmission
ZMQ, and the red parts are total FPS and latency. The total end-to-
end latency with our computer hardware configuration is 172 msec at
25 fps. Additional latency due to the camera interface to the Open-
TeleView components is dependent upon operating system drivers
and are not included in these figures.

component. The theoretical latency is computed directly by taking
the reciprocal of FPS. For comparison, we also estimated the per-
ceptual latency by computing the time difference between the same
movement of a real human and the rendered image on the display.
To measure this, we use another high-speed camera to capture, in
the same frame, the eye blink motion of a Sender talking and their
image in the view-dependent display to calculate the time differ-
ence between blink motion. Using this approach we also take into
account the OS and camera dependent delays to get an estimate
of the overall system latency that would be in a real-system. With
our particular camera hardware and OS, the perceptual latency is
approximately 280ms, thus, non-encoder/decoder related elements
contribute around 100ms of latency. The additional latency in the
perceptual measurement comes from the time between eye-blink to
the next frame capture (half a frame delay on average), asynchronous
queue, and minimal smoothing applied to the estimated head param-
eters to mitigate jitter. Note that, due to the cached neural renderer,
the perceptual novel-view-synthesis latency is much lower, at 35 ms,
which facilitates a faithful VR experience even if the whole system
communication is slower.

4.3 Velocity-based 2D Face Tracking
To evaluate the speed of the Encoder with our velocity-based 2D
face tracking method, we independently test the Encoder using
our recorded video of a subject moving their head quickly. The
1920x1080 at 60 FPS video contains 995 frames in total. Using
our velocity method, the Encoder reruns the full face detection 58
times; without the velocity method, the Encoder reruns full face
detection 676 times. Thus, it can be observed that our simple velocity
method, that predicts the next frame’s face location, can achieve
a significant reduction in the number of times we have to rerun
the time-costly face detection algorithm. From the perspective of
the OpenTeleView platform affordance for this module, the timing
information and the ability to switch between recorded video and live
video feeds within the whole framework provides useful analytics
to target timing bottlenecks to facilitate improving each module. In
this case, we compared three different approaches that tradeoff face
detection accuracy and computational load affecting latency.

4.4 Decoder Reconstruction Quality
To evaluate the quality of our displayed image, we independently
test our Decoder’s neural renderer on the withheld test sequence
of our talking head dataset (main view). We are able to achieve a
peak signal-to-noise ratio (PSNR) of 27.5 on the image from which
the 3D head parameters have been estimated. Furthermore, we also
test our models ability to perform view-dependent rendering by
evaluating it on the second (side) view. This is done by taking the
estimated 3D head parameters from the frontal recording, rotating
those corresponding to the head pose based on the rotation matrix

Im
ag

e

GT (main) Decoder (Main) GT (side) Decoder (Side) Decoder (NVS)

Er
ro

r
Im

ag
e

Er
ro

r

Figure 6: Comparison of our Decoder against the ground truth image
for both main and side view examples. Examples where we perform
novel-view synthesis (NVS) on the parameters from the main view are
also shown.

between the main and side cameras. This is an especially difficult
setting, for which our model was able to reconstruct the entire
sequence with an average PSNR of 25.7. Note, when running our
model on the estimated parameters from the side view, we are only
able to achieve a PSNR of 26.7, showing that his side view is in
general more difficult to reconstruct. Qualitative results and error
maps can be seen in Figure 6.

4.5 OpenTeleView Modularity
To demonstrate the modularity of the proposed platform, we also
experiment with the 2D encoder and decoder introduced in [20]. In
this setting, we transfer the 2D keypoint locations p and their edge
weights w obtained from the encoder. These are first rasterized into
a coarse mesh, which is then lifted to a full image using a UNet. The
latency for the encoder and decoder is respectively 4ms and 45ms.
Figure 7 shows example images using this approach. It demonstrates
that the platform can support entirely different encoder and decoder
networks and corresponding parameterization (2D vs. 3D), without
having to change the network communication or other parts of the
framework.

4.6 OpenTeleView Integration
However, while each of our models is tested and developed using
recorded videos and in isolation; when integrated, upstream delays
in capturing and processing, such variable camera frame rates, leads
to the degradation of downstream performance.

In the variable frame rate camera input, we observed that the
velocity-based head tracking and warping-based neural renderer
must compensate for increased differences between incoming frames.
Further, the jitter associated with the incoming frames is not con-
sistent, thus, a neural renderer may have variable time differences
between frames, further challenging research that uses this approach.
We illustrate how both modules are affected by changes in overall
system framerate by subsampling frames in recorded videos and
measure the performance versus the input framerate. These results
are shown in Figure 8.

The ability for our OpenTeleView end-to-end platform to integrate
different components easily enables isolation of each component’s
performance within real-world scenarios. Thus, in our example im-
plementation, we illustrate that by switching in different encoder so-
lutions and decoder solutions with both live feed and recorded video

6



Online Submission ID: 10

Figure 7: Example of modularity: we substituted using a 2D AutoLink
method that conditions on 2D keypoints instead of a 3D mesh [20].
The encoder/decoder interface makes this a simple operation so that
researchers can swap different approaches to compare performance
in real-world like end-to-end teleconferencing.

Input FPS

P
S

N
R

27.00

27.25

27.50

27.75

10 20 30 40 50 60

Reconstruction Quality vs. FPS

Figure 8: Reduced input video/image frame rates negatively impact
the performance of both the velocity-based head tracking and the
neural rendering.

feeds, careful performance analysis, the strengths and weaknesses
of each component are identified along with the inter-dependencies
amongst the components. Thus, our OpenTeleView platform fills a
significant gap in assessing different computer vision approaches
to the encoder and decoder methods that are usually assessed only
in isolation on pre-recorded data sets. Hence, our contribution en-
ables apples-to-apples comparisons of different algorithms for 3D
teleconferencing.

5 LIMITATIONS AND FUTURE WORK

The focus of this paper is on the OpenTeleView platform rather than
the specifics of the baseline encoder/decoder pair we implemented
to provide a particular baseline. In that context, even though our
platform has most of the major modules implemented for end-to-end
3D teleconferencing, there are some components which we leave
for future work. These include: additional analytics such as tempo-
ral and spatial jitter measurements; additional baseline use-cases
such as multicamera and mobile displays; symmetric communica-
tion, multicast abilities; embedded, synchronized audio support
rather than out-of-band audio; and, parameterized input control
so that the input video stream characteristics can be easily adjusted
to simulate different real-world camera input statistics.

6 CONCLUSION

We created the OpenTeleView platform along with two baseline im-
plementation that illustrates how the end-to-end 3D teleconferencing
can work and future research on separate modules can be analyzed.
The baseline 3D implementation provides a medium fidelity tele-
conferencing experience using modifications of existing techniques
available in the literature. The second method uses a much sim-
pler 2D representation to illustrate the support for modularity and
flexibility of the encoder/decoder to support a range of approaches
researchers may investigate. The platform is intended to use off-the-
shelf components for computational, camera and display hardware
along with an internet-based communication infrastructure so that it
is accessible to a large range of researchers. This approach enables
research on specific approaches to encode the input video and decode
it to provide view-dependent rendering needed for 3D teleconferenc-
ing to be tested and analysed in a common end-to-end platform. By
doing so, research contributions on specific modules can be tested
in real-world scenarios to facilitate constant innovations in 3D tele-
conferencing technology to lead the way for establishing this new
form of remote communication.

REFERENCES

[1] P. Ageneau. https://github.com/paullouisageneau/libdatachannel, 2022.
[2] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d

faces. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, p. 187–194.
ACM Press/Addison-Wesley Publishing Co., USA, 1999. doi: 10.1145/
311535.311556

[3] A. Bulat and G. Tzimiropoulos. How far are we from solving the 2d
& 3d face alignment problem? (and a dataset of 230,000 3d facial
landmarks). In International Conference on Computer Vision, 2017.

[4] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Facewarehouse: A
3d facial expression database for visual computing. IEEE Transactions
on Visualization and Computer Graphics, 20(3):413–425, 2014. doi:
10.1109/TVCG.2013.249

[5] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2:
A dataset for recognising faces across pose and age. In 2018 13th IEEE
International Conference on Automatic Face Gesture Recognition (FG
2018), pp. 67–74, 2018. doi: 10.1109/FG.2018.00020

[6] L. Casas and K. Mitchell. Intermediated reality: A framework for
communication through tele-puppetry. Frontiers in Robotics and AI,
6:60, 2019.

[7] S.-Y. Chen, F.-L. Liu, Y.-K. Lai, P. L. Rosin, C. Li, H. Fu, and L. Gao.
Deepfaceediting: Deep face generation and editing with disentangled
geometry and appearance control. ACM Trans. Graph., 40(4), jul 2021.
doi: 10.1145/3450626.3459760

[8] J. S. Chung, A. Nagrani, and A. Zisserman. Voxceleb2: Deep speaker
recognition. CoRR, abs/1806.05622, 2018.

[9] M. Dou, Y. Shi, J.-M. Frahm, H. Fuchs, B. Mauchly, and M. Marathe.
Room-sized informal telepresence system. In 2012 IEEE Virtual Re-
ality Workshops (VRW), pp. 15–18, 2012. doi: 10.1109/VR.2012.
6180869

[10] P. Dou, S. K. Shah, and I. A. Kakadiaris. End-to-end 3d face recon-
struction with deep neural networks, 2017.

7



Online Submission ID: 10

[11] P. Dou, Y. Wu, S. Shah, and I. Kakadiaris. Robust 3d face shape recon-
struction from single images via two-fold coupled structure learning
and off-the-shelf landmark detectors. In Proceedings of the British
Machine Vision Conference. BMVA Press, 2014. doi: 10.5244/C.28.
131

[12] D. B. Fafard. A virtual testbed for fish-tank virtual reality: Improving
calibration with a virtual-in-virtual display. 2019.

[13] Y. Feng, H. Feng, M. J. Black, and T. Bolkart. Learning an animatable
detailed 3d face model from in-the-wild images. ACM Transactions on
Graphics (TOG), 40(4):1–13, 2021.

[14] O. Fried, A. Tewari, M. Zollhöfer, A. Finkelstein, E. Shechtman, D. B.
Goldman, K. Genova, Z. Jin, C. Theobalt, and M. Agrawala. Text-
based editing of talking-head video. ACM Trans. Graph., 38(4), jul
2019. doi: 10.1145/3306346.3323028

[15] P. Garrido, M. Zollhöfer, D. Casas, L. Valgaerts, K. Varanasi, P. Pérez,
and C. Theobalt. Reconstruction of personalized 3d face rigs from
monocular video. ACM Trans. Graph., 35(3), may 2016. doi: 10.
1145/2890493

[16] P. Ghosh, P. S. Gupta, R. Uziel, A. Ranjan, M. J. Black, and T. Bolkart.
Gif: Generative interpretable faces. In 2020 International Conference
on 3D Vision (3DV), pp. 868–878. IEEE, 2020.

[17] S. Gibbs, C. Arapis, and C. Breiteneder. Teleport - towards immersive
copresence. Multimedia Syst., 7:214–221, 05 1999. doi: 10.1007/
s005300050123

[18] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-pie. In
2008 8th IEEE International Conference on Automatic Face Gesture
Recognition, pp. 1–8, 2008. doi: 10.1109/AFGR.2008.4813399

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90

[20] X. He, B. Wandt, and H. Rhodin. Autolink: Self-supervised learning
of human skeletons and object outlines by linking keypoints. arXiv
preprint arXiv:2205.10636, 2022.

[21] R. Jesup, S. Loreto, and M. Tüxen. WebRTC Data Channels. RFC
8831, Jan. 2021. doi: 10.17487/RFC8831

[22] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas,
and P. Debevec. Achieving eye contact in a one-to-many 3d video
teleconferencing system. ACM Trans. Graph., 28(3), jul 2009. doi: 10.
1145/1531326.1531370

[23] J. T. Kajiya. The rendering equation. In Proceedings of the 13th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’86, p. 143–150. Association for Computing Machinery,
New York, NY, USA, 1986. doi: 10.1145/15922.15902

[24] T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4401–4410,
2019.

[25] C. Kuster, N. Ranieri, A. Agustina, H. Zimmer, J. Bazin, C. Sun,
T. Popa, and M. Gross. Towards next generation 3d teleconferencing
systems. pp. 1–4, 10 2012. doi: 10.1109/3DTV.2012.6365454

[26] J. Lawrence, D. B. Goldman, S. Achar, G. M. Blascovich, J. G. Desloge,
T. Fortes, E. M. Gomez, S. Häberling, H. Hoppe, A. Huibers, C. Knaus,
B. Kuschak, R. Martin-Brualla, H. Nover, A. I. Russell, S. M. Seitz,
and K. Tong. Project starline: A high-fidelity telepresence system.
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 40(6), 2021.

[27] J. Lawrence, D. B. Goldman, S. Achar, G. M. Blascovich, J. G. Desloge,
T. Fortes, E. M. Gomez, S. Häberling, H. Hoppe, A. Huibers, C. Knaus,
B. Kuschak, R. Martin-Brualla, H. Nover, A. I. Russell, S. M. Seitz,
and K. Tong. Project starline: A high-fidelity telepresence system.
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 40(6), 2021.

[28] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning a model
of facial shape and expression from 4D scans. ACM Transactions on
Graphics, (Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017.

[29] A. Maimone, J. Bidwell, K. Peng, and H. Fuchs. Enhanced personal
autostereoscopic telepresence system using commodity depth cameras.
Computers & Graphics, 36(7):791–807, 2012. Augmented Reality
Computer Graphics in China. doi: 10.1016/j.cag.2012.04.011

[30] R. Martin-Brualla, R. Pandey, S. Yang, P. Pidlypenskyi, J. Taylor,
J. Valentin, S. Khamis, P. Davidson, A. Tkach, P. Lincoln, A. Kow-
dle, C. Rhemann, D. B. Goldman, C. Keskin, S. Seitz, S. Izadi, and

S. Fanello. Lookingood: Enhancing performance capture with real-
time neural re-rendering. ACM Trans. Graph., 37(6), dec 2018. doi: 10
.1145/3272127.3275099

[31] M. Meshry, S. Suri, L. S. Davis, and A. Shrivastava. Learned spatial
representations for few-shot talking-head synthesis, 2021.

[32] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis. In European conference on computer vision, pp.
405–421. Springer, 2020.

[33] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang. Holo-
gan: Unsupervised learning of 3d representations from natural images.
In The IEEE International Conference on Computer Vision (ICCV),
Nov 2019.

[34] M. Niemeyer and A. Geiger. Giraffe: Representing scenes as com-
positional generative neural feature fields. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021.

[35] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle,
Y. Degtyarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al.
Holoportation: Virtual 3d teleportation in real-time. In Proceedings of
the 29th annual symposium on user interface software and technology,
pp. 741–754, 2016.

[36] Y. Pan, O. Oyekoya, and A. Steed. A surround video capture and
presentation system for preservation of eye-gaze in teleconferencing
applications. Presence, 24(1):24–43, 2015.

[37] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d
face model for pose and illumination invariant face recognition. In
2009 Sixth IEEE International Conference on Advanced Video and
Signal Based Surveillance, pp. 296–301, 2009. doi: 10.1109/AVSS.
2009.58

[38] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generating 3d
faces using convolutional mesh autoencoders. In Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[39] H. M. Rara, A. A. Farag, and T. Davis. Model-based 3d shape recovery
from single images of unknown pose and illumination using a small
number of feature points. In Proceedings of the 2011 International
Joint Conference on Biometrics, IJCB ’11, p. 1–7. IEEE Computer
Society, USA, 2011. doi: 10.1109/IJCB.2011.6117493

[40] E. Rescorla. WebRTC Security Architecture. RFC 8827, Jan. 2021.
doi: 10.17487/RFC8827

[41] S. Sanyal, T. Bolkart, H. Feng, and M. Black. Learning to regress 3d
face shape and expression from an image without 3d supervision. In
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[42] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman. Syn-
thesizing obama: Learning lip sync from audio. ACM Trans. Graph.,
36(4), jul 2017. doi: 10.1145/3072959.3073640

[43] Z. Tan, M. Chai, D. Chen, J. Liao, Q. Chu, L. Yuan, S. Tulyakov,
and N. Yu. Michigan: Multi-input-conditioned hair image generation
for portrait editing. ACM Trans. Graph., 39(4), jul 2020. doi: 10.
1145/3386569.3392488

[44] A. Tewari, M. Elgharib, G. Bharaj, F. Bernard, H.-P. Seidel, P. Pérez,
M. Zollhofer, and C. Theobalt. Stylerig: Rigging stylegan for 3d control
over portrait images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6142–6151, 2020.

[45] J. Thies, M. Zollhöfer, and M. Nießner. Deferred neural rendering:
Image synthesis using neural textures. ACM Transactions on Graphics
(TOG), 38(4):1–12, 2019.

[46] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stamminger, and
C. Theobalt. Real-time expression transfer for facial reenactment. ACM
Trans. Graph., 34(6), oct 2015. doi: 10.1145/2816795.2818056

[47] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner.
Face2face: Real-time face capture and reenactment of RGB videos.
CoRR, abs/2007.14808, 2020.

[48] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer with
multilinear models. ACM Trans. Graph., 24(3):426–433, jul 2005. doi:
10.1145/1073204.1073209

[49] M. Wang, W. Deng, J. Hu, J. Peng, X. Tao, and Y. Huang. Racial
faces in-the-wild: Reducing racial bias by deep unsupervised domain
adaptation. CoRR, abs/1812.00194, 2018.

[50] T.-C. Wang, A. Mallya, and M.-Y. Liu. One-shot free-view neural

8



Online Submission ID: 10

talking-head synthesis for video conferencing, 2021.
[51] F. Yu, S. Fels, and H. Rhodin. Scaling neural face synthesis to high fps

and low latency by neural caching, 2022.
[52] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. Few-shot

adversarial learning of realistic neural talking head models, 2019.
[53] C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, and R. Martin-Brualla. View-

port: A distributed, immersive teleconferencing system with infrared
dot pattern. IEEE MultiMedia, 20(1):17–27, 2013. doi: 10.1109/
MMUL.2013.12

[54] Y. Zhang, J. Yang, Z. Liu, R. Wang, G. Chen, X. Tong, and B. Guo.
Virtualcube: An immersive 3d video communication system. IEEE
Transactions on Visualization and Computer Graphics, 28(5):2146–
2156, 2022.

[55] Q. Zhou, G. Miller, K. Wu, D. Correa, and S. Fels. Automatic cal-
ibration of a multiple-projector spherical fish tank vr display. pp.
1072–1081, 03 2017. doi: 10.1109/WACV.2017.124

[56] Q. Zhou, G. Miller, K. Wu, I. Stavness, and S. Fels. Analysis and
practical minimization of registration error in a spherical fish tank
virtual reality system. In Asian Conference on Computer Vision, pp.
519–534. Springer, 2016.

[57] Q. Zhou, F. Wu, S. Fels, and I. Stavness. Closer object looks smaller:
Investigating the duality of size perception in a spherical fish tank vr
display. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pp. 1–9, 2020. doi: 10.1145/3313831.3376601

[58] ZMQ. https://github.com/zeromq, 2022.

9


	Introduction
	Related Work
	Talking Head Models
	Neural Rendering
	3D Teleconferencing

	End-to-End Pipeline
	Sender Hardware
	Head Model and Persistent Data Storage
	Head Model Predictor Training
	Neural Renderer Training

	Encoder–Sender
	Step 1: 2D Face Tracking
	Step 2: Extracting Head Parameters

	Decoder–Receiver
	3D Neural Head Renderer
	Cached 3D Neural Renderer

	Receiver Hardware
	Spherical View-dependent Display + Computer
	Tracking System
	Receiver Display Render

	Tele-Communication Network
	Internet backbone


	Module Evaluation in OpenTeleView 
	Module Evaluation Dataset
	Baseline System Latency
	Velocity-based 2D Face Tracking
	Decoder Reconstruction Quality
	OpenTeleView Modularity
	OpenTeleView Integration

	Limitations and Future Work
	Conclusion

