
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PSEUDO PHYSICS-INFORMED NEURAL OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in operator learning are transforming the landscape of com-
putational physics and engineering, especially alongside the rapidly evolving field
of physics-informed machine learning. The convergence of these areas offers
exciting opportunities for innovative research and applications. However, merging
these two realms often demands deep expertise and explicit knowledge of physi-
cal systems, which may be challenging or even impractical in relatively complex
applications. To address this limitation, we propose a novel framework: Pseudo
Physics-Informed Neural Operator (PPI-NO). In this framework, we construct a
surrogate physics system for the target system using partial differential equations
(PDEs) derived from simple, rudimentary physics knowledge, such as basic dif-
ferential operators. We then couple the surrogate system with the neural operator
model, utilizing an alternating update and learning process to iteratively enhance
the model’s predictive power. While the physics derived via PPI-NO may not mir-
ror the ground-truth underlying physical laws — hence the term “pseudo physics”
— this approach significantly enhances the accuracy of current operator learning
models, particularly in data scarce scenarios. Through extensive evaluations across
five benchmark operator learning tasks and an application in fatigue modeling,
PPI-NO consistently outperforms competing methods by a significant margin. The
success of PPI-NO may introduce a new paradigm in physics-informed machine
learning, one that requires minimal physics knowledge and opens the door to
broader applications in data-driven physics learning and simulations.

1 Introduction

Operator learning, a dynamic and rapidly evolving domain, has seen remarkable advancements with
the advent of neural operators. Rooted in the express power of neural networks, neural operators
have transformed computational problem-solving methods. Prominent examples include Fourier
Neural Operators (FNO) (Li et al., 2020c), Deep Operator Net (DONet) (Lu et al., 2021) and
other frameworks such as (Cao, 2021; Hao et al., 2023). FNO employs Fourier transform for global
convolution and function transformation, while DONet introduces two sub-networks — the branch net
and trunk net — to extract representations from the functional space and query locations, respectively,
enabling predictions akin to attention mechanisms (Vaswani et al., 2017).

For trading for model capacity and performance, neural operators often require a substantial amount
of training data to perform optimally. This demand poses significant challenges, particularly in
complex problems, where training data can be scarce and costly to acquire. In response, the field of
physics-informed machine learning, including physics-informed neural networks (PINN) (Raissi et al.,
2019), has shown promise by incorporating physical laws as soft constraints during training. This
approach serves as a regularization technique, effectively embedding a fundamental understanding
of physics into the model to lessen its reliance on extensive training data. Building on this idea, the
concept of physics-informed neural operators (PINO) has emerged, with PINO integrating physical
laws as soft constraints to enhance model fidelity while reducing data quantity. This approach has
been used in (Wang et al., 2021; Li et al., 2021) for DONet and FNO training.

Despite the success of PINO, the necessity for a thorough understanding of the underlying physics
can pose a significant hurdle, especially in complex applications such as in fracture mechanics and
climate modeling. In those scenarios, the detailed physical knowledge is often unavailable or difficult
to identify, and it is often prohibitively expensive to collect extensive data. These challenges can
render the current methods unavailable or impractical.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To navigate these challenges while retaining the benefits of physics-informed learning, our work
introduces the Pseudo Physics-Informed Neural Operator (PPI-NO). This framework bypasses
the need for exhaustive physical comprehension by constructing a neural-network-based partial
differential equation (PDE) that characterizes the target system directly from data. The neural PDE is
then coupled with the neural operator for alternating updates and training, enabling iterative extraction,
refinement and integration of physics knowledge to enhance operator learning. The contribution of
this work lies in the following three aspects:

1. To our knowledge, PPI-NO is the first work to enhance standard operator learning pipeline
using physics directly learned from sparse data, delivering superior accuracy without the
need for in-depth physical understanding or extensive data collection.

2. The success of PPI-NO also opens up a new paradigm of physics-informed machine learning
where only rudimentary physics assumptions (in this case, the basic differential operations)
are required rather than in-depth or rigorous expert knowledge, extending the spectrum of
the physics-informed learning for experts of different levels.

3. The effectiveness of PPI-NO is validated through extensive evaluations on five commonly
used benchmark operator learning tasks in literature (Li et al., 2020c; Lu et al., 2022),
including Darcy flow, nonlinear diffusion, Eikonal, Poisson and advection equations, as well
as one application in fatigue modeling in fracture mechanics, where the ground-truth holistic
PDE system is unknown.

2 Background

Problem Formulation. Operator learning seeks to approximate an operator that maps input parame-
ters and/or functions to corresponding output functions. In most practical cases, operator learning
rises in the context of solving partial differential equations (PDEs), where the operator corresponds
to the solution operator of the PDE. Assume a PDE system:

N [u](x) = f(x), x ∈ Ω× [0,∞), (1)

where x is a compact notation for the spatial and temporal coordinates, Ω is the spatial domain, [0,∞)
is the temporal domain,N is a nonlinear differential operator, u(x) is the solution function, and f(x)
is the source term. Solving the PDE system is to find the solution function u(x) that satisfies the PDE
system equation (1) as well as the initial and boundary conditions. This task often necessitates the
use of computationally expensive numerical solvers such as finite element method (FEM) or finite
difference method (FDM). To alleviate the computational challenge, we aim to learn the solution
operator of the PDE system, ψ : F→ U using a training dataset D = {(fn,un)}Nn=1, which consists
of discretized functions u(·) and f(·) at a set of collocations points. Once the operator model is
trained, it can be used to directly predict the solution function u for new instances of the input f ,
offering a much more efficient alternative to running numerical solvers from scratch. However, the
training dataset still needs to be generated offline using numerical solvers.

Fourier Neural Operator (FNO) (Li et al., 2020c) represents a significant leap in neural network
architecture for operator learning, especially in solving PDEs. For a given discretized input function f ,
FNO first employs a feed-forward network (FFN) on each component of f at its respective sampling
location, thereby lifting the input into a higher-dimensional channel space. The core of FNO is the
Fourier layer, which performs a linear transformation followed by a nonlinear activation within the
functional space, h(x)← σ

(
Wh(x) +

∫
κ(x− x′)h(x′)dx′), where h(x) is the input to the Fourier

layer, κ(·) the integration kernel, and σ(·) the activation function. The convolution operation in this
context is efficiently computed using the convolution theorem:

∫
κ(x− x′)h(x′)dx′ = F−1[F [κ] ·

F [h]](x), where F and F−1 denote the Fourier and inverse Fourier transforms, respectively. The
Fourier layer’s efficiency stems from performing the Fast Fourier Transform (FFT) on h, multiplying
it with the discretized kernel in the frequency domain, and then applying the inverse FFT. The
local linear transformation,Wh(x), is executed through conventional convolution operations. After
multiple Fourier layers, the final output is obtained by the channel-wise application of another FFN,
projecting the representation back to the original space.

Deep Operator Network (DONet) (Lu et al., 2021) is another prominent work in operator learning.
The architecture of a DONet is structured into two primary components: the branch network and the
trunk network, learning representations for the input functions and querying locations, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Consider an input function f(x) ∈ F evaluated at m sensor locations {x1,x2, · · · ,xm} and an
output function u ∈ U. The branch network receives the values [f(x1), f(x2), · · · , f(xm)] and
outputs a feature representation [b1, b2, · · · , bp]⊤ ∈ Rp. Concurrently, the trunk network processes a
querying location x and outputs another feature vector [t1, t2, · · · , tp]⊤ ∈ Rp. The approximation of
the output function u(x) is computed as a sum of products of the corresponding elements from the
branch and trunk networks, G[f](x) ≈

∑p
k=1 bktk, where G is the learned operator mapping input

function f to the corresponding output function u.

Physics-Informed Neural Operator (PINO) (Wang et al., 2021; Li et al., 2021) has recently emerged
as a promising approach to address the data scarcity issue in operator learning. PINO embeds physical
laws — typically governing equations — into the learning process. The incorporation of physical
principles not only enhances the model’s adherence to ground-truth phenomena but also reduces its
dependency on extensive training data. Mathematically, the integration of physics into the learning
process can be viewed as an additional regularization term in the loss function. Let Ldata represent the
standard data-fitting loss term (e.g., the mean squared error between the predicted and actual outputs),
the physics-informed term Lphysics can be the residual of the governing PDEs evaluated at the neural
network’s outputs. The total loss function L for a PINO model is then expressed as

L = Ldata + λLphysics,

where λ is a weighting factor that balances the importance of data-fitting versus physics compliance.
This approach encourages the model to learn solutions that are not only consistent with the provided
data but also physically plausible.

3 Methodology

In the absence of the underlying physics knowledge (i.e., the PDE system (1) is not available), it is
impossible to construct the physics loss term in the PINO framework. To address this challenge, we
propose a “pseudo” physics-informed operator learning framework motivated by the need to uncover
the underlying physical laws using available data. This approach is particularly useful in relatively
more complex applications, where data is often costly or sparse while the underlying physics is hard
to fully understand. Our model architecture is depicted in Figure 1.

3.1 Pseudo Physics System Learning

As the first step, we propose a novel approach to learn the physics system using scarce training data.
Our key observation is that, although the mapping from f to u can be intricate and may necessitate
information across the entire domain (in theory, u is an integration of the Green’s function multiplied
with f over the domain), the underlying PDE system (1) simplifies to a local combination of u and its
derivatives. We therefore use a neural network ϕ to approximate the general form of N ,

N [u](x) ≈ ϕ (x, u(x), S1(u)(x), . . . , SQ(u)(x)) , (2)

where {Sj}Qj=1 are Q derivative operators that we believe should be present in the system, such as
∂tu, ∂ttu, ∂x1u, ∂x2u, ∂x1x1u, ∂x1x2u, ∂x2x2u, and more.

The inherent local combination nature of the PDE representation decouples the values of u and its
derivatives across various sampling locations, thereby significantly increasing the number of available
training data points. For instance, consider sampling the input function f and output function u on a
128× 128 grid. A single pair of discretized input and output functions, denoted as (f ,u), is typically
insufficient for a neural operator to effectively learn the mapping f → u. However, this sample can
be decomposed into 128× 128 = 16, 384 training data points across various (spatial and temporal)
locations to train ϕ as outlined in (2). Hence, even with a small number of (f ,u) pairs for operator
learning, the learning of the PDE system N via our formulation in (2) can still achieve accuracy,
thanks to the much greater number of training data points that can be derived from these pairs.

We use an L2 loss to estimate the parameters of ϕ, which is defined as

Lϕ =
∑N

n=1

∑M

j=1
[ϕ(xj , un(xj), S1(un)(xj), . . . , SQ(un)(xj))− fn(xj)]

2
, (3)

where fn(·) and un(·) are the input and output functions in n-th training example, and {x1, . . .xM}
are the locations at which we discretize fn and un.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Conv
layer

Pseudo Physics Network

Pseudo Physics
Informed Learning

Linear
layer

act act act

NO

NO

Linear
layer

Linear
layer

Linear
layer

Figure 1: The illustration of the Pseudo Physics-Informed Neural Operator (PPI-NO). At the top, a black-box
PDE representation is learned through the neural network ϕ. At the bottom, the acquired “pseudo” physics laws
are utilized to form a reconstruction loss, thereby regulating the NO training.

We use numerical difference to obtain the derivatives of each un, namely, Sk(un) (1 ≤ k ≤ Q), and
then feed these inputs to the neural network ϕ to compute the prediction. As the numerical difference
method may introduce errors when calculating derivatives, we incorporate a convolution layer in ϕ
to collect and integrate neighborhood information about u and its numerical derivatives, aiming to
compensate for these errors. After that, we use feed-forward layers to sequentially perform linear
transform and nonlinear activation to obtain the prediction at each sampling location; see Fig. 1
top. The learned neural network mapping ϕ : u→ f , although black-box in nature, can encapsulate
valuable physics knowledge inherent in the data employed for operator learning.

Our method can be easily adapted to scenarios where the input and output functions are irregularly
sampled, and numerical differentiation is no longer applicable. In such cases, we can employ smooth
function estimators, such as kernel interpolation (Long et al., 2024) or Bayesian B-splines (Sun et al.,
2022), to estimate the gradient information from data. These gradient estimations are then fed into
our PDE neural network ϕ for further learning.

3.2 Coupling Neural Operator with Pseudo Physics

Next, we leverage the pseudo physics laws embedded in the learned mapping ϕ : u→ f to enhance
the neural operator learning process. Specifically, we use ϕ to reconstruct f from the u predicted
by the neural operator. In this way, our approach goes beyond relying solely on the training data; it
uses the physics learned in the previous step to incorporate a reconstruction error into optimizing the
neural operator parameters.

Initially, we train the neural operator ψ : f → u using the available training data, creating a
preliminary model. This model is developed using FNO or DONet or other neural operators. The
focus is to first establish a basic understanding of the relationship between f and u from the limited
data. Next, the loss function for ψ is augmented using the physics laws learned in the first step,

L =
∑N

n=1
L2(ψ(fn), un) + λ · Ep(f ′) [L2(f

′, ϕ(ψ(f ′)))] , (4)

where the first term is the L2 loss for data fitting (as in the standard neural operator training), and the
second term is the expected reconstruction error for the input function. The second term incorporates
the physics laws embedded in ϕ(·), and λ is a weight factor that balances the training data loss against
the reconstruction error.

In practice, the expected reconstruction error does not have a closed form. One can sample a
collection of f ′ from the underlying distribution of the input function p(·), e.g., a Gauss random field

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

or Gaussian process, and then employ a Monte-Carlo approximation,

L =
∑N

n=1
L2(ψ(fn), un) + λ

1

N ′

∑N ′

n=1
L2(f

′
n, ϕ(ψ(f

′
n))), (5)

where N ′ is the number of input function samples.

To enhance the operator learning process, the model is iteratively refined. In each iteration, we first
fine-tune the neural operator ψ with the pseudo physics ϕ fixed, and then fix ψ, fine-tune ϕ to refine
the physics representation. This fine-tuning loop is carried out for multiple iterations, allowing for
continuous improvement of the neural operator based on the refined physics.

This methodology mirrors human experts’ approach to physics system modeling, where sparse data
is used to learn the physics laws inspired by simple differential operation (up to the 2nd order to
imitate human experts), and then these laws are utilized to generalize the system for data generation.
The reconstruction loss term augments the operator learning with additional information, leading to
potential improvement upon only training with sparse data.

4 Related Work

Neural operator learning is expanding rapidly. In addition to FNO (Li et al., 2022) and DONet (Lu
et al., 2021), notable works include the Low-rank Neural Operator (LNO) introduced by Li et al.
(2020c), employing low-rank structures to approximate the integration. The Graph Neural Operator
(GNO) (Li et al., 2020a) integrates Nystrom approximation with graph neural networks, while
the Multipole Graph Neural Operator (MGNO) by the same authors (Li et al., 2020b) leverages
multiscale kernel decomposition. Gupta et al. (2021) contributed with multiwavelet transformations
for the operator’s kernel. Lu et al. (2022) proposed POD-DONet to enhance the stability of DONet by
replacing the trunk net with POD bases constructed from data. Another DONet variant by Seidman
et al. (2022) used an FFN to combine the outputs of the branch net and trunk net for prediction. A line
of efforts attempted to build neural operators via transformer architectures, such as (Cao, 2021; Hao
et al., 2023) Recently, Kovachki et al. (2023) provided a comprehensive review of neural operators.
There are also recent advances in kernel operator learning strategies made by Long et al. (2022)
and Batlle et al. (2023).

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) mark a significant advancement
in scientific machine learning. PINNs integrate physical laws directly into the learning process,
making them effective for solving differential equations and understanding complex physical systems.
This methodology is particularly beneficial in scenarios where data is sparse or expensive to obtain.
Pioneering the concept of PINO, Li et al. (2021) introduced a dual-resolution approach that combines
low-resolution empirical data with high-resolution PDE constraints. This method achieves precise
emulation of solution operators across various PDE classes. In parallel, physics-informed DONet
by Wang et al. (2021) incorporate regularization strategies enforcing physical law adherence into
the training of DONets. Zanardi et al. (2023) presented an approach using PINO for simulations
in non-equilibrium reacting flows. Lee et al. (2023) proposed opPINN, a framework combining
physics-informed neural networks with operator learning for solving the Fokker-Planck-Landau
(FPL) equation. Rosofsky et al. (2023) provided a review of applications of physics-informed neural
operators. However, existing methods demand one should know the physics laws beforehand, which
might not be feasible in many practical applications or complex systems. Our method offers a simple
and effective framework, enabling the extraction of implicit physics laws directly from data, even
when the data is sparse. Empirically, these pseudo physics laws have proven to be highly beneficial
in enhancing the performance of operator learning, as demonstrated in Section 5.

Our work is also related to the cycle consistence framework (Zhu et al., 2017) for image-to-image
translation. A critical difference is that cycle-consistence performs unpaired image-to-image trans-
lation, while our method aims for accurate paired translation (mapping). In cycle-consistence, the
translation is viewed successfully as long as the translated images follow some target distribution.
Hence, cycle-consistence has a much more relaxed objective. Another key difference is that our
method aims to improve the learning of a function-to-function mapping with very limited data— that
is why we first learn a “pseudo physics” representation. The cycle-consistence relies on adversarial
training which typically requires a large amount of data to obtain successful learning outcomes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
iteration

0.050

0.075

0.100

0.125

0.150

R
el

at
iv

e
L 2

 e
rr

or

(a) PPI-FNO: learning

0 2 4 6 8 10
iteration

0.06

0.08

0.10

0.12

R
el

at
iv

e
L 2

 e
rr

or

(b) PPI-DONet: learning

10 1 100 101
0.050

0.075

0.100

0.125

0.150

R
el

at
iv

e
L 2

 e
rr

or PPI-FNO
FNO

(c) PPI-FNO: λ

100 101 102

0.08

0.10

0.12

R
el

at
iv

e
L 2

 e
rr

or PPI-DONet
DONet

(d) PPI-DONet: λ

Figure 2: Learning curve of PPI-FNO on Darcy Flow (a), and of PPI-DONet on nonlinear diffusion (b). In (c)
and (d) we show how the weight λ of “pseudo physics” affects the operator learning performance. The horizontal
line in (c) and (d) are the relative L2 errors of standard FNO and DONet.

5 Experiments

Dataset. We tested on five commonly used benchmark operator learning problems in literature (Li
et al., 2020c; Lu et al., 2022), including Darcy Flow, Nonlinear Diffusion, Eikonal, Poisson and
Advection. In addition, we examined our method in an application in fatigue modeling. The task
is to predict the stress intensity factor (SIF) for semi-elliptical surface cracks on plates, given three
geometric parameters that characterize the cracks (Merrell et al., 2024); see Appendix Fig. 4. The SIF
plays a critical role in modeling crack growth by quantifying the stress state near the tip of a crack,
and hence SIF computation and analysis is extremely important in fatigue modeling and fracture
mechanics (Anderson and Anderson, 2005). The SIF computation is expensive, because it typically
needs to run finite element method (FEM) or extended FEM with very fine meshes (Kuna, 2013). Due
to the complex sequence of computational steps involved in SIF calculation, there is no holistic PDE
that directly models the relationship between the geometric features and the SIF function. Instead,
SIF computation typically relies on numerical methods and the extraction of local stress fields near
the crack tip. The details about all the dataset are given in Section A of the Appendix.

Method and Settings. We evaluated our method based on two popular NO models, FNO and DONet.
For learning the pseudo physics laws via the neural network ϕ — see (2) — we tuned the kernel size
from {(3, 3), (5, 5), (7, 7), (9, 9)}. The stride was set to 1 and padding was set to “same” to ensure
the output shape does not change. In the subsequent FFN, we chose the number of layers from {3,
4, 5, 6}, and the layer width from {16, 32, 64}. We used GeLU activation. For the cases of Darcy
Flow, Eikonal and Poisson, we used the following derivatives {∂x1

u, ∂x2
u, ∂x1x1

u, ∂x2x2
u, ∂x1x2

u},
and for the other cases, we used {∂xu, ∂xxu, ∂tu, ∂ttu, ∂xtu}. Since SIF is a 1d function (the input
is the angle), we used the derivatives {∂xu, ∂xxu}. For FNO, we set the number of modes to 12
and channels to 32 (in the lifted space). We varied the number of Fourier layers from {2, 3, 4}. For
DONet, in all the cases except Darcy Flow, the trunk net and branch net were constructed as FFNs.
We varied the number of layers from {2, 3, 4} and the layer width was chosen from {30, 40, 50, 60},
with ReLU activation. For the case of Darcy flow, we found that DONet with only feed-forward layers
exhibited inferior performance. To address this, we introduced convolution layers into the branch net.
We selected the number of convolution layers from {3,5,7}, and employed batch normalization and
leaky ReLU after each convolution layer. To incorporate the learned pseudo physics representation
into the training of FNO or DONet, we randomly sampled 200 input functions to construct the second
loss term in (5). We set the maximum number of iterations to 10 and selected the weight λ from
[10−1, 102]. All the models were implemented by PyTorch (Paszke et al., 2019), and optimized with
ADAM (Kingma and Ba, 2014). The learning rate was selected from {10−4, 5× 10−4, 10−3}. The
number of epochs for training or fine-tuning FNO, DONet and pseudo physics network ϕ was set to
500 to ensure convergence. For each operator learning benchmark, we simulated 100 examples for
testing, and varied the number of training examples from {5, 10, 20, 30}, except for Advection, we
ran with {20, 30, 50, 80} training examples. For SIF prediction (which is much more challenging),
we experimented with training size from {400, 500, 600}, and employed 100 test examples. We
repeated the evaluation for five times, each time we randomly sampled a different training set. We
ran experiments on workstations equipped with Nvidia Geforce RTX 4090 and Intel I9 CPU.

5.1 Results and Analysis

Predictive performance. We reported the average relative L2 error and the standard deviation (before
and after incorporating the pseudo physics laws) in Table 1 and Table 2. The model trained with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Training size 5 10 20 30
FNO 0.4915 ± 0.0210 0.3870 ± 0.0118 0.2783 ± 0.0212 0.1645 ± 0.0071

PPI-FNO 0.1716 ± 0.0048 0.0956 ± 0.0084 0.0680 ± 0.0031 0.0642 ± 0.0010
Error Reduction 65.08% 75.29% 75.56% 60.97%

DONet 0.8678 ± 0.0089 0.6854 ± 0.0363 0.5841 ± 0.0279 0.5672 ± 0.0172
PPI-DONet 0.5214 ± 0.0543 0.3408 ± 0.0209 0.2775 ± 0.0224 0.2611 ± 0.0084

Error Reduction 39.91% 50.27% 52.49% 53.96%

(a) Darcy flow
Training size 5 10 20 30

FNO 0.2004 ± 0.0083 0.1242 ± 0.0046 0.0876 ± 0.0061 0.0551 ± 0.0021
PPI-FNO 0.0105 ± 0.0016 0.0066 ± 0.00023 0.0049 ± 0.00037 0.0038 ± 0.00039

Error Reduction 94.76% 94.68% 94.40% 93.10%
DONet 0.3010 ± 0.0119 0.2505 ± 0.0057 0.1726 ± 0.0076 0.1430 ± 0.0036

PPI-DONet 0.1478± 0.0126 0.1161 ± 0.0124 0.1032 ± 0.0059 0.0842 ± 0.0041
Error Reduction 50.89% 53.65% 40.20 % 41.11%

(b) Nonlinear diffusion
Training size 5 10 20 30

FNO 0.2102 ± 0.0133 0.1562 ± 0.0098 0.0981 ± 0.0022 0.0843 ± 0.0020
PPI-FNO 0.0678 ± 0.0026 0.0582 ± 0.0043 0.0493 ± 0.0023 0.0459 ± 0.0010

Error Reduction 67.74% 62.74% 49.74% 45.55%
DONet 0.3374 ± 0.0944 0.1759 ± 0.0065 0.1191 ± 0.0047 0.1096 ± 0.0037

PPI-DONet 0.1302± 0.0127 0.0907 ± 0.0093 0.0714 ± 0.0011 0.0700 ± 0.0007
Error Reduction 61.41% 48.43% 40.05% 36.13%

(c) Eikonal
Training size 5 10 20 30

FNO 0.2340 ± 0.0083 0.1390 ± 0.0007 0.0895 ± 0.0008 0.0698 ± 0.0014
PPI-FNO 0.1437 ± 0.0062 0.0771 ± 0.0018 0.0544 ± 0.0009 0.0458 ± 0.0003

Error Reduction 38.59% 44.53% 39.22% 34.38%
DONet 0.6142 ± 0.0046 0.5839 ± 0.0090 0.5320 ± 0.0028 0.5195 ± 0.0040

PPI-DONet 0.5275 ± 0.0037 0.5001 ± 0.0042 0.4450 ± 0.0010 0.4258 ± 0.0040
Error Reduction 14.12% 14.35% 16.35% 18.04%

(d) Poisson
Training size 20 30 50 80

FNO 0.4872 ± 0.0097 0.4035 ± 0.0086 0.3019 ± 0.0085 0.2482 ± 0.0059
PPI-FNO 0.3693 ± 0.0099 0.3224 ± 0.0123 0.2236 ± 0.0075 0.1698 ± 0.0075

Error Reduction 24.20% 20.10% 25.94% 31.59%
DONet 0.5795 ± 0.0045 0.4810 ± 0.0092 0.3882 ± 0.0086 0.3164 ± 0.0072

PPI-DONet 0.3630 ± 0.0112 0.2897 ± 0.0097 0.2629 ± 0.0053 0.2120 ± 0.0065
Error Reduction 37.36% 39.77% 32.28% 33.00%

(e) Advection

Table 1: Relative L2 error in five operator learning benchmarks, where “PPI” is short for Pseudo-Physics
Informed”. The results were averaged from five runs.

Training size 400 500 600
FNO 0.1776 ± 0.0150 0.1695 ± 0.0090 0.1122 ± 0.0094

PPI-FNO 0.1166 ± 0.0064 0.1151 ± 0.0093 0.0850±0.0060
Error Reduction 34.35% 32.09% 24.24%

DONet 0.5318 ± 0.0095 0.5155 ± 0.0200 0.4037 ± 0.0331
PPI-DONet 0.3490 ± 0.0034 0.3468 ± 0.0074 0.3299 ± 0.0066

Error Reduction 34.37% 32.73% 18.28%

Table 2: SIF prediction error for plate surface cracks in fatigue modeling.

the learned physics laws (see (5)) is denoted as PPI-FNO or PPI-DONet, short for Pseudo Physics
Informed FNO/DONet. In all the cases, with our pseudo physics informed approach , the prediction
error of both FNO and DONet experiences a large reduction. For instance, across all training sizes in
Darcy Flow and nonlinear diffusion, PPI-FNO reduces the relative L2 error of the ordinary FNO by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.001 0.000 0.001 0.001 0.002

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.00 0.25 0.50 0.75 0.1 0.2

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.0010 0.0005 0.0000 0.0005 0.0005 0.0010 0.0015

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.00 0.25 0.50 0.75 0.05 0.10 0.15

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.002 0.001 0.000 0.0005 0.0010 0.0015

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.00 0.25 0.50 0.75 1.00 0.05 0.10

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.000 0.001 0.002 0.0005 0.0010

(a) PPI-DONet: Darcy Flow

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.00 0.25 0.50 0.75 1.00 0.1 0.2 0.3

(b) PPI-FNO: nonlinear diffusion

Figure 3: Examples of the prediction and point-wise error of PPI-DONet and PPI-FNO on Darcy Flow and
nonlinear diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.

over 60% and 93%, respectively. In Darcy Flow with training sizes 10 to 30, PPI-DONet reduces the
error of the ordinary DONet by over 50%. In SIF prediction, our method applied to both FNO and
DONet reduced the error by over 30% with training size 400 and 500. Even the minimum reduction
across all cases achieves 14.12% (PPI-DONet over DONet on Poisson with training size 5).

Together these results demonstrate the strong positive impact of the learned physics by our neural
network model ϕ specified in Section 3.1. Although it remains opaque and non-interpretable, it
encapsulates valuable knowledge that greatly enhances the performance of operator learning, in
particular with limited data.

Next, we assessed the accuracy of the learned physics laws by examining the relative L2 error in
predicting the source functions f from ϕ (see (2)). We tested on Darcy Flow, nonlinear diffusion,
and Eikonal. We compared a baseline method that removes the convolution layer of ϕ, leaving only
the feed-forward layers. The average relative L2 error and standard deviation are reported in Table 3.

Benchmark FFN Ours
Darcy Flow 0.1819±0.0026 0.1392± 0.0080

Nonlinear Diffusion 0.0660±0.0069 0.0233±0.0005
Eikonal 0.0144±0.0009 0.0108 ± 0.0006

(a) Training size=10
Benchmark FFN Ours
Darcy Flow 0.1413±0.0013 0.0688± 0.0032

Nonlinear Diffusion 0.0463±0.0022 0.0163±0.0002
Eikonal 0.0070±0.00005 0.0052 ± 0.0002

(b) Training size=30

Table 3: Relative L2 error of using the learned back-box PDE net-
work (2) to predict the input function f .

It can be observed that in nearly
every case, adding a convolu-
tion layer indeed significantly im-
proves the accuracy of ϕ. This
improvement might be attributed
to the convolution layer’s abil-
ity to integrate neighboring infor-
mation and compensate for the
error introduced by the numeri-
cal difference in approximating
the derivatives. We also exper-
imented with multiple convolu-
tion layers, but the improvement
was found to be marginal.

In addition, we also found the
operator learning improvement
is relatively robust to the accuracy of our physics representation ψ. For instance, on Darcy Flow with
training size 5 and 10, the relative L2 error of ϕ network is 0.2285 and 0.1392, which is significantly
bigger than with training size 30 where the relative L2 error is 0.0688. Yet the error reduction upon

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

FNO (see Table 1a) under all the three training sizes is above 60%. The error reduction upon DONet is
40% for training size 5 and over 50% for training size 10 and 30. The results imply that even roughly
capturing the underlying physics (with ϕ) can substantially boost the operator learning performance.

Point-wise prediction and point-wise error. For a detailed assessment, we conducted a fine-grained
evaluation by visualizing the predictions and point-wise errors made by each method. In Fig. 3a and
3b, we showcased the predictions and point-wise errors using PPI-DONet for Darcy Flow, PPI-FNO
for nonlinear diffusion, respectively. Additional examples of predictions and point-wise errors are
provided in Fig. 5, 7a, 7b, 8a, and 8b in the Appendix.

It is evident that without the assistance of the pseudo physics laws learned by our method, the
ordinary DONet and FNO frequently missed crucial local structures, sometimes even learning entirely
incorrect structures. For example, In Fig. 3a the first row, DONet missed one mode, while in the
second and third row of Fig. 3a, DONet failed to capture all the local modes. After incorporating the
learned physics, DONet (now denoted as PPI-DONet; see the third column) successfully captures
all the local modes, including their shapes and positions. Although not all the details are exactly
recovered, the point-wise error is substantially reduced, particularly in those high error regions
of the ordinary DONet; see the fourth column of Fig. 3a. In another instance, as shown in Fig.
3b, where the ordinary FNO (second column) captured the global shape of the solution, but the
mis-specification of many local details led to large point-wise errors across many regions (fourth
column). In contrast, PPI-FNO (third column) not only identified the structures within the solution
but also successfully recovered the details. As a result, the point-wise error (fifth column) was close
to zero everywhere. Additional instances can be found in Fig. 7a, the first three rows illustrate that
ordinary FNO (trained with 5, 10, and 20 examples, respectively) estimates an entirely incorrect
structure of the solution, indicating that the training data is insufficient for FNO to capture even the
basic structure of the solution. In contrast, after fine-tuning with our learned physics laws from the
same sparse data, PPI-FNO accurately figured out the solution structures and yielded a substantial
reduction in point-wise error across nearly everywhere. The point-wise error became uniformly
close to zero. With 30 examples, the ordinary FNO was then able to capture the global structure of
the solution, but the details in the bottom left, bottom right, and top right corners were incorrectly
predicted. In comparison, PPI-FNO further recovered these details accurately.

Collectively, these results demonstrate that the pseudo physics extracted by our method not only
dramatically boosts the overall prediction accuracy but also better recovers the local structures and
details of the solution.

Learning Behavior. We examined the learning behavior of our method, which conducts an iterative,
alternatingly fine-tuning process. We employed one Darcy Flow, one nonlinear diffusion and one
Eikonal dataset, each with 30 examples. We show the test relative L2 error along with the iterations
in Fig. 2a, 2b, and Appendix Fig. 6a and Fig. 6b. As we can see, the predictive performance of our
algorithm kept improving and tended to converge at last, affirming the efficacy of learning process.

Ablation study on the PDE network ϕ. To confirm the efficacy of our designed PDE network ϕ
in facilitating operator learning, we considered alternative designs for ϕ: (1) using standard FNO
to predict f directly from u; no derivative information is included in the input; (2) removing the
convolution layer in our model, and just keeping the FNN layers; the input is the same as our
model, i.e., the derivative information is included in the input. With different designs of ϕ, we
evaluated the PPI learning performance on the Darcy Flow benchmark. The relative L2 error in
predicting f via ϕ and predicting u is reported in Table 4. Our design of ϕ consistently outperforms
alternative architectures by a notable margin, showing the effectiveness of learning a (black-box)
PDE representation and improving the operator learning.

Ablation study on the choice of derivatives. We further investigated the PPI learning performance
with respect to the choice of derivatives used in the PDE network. Specifically, we tested PPI-FNO on
the Darcy-flow benchmark and varied the order of derivatives up to 0, 1, 2, and 3. The performance is
reported in Table 5. We can see that although the accuracy of ϕ with derivatives up to the third order
is slightly better than with derivatives up to the second order, the best operator learning performance
was still achieved using derivatives up to the second order (which was used in our evaluations). This
might be because higher-order derivative information can cause overfitting in the PDE network ϕ to
a certain degree. Such higher-order information may not be critical to the actual mechanism of the
physical system and can therefore impede the improvement of operator learning performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Training size 5 10 20 30
FNO 0.7229±0.0318 0.5759± 0.0126 0.4257± 0.0106 0.3160± 0.0037
MLP 0.7169±0.0160 0.6598± 0.0056 0.6464± 0.0029 0.6277± 0.0032
Ours 0.2285 ± 0.0147 0.1392 ± 0.0080 0.0898 ± 0.0046 0.0688 ± 0.0032

(a) Predicting f via ϕ with different architectures.
Training size 5 10 20 30

PPI-FNO with FNO as ϕ 0.5853±0.0153 0.3871± 0.0124 0.2613± 0.0190 0.1629± 0.0064
PPI-FNO with MLP as ϕ 0.7262±0.0920 0.5516± 0.0699 0.4568± 0.0857 0.3983± 0.1051

Standard FNO 0.4915 ± 0.0210 0.3870 ± 0.0118 0.2783 ± 0.0212 0.1645 ± 0.0071
Ours 0.1716 ± 0.0048 0.0956 ± 0.0084 0.0680 ± 0.0031 0.0642 ± 0.0010

(b) Predicting u.

Table 4: The relative L2 error with using different architectures of ϕ in pseudo-physics-informed (PPI) learning
on Darcy Flow benchmark.

Training size 5 10 20 30
order 0 0.7126±0.0131 0.5733±0.0208 0.4812±0.0399 0.3445±0.0182

order ≤ 1 0.2926±0.0118 0.2006±0.0047 0.1379±0.0051 0.1084±0.0053
order ≤ 2 0.2285±0.0147 0.1392±0.0080 0.0898±0.0046 0.0688±0.0032
order ≤ 3 0.2058±0.0192 0.1123±0.0039 0.0712±0.0021 0.0585±0.0030

(a) Predicting f via ϕ.
Training size 5 10 20 30

order 0 0.6352±0.0673 0.4523±0.0621 0.3570±0.0658 0.2737±0.0643
order ≤ 1 0.3386±0.0259 0.2161±0.0083 0.1645±0.0114 0.1197±0.0132
order ≤ 2 0.1716±0.0048 0.0956±0.0084 0.0680±0.0031 0.0642±0.0010
order ≤ 3 0.2959±0.0381 0.1719±0.0213 0.1193±0.0158 0.0828±0.0054

(b) Predicting u.

Table 5: The relative L2 error of PPI learning by incorporating different orders of derivatives. During the
comparison with other operator learning methods, we used derivative orders up to 2 to run our method.

Ablation study on the weight λ. We examined the effect of the weight λ of our “pseudo physics”;
see (4). To this end, we used one Darcy Flow dataset and nonlinear diffusion dataset with training
size 30. We varied λ from [0.5, 102], and run PPI-FNO and PPI-DONet on Darcy Flow and nonlinear
diffusion, respectively. As shown in Fig. 2c and 2d, we can see that across a wide range of λ values,
PPI-FNO and PPI-DONet can consistently outperform the standard FNO and DONet respectively
by a large margin. However, the choice λ does have a significant influence on the operator learning
performance, and the best choice is often in between. In Appendix Fig. 6c and 6d, we show results
on Ekonal, which we make similar observations.

Computational complexity and memory usage. Our PPI-NO framework conducts alternating
updates, and hence needs more training cycles than standard NO. But the time complexity only
grows linearly with the number of alternating iterations, rather than quadratically or exponentially.
We believe this is reasonable and practically acceptable. For memory usage, Our “pseudo” physics
network ϕ is very small as compared to the NO component — ϕ is simply a pixel-wise FFN coupled
with one convolution filter, resulting in a marginal increase in memory cost. Appendix Table 6
shows the parameter count of FNO, DONet and their pseudo-physics-informed version. On average,
PPI-FNO increases the number of parameters over FNO by 1.29% while PPI-DONet over DONet by
1.89%.

6 Conclusion

We have presented a Pseudo Physics-Informed Neural Operator (PPI-NO) learning framework. PPI-
NO is based on our observation that a PDE system is often characterized by a local combination of
the solution and its derivatives. This characteristic enables the derivation of many training points from
the function sampling locations, facilitating learning of the PDE systems through a neural network.
While the physics delineated by PPI-NO might not precisely reflect true physical phenomena, our
findings reveal that this method significantly enhances the efficiency of operator learning, particularly
with limited data quantity.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References

Anderson, T. L. and Anderson, T. L. (2005). Fracture mechanics: fundamentals and applications.
CRC press.

Batlle, P., Darcy, M., Hosseini, B., and Owhadi, H. (2023). Kernel methods are competitive for
operator learning. arXiv preprint arXiv:2304.13202.

Cao, S. (2021). Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential
equations. Advances in neural information processing systems, 31.

Gupta, G., Xiao, X., and Bogdan, P. (2021). Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu, J. (2023).
Gnot: A general neural operator transformer for operator learning. In International Conference on
Machine Learning, pages 12556–12569. PMLR.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kovachki, N. B., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A. M., and Anand-
kumar, A. (2023). Neural operator: Learning maps between function spaces with applications to
pdes. J. Mach. Learn. Res., 24(89):1–97.

Kuna, M. (2013). Finite elements in fracture mechanics. Solid Mech. Its Appl, 201:153–192.

Lee, J. Y., Jang, J., and Hwang, H. J. (2023). oppinn: Physics-informed neural network with operator
learning to approximate solutions to the fokker-planck-landau equation. Journal of Computational
Physics, 480:112031.

Li, S., Wang, Z., Kirby, R. M., and Zhe, S. (2022). Deep multi-fidelity active learning of high-
dimensional outputs. Proceedings of the Twenty-Fifth International Conference on Artificial
Intelligence and Statistics.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
(2020a). Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K., and Anandkumar, A.
(2020b). Multipole graph neural operator for parametric partial differential equations. Advances
in Neural Information Processing Systems, 33:6755–6766.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A., et al.
(2020c). Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., and Anandkumar, A.
(2021). Physics-informed neural operator for learning partial differential equations. arXiv preprint
arXiv:2111.03794.

Long, D., Mrvaljevic, N., Zhe, S., and Hosseini, B. (2022). A kernel approach for pde discovery and
operator learning. arXiv preprint arXiv:2210.08140.

Long, D., Xing, W., Krishnapriyan, A., Kirby, R., Zhe, S., and Mahoney, M. W. (2024). Equation
discovery with Bayesian spike-and-slab priors and efficient kernels. In International Conference
on Artificial Intelligence and Statistics, pages 2413–2421. PMLR.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. (2021). Learning nonlinear operators via
deeponet based on the universal approximation theorem of operators. Nature machine intelligence,
3(3):218–229.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., and Karniadakis, G. E. (2022). A
comprehensive and fair comparison of two neural operators (with practical extensions) based on
fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778.

Merrell, J., Emery, J., Kirby, R. M., and Hochhalter, J. (2024). Stress intensity factor models using
mechanics-guided decomposition and symbolic regression. Engineering Fracture Mechanics, page
110432.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
In Advances in neural information processing systems, pages 8026–8037.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707.

Rosofsky, S. G., Al Majed, H., and Huerta, E. (2023). Applications of physics informed neural
operators. Machine Learning: Science and Technology, 4(2):025022.

Seidman, J., Kissas, G., Perdikaris, P., and Pappas, G. J. (2022). Nomad: Nonlinear manifold decoders
for operator learning. Advances in Neural Information Processing Systems, 35:5601–5613.

Sethian, J. A. (1999). Fast marching methods. SIAM review, 41(2):199–235.

Sun, L., Huang, D., Sun, H., and Wang, J.-X. (2022). Bayesian spline learning for equation discovery
of nonlinear dynamics with quantified uncertainty. Advances in neural information processing
systems, 35:6927–6940.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wang, S., Wang, H., and Perdikaris, P. (2021). Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605.

Zanardi, I., Venturi, S., and Panesi, M. (2023). Adaptive physics-informed neural operator for
coarse-grained non-equilibrium flows. Scientific reports, 13(1):15497.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pages 2223–2232.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

A Experimental Details

A.1 Darcy Flow

We first considered a steady-state 2D Darcy Flow equation (Li et al., 2020c),

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2,

u(x) = 0 x ∈ ∂(0, 1)2, (6)

where u(x) is the velocity of the flow, a(x) characterizes the conductivity of the media, and f(x) is
the source function that can represent flow sources or sinks within the domain. In the experiment, our
goal is to predict the solution u given the external source f . To this end, we fixed the conductivity
a, which is generated by first sampling a Gauss random field α in the domain and then apply a
thresholding rule: a(x) = 4 if α(x) < 0, otherwise a(x) = 12. We then used another Gauss random
field to generate samples of f . We followed (Li et al., 2020c) to solve the PDE using a second-order
finite difference solver and collected the source and solution at a 128× 128 grid.

A.2 Nonlinear Diffusion PDE

We next considered a nonlinear diffusion PDE,

∂tu(x, t) = 10−2∂xxu(x, t) + 10−2u2(x, t) + f(x, t),

u(−1, t) = u(1, t) = 0, u(x, 0) = 0, (7)

where (x, t) ∈ [−1, 1]× [0, 1]. Our objective is to predict the solution function u given the source
function f . We used the solver provided in (Lu et al., 2022), and discretized both the input and output
functions at a 128× 128 grid. The source f was sampled from a Gaussian process with an isotropic
square exponential (SE) kernel for which the length scale was set to 0.2.

A.3 Eikonal Equation

Third, we employed the Eikonal equation, widely used in geometric optics and wave modeling. It
describes given a wave source, the propagation of wavefront across the given media where the wave
speed can vary at different locations. The equation is as follows,

|∇u(x)| = 1

f(x)
,x ∈ [0, 256]× [0, 256] (8)

where u(x) is the travel time of the wavefront from the source to location x, | · | denotes the Euclidean
norm, and f(x) > 0 is the speed of the wave at x.

In the experiment, we set the wave source at (0, 10). The goal is to predict the travel time u given the
heterogeneous wave speed f . We sampled an instance of f using the expression:

f(x) = max(g(x), 0) + 1.0,

where g(·) is sampled from a Gaussian process using the isotropic SE kernel with length-scale 0.1. We
employed the eikonalfm library (https://github.com/kevinganster/eikonalfm/
tree/master) that implements the Fast Marching method Sethian (1999) to compute the solution
u.

A.4 Poisson Equation

Fourth, we considered a 2D Poisson Equation,

−∆u = f, in Ω = [0, 1]2, u|∂D = 0. (9)

where ∆ is the Laplace operator. The solution is designed to take the form, u(x1, x2) =
1

πK2

∑K
i=1

∑K
j=1 aij(i

2 + j2)r sin(iπx1) cos(jπx2), and f(x1, x2) is correspondingly computed
via the equation. To generate the dataset, we set K = 5 and r = 0.5, and independently sampled
each element aij from a uniform distribution on [0, 1].

13

https://github.com/kevinganster/eikonalfm/tree/master
https://github.com/kevinganster/eikonalfm/tree/master

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Parameter count FNO PPI-FNO (increase) DONet PPI-DONet (increase)
Darcy-flow 1,188,353 1,229,476 (+3.46%) 2,084,704 2,125,827 (+1.97%)

Nonlinear-diffusion 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Eikonal 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Poisson 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)

Advection 1,188,353 1,197,220 (+0.75%) 210,101 218,968 (+4.22%)

Table 6: Parameter counts for FNO and DONet with PPI variations across different problems. The training size
is 30.

J. Merrell et al.

Fig. 1. (a) Crack parameters with a being the crack depth and 2c being the surface crack length. (b) � is defined by the angle to the inscribed circle projected
to the ellipse. l is defined as the distance perpendicular to the tangent line from the point of interest to the nearest axis.(c) Model geometry plate height, h,
plate width, 2b, plate thickness, t, and far field stress �.

The function g is sinusoidal, having a value of 1 at � = ⇡_2. This methodical mechanics-based approach of breaking down the
problem into sub-functions that each account for a different aspect of the (boundary value problem) BVP geometry allowed Raju
and Newman to develop accurate equations that build upon the explainability from the analytical solution of the embedded ellipse.

2. Methods

2.1. Computational fracture mechanics

The SIFs used in this research were extracted from displacement fields computed by FEA with Abaqus using the fracture
mechanics code FRANC3D [16,17]. Abaqus served as the primary tool for creating the geometry, initial mesh discretization,
application of BCs, and solution. FRANC3D was employed for tasks related to modifying geometry and mesh for crack insertion
and SIF computation. Abaqus’ Python interface was used to generate the model geometries.

A global–local sub-modeling approach was employed within FRANC3D, which involved dividing the geometry into two
components: the global model, which encompassed the boundary conditions, and the local model, which contained the region
where the crack would be inserted. The local model is used for crack insertion. The crack front mesh is built from a crack front
template consisting of rings of hexagonal elements and an inner ring of quarter-point elements surrounding the crack front, enabling
very accurate SIF computations, Fig. 2. After crack insertion, the local model was re-meshed, preserving the nodal locations on the
cut faces (i.e., global–local boundary) for coherency with the global model. The FE fields for the complete model, with the inserted
crack, were subsequently solved using Abaqus.

Energy methods are more accurate than methods that rely only on crack tip opening displacement, such as displacement
correlation for SIF calculation. The J-integral, developed by Rice [18], is a commonly used method for SIF calculation. However, it
has a limitation: it cannot separate the SIFs into the three cracking modes, except for very simplified crack geometries, as noted by
Banks-Sillset al. [19]. The M-integral formulation developed by Yauet al. [20] allows for all three cracking models to be separated.
FRANC3D uses the M-integral for SIF calculation. Banks-Sillset al. verified the M-integral implementation in FRANC3D [21] by
comparing a through crack in a thick plate (a/W = 15) to analytical solutions of KI = �

˘
⇡a. They found that the value of

KI calculated with FRANC3D approached the analytical solution at the center of the thick plate. Additionally, they prescribe
displacements that would result in KI = 1 and calculate the required stresses using FEA. These stresses were then used to calculate
KI using the M-integral formulation. When using 2 rings the calculated KI for an isotropic material was 0.997 a difference of 0.3%.
The FE models in this work only use simple uniaxial mode I loading, resulting in the SIFs from M-integral being equivalent to
J-integral.

2.2. Genetic programming based symbolic regression

Symbolic Regression (SR) is a machine learning technique to discover free-form analytical equations from training data and
known physics [11,22]. Presently, the most effective optimization approach for SR in terms of balancing exploration and exploitation
is genetic programming (GP) [23]. The implementation of genetic programming-based symbolic regression (GPSR) employed in this

Engineering�Fracture�Mechanics�310��������110432�

4�

Figure 4: Example of semi-elliptic surface crack on a plates (Merrell et al., 2024).

A.5 Advection Equation

Fifth, we considered a wave advection equation,

∂u

∂t
+
∂u

∂x
= f, x ∈ [0, 1], t ∈ [0, 1]. (10)

The solution is represented by a kernel regressor, u(x) =
∑M

j=1 wjk(x, zj), and the source f is
computed via the equation. To collect instances of (f, u), we used the square exponential (SE) kernel
with length-scale 0.25. We randomly sampled the locations zj from the domain and the weights wj

from a standard normal distribution.

A.6 Fatigue Modeling

We considered predicting the SIF values along semi-elliptic surface cracks on plates, as shown in
Fig 4. The SIF value can be viewed as a function of the angle ϕ ∈ [0, π], which decides the location
of each point on the crack surface. The geometry parameters that characterize the crack shape and
position were used as the input, including a/c, a/t and c/b. In the operator learning framework,
the input can be viewed as a function with three constant outputs. The dataset was produced via a
high-fidelity FE models under Mode I tension (Merrell et al., 2024). Each data instance includes 128
samples of the SIF values drew uniformly across the range of ϕ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

20.0

22.5

25.0

27.5

30.0

32.5

35.0

SI
F

Ground Truth
FNO
PPI-FNO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

20.0

22.5

25.0

27.5

30.0

32.5

35.0

SI
F

Ground Truth
FNO
PPI-FNO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

SI
F

Ground Truth
FNO
PPI-FNO

Figure 5: Examples of SIF prediction of FNO and PPI-FNO trained with 600 examples.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
iteration

0.05

0.06

0.07

0.08

0.09

R
el

at
iv

e
L 2

 e
rr

or

(a) PPI-FNO: learning

0 1 2 3 4 5
iteration

0.080

0.085

0.090

0.095

0.100

R
el

at
iv

e
L 2

 e
rr

or
(b) PPI-DONet: learning

100 101 102
0.05

0.06

0.07

0.08

0.09

R
el

at
iv

e
L 2

 e
rr

or PPI-FNO
FNO

(c) PPI-FNO: λ

100 101 102

0.08

0.09

0.10

R
el

at
iv

e
L 2

 e
rr

or PPI-DONet
DONet

(d) PPI-DONet: λ

Figure 6: Learning curve of PPI-FNO (a) and PPI-DONet (b) on Eikonal with 30 training examples. Shown in
(c) and (d) is how the weight λ of “pseudo physics” affects the operator learning performance. The horizontal
line in (c) and (d) are the relative L2 error of standard FNO and DONet, respectively.

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0 100 50 100 150

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0 50 100 50 100

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0 50 100 20 40

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0 50 100 20 40

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0 50 100 20 40

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0 25 50 75 100 20 40

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0 50 100 10 20 30

(a) PPI-FNO: Eikonal

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0 25 50 75 100 10 20 30

(b) PPI-DONet: Eikonal

Figure 7: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Eikonal. From top
to bottom, the models were trained with 5, 10, 20, 30 examples.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.001 0.000 0.001 0.00025 0.00050 0.00075

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.00 0.25 0.50 0.75 0.1 0.2 0.3

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.000 0.001 0.002 0.00025 0.00050 0.00075

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.0 0.2 0.4 0.6 0.8 0.2 0.4

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.002 0.001 0.000 0.001 0.0005 0.0010

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.00 0.25 0.50 0.75 0.1 0.2

Ground-truth FNO-pred PPI-FNO-pred FNO-error PPI-FNO-error

0.0010 0.0005 0.0000 0.0001 0.0002 0.0003

(a) PPI-FNO: Darcy Flow

Ground-truth DONet-pred PPI-DONet-pred DONet-error PPI-DONet-error

0.00 0.25 0.50 0.75 0.05 0.10 0.15

(b) PPI-DONet: Nonlinear Diffusion

Figure 8: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Darcy Flow and
Nonlinear diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.

B Limitation and Discussion

Our current method cannot learn PDE representations for which the input function f is the initial
condition. In such cases, the mapping from the solution function to the initial condition requires a
reversed integration over time, hence we cannot decouple the derivatives. To address this problem,
we plan to explicitly model the temporal dependencies in the PDE representation, such as via the
neural ODE design (Chen et al., 2018).

16

	Introduction
	Background
	Methodology
	Pseudo Physics System Learning
	Coupling Neural Operator with Pseudo Physics

	Related Work
	Experiments
	Results and Analysis

	Conclusion
	Experimental Details
	Darcy Flow
	Nonlinear Diffusion PDE
	Eikonal Equation
	Poisson Equation
	Advection Equation
	Fatigue Modeling

	Limitation and Discussion

