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ABSTRACT

Recent advancements in operator learning are transforming the landscape of com-
putational physics and engineering, especially alongside the rapidly evolving field
of physics-informed machine learning. The convergence of these areas offers
exciting opportunities for innovative research and applications. However, merging
these two realms often demands deep expertise and explicit knowledge of physi-
cal systems, which may be challenging or even impractical in relatively complex
applications. To address this limitation, we propose a novel framework: Pseudo
Physics-Informed Neural Operator (PPI-NO). In this framework, we construct a
surrogate physics system for the target system using partial differential equations
(PDEs) derived from simple, rudimentary physics knowledge, such as basic dif-
ferential operators. We then couple the surrogate system with the neural operator
model, utilizing an alternating update and learning process to iteratively enhance
the model’s predictive power. While the physics derived via PPI-NO may not mir-
ror the ground-truth underlying physical laws — hence the term “pseudo physics”
— this approach significantly enhances the accuracy of current operator learning
models, particularly in data scarce scenarios. Through extensive evaluations across
five benchmark operator learning tasks and an application in fatigue modeling,
PPI-NO consistently outperforms competing methods by a significant margin. The
success of PPI-NO may introduce a new paradigm in physics-informed machine
learning, one that requires minimal physics knowledge and opens the door to
broader applications in data-driven physics learning and simulations.

1 Introduction

Operator learning, a dynamic and rapidly evolving domain, has seen remarkable advancements with
the advent of neural operators. Rooted in the express power of neural networks, neural operators
have transformed computational problem-solving methods. Prominent examples include Fourier
Neural Operators (FNO) (Li et al.| 2020c), Deep Operator Net (DONet) (Lu et al.| 2021) and
other frameworks such as (Caol 2021; [Hao et al.}[2023). FNO employs Fourier transform for global
convolution and function transformation, while DONet introduces two sub-networks — the branch net
and trunk net — to extract representations from the functional space and query locations, respectively,
enabling predictions akin to attention mechanisms (Vaswani et al., 2017).

For trading for model capacity and performance, neural operators often require a substantial amount
of training data to perform optimally. This demand poses significant challenges, particularly in
complex problems, where training data can be scarce and costly to acquire. In response, the field of
physics-informed machine learning, including physics-informed neural networks (PINN) (Raissi et al.}
2019), has shown promise by incorporating physical laws as soft constraints during training. This
approach serves as a regularization technique, effectively embedding a fundamental understanding
of physics into the model to lessen its reliance on extensive training data. Building on this idea, the
concept of physics-informed neural operators (PINO) has emerged, with PINO integrating physical
laws as soft constraints to enhance model fidelity while reducing data quantity. This approach has
been used in (Wang et al., 2021} |L1 et al.,2021)) for DONet and FNO training.

Despite the success of PINO, the necessity for a thorough understanding of the underlying physics
can pose a significant hurdle, especially in complex applications such as in fracture mechanics and
climate modeling. In those scenarios, the detailed physical knowledge is often unavailable or difficult
to identify, and it is often prohibitively expensive to collect extensive data. These challenges can
render the current methods unavailable or impractical.
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To navigate these challenges while retaining the benefits of physics-informed learning, our work
introduces the Pseudo Physics-Informed Neural Operator (PPI-NO). This framework bypasses
the need for exhaustive physical comprehension by constructing a neural-network-based partial
differential equation (PDE) that characterizes the target system directly from data. The neural PDE is
then coupled with the neural operator for alternating updates and training, enabling iterative extraction,
refinement and integration of physics knowledge to enhance operator learning. The contribution of
this work lies in the following three aspects:

1. To our knowledge, PPI-NO is the first work to enhance standard operator learning pipeline
using physics directly learned from sparse data, delivering superior accuracy without the
need for in-depth physical understanding or extensive data collection.

2. The success of PPI-NO also opens up a new paradigm of physics-informed machine learning
where only rudimentary physics assumptions (in this case, the basic differential operations)
are required rather than in-depth or rigorous expert knowledge, extending the spectrum of
the physics-informed learning for experts of different levels.

3. The effectiveness of PPI-NO is validated through extensive evaluations on five commonly
used benchmark operator learning tasks in literature (Li et al.l 2020c; [Lu et al., [2022),
including Darcy flow, nonlinear diffusion, Eikonal, Poisson and advection equations, as well
as one application in fatigue modeling in fracture mechanics, where the ground-truth holistic
PDE system is unknown.

2 Background

Problem Formulation. Operator learning seeks to approximate an operator that maps input parame-
ters and/or functions to corresponding output functions. In most practical cases, operator learning
rises in the context of solving partial differential equations (PDEs), where the operator corresponds
to the solution operator of the PDE. Assume a PDE system:

N[U](X) = f(x)a x €l x [0,00), (D

where x is a compact notation for the spatial and temporal coordinates, €2 is the spatial domain, [0, o)
is the temporal domain, N is a nonlinear differential operator, u(x) is the solution function, and f(x)
is the source term. Solving the PDE system is to find the solution function u(x) that satisfies the PDE
system equation (I)) as well as the initial and boundary conditions. This task often necessitates the
use of computationally expensive numerical solvers such as finite element method (FEM) or finite
difference method (FDM). To alleviate the computational challenge, we aim to learn the solution
operator of the PDE system, 1 : F — U using a training dataset D = {(f,,, u,, ) }2_;, which consists
of discretized functions u(-) and f(-) at a set of collocations points. Once the operator model is
trained, it can be used to directly predict the solution function u for new instances of the input f,
offering a much more efficient alternative to running numerical solvers from scratch. However, the
training dataset still needs to be generated offline using numerical solvers.

Fourier Neural Operator (FNO) (Li et al.l 2020c)) represents a significant leap in neural network
architecture for operator learning, especially in solving PDEs. For a given discretized input function f,
FNO first employs a feed-forward network (FFN) on each component of f at its respective sampling
location, thereby lifting the input into a higher-dimensional channel space. The core of FNO is the
Fourier layer, which performs a linear transformation followed by a nonlinear activation within the
functional space, h(x) < o (Wh(x) + [ k(x — x")h(x')dx"), where h(x) is the input to the Fourier
layer, (+) the integration kernel, and o () the activation function. The convolution operation in this
context is efficiently computed using the convolution theorem: [ r(x — x)h(x")dx' = F [ F[x] -
F[h]](x), where F and F~! denote the Fourier and inverse Fourier transforms, respectively. The
Fourier layer’s efficiency stems from performing the Fast Fourier Transform (FFT) on h, multiplying
it with the discretized kernel in the frequency domain, and then applying the inverse FFT. The
local linear transformation, Wh(x), is executed through conventional convolution operations. After
multiple Fourier layers, the final output is obtained by the channel-wise application of another FFN,
projecting the representation back to the original space.

Deep Operator Network (DONet) (Lu et al.,2021)) is another prominent work in operator learning.
The architecture of a DONet is structured into two primary components: the branch network and the
trunk network, learning representations for the input functions and querying locations, respectively.
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Consider an input function f(x) € F evaluated at m sensor locations {x1,X2," - ,X;,} and an
output function v € U. The branch network receives the values [f(x1), f(x2)," -, f(xm)] and
outputs a feature representation [by, bo, - - | bp}T € RP. Concurrently, the trunk network processes a
querying location x and outputs another feature vector [¢1, g, -, tp]T € RP. The approximation of
the output function u(x) is computed as a sum of products of the corresponding elements from the
branch and trunk networks, G[f](x) ~ Y7 _, bity, where G is the learned operator mapping input
function f to the corresponding output function w.

Physics-Informed Neural Operator (PINO) (Wang et al.,[2021} Li et al.,|2021) has recently emerged
as a promising approach to address the data scarcity issue in operator learning. PINO embeds physical
laws — typically governing equations — into the learning process. The incorporation of physical
principles not only enhances the model’s adherence to ground-truth phenomena but also reduces its
dependency on extensive training data. Mathematically, the integration of physics into the learning
process can be viewed as an additional regularization term in the loss function. Let L, represent the
standard data-fitting loss term (e.g., the mean squared error between the predicted and actual outputs),
the physics-informed term Lphysics can be the residual of the governing PDEs evaluated at the neural
network’s outputs. The total loss function £ for a PINO model is then expressed as

L= Acdata + )\Acphysicw

where ) is a weighting factor that balances the importance of data-fitting versus physics compliance.
This approach encourages the model to learn solutions that are not only consistent with the provided
data but also physically plausible.

3 Methodology

In the absence of the underlying physics knowledge (i.e., the PDE system (I)) is not available), it is
impossible to construct the physics loss term in the PINO framework. To address this challenge, we
propose a “pseudo” physics-informed operator learning framework motivated by the need to uncover
the underlying physical laws using available data. This approach is particularly useful in relatively
more complex applications, where data is often costly or sparse while the underlying physics is hard
to fully understand. Our model architecture is depicted in Figure[T}

3.1 Pseudo Physics System Learning

As the first step, we propose a novel approach to learn the physics system using scarce training data.
Our key observation is that, although the mapping from f to u can be intricate and may necessitate
information across the entire domain (in theory, u is an integration of the Green’s function multiplied
with f over the domain), the underlying PDE system (1) simplifies to a local combination of u and its
derivatives. We therefore use a neural network ¢ to approximate the general form of N,

Nul(x) = ¢ (%, u(x), 51 (u) (%), - .., S (u) (%)), @

where {5} };9:1 are () derivative operators that we believe should be present in the system, such as
Opts, Optthy, Oy Uy Oy Uy Oy g Uy Oy 3y Uy Oy, U, and more.

The inherent local combination nature of the PDE representation decouples the values of u and its
derivatives across various sampling locations, thereby significantly increasing the number of available
training data points. For instance, consider sampling the input function f and output function » on a
128 x 128 grid. A single pair of discretized input and output functions, denoted as (f, u), is typically
insufficient for a neural operator to effectively learn the mapping f — w. However, this sample can
be decomposed into 128 x 128 = 16, 384 training data points across various (spatial and temporal)
locations to train ¢ as outlined in (Z). Hence, even with a small number of (f, u) pairs for operator
learning, the learning of the PDE system A via our formulation in (Z) can still achieve accuracy,
thanks to the much greater number of training data points that can be derived from these pairs.

We use an L loss to estimate the parameters of ¢, which is defined as

Lo=Y 0 30 160 un ), S1(un) (57) s Selun) (x7)) = fulxi)s )

where f,(+) and uy,(-) are the input and output functions in n-th training example, and {x1,...Xps}
are the locations at which we discretize f,, and u,,.
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Figure 1: The illustration of the Pseudo Physics-Informed Neural Operator (PPI-NO). At the top, a black-box
PDE representation is learned through the neural network ¢. At the bottom, the acquired “pseudo” physics laws
are utilized to form a reconstruction loss, thereby regulating the NO training.

We use numerical difference to obtain the derivatives of each u,,, namely, Sk (u,) (1 < k < @), and
then feed these inputs to the neural network ¢ to compute the prediction. As the numerical difference
method may introduce errors when calculating derivatives, we incorporate a convolution layer in ¢
to collect and integrate neighborhood information about w and its numerical derivatives, aiming to
compensate for these errors. After that, we use feed-forward layers to sequentially perform linear
transform and nonlinear activation to obtain the prediction at each sampling location; see Fig.
top. The learned neural network mapping ¢ : u — f, although black-box in nature, can encapsulate
valuable physics knowledge inherent in the data employed for operator learning.

Our method can be easily adapted to scenarios where the input and output functions are irregularly
sampled, and numerical differentiation is no longer applicable. In such cases, we can employ smooth
function estimators, such as kernel interpolation (Long et al.} 2024) or Bayesian B-splines (Sun et al.}
2022), to estimate the gradient information from data. These gradient estimations are then fed into
our PDE neural network ¢ for further learning.

3.2 Coupling Neural Operator with Pseudo Physics

Next, we leverage the pseudo physics laws embedded in the learned mapping ¢ : © — f to enhance
the neural operator learning process. Specifically, we use ¢ to reconstruct f from the u predicted
by the neural operator. In this way, our approach goes beyond relying solely on the training data; it
uses the physics learned in the previous step to incorporate a reconstruction error into optimizing the
neural operator parameters.

Initially, we train the neural operator ¢ : f — w using the available training data, creating a
preliminary model. This model is developed using FNO or DONet or other neural operators. The
focus is to first establish a basic understanding of the relationship between f and u from the limited
data. Next, the loss function for 1) is augmented using the physics laws learned in the first step,

L= le Lo(W(fn),un) + X Epipry [L2(f, o (f)))], 4)

where the first term is the Lo loss for data fitting (as in the standard neural operator training), and the
second term is the expected reconstruction error for the input function. The second term incorporates
the physics laws embedded in ¢(-), and X is a weight factor that balances the training data loss against
the reconstruction error.

In practice, the expected reconstruction error does not have a closed form. One can sample a
collection of f’ from the underlying distribution of the input function p(-), e.g., a Gauss random field
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or Gaussian process, and then employ a Monte-Carlo approximation,

L= Laf)un) + % ZL Lo (£, 6((£1))), )

where N’ is the number of input function samples.

To enhance the operator learning process, the model is iteratively refined. In each iteration, we first
fine-tune the neural operator v with the pseudo physics ¢ fixed, and then fix v, fine-tune ¢ to refine
the physics representation. This fine-tuning loop is carried out for multiple iterations, allowing for
continuous improvement of the neural operator based on the refined physics.

This methodology mirrors human experts’ approach to physics system modeling, where sparse data
is used to learn the physics laws inspired by simple differential operation (up to the 2nd order to
imitate human experts), and then these laws are utilized to generalize the system for data generation.
The reconstruction loss term augments the operator learning with additional information, leading to
potential improvement upon only training with sparse data.

4 Related Work

Neural operator learning is expanding rapidly. In addition to FNO (Li et al.| 2022 and DONet (Lu
et al.,|2021)), notable works include the Low-rank Neural Operator (LNO) introduced by |Li et al.
(2020c)), employing low-rank structures to approximate the integration. The Graph Neural Operator
(GNO) (Li et al.l 2020a) integrates Nystrom approximation with graph neural networks, while
the Multipole Graph Neural Operator (MGNO) by the same authors (Li et al., 2020b)) leverages
multiscale kernel decomposition. |Gupta et al.|(2021)) contributed with multiwavelet transformations
for the operator’s kernel. [Lu et al.|(2022) proposed POD-DONet to enhance the stability of DONet by
replacing the trunk net with POD bases constructed from data. Another DONet variant by [Seidman
et al.|(2022) used an FFN to combine the outputs of the branch net and trunk net for prediction. A line
of efforts attempted to build neural operators via transformer architectures, such as (Caol [2021; Hao
et al.,[2023)) Recently, [Kovachki et al.| (2023)) provided a comprehensive review of neural operators.
There are also recent advances in kernel operator learning strategies made by |[Long et al.| (2022)
and Batlle et al.|(2023)).

Physics-Informed Neural Networks (PINNs) (Raissi et al., [2019) mark a significant advancement
in scientific machine learning. PINNs integrate physical laws directly into the learning process,
making them effective for solving differential equations and understanding complex physical systems.
This methodology is particularly beneficial in scenarios where data is sparse or expensive to obtain.
Pioneering the concept of PINO, |Li et al.|(2021)) introduced a dual-resolution approach that combines
low-resolution empirical data with high-resolution PDE constraints. This method achieves precise
emulation of solution operators across various PDE classes. In parallel, physics-informed DONet
by |Wang et al.| (2021)) incorporate regularization strategies enforcing physical law adherence into
the training of DONets. [Zanardi et al| (2023)) presented an approach using PINO for simulations
in non-equilibrium reacting flows. [Lee et al.|(2023) proposed opPINN, a framework combining
physics-informed neural networks with operator learning for solving the Fokker-Planck-Landau
(FPL) equation. |Rosofsky et al.|(2023)) provided a review of applications of physics-informed neural
operators. However, existing methods demand one should know the physics laws beforehand, which
might not be feasible in many practical applications or complex systems. Our method offers a simple
and effective framework, enabling the extraction of implicit physics laws directly from data, even
when the data is sparse. Empirically, these pseudo physics laws have proven to be highly beneficial
in enhancing the performance of operator learning, as demonstrated in Section 3]

Our work is also related to the cycle consistence framework (Zhu et al., 2017) for image-to-image
translation. A critical difference is that cycle-consistence performs unpaired image-to-image trans-
lation, while our method aims for accurate paired translation (mapping). In cycle-consistence, the
translation is viewed successfully as long as the translated images follow some target distribution.
Hence, cycle-consistence has a much more relaxed objective. Another key difference is that our
method aims to improve the learning of a function-to-function mapping with very limited data— that
is why we first learn a “pseudo physics” representation. The cycle-consistence relies on adversarial
training which typically requires a large amount of data to obtain successful learning outcomes.
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Figure 2: Learning curve of PPI-FNO on Darcy Flow (a), and of PPI-DONet on nonlinear diffusion (b). In (c)
and (d) we show how the weight \ of “pseudo physics” affects the operator learning performance. The horizontal
line in (c) and (d) are the relative Lo errors of standard FNO and DONet.

S Experiments

Dataset. We tested on five commonly used benchmark operator learning problems in literature (Li
et al.| [2020c} [Lu et al.| [2022)), including Darcy Flow, Nonlinear Diffusion, Eikonal, Poisson and
Advection. In addition, we examined our method in an application in fatigue modeling. The task
is to predict the stress intensity factor (SIF) for semi-elliptical surface cracks on plates, given three
geometric parameters that characterize the cracks (Merrell et al., [2024); see Appendix Fig.[d The SIF
plays a critical role in modeling crack growth by quantifying the stress state near the tip of a crack,
and hence SIF computation and analysis is extremely important in fatigue modeling and fracture
mechanics (Anderson and Anderson, 2005). The SIF computation is expensive, because it typically
needs to run finite element method (FEM) or extended FEM with very fine meshes (Kuna} 2013). Due
to the complex sequence of computational steps involved in SIF calculation, there is no holistic PDE
that directly models the relationship between the geometric features and the SIF function. Instead,
SIF computation typically relies on numerical methods and the extraction of local stress fields near
the crack tip. The details about all the dataset are given in Section [A]of the Appendix.

Method and Settings. We evaluated our method based on two popular NO models, FNO and DONet.
For learning the pseudo physics laws via the neural network ¢ — see (2) — we tuned the kernel size
from {(3, 3), (5, 5), (7, 7), (9, 9)}. The stride was set to 1 and padding was set to “same” to ensure
the output shape does not change. In the subsequent FFN, we chose the number of layers from {3,
4,5, 6}, and the layer width from {16, 32, 64}. We used GeLU activation. For the cases of Darcy
Flow, Eikonal and Poisson, we used the following derivatives {0y, 4, Oy, U, Op, 5y U, Oppzy Uy Oy 2, U},
and for the other cases, we used {0, u, Oy, u, Osu, Oppu, Opru}. Since SIF is a 1d function (the input
is the angle), we used the derivatives {0, u, 0., u}. For FNO, we set the number of modes to 12
and channels to 32 (in the lifted space). We varied the number of Fourier layers from {2, 3, 4}. For
DONet, in all the cases except Darcy Flow, the trunk net and branch net were constructed as FFNs.
We varied the number of layers from {2, 3, 4} and the layer width was chosen from {30, 40, 50, 60},
with ReLU activation. For the case of Darcy flow, we found that DONet with only feed-forward layers
exhibited inferior performance. To address this, we introduced convolution layers into the branch net.
We selected the number of convolution layers from {3,5,7}, and employed batch normalization and
leaky ReLU after each convolution layer. To incorporate the learned pseudo physics representation
into the training of FNO or DONet, we randomly sampled 200 input functions to construct the second
loss term in (3). We set the maximum number of iterations to 10 and selected the weight A from
[10~1, 10%]. All the models were implemented by PyTorch (Paszke et al.,[2019), and optimized with
ADAM (Kingma and Ba, 2014). The learning rate was selected from {10=%,5 x 10~%,1073}. The
number of epochs for training or fine-tuning FNO, DONet and pseudo physics network ¢ was set to
500 to ensure convergence. For each operator learning benchmark, we simulated 100 examples for
testing, and varied the number of training examples from {5, 10, 20, 30}, except for Advection, we
ran with {20, 30, 50, 80} training examples. For SIF prediction (which is much more challenging),
we experimented with training size from {400, 500, 600}, and employed 100 test examples. We
repeated the evaluation for five times, each time we randomly sampled a different training set. We
ran experiments on workstations equipped with Nvidia Geforce RTX 4090 and Intel 19 CPU.

5.1 Results and Analysis

Predictive performance. We reported the average relative Lo error and the standard deviation (before
and after incorporating the pseudo physics laws) in Table || and Table [2l The model trained with
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Training size 5 10 20 30
FNO 0.4915 + 0.0210 0.3870 £ 0.0118  0.2783 £+ 0.0212  0.1645 + 0.0071
PPI-FNO 0.1716 + 0.0048  0.0956 + 0.0084  0.0680 4+ 0.0031  0.0642 4+ 0.0010
Error Reduction 65.08% 75.29% 75.56% 60.97%
DONet 0.8678 £+ 0.0089  0.6854 + 0.0363  0.5841 4+ 0.0279  0.5672 + 0.0172
PPI-DONet 0.5214 + 0.0543  0.3408 + 0.0209  0.2775 4+ 0.0224  0.2611 4+ 0.0084
Error Reduction 39.91% 50.27% 52.49% 53.96%
(a) Darcy flow
Training size 5 10 20 30
FNO 0.2004 + 0.0083  0.1242 4+ 0.0046 0.0876 £ 0.0061 0.0551 + 0.0021
PPI-FNO 0.0105 + 0.0016  0.0066 4= 0.00023  0.0049 + 0.00037  0.0038 £ 0.00039
Error Reduction 94.76% 94.68% 94.40% 93.10%
DONet 0.3010 £ 0.0119  0.2505 + 0.0057 0.1726 £ 0.0076 0.1430 + 0.0036
PPI-DONet 0.1478+ 0.0126  0.1161 £+ 0.0124 0.1032 + 0.0059 0.0842 + 0.0041
Error Reduction 50.89% 53.65% 40.20 % 41.11%
(b) Nonlinear diffusion
Training size 5 10 20 30

FNO 0.2102 £ 0.0133  0.1562 + 0.0098  0.0981 4+ 0.0022  0.0843 4+ 0.0020
PPI-FNO 0.0678 + 0.0026  0.0582 + 0.0043  0.0493 4+ 0.0023  0.0459 4+ 0.0010
Error Reduction 67.74% 62.74% 49.74% 45.55%
DONet 0.3374 +0.0944  0.1759 + 0.0065 0.1191 4+ 0.0047  0.1096 4+ 0.0037
PPI-DONet 0.1302+ 0.0127  0.0907 £ 0.0093  0.0714 £ 0.0011  0.0700 = 0.0007
Error Reduction 61.41% 48.43% 40.05% 36.13%
(¢c) Eikonal
Training size 5 10 20 30
FNO 0.2340 + 0.0083  0.1390 4+ 0.0007  0.0895 4+ 0.0008  0.0698 + 0.0014
PPI-FNO 0.1437 £ 0.0062  0.0771 + 0.0018  0.0544 4+ 0.0009  0.0458 4+ 0.0003
Error Reduction 38.59% 44.53% 39.22% 34.38%
DONet 0.6142 £+ 0.0046  0.5839 + 0.0090  0.5320 4+ 0.0028  0.5195 4+ 0.0040
PPI-DONet 0.5275 +0.0037  0.5001 4+ 0.0042  0.4450 4+ 0.0010  0.4258 4+ 0.0040
Error Reduction 14.12% 14.35% 16.35% 18.04%
(d) Poisson
Training size 20 30 50 80
FNO 0.4872 +0.0097  0.4035 + 0.0086  0.3019 4+ 0.0085 0.2482 4+ 0.0059
PPI-FNO 0.3693 + 0.0099  0.3224 + 0.0123  0.2236 + 0.0075  0.1698 + 0.0075
Error Reduction 24.20% 20.10% 25.94% 31.59%
DONet 0.5795 £ 0.0045 0.4810 + 0.0092  0.3882 + 0.0086  0.3164 + 0.0072
PPI-DONet 0.3630 + 0.0112  0.2897 + 0.0097  0.2629 4+ 0.0053  0.2120 4 0.0065
Error Reduction 37.36% 39.77% 32.28% 33.00%

(e) Advection

Table 1: Relative Lo error in five operator learning benchmarks, where “PPI” is short for Pseudo-Physics
Informed”. The results were averaged from five runs.

Training size 400 500 600
FNO 0.1776 £ 0.0150  0.1695 £+ 0.0090  0.1122 + 0.0094
PPI-FNO 0.1166 £ 0.0064 0.1151 +0.0093  0.08504-0.0060
Error Reduction 34.35% 32.09% 24.24%
DONet 0.5318 £ 0.0095  0.5155 + 0.0200  0.4037 4+ 0.0331
PPI-DONet 0.3490 £ 0.0034  0.3468 + 0.0074  0.3299 £ 0.0066

Error Reduction

34.37%

32.73%

18.28%

Table 2: SIF prediction error for plate surface cracks in fatigue modeling.

the learned physics laws (see (3))) is denoted as PPI-FNO or PPI-DONet, short for Pseudo Physics
Informed FNO/DONet. In all the cases, with our pseudo physics informed approach , the prediction
error of both FNO and DONet experiences a large reduction. For instance, across all training sizes in
Darcy Flow and nonlinear diffusion, PPI-FNO reduces the relative Lo error of the ordinary FNO by
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Figure 3: Examples of the prediction and point-wise error of PPI-DONet and PPI-FNO on Darcy Flow and
nonlinear diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.

over 60% and 93%, respectively. In Darcy Flow with training sizes 10 to 30, PPI-DONet reduces the
error of the ordinary DONet by over 50%. In SIF prediction, our method applied to both FNO and
DONet reduced the error by over 30% with training size 400 and 500. Even the minimum reduction
across all cases achieves 14.12% (PPI-DONet over DONet on Poisson with training size 5).

Together these results demonstrate the strong positive impact of the learned physics by our neural
network model ¢ specified in Section Although it remains opaque and non-interpretable, it
encapsulates valuable knowledge that greatly enhances the performance of operator learning, in
particular with limited data.

Next, we assessed the accuracy of the learned physics laws by examining the relative Lo error in
predicting the source functions f from ¢ (see (2)). We tested on Darcy Flow, nonlinear diffusion,
and Eikonal. We compared a baseline method that removes the convolution layer of ¢, leaving only
the feed-forward layers. The average relative Lo error and standard deviation are reported in Table 3]
It can be observed that in nearly

every case, adding a convolu- Benchmark FEN Ours

tion layer indeed significantly im- Darcy Flow 0.1819£0.0026  0.1392= 0.0080
proves the accuracy of ¢. This Nonlinear Diffusion  0.06604+0.0069  0.0233+0.0005
improvement might be attributed Eikonal 0.0144£0.0009  0.0108 =+ 0.0006

to the convolution layer’s abil-

. . . .. Traini ize=10
ity to integrate neighboring infor- (a) Training size

Benchmark FFN Ours

mation and compensate for the Darcy Flow 0.141310.0013  0.0688% 0.0032
error introduced by the numeri- Nonlinear Diffusion  0.0463+0.0022  0.0163-0.0002
cal difference in approximating Eikonal 0.007040.00005  0.0052 - 0.0002
the derivatives. We also exper- .

imented with multiple convolu- (b) Training size=30

tion layers, but the improvement

was found to be marginal. Table 3: Relative Lo error of using the learned back-box PDE net-

work () to predict the input function f.

In addition, we also found the

operator learning improvement

is relatively robust to the accuracy of our physics representation ). For instance, on Darcy Flow with
training size 5 and 10, the relative Ly error of ¢ network is 0.2285 and 0.1392, which is significantly
bigger than with training size 30 where the relative Ly error is 0.0688. Yet the error reduction upon
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FNO (see Table[Ta) under all the three training sizes is above 60%. The error reduction upon DONet is
40% for training size 5 and over 50% for training size 10 and 30. The results imply that even roughly
capturing the underlying physics (with ¢) can substantially boost the operator learning performance.

Point-wise prediction and point-wise error. For a detailed assessment, we conducted a fine-grained
evaluation by visualizing the predictions and point-wise errors made by each method. In Fig. [3aland
[3b] we showcased the predictions and point-wise errors using PPI-DONet for Darcy Flow, PPI-FNO
for nonlinear diffusion, respectively. Additional examples of predictions and point-wise errors are

provided in Fig. [5} and [8b]in the Appendix.

It is evident that without the assistance of the pseudo physics laws learned by our method, the
ordinary DONet and FNO frequently missed crucial local structures, sometimes even learning entirely
incorrect structures. For example, In Fig. [3athe first row, DONet missed one mode, while in the
second and third row of Fig. [3a] DONet failed to capture all the local modes. After incorporating the
learned physics, DONet (now denoted as PPI-DONet; see the third column) successfully captures
all the local modes, including their shapes and positions. Although not all the details are exactly
recovered, the point-wise error is substantially reduced, particularly in those high error regions
of the ordinary DONet; see the fourth column of Fig. 3a] In another instance, as shown in Fig.
where the ordinary FNO (second column) captured the global shape of the solution, but the
mis-specification of many local details led to large point-wise errors across many regions (fourth
column). In contrast, PPI-FNO (third column) not only identified the structures within the solution
but also successfully recovered the details. As a result, the point-wise error (fifth column) was close
to zero everywhere. Additional instances can be found in Fig. the first three rows illustrate that
ordinary FNO (trained with 5, 10, and 20 examples, respectively) estimates an entirely incorrect
structure of the solution, indicating that the training data is insufficient for FNO to capture even the
basic structure of the solution. In contrast, after fine-tuning with our learned physics laws from the
same sparse data, PPI-FNO accurately figured out the solution structures and yielded a substantial
reduction in point-wise error across nearly everywhere. The point-wise error became uniformly
close to zero. With 30 examples, the ordinary FNO was then able to capture the global structure of
the solution, but the details in the bottom left, bottom right, and top right corners were incorrectly
predicted. In comparison, PPI-FNO further recovered these details accurately.

Collectively, these results demonstrate that the pseudo physics extracted by our method not only
dramatically boosts the overall prediction accuracy but also better recovers the local structures and
details of the solution.

Learning Behavior. We examined the learning behavior of our method, which conducts an iterative,
alternatingly fine-tuning process. We employed one Darcy Flow, one nonlinear diffusion and one
Eikonal dataset, each with 30 examples. We show the test relative Ly error along with the iterations
in Fig. [2a] [2b] and Appendix Fig.[6a]and Fig.[6bl As we can see, the predictive performance of our
algorithm kept improving and tended to converge at last, affirming the efficacy of learning process.

Ablation study on the PDE network ¢. To confirm the efficacy of our designed PDE network ¢
in facilitating operator learning, we considered alternative designs for ¢: (1) using standard FNO
to predict f directly from u; no derivative information is included in the input; (2) removing the
convolution layer in our model, and just keeping the FNN layers; the input is the same as our
model, i.e., the derivative information is included in the input. With different designs of ¢, we
evaluated the PPI learning performance on the Darcy Flow benchmark. The relative Lo error in
predicting f via ¢ and predicting u is reported in Table ] Our design of ¢ consistently outperforms
alternative architectures by a notable margin, showing the effectiveness of learning a (black-box)
PDE representation and improving the operator learning.

Ablation study on the choice of derivatives. We further investigated the PPI learning performance
with respect to the choice of derivatives used in the PDE network. Specifically, we tested PPI-FNO on
the Darcy-flow benchmark and varied the order of derivatives up to 0, 1, 2, and 3. The performance is
reported in Table |5} We can see that although the accuracy of ¢ with derivatives up to the third order
is slightly better than with derivatives up to the second order, the best operator learning performance
was still achieved using derivatives up to the second order (which was used in our evaluations). This
might be because higher-order derivative information can cause overfitting in the PDE network ¢ to
a certain degree. Such higher-order information may not be critical to the actual mechanism of the
physical system and can therefore impede the improvement of operator learning performance.
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Training size 5 10 20 30
FNO 0.722940.0318  0.5759+ 0.0126  0.4257+ 0.0106  0.31604 0.0037
MLP 0.71691+0.0160  0.6598+ 0.0056  0.6464+ 0.0029  0.6277+ 0.0032
Ours 0.2285 £ 0.0147  0.1392 + 0.0080  0.0898 + 0.0046  0.0688 + 0.0032
(a) Predicting f via ¢ with different architectures.

Training size 5 10 20 30
PPI-FNO with FNO as ¢ 0.5853£0.0153  0.3871+0.0124  0.2613+0.0190  0.16294 0.0064
PPI-FNO with MLPas ¢ 0.7262+0.0920  0.5516% 0.0699  0.4568+ 0.0857  0.3983+ 0.1051

Standard FNO 0.4915 £0.0210 0.3870 £ 0.0118 0.2783 £0.0212  0.1645 £ 0.0071
Ours 0.1716 £ 0.0048  0.0956 + 0.0084  0.0680 & 0.0031  0.0642 + 0.0010
(b) Predicting .

Table 4: The relative Lo error with using different architectures of ¢ in pseudo-physics-informed (PPI) learning

on Darcy Flow benchmark.

Training size 5 10 20 30
order 0 0.71264+0.0131  0.5733+£0.0208  0.48124+0.0399  0.3445+0.0182
order < 1 0.2926+0.0118  0.2006+0.0047  0.1379£0.0051  0.10844-0.0053
order < 2 0.22854+0.0147  0.1392+0.0080  0.08984+0.0046  0.0688+0.0032
order < 3 0.2058+0.0192  0.11231+0.0039  0.0712£0.0021  0.05854-0.0030

(a) Predicting f via ¢.

Training size 5 10 20 30
order 0 0.63524+0.0673  0.4523+£0.0621  0.35701+0.0658  0.2737+0.0643
order <1 0.33864+0.0259 0.2161£0.0083  0.16454+0.0114  0.1197+£0.0132
order < 2 0.1716+0.0048  0.0956+£0.0084 0.0680+0.0031  0.0642+0.0010
order < 3 0.29594+0.0381  0.1719+£0.0213  0.11934+0.0158  0.0828+0.0054

(b) Predicting u.

Table 5: The relative Ly error of PPI learning by incorporating different orders of derivatives. During the
comparison with other operator learning methods, we used derivative orders up to 2 to run our method.

Ablation study on the weight \. We examined the effect of the weight A of our “pseudo physics”;
see (@). To this end, we used one Darcy Flow dataset and nonlinear diffusion dataset with training
size 30. We varied A from [0.5, 10?], and run PPI-FNO and PPI-DONet on Darcy Flow and nonlinear
diffusion, respectively. As shown in Fig. [2c|and we can see that across a wide range of A values,
PPI-FNO and PPI-DONet can consistently outperform the standard FNO and DONet respectively
by a large margin. However, the choice A does have a significant influence on the operator learning
performance, and the best choice is often in between. In Appendix Fig. [6c|and[6d] we show results
on Ekonal, which we make similar observations.

Computational complexity and memory usage. Our PPI-NO framework conducts alternating
updates, and hence needs more training cycles than standard NO. But the time complexity only
grows linearly with the number of alternating iterations, rather than quadratically or exponentially.
We believe this is reasonable and practically acceptable. For memory usage, Our “pseudo” physics
network ¢ is very small as compared to the NO component — ¢ is simply a pixel-wise FFN coupled
with one convolution filter, resulting in a marginal increase in memory cost. Appendix Table [6]
shows the parameter count of FNO, DONet and their pseudo-physics-informed version. On average,
PPI-FNO increases the number of parameters over FNO by 1.29% while PPI-DONet over DONet by
1.89%.

6 Conclusion

We have presented a Pseudo Physics-Informed Neural Operator (PPI-NO) learning framework. PPI-
NO is based on our observation that a PDE system is often characterized by a local combination of
the solution and its derivatives. This characteristic enables the derivation of many training points from
the function sampling locations, facilitating learning of the PDE systems through a neural network.
While the physics delineated by PPI-NO might not precisely reflect true physical phenomena, our
findings reveal that this method significantly enhances the efficiency of operator learning, particularly
with limited data quantity.

10
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Appendix
A Experimental Details

A.1 Darcy Flow

We first considered a steady-state 2D Darcy Flow equation (Li et al., 2020c)),
~V - (a(z)Vu(z)) = f(z) =€ (0,1)2

u(z) =0 x € 9(0,1)?, (6)
where u(x) is the velocity of the flow, a(x) characterizes the conductivity of the media, and f(x) is
the source function that can represent flow sources or sinks within the domain. In the experiment, our
goal is to predict the solution u given the external source f. To this end, we fixed the conductivity
a, which is generated by first sampling a Gauss random field « in the domain and then apply a
thresholding rule: a(x) = 4 if a(x) < 0, otherwise a(x) = 12. We then used another Gauss random

field to generate samples of f. We followed (Li et al.,[2020c) to solve the PDE using a second-order
finite difference solver and collected the source and solution at a 128 x 128 grid.

A.2 Nonlinear Diffusion PDE

‘We next considered a nonlinear diffusion PDE,

Opu(z,t) = 10 20u(x, t) + 107 2u? (2, t) + f(x,t),

u(—1,t) = u(l,t) =0, wu(x,0)=0, @)
where (z,t) € [—1,1] x [0, 1]. Our objective is to predict the solution function u given the source
function f. We used the solver provided in (Lu et al.| 2022)), and discretized both the input and output

functions at a 128 x 128 grid. The source f was sampled from a Gaussian process with an isotropic
square exponential (SE) kernel for which the length scale was set to 0.2.

A.3 Eikonal Equation

Third, we employed the Eikonal equation, widely used in geometric optics and wave modeling. It
describes given a wave source, the propagation of wavefront across the given media where the wave
speed can vary at different locations. The equation is as follows,

IVu(x)| = ,x € [0,256] x [0, 256] ®)

1
7
where u(x) is the travel time of the wavefront from the source to location x, | - | denotes the Euclidean
norm, and f(x) > 0 is the speed of the wave at x.

In the experiment, we set the wave source at (0, 10). The goal is to predict the travel time u given the
heterogeneous wave speed f. We sampled an instance of f using the expression:

F(x) = max(g(x),0) + 1.0,

where g(+) is sampled from a Gaussian process using the isotropic SE kernel with length-scale 0.1. We
employed the eikonalfm library (https://github.com/kevinganster/eikonalfm/
tree/master) that implements the Fast Marching method |Sethian| (1999)) to compute the solution
U.

A.4 Poisson Equation

Fourth, we considered a 2D Poisson Equation,

—Au=f, inQ= [O7 1}2, u|3D =0. ©)
where A is the Laplace operator. The solution is designed to take the form, u(xy,zs) =
—s Zfil Zle a;;(i% + j2)" sin(imxq) cos(jmr2), and f(x1,x2) is correspondingly computed

via the equation. To generate the dataset, we set K = 5 and r = 0.5, and independently sampled
each element a;; from a uniform distribution on [0, 1].
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Parameter count FNO PPI-FNO (increase) DONet PPI-DONet (increase)

Darcy-flow 1,188,353 1,229,476 (+3.46%) 2,084,704 2,125,827 (+1.97%)
Nonlinear-diffusion 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Eikonal 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Poisson 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Advection 1,188,353 1,197,220 (+0.75%) 210,101 218,968 (+4.22%)

Table 6: Parameter counts for FNO and DONet with PPI variations across different problems. The training size
is 30.

2b
% y) L
< X >
2C

Figure 4: Example of semi-elliptic surface crack on a plates (Merrell et al., [2024)).

A.5 Advection Equation

Fifth, we considered a wave advection equation,

Oou Ou

—+—= € [0,1], te]0,1]. 10
The solution is represented by a kernel regressor, u(x) = Zj\il w;k(x,2z;), and the source f is
computed via the equation. To collect instances of (f, ), we used the square exponential (SE) kernel

with length-scale 0.25. We randomly sampled the locations z; from the domain and the weights w;
from a standard normal distribution.

A.6 Fatigue Modeling

We considered predicting the SIF values along semi-elliptic surface cracks on plates, as shown in
Fig The SIF value can be viewed as a function of the angle ¢ € [0, 7], which decides the location
of each point on the crack surface. The geometry parameters that characterize the crack shape and
position were used as the input, including a/c, a/t and ¢/b. In the operator learning framework,
the input can be viewed as a function with three constant outputs. The dataset was produced via a
high-fidelity FE models under Mode I tension (Merrell et all,2024). Each data instance includes 128
samples of the SIF values drew uniformly across the range of ¢.

37.5

—— Ground Truth
—— FNO
— PPLI-FNO

—— Ground Truth
—— FNO
— PPI-FNO

—— Ground Truth
—— FNO
—— PPLI-FNO

35.0

32.5
30.0
.
®27.5
25.0
22.5

20.0

Figure 5: Examples of SIF prediction of FNO and PPI-FNO trained with 600 examples.
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Figure 6: Learning curve of PPI-FNO (a) and PPI-DONet (b) on Eikonal with 30 training examples. Shown in
(c) and (d) is how the weight A of “pseudo physics” affects the operator learning performance. The horizontal
line in (c) and (d) are the relative Lo error of standard FNO and DONet, respectively.
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Figure 7: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Eikonal. From top
to bottom, the models were trained with 5, 10, 20, 30 examples.
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Figure 8: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Darcy Flow and
Nonlinear diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.

B Limitation and Discussion

Our current method cannot learn PDE representations for which the input function f is the initial
condition. In such cases, the mapping from the solution function to the initial condition requires a
reversed integration over time, hence we cannot decouple the derivatives. To address this problem,
we plan to explicitly model the temporal dependencies in the PDE representation, such as via the

neural ODE design 2018).

16



	Introduction
	Background
	Methodology
	Pseudo Physics System Learning
	Coupling Neural Operator with Pseudo Physics

	Related Work
	Experiments
	Results and Analysis

	Conclusion
	Experimental Details
	Darcy Flow
	Nonlinear Diffusion PDE
	Eikonal Equation
	Poisson Equation
	Advection Equation
	Fatigue Modeling

	Limitation and Discussion

