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Abstract

Nonstationary phenomena, such as satiation effects in recommendations, have mostly been
modeled using bandits with finitely many arms. However, the richer action space provided by
linear bandits is often preferred in practice. In this work, we introduce a novel nonstationary
linear bandit model, where current rewards are influenced by the learner’s past actions in
a fixed-size window. Our model, which recovers stationary linear bandits as a special case,
leverages two parameters: the window size m ≥ 0, and an exponent γ that captures the
rotting (γ < 0) or rising (γ > 0) nature of the phenomenon. When both m and γ are known,
we propose and analyze a variant of OFUL which minimizes regret against cyclic policies.
By choosing the cycle length so as to trade-off approximation and estimation errors, we then
prove a bound of order

√
d (m+1) 1

2 +max{γ,0} T 3/4 (ignoring log factors) on the regret against
the optimal sequence of actions, where T is the horizon and d is the dimension of the linear
action space. Through a bandit model selection approach, our results are then extended to
the case where both m and γ are unknown. Finally, we complement our theoretical results
with experiments comparing our approach to natural baselines.

1 Introduction

Many real-world problems are naturally modeled by stochastic linear bandits, where actions belong to a
linear space, and the learner obtains rewards whose expectations are linear functions of the chosen action
(see e.g., Lattimore & Szepesvári (2020)). Formally, at each time step t the expected reward is rt = ⟨at, θ

∗⟩,
where at ∈ Rd is the chosen action and θ∗ ∈ Rd is a fixed and unknown parameter to be estimated. In a
song recommendation problem, for instance, the possible actions are the songs from the catalogue, usually
represented by their feature vectors (Deshpande & Montanari, 2012; Korkut & Li, 2021; Ghoorchian &
Maghsudi, 2022). The linear reward rt (i.e., the user satisfaction) measures how well the song at picked by
the learner matches the (unknown) preferences of the user, represented by θ∗. However, this model fails to
capture a key aspect, i.e., the nonstationarity of the users’ preferences. For example, user satiation with
respect to the recommended items is a typical phenomenon in this context (Kapoor et al., 2015; Kunaver &
Požrl, 2017), as studied in rotting bandits (Bouneffouf & Féraud, 2016). Indeed, identifying the favorite song
of a user (i.e., the vector a in the action set that maximizes ⟨a, θ∗⟩) only partly solves the recommendation
problem, as suggesting this song repeatedly is not meaningful in the long run (Kovacs et al., 2018; Schedl
et al., 2018). But satiation is far from being the only nonstationary phenomenon observed in practice. In
algorithmic selection for instance, one must choose among a pool of algorithms the one that is going to get
the next chunk of resources (e.g., CPU time or samples). In this case, we expect the quality of the solution
found by each algorithm to increase as the algorithm gets selected. This model, known as rising bandits,
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has been studied in deterministic (Heidari et al., 2016; Li et al., 2020) and stochastic (Metelli et al., 2022)
settings.

Nonstationarity in bandits, which has been mostly studied in the case of finitely many arms, appears to
be significantly more intricate to analyze in a linear bandit framework due to the structure of the action
space. For instance, rotting bandits (Bouneffouf & Féraud, 2016) or rested rising bandits (Metelli et al.,
2022) assume that the expected reward of an arm is fully determined by the number of times this arm has
been pulled in the past. In the linear case, on the contrary, one would expect nontrivial cross-arm effects.
Listening to rock songs should affect the future interest in rock songs, but also to a minor extent that in folk
music, as the two genres are related. On the other side, it also seems reasonable that a folk rock song does
not increase rock satiation as much as a pure rock song. Hence, a principled way to model nonstationarity in
linear environments is needed.

In this work, we introduce a novel linear bandit framework that allows to model complex nonstationary
behaviors in an infinite and structured space of actions. More specifically, the nonstationarity is captured by
a matrix, determined by the past actions of the learner and affecting the expected reward of future actions.
Formally, the expected reward at time step t becomes rt = ⟨at, At−1θ

∗⟩, where At−1 = A(at−1, . . . , at−m) =(
A0 +

∑m
s=1 at−sa

⊤
t−s

)γ ∈ Rd×d. Here, A0 is some initial symmetric and positive semidefinite matrix.
Typically, A0 is chosen to be the identity Id, which we refer to as the isotropic initialization. The memory
size m ≥ 0 controls the range of past actions having an influence, while the exponent γ ∈ R quantifies their
impact. A positive γ corresponds to a rising behavior, and a negative γ to a rotting one — two established
scenarios in the bandit literature. In the rotting setting, playing action a at time t decreases the expected
reward of a at time t+ 1. Hence, solving this problem requires long-term planning, and playing repeatedly
θ∗ may not be optimal. Instead, in a rising scenario with isotropic initialization, an optimal action played
(and thus boosted) at time t remains optimal at time t+ 1. Although optimal policies are stationary in this
case, note that such problems are intrinsically difficult as the learner is penalized twice: for not choosing a
good action at the present time, but also at future time steps, for not having boosted the right action. We
highlight that our approach is able to cope simultaneously with these two different scenarios. Finally, note
that our model recovers stationary linear bandits as a special case when γ = 0 (or m = 0 and A0 = Id).

We start by focusing on cyclic policies, and show that they provide a reasonable approximation to the optimal
policy (which may not be cyclic) while being easier to learn. When m and γ are known, estimating the best
block of fixed length reduces to a stationary problem, that we solve using a block variant of OFUL (Abbasi-
Yadkori et al., 2011). When m = 0, our variant recovers the regret bound O

(
d
√
T
)

of OFUL up to log factors.
We then optimize the block length in order to balance the approximation and estimation errors, and obtain a
bound on the regret against the optimal sequence of actions in hindsight of order

√
d (m+ 1) 1

2 +max{γ,0}T 3/4

(ignoring log factors) for all T ≥ (md)2. Finally, we extend our analysis to the case when m and γ are both
unknown. For this case, we prove regret bounds via an extension of the bandit model selection approach of
Cutkosky et al. (2020). Empirically, our approach is shown to outperform natural baselines, such as the oracle
greedy strategy (playing the action with the best instantaneous expected reward) and a naive block learning
approach. Our experimental results also include misspecified settings, where we learn θ∗ and simultaneously
either m or γ.

Contributions.

• We introduce a new bandit framework to model nonstationary effects in linear action spaces. Our
model generalizes stationary linear bandits, whose bound we recover as a special case.

• We propose an OFUL-based algorithm achieving sublinear regret against the best sequence of actions
by learning cyclic policies and balancing estimation and approximation errors.

• We use a bandit model selection approach to learn the system’s parameters m and γ.
• Empirically, our algorithm outperforms natural baselines in both rotting and rising settings.

Related works. Stochastic linear bandits, which were introduced two decades ago (Abe & Long, 1999;
Auer, 2002), are typically addressed using algorithms based on ellipsoidal confidence sets (Dani et al., 2008;
Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011). Nonstationary bandits have been mainly
studied in the case of finitely many arms. Among the most studied models, there are rested (Gittins, 1979;
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Gittins et al., 2011) and restless (Whittle, 1988; Ortner et al., 2012; Tekin & Liu, 2012) bandits, rotting
bandits (Bouneffouf & Féraud, 2016; Heidari et al., 2016; Cortes et al., 2017; Levine et al., 2017; Seznec et al.,
2019), bandits with rewards depending on arm delays (Kleinberg & Immorlica, 2018; Cella & Cesa-Bianchi,
2020; Simchi-Levi et al., 2021; Laforgue et al., 2022), blocking and rebounding bandits (Basu et al., 2019;
Leqi et al., 2021), and rising bandits (Li et al., 2020; Metelli et al., 2022).

The d-step lookahead regret of Pike-Burke & Grunewalder (2019) is similar to our regret against the best
cyclic policy. However, while the lookahead oracle selects the best block based on the learner’s current state,
our oracle is defined independently of the learner’s action. In this respect, our work investigates a policy regret
version of the lookahead regret. Some works have also considered nonstationary bandit frameworks, where
the unknown parameter θ∗ is then replaced by a sequence of vectors θ∗

t that evolves over time. Standard
assumptions then stipulate that θ∗

t is piecewise stationary, with a fixed number of change points (Bouneffouf
et al., 2017; Wu et al., 2018; Auer et al., 2019; Chen et al., 2019; Di Benedetto et al., 2020; Xu et al., 2020;
Li et al., 2021), or that the variation budget

∑
t≤T ∥θ∗

t − θ∗
t−1∥ is bounded (Besbes et al., 2014; Karnin &

Anava, 2016; Luo et al., 2018; Cheung et al., 2019; Russac et al., 2019; 2020; Kim & Tewari, 2020; Zhao et al.,
2020). See also Mueller et al. (2019) for an application of linear bandits to nonstationary dynamic pricing. In
addition to these assumptions, we highlight that the above works are fundamentally different from ours, as
the evolution of θ∗

t is oblivious to the actions taken by the learner. This removes any need for long-term
planning and puts the focus on the dynamic regret, where the algorithm’s performance is compared to the
rewards which one could obtain by picking at according to θ∗

t . Finally, note that nonstationarity in linear
bandit environments may also be tackled using Gaussian Processes (Faury et al., 2021; Deng et al., 2022).

We note that the idea of combining linear and rotting bandits was already discussed in Seznec (2020,
Section 4.7), where the author provides some evidences on the intrinsic difficulty to do so. There, the author
proposes an extension of rotting bandits to linear spaces of actions by summing along the different dimensions
the projections of the past actions. It is however proved that such a model cannot be learned. Indeed, it is
possible to exhibit an instance of this linear rotting problem for which any policy suffers linear regret. On
the contrary, our analysis in Section 3 shows that our model (based instead on the covariance matrix of the
past actions) is learnable. The price we pay for ensuring learnability is that our model does not capture the
K-armed rotting bandit setting in its full generality, see Example 2 for more details.

Notation. Bd denotes the Euclidean unit ball, 0d and (ek)k≤d the zero and standard basis in Rd, Id ∈ Rd×d

the identity matrix, ∥M∥∗ the operator norm of M , and γ+ = max(γ, 0) for any γ ∈ R. Bold characters refer
to block objects, and Õ is used when neglecting logarithmic factors.

2 Model

In this section, we introduce our model of linear bandits with memory (LBM in short). LBMs strictly
generalize stationary linear bandits, and also recover some nonstationary bandit models with finitely many
arms as special cases. The learning setup is as follows. At each time step t = 1, 2, . . . the learner picks an
action at from a (possibly infinite) set of actions A ⊂ Bd, and receives a stochastic reward yt. Similarly to
linear models, we assume that the expected reward is a linear function of some unknown vector θ∗ ∈ Bd. In
contrast to stationary models, however, the expected reward at time t is also influenced by the choice of
previous actions of the learner. Mathematically, this is captured by the correlation matrix

∑m
s=1 at−sa

⊤
t−s,

where m measures how far in the past actions can influence the current reward.1 Finally, in order to model
the type (rising or rotting) of behavior and its strength, we use a positive or negative exponent γ. This
results in the following formula for the reward at time t,

yt =
〈
at, A(at−m, . . . , at−1) θ∗〉+ ηt , (1)

1

Using a different analysis, one could replace our fixed-size window with exponentially decaying discount factors. However,
while these factors are typically treated as fixed model parameters, our analysis shows how to learn the best m (see Section 3.3).
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where ηt is a 1-sub-Gaussian random variable independent of the actions of the learner, and

A(a1, . . . , am) =
(
A0 +

m∑
s=1

asa
⊤
s

)γ

. (2)

Equations (1) and (2) define a model which strictly generalizes standard linear bandits, recovered for γ = 0.
The choice of the covariance matrix for (2) is intuitive, as it stores the previously played actions and thus
naturally encodes the directions where satiation or excitation occurs through its eigenvectors, see Figure 1.
For simplicity, in the rest of the paper we use the abbreviation At−1 = A(at−m, . . . , at−1) and refer to it
as the memory matrix. Conventionally, we set a1−m = a2−m = . . . = a0 = 0d and choose A0 = Id unless
otherwise stated. Note that parameters m and γ have the twofold advantage of making the model general
enough to account for both rotting (γ < 0) and rising (γ > 0) scenarios while being simple enough to be
learned simultaneously with θ∗, see Section 3.3. Note also that at any time step t the expected reward
rt = E[yt] satisfies |rt| ≤ ∥At−1∥∗. Given a horizon T ∈ N, the learner aims at maximizing the expected sum
of rewards obtained over the T interaction rounds. The performance is measured against the best sequence of
actions over the T rounds, i.e., through the regret

∑T

t=1
r∗

t − E
[∑T

t=1
yt

]
,

where r∗
t =

〈
a∗

t , A(a∗
t−m, . . . , a

∗
t−1) θ∗〉 and (a∗

t )t≥1 is the optimal sequence of actions, i.e., the sequence
maximizing the expected sum of rewards obtained over the horizon T

a∗
1, . . . , a

∗
T = arg max

a1,...,aT ∈A

T∑
t=1

〈
at, A(at−m, . . . , at−1) θ∗〉 . (3)

Throughout the paper, we use OPT to denote
∑

t r
∗
t whenever the horizon T is understood from the context.

Note that a LBM is fully characterized by: the action set A, the parameter θ∗, the memory size m, and the
exponent γ. As shown in the following examples, LBMs fully generalize (stationary) linear bandits, and allow
to partially recover rotting/rising rested bandits in the limit m→∞.

Example 1 (Stationary linear bandits) Consider a linear bandit model, defined by an action set A ⊂ Bd

and θ∗ ∈ Bd. This is equivalent to a LBM with the same A and θ∗, and memory matrix A such that
A(a1, . . . , am) = Id for any a1, . . . , am ∈ Am, i.e., when m = 0 or γ = 0.

Example 2 (Rotting and rising rested bandits) In rotting (Levine et al., 2017; Seznec et al., 2019) or
rising (Metelli et al., 2022) rested bandits, the expected reward of an arm k at time step t is fully determined
by the number nk(t) of times arm k has been played before time t. Formally, each arm is equipped with a
function µk such that the expected reward at time t is given by µk(nk(t)). In particular, requiring all the µk

to be nonincreasing corresponds to the rotting bandits model, and requiring all the µk to be nondecreasing
corresponds to the rested rising bandits model. Now, let d = K, A = (ek)1≤k≤K , θ∗ = (1/

√
K, . . . , 1/

√
K),

and m→∞2. By the definition of A, see (2), and the orthogonality of the actions, it is easy to check that
the expected reward of playing action ek at time step t is given by (1 + nk(t))γ/

√
K. When γ ≤ 0, this is a

nonincreasing function of nk(t), and we recover rotting rested bandits. Conversely, when γ ≥ 0, we recover
rising rested bandits. We note however that the class of decreasing (respectively increasing) functions we can
consider is restricted to the set of monomials of the form n 7→ (1 + n)γ/

√
K, for γ ≤ 0 (respectively γ ≥ 0).

Extending it to generic polynomials is clearly possible, although it requires more computations in the model
selection phase, see Remark 4 and Section 3.3.

Although rotting and rising bandits require infinite memory, we argue on both practical and theoretical grounds
that in our setting a finite value of m is preferable. First, in many applications it is reasonable to assume
that the effect of past actions will vanish at some point. For example, listening to a song now does not affect
how much we will enjoy the same song in a distant enough future. Second, permanent effects may trivialize

2In the next paragraph, however, we explain why a bounded memory m is preferable within our model.
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Figure 1: In the top pane, we plot the effect of the memory matrix (2) on the action space for d = 2, m = 1,
and γ ∈ {−6, 0, 2}. The red arrow is θ∗ and the black arrow is action at−1. The color level indicates the value
of the instantaneous expected reward of any action at (point on the disk). When γ = −6, the rotting effect is
so powerful that the optimal action at is orthogonal to at−1. When γ = 0, the optimal action remains θ∗,
independently of at−1. For γ = 2, the optimal action is shifted between θ∗ and at−1. However, the top plot
does not show that playing constantly θ∗ is not the optimal policy. In the bottom pane, we consider horizon
T = 2, with the same choices of parameters. For a given action a1, since T = 2, it is possible to determine
the best possible next action a2. The color now indicates the sum of expected rewards as a function of the
initial action a1 (point on the disk). For γ = −6, we clearly see that playing θ∗ is not optimal anymore. On
the other side, it shows that not playing θ∗ is more harmful when γ = 2 than when γ = 0.

the problem on the theoretical side: consider m→∞ and γ ≤ −1/2, then for any sequence of actions (at)t≥1
we have

∑T
t=1⟨at, At−1θ

∗⟩ ≤
∑T

t=1
∥∥At−1at

∥∥
2 ≤

√
T
∑T

t=1
∥∥At−1at

∥∥2
2 ≤

√
2dT log(1 + T/d) := BT ,

where we have used the elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4). Hence,
as soon as γ ≤ −1/2, we have OPT ≤ BT , and the trivial strategy consistently playing 0 enjoys a small
regret BT . Conversely, consider γ ≥ 0. The strategy consistently playing θ∗ achieves, after t rounds, an
instantaneous reward of (1 + t)γ, which is diverging for γ ≥ 1. This is not realistic in most application
and, incidentally, violates the concave payoffs assumption (Metelli et al., 2022, Assumption 3.2). Therefore,
although considering m = +∞ may look attractive at first sight, it actually fails to adequately model song
satiation, and restricts the range of relevant γ from R to (−1/2, 1). Instead, focusing on finite memory m
yields more interesting problems, although it prevents a full generalization of rotting bandits with finitely many
arms. We note however that when m <∞, the spirit of rotting (resp., rising) bandits is still preserved, as
playing an action does decrease (resp., increase) its efficiency for the next pulls (within the time window), see
also Figure 1.

A naive approach to learning LBM is to neglect nonstationarity. Assuming that θ∗ is known, one may then
play at time t the action agreedy

t = arg maxa∈A⟨a,At−1θ
∗⟩. Although this strategy, which we refer to as oracle

greedy, may be optimal in some cases (e.g., in rising isotropic settings, see Heidari et al. (2016, Section 3.1)
and Metelli et al. (2022, Theorem 4.1) for discussions in the K-armed case), we highlight that it may also be
arbitrarily bad, as stated in the next proposition.

Proposition 1 The oracle greedy strategy, which plays agreedy
t = arg maxa∈A⟨a,At−1θ

∗⟩ at time step t, can
suffer linear regret, both in rotting or rising scenarios.
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Hence, one must resort to more sophisticated strategies, which may include long-term planning. Before
describing our approach in the next section, we conclude the model exposition by highlighting that LBMs
may also be generalized to contextual bandits (Lattimore & Szepesvári, 2020).

Remark 1 (Contextual bandits) In contextual bandits, at each time step t the learner is provided a context
ct (e.g., data about a user). The learner then picks an action at ∈ A (based on ct), and receives a reward
whose expectation depends linearly on the vector ψ(ct, at) ∈ Rd, where ψ is a known feature map. Note that it
is equivalent to have the learner playing actions at ∈ Rd that belong to a subset At = {ψ(ct, a) ∈ Rd : a ∈ A}.
The analysis developed in Section 3 still holds true when At depends on t, and can thus be generalized to
contextual bandits with memory.

3 Regret Analysis

In this section, we introduce and analyze OFUL-memory (Algorithm 1) for learning LBMs. We first observe
that for every block length there exists a cyclic policy providing a reasonable approximation to the optimal
policy (Proposition 2) that cannot be improved in general, see Proposition 3. Learning the optimal block
in the cyclic policy then reduces to a stationary linear bandit problem that can be solved by running the
OFUL algorithm (Proposition 4). This approach is however wasteful, as it estimates a concatenated model
whose dimension scales with the block length. We thus propose a refined algorithm leveraging the structure
of the concatenated model, and show that it enjoys a better regret bound. We then tune the block length
to trade-off estimation and approximation errors (Theorem 1). Since the optimal block length depends on
the memory size m, which may be unknown in practice, we finally wrap our algorithm with a bandit model
selection algorithm that is shown to preserve regret guarantees (Corollary 1). Throughout the analysis, we
assume for simplicity that the horizon T is always divisible by the block length considered. Finally, note that
all technical proofs are relegated to the Appendix (Proposition 4 and Theorem 1 being proved with high
probability while stated in expectation in the main body for simplicity of exposition).

3.1 Approximation

In LBMs, finding a block of actions maximizing the sum of expected rewards is not a well-defined problem.
Indeed, the rewards also depend on the initial conditions, determined by the m actions preceding the current
block. To bypass this issue, we introduce the following proxy reward function. For any m,L ≥ 1 and any
block a = a1 . . . am+L of m+ L actions, let

r̃(a) =
m+L∑

t=m+1

〈
at, At−1θ

∗〉 =
m+L∑

t=m+1

〈
At−1at, θ

∗〉 . (4)

In words, we only consider the expected rewards obtained from the index m+ 1 onward. Note that actions
a1 . . . am still do play a role in r̃, as they influence Am, . . . , A2m−1. The key is that r̃ is now independent
from the initial state, so that

ã = arg max
a∈Bm+L

d

r̃(a) (5)

is well-defined. The next proposition quantifies the approximation error incurred when playing cyclically ã
instead of the optimal sequence of actions (a∗

t )t≤T defined in (3). A critical quantity to establish this result
is the maximal (and minimal) instantaneous reward one can obtain. To this end, we introduce the notation
R = supa1,...,am+1∈A

∣∣⟨am+1, A(a1, . . . , am)θ∗⟩
∣∣. Note that in (8) we provide a bound on R in terms of m and

γ. We now state our approximation result, and show that it is tight up to constant.

Proposition 2 For any m,L ≥ 1, let ã be the block of m + L actions defined in (5) and (r̃t)T
t=1 be the

expected rewards collected when playing cyclically ã. We have

OPT−
T∑

t=1
r̃t ≤

2mR
m+ L

T . (6)
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The dependence on the cycle length L of the right-hand side of (6) is as expected: by increasing L, the
expected reward of the cyclic policy gets closer to OPT. In addition, note that for m = 0 we recover the
stationary behaviour. In this case, there are no long-term effects and the performance is oblivious to the
block length, so that we recover

∑
t r̃t = OPT independently of L. Next, we show that Proposition 2 is tight

up to constants.

Proposition 3 (Tight approximation) For any m,L ≥ 1 and γ ≤ 0, let ã be the block of m+ L actions
defined in (5) and (r̃t)T

t=1 be the expected rewards collected when playing cyclically ã. Then, there exists a
choice of A and θ∗ such that

OPT−
T∑

t=1
r̃t ≥

mR

m+ L
T . (7)

Upper bounds on R are easy to obtain. Let a1, . . . , am+1 ∈ A, and Am = A(a1, . . . , am), we have

|rm| =
∣∣⟨am+1, Amθ

∗⟩
∣∣ ≤ ∥am+1∥2 ∥Amθ

∗∥2 ≤ ∥Am∥∗ ∥θ∗∥2 ≤ (m+ 1)γ+
, (8)

such that one can take R = (m+ 1)γ+ . Note that any other choice of dual norms could have been used to
upper bound

∣∣⟨am+1, Amθ
∗⟩
∣∣, as done in Proposition 3. For simplicity, we restrict ourselves to the Euclidean

norm from now on, and use R = (m+ 1)γ+ .

Remark 2 (On the necessity of optimizing over the first actions.) We highlight that optimizing
over the first m actions in Equation (5) is necessary, as there exists no such “pre-sequence” which is universally
optimal. Indeed, let At and A′

t be the memory matrices generated by a1 . . . am+L and a′
1 . . . a

′
m am+1 . . . am+L

respectively. It is immediate to check that if the pre-sequence a1 . . . am is better than a′
1 . . . a

′
m with respect to

some model θ ∈ Rd, i.e., if we have
∑m+L

t=m+1⟨at, At−1θ⟩ ≥
∑m+L

t=m+1⟨at, A
′
t−1θ⟩, then the opposite holds true

for −θ. Hence, one cannot determine a priori a good pre-sequence and has to optimize for it.

3.2 Estimation

The next step now consists in building a sequence of blocks with small regret against ã. As detailed below,
this reduces to a stationary linear bandit problem, with a specific action set. After showing an initial naive
solution, we provide a refined approach which exploits the structure of the latent parameter and enjoys
improved regret guarantees.

A naive approach. We introduce some notation first. Let θ∗ = (0d, . . . , 0d, θ
∗, . . . , θ∗) ∈ Rd(m+L) be the

vector concatenating m times 0d and L times θ∗. Inspired by the right-hand side in (4), we introduce the
subset of Rd(m+L) composed of the blocks b = b1 . . . bm+L whose actions are of the form bi = Ai−1ai for some
block a ∈ Am+L. Formally, let

B =
{

b ∈ Rd(m+L) : ∃a ∈ Am+L such that
{
bi = ai 1 ≤ i ≤ m
bi = Ai−1ai m+ 1 ≤ i ≤ m+ L

}
,

where the (Ai)m+L−1
i=m+1 are the memory matrices generated from a. Equipped with this notation, it is easy to

see that for any a ∈ Am+L and the corresponding b ∈ B we have r̃(a) = ⟨b,θ∗⟩. Therefore, estimating b̃
(the block in B associated to ã) reduces to a standard stationary linear bandit problem in Rd(m+L), with
parameter θ∗ and feasible set B. In other words, we have transformed the nonstationarity of the rewards into
a constraint on the action set. Running OFUL (Abbasi-Yadkori et al., 2011) then amounts to playing at time
step t = τ(m+ L), the block aτ ∈ Am+L, whose associated block bτ in B satisfies

bτ = arg max
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (9)

where Cτ =
{

θ ∈ Rd(m+L) :
∥∥θ̂τ − θ

∥∥
Vτ
≤ βτ (δ)

}
, with βτ (δ) defined in Equation (17), Vτ =

∑τ
τ ′=1 bτ ′b⊤

τ ′ +
λId(m+L) , yτ =

∑m+L
i=m+1 yτ,i , using yτ,i to denote the reward obtained by the ith action of block τ , and

7
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θ̂τ = V −1
τ

(∑τ
τ ′=1 yτ ′bτ ′

)
. Noticing that ∥θ∗∥2

2 ≤ L, that for any block b ∈ B we have ∥b∥2
2 ≤ m+L(m+1)2γ+

and ⟨θ∗, b⟩ ≤ L(m+ 1)γ+ , and adapting the OFUL’s analysis, we get the following regret bound.

Proposition 4 Let λ ∈ [1, d], L ≥ m, and aτ be the blocks of actions in Rd(m+L) associated to the bτ defined
in (9). Then we have

E

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ )

 = Õ
(
dL3/2(m+ 1)γ+√

T
)
.

In the stationary case, i.e., when m = 0 and L = 1, the block approach coincide with OFUL and we do
recover (up to log factors) the O(d

√
T ) bound for standard linear bandits. Note that in Proposition 5 in

the Supplementary Material we prove a more general high-probability bound, which also specializes to known
results for linear bandits in the stationary case.

A refined approach. Note however that the approach presented above is wasteful. Indeed, while the
relevant model to estimate is θ∗ ∈ Rd, the θ̂τ are estimators of the concatenated vector θ∗ ∈ Rd(m+L), with
degraded accuracy due to the increased dimension. Similarly, this method only uses the sum of rewards
obtained by a block, while finer-grained information is available, namely the rewards obtained by each
individual action in the block. Driven by these considerations, let aτ = aτ,1 . . . aτ,m+L be the block of actions
played at block time step τ , Aτ,i−1 = A(aτ,i−m, . . . , aτ,i−1), and bτ,i = Aτ,i−1aτ,i for i ≥ m. We propose to
compute instead

θ̂τ = V −1
τ

(
τ∑

τ ′=1

m+L∑
i=m+1

yτ ′,i bτ ′,i

)
, (10)

where Vτ =
∑τ

τ ′=1
∑m+L

i=m+1 bτ ′,ib
⊤
τ ′,i + λId. In words, θ̂τ is the standard regularized least square estimator

of θ∗ when only the last L rewards of each block of size m + L are considered. Note however that the θ̂τ

are only computed every m+ L rounds. Indeed, recall that regret is computed here at the block level, such
that at each block time step τ the learner chooses upfront an entire block to play, preventing from updating
the estimates between the individual actions of the block. Following the principle of optimism in the face of
uncertainty, a natural strategy then consists in playing

aτ = arg max
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1
⟨aτ,i, Aτ,i−1θ⟩ , (11)

where Cτ =
{
θ ∈ Rd :

∥∥θ̂τ − θ
∥∥

Vτ
≤ βτ (δ)

}
, for some βτ (δ) defined in (18). Expressed in terms of bτ , the

estimate (11) corresponds to
bτ = arg max

b∈B
sup

θ∈Dτ−1

⟨b,θ⟩ , (12)

where Dτ =
{

θ ∈ Rd(m+L) : ∃θ ∈ Cτ such that θ = (0d, . . . , 0d, θ, . . . , θ)
}

. In words, this estimate is similar
to (9), except that we use the improved confidence set Dτ that leverages the structure of θ∗. A dedicated
analysis to deal with the fact that the estimates θ̂τ are not “up to date” for actions inside the block then
allows to bound the regret of the sequence aτ against the optimal ã. Setting the block size L in order to
balance this bound with the approximation error of Proposition 2 yields the final regret bound.

Theorem 1 Let λ ∈ [1, d], and aτ be the blocks of actions in Rd(m+L) defined in (11). Then we have

E
[∑T/(m+L)

τ=1
r̃(ã)− r̃(aτ )

]
= Õ

(
dL(m+ 1)γ+√

T
)
.

Suppose that m ≥ 1, T ≥ d2m2 + 1, and set L =
⌈√

m/d T 1/4⌉−m. Let yt be the rewards collected when
playing aτ as defined in (11). Then we have

OPT− E
[∑T

t=1
yt

]
= Õ

(√
d (m+ 1) 1

2 +γ+
T 3/4

)
.
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When m = 0 (i.e., in the stationary case), setting L = 1 recovers the OFUL bound.

When comparing the first claim of Theorem 1 to Proposition 4, we note that the dependence in L has been
reduced from L3/2 to L, thanks to the improved confidence sets. Solving the approximation-estimation
tradeoff using Proposition 4 would have yielded an overall regret bound of order d2/5(m + 1) 3

5 +γ+
T 4/5,

worse than the bound provided by the second claim of Theorem 1. In the stationary case (i.e., for m = 0)
Theorem 1 recovers the OFUL regret bound and matches the lower bound for stationary linear bandits
(Lattimore & Szepesvári, 2020, Theorems 24.1 and 24.2, e.g.), such that our analysis is tight in general (recall
that Proposition 3 shows that the control of the approximation error provided by Proposition 2 is optimal up
to constants). Finding a lower bound matching Theorem 1 for arbitrary values of m and γ remains however
an open problem. We highlight that lower bounds for nonstationary bandits are particularly hard to obtain
and that most papers on this topic do not prove any, see e.g., Levine et al. (2017); Kleinberg & Immorlica
(2018); Pike-Burke & Grunewalder (2019); Cella & Cesa-Bianchi (2020); Metelli et al. (2022).

As we can see from the optimal choice of L in Theorem 1, OFUL-memory requires the knowledge of the
horizon T , the memory size m, and the exponent γ, which might all be unknown in practice. If adaptation to
T can be achieved by using the doubling trick, adaptation to m and γ is more involved. In the next section,
we show that OFUL-memory can be wrapped by a model selection algorithm to learn m and γ. Before
turning to this problem, we state a few remarks.

Remark 3 (An over-optimistic variant) Note that Dτ =
{

θ ∈ Rd(m+L) : ∃θ ∈ Cτ such that θ =
(0d, . . . , 0d, θ, . . . , θ)

}
is not the only improved confidence set that one can build from Cτ . Indeed, it is im-

mediate to check that our proof remains unchanged if one uses instead Dopt
τ =

{
θ ∈ Rd(m+L) : ∃ θ1, . . . , θL ∈

Cτ such that θ = (0d, . . . , 0d, θ1, . . . , θL)
}

. Optimizing (12) over Dopt
τ−1 and not Dτ−1 creates an over-

optimistic block version of the UCB, composed of the sum of the UCBs of the single-actions in the block,
although the latter might be attained at different models θi, while we know that θ∗ is the same model θ∗

repeated L times. Still, since each θi is estimated in the confidence set Cτ−1 of reduced dimension, the
guarantees are unchanged. In the rest of the paper, we refer to this variant as the over-optimistic version of
OFUL-memory, denoted by O3M. Empirically, O3M outperforms the vanilla approach. We attribute these better
performances to the fact that the confidence set it is built upon is more optimistic.

Remark 4 (Generic matrix mapping A) Note that our analysis naturally extends to any matrix mapping
A, as long as it is known. The term (m+1)γ+ in Theorem 1 is then replaced with supa1...am

∥A(a1, . . . , am)∥∗.
We highlight however that having access to such knowledge is unlikely in practice. This is why we focus on the
simpler parametric family (2), which encompasses many rotting and rising scenarios while allowing us to
learn simultaneously m and γ, as shown in the next section. It is of course possible to extend the family of
monomials (2) to a family of polynomials, but this requires tracking more parameters (namely, the different
coefficients of the polynomial), thus degrading the final regret bound.

Remark 5 (Solving LBM with a general Reinforcement Learning (RL) approach) Our setting
may be seen as an MDP with a d-dimensional continuous space of actions, a (md)-dimensional continuous
state space (for the past m actions), a deterministic transition function parameterized by an unknown scalar
γ, and a stochastic reward function with a linear dependence on an additional d-dimensional latent parameter
θ∗. The optimal policy in this MDP is generally nonstationary, and we are not aware of RL algorithms
whose regret can be bounded without relying on more specific assumptions on the MDP. By exploiting the
structure of the MDP, and restricting to cyclic policies, we show instead that the original problem can be
solved using stationary bandit techniques.

3.3 Model Selection

In the absence of prior knowledge on the nature of the nonstationary mechanism at work, a natural idea
consists in instantiating several LBMs with different values of γ and running a model selection algorithm for
bandits (Foster et al., 2019; Cutkosky et al., 2020; Pacchiano et al., 2020). In bandit model selection, where a
master algorithm runs the different LBMs, the adaptation to the memory size m becomes more complex.
Indeed, the different putative values for m induce different block sizes (see Theorem 1) which perturb the

9
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Algorithm 1 OFUL-memory (OM, O3M)

input : action space A ⊂ Rd, memory size m, exponent γ, regularization parameter λ, horizon T .
init : set L =

√
m/4 d T 1/4 −m, θ̂0 = 0d, V0 = λId, β0 = 0.

for τ = 1, . . . , T/(m+ L) do

// OM // O3M

aτ = arg max
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1
⟨aτ,i, Aτ,i−1θ⟩ or aτ = arg max

aτ,i∈A
sup

θi∈Cτ−1

L∑
i=1
⟨aτ,i, Aτ,i−1θi⟩

// Play and update confidence set
Play aτ , collect yτ,1, . . . , yτ,m+L

Compute Cτ , i.e., θ̂τ , Vτ , and βτ via (10) and (18).

time and reward scales of the master algorithm. For instance, bandits with larger block lengths will collect
more rewards per block, although they might not be more efficient on average. Our solution consists in
feeding the master algorithm with averaged rewards. One may then control the true regret (i.e., not averaged)
of the output sequence, against a scaled version of the optimal sequence through Lemma 1, which links the
normalized regret of a block meta-algorithm to the true regret of the corresponding sequence of blocks.

Lemma 1 Suppose that a block-based bandit algorithm (in our case the bandit combiner) produces a sequence
of Tbc blocks aτ , with possibly different cardinalities |aτ |, such that

Tbc∑
τ=1

r̃(ã)
|ã|
−

Tbc∑
τ=1

r̃(aτ )
|aτ |

≤ F (Tbc) ,

for some sublinear function F . Then, we have

minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

Tbc∑
τ=1

r̃(aτ ) ≤ min
τ
|aτ |F (Tbc) .

In particular, if all blocks have the same cardinality the last bound is just the block regret bound scaled by |aτ |.

Combining this result with Theorem 1 and (Cutkosky et al., 2020, Corollary 2) yields the following result.

Corollary 1 Consider an instance of LBM with unknown parameters (m⋆, γ⋆). Assume a bandit combiner
is run on N ≤ d√m⋆ instances of OFUL-memory (Algorithm 2), each using a different pair of parameters
(mi, γi) from a set S =

{
(m1, γ1), . . . , (mN , γN )

}
such that (m⋆, γ⋆) ∈ S. Let M = (maxj mj)/(minj mj).

Then, for all T ≥ (m⋆ + 1)2γ+
⋆ /m⋆d

4, the expected rewards
(
rbc

t

)T

t=1 of the bandit combiner satisfy

OPT√
M
− E

[
T∑

t=1
rbc

t

]
= Õ

(
M d (m⋆ + 1)1+ 3

2 γ+
⋆ T 3/4

)
.

4 Algorithms

In this section, we discuss the practical implementation of our approach. This includes OFUL-memory (OM)
and its over-optimistic variant (O3M, see Remark 3), both summarized in Algorithm 1. We also instantiate
the Bandit Combiner from Cutkosky et al. (2020) to our specific setting with average rewards and O3M as
base algorithm, see Algorithm 2.

Maximizing the UCBs. We start by making explicit the UCBs used in OM and O3M, see (12),
optimized over Dτ or Dopt

τ . Using the formula for Cτ one can check that they are given by
UCBτ (a) =

∑m+L
j=m+1

〈
aj , Aj−1θ̂τ−1

〉
+ B(a), where B(a) = βτ−1

∥∥∑m+L
j=m+1 A

⊤
j−1aj

∥∥
V −1

τ−1
for OM and

10



Published in Transactions on Machine Learning Research (05/2024)

B(a) = βτ−1
∑m+L

j=m+1
∥∥A⊤

j−1aj

∥∥
V −1

τ−1
for O3M. The two UCBs only differ in their exploration bonuses. Note

that by the triangle inequality, we have UCBOM
τ (a) ≤ UCBO3M

τ (a) for any a. Thanks to this closed form
in terms of a, it is possible to approximate arg maxa UCBτ (a) using gradient ascent. Note however that
maximizing the UCBs is a hard problem when the action space is infinite, which might be non-convex in
general. In that respect, the theoretical guarantees we provide in Theorem 1 hold whenever the learner has
access to some oracle that returns the exact UCB maximizer, as traditionally assumed in the literature, see
e.g., Kveton et al. (2015). Conversely, note that the practical implementation of O3M still satisfies Theorem 1,
but for a slightly weaker version of the regret where the “best block” is understood as the one returned by
the approximated oracle used in O3M (i.e., our gradient ascent solver). See (Kveton et al., 2015, Section 9) for
a similar discussion.

Computational complexity. As described in Algorithm 1, our approach consists of two steps: updating
the confidence region Cτ , i.e., θ̂τ and βτ according to (10) and (18), and computing the block aτ that
maximizes the UCB index. The first step is performed by online Ridge regression, and has a computational
cost of O(Ld2). We note here the advantage of our refined algorithm over the naive concatenated approach,
whose Ridge regression update has cost O(L2d2). The maximization of the UCB indices, performed through
gradient ascent has time complexity per iteration of O

(
(m+L)d2). Hence, the overall complexity of an epoch

of Algorithm 1 is O
(
(m + L)d2 · nit

)
, where nit is the number of iterations performed by gradient ascent.

Recall that the epochs of Algorithm 1 correspond to blocks of m+ L actions, such that the actual per-round
complexity is O(d2 · nit).

Bandit combiner. Our bandit combiner, see Algorithm 2, builds upon the approach developed by Cutkosky
et al. (2020) and works as follows. The meta-algorithm is fed with different bandit algorithms (in our case,
instances of O3M with different choices of parameters mj and γj) and at each round plays a block according
to one of the algorithms. Each O3M instance comes with a putative regret bound CjT

αj , which is the regret
bound satisfied by the algorithm should it be well-specified, i.e., if the rewards are indeed generated through a
memory matrix with memory mj and exponent γj . Note that in order to be comparable across the different
instances, the putative regrets apply to the average rewards. The values of Cj and αj can be computed using
Theorem 1, see the proof of Corollary 1 for details. The putative regrets are then used to successively discard
the instances that are not well specified, and eventually identify the instance using parameters (m⋆, γ⋆).
Knowing Cj and αj , we can compute for any j the target regret

Rj = Cj T
2/3
bc + 5

√
30

18 C
3/2
j T

2/3
bc + 1152(mj + 1)2γ+

j T 1/3 log(T 3
bcN/δ) + (N − 1)T 2/3 , (13)

where Tbc is the number of blocks the Bandit Combiner is called on, see Appendix B for details. Here, we note
how the presence of (mj + 1)2γ+

j is impacting differently the rising and rotting scenarios. Using (Cutkosky
et al., 2020, Corollary 2), the regret of Algorithm 2 is finally given by 3Rj⋆

, where j⋆ is the index such that
(mj⋆ , γj⋆) = (m⋆, γ⋆).

5 Experiments

We perform experiments to validate the theoretical performance of OM and O3M (Algorithm 1). Similarly
to (Warlop et al., 2018), we work with synthetic data because of the counterfactual nature of the learning
problem in bandits. Unless stated otherwise, we set d = 3 while θ∗ ∈ Rd is generated uniformly at random
with unit norm. The rewards are generated according to (1) and (2), and perturbed by Gaussian noise with
standard deviation σ = 1/10.

Rotting with Bandit Combiner. We start by analyzing the rotting scenario with m = 2 and γ = −3. We
measure the performance in terms of the cumulative reward averaged over 5 runs (this is enough because the
variance is small). In Figure 2 (left pane) we compare the performance of O3M against oracle greedy, vanilla
OFUL, and two instances of Bandit Combiner (Algorithm 2. The first instance, Combiner γ, works in the
setting where the misspecified parameter is γ and the algorithm is run over the set {−4,−3,−2,−1, 0} of
possible values for γ with the true value being −3. The second instance, Combiner m, tests the setting where
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Algorithm 2 Bandit Combiner on O3M
input : Instances O3M(m1, γ1), . . . , O3M(mN , γN ), horizon Tbc

numbers C1, . . . , CN > 0, target regrets R1, . . . , RN .
Set T (i) = 0,Si = 0,∆i = 0 for i = 1, . . . , N , and set I0 = {1, . . . , N}

for t = 1, . . . , Tbc do
if there is some i ∈ It with T (i) = 0 then

it = i
else

For each i ∈ It, compute the UCB index:

UCB(i) = min
{

(mi + 1)2γ+
i ,

Ci√
T (i)

+ 4(mi + 1)2γ+
i

√
2 log(T 3N/δ)

T (i)

}
− Ri

Tbc

Set it = arg maxi∈It

Si

T (i) + UCB(i)
Obtain from instance O3M(mit

, γit
) a block of size mit

+ Lit
and play it

Return the total reward rit
collected in the last Lit

time steps of the block to O3M(mit
, γit

)
Compute the average reward r̂it

= rit

Lit

Update ∆it
← ∆it

+ Sit
/T (it)− r̂it

(where we set 0/0 = 0) and Sit
← Sit

+ r̂it

Update the number of plays T (it)← T (it) + 1

if ∆it ≥ CitT (it)γit + 12 (mit + 1)2γ+
it

√
2 log(T 3N/δ)T (it) then

It = It−1 \ {it}
else

It = It−1
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Figure 2: Cumulative rewards in rotting (left) and rising with non-isotropic initialization (right) cases.

the misspecified parameter is m. In this case the algorithm is run over the set {0, 2, 3} of possible values
for m with the true value being 2. The results—see Figure 2 (left pane)—show that O3M is able to plan the
actions in the block ensuring that a good arm is not played right away if a higher reward can be obtained
later on in the block. This means that O3M is waiting to play certain actions until the corresponding entries of
A have been offloaded, preventing A to negatively impact the reward of these actions. Although learning m
proves to be more difficult, which is consistent with the impact of M = (maxj mj)

/
(minj mj) in Corollary 1,

Combiner m run on instances of O3M is competitive with O3M run with the true parameters. Note that with
isotropic initialization there is no point in running Combiner γ with values of γ larger than zero. Indeed, in
the isotropic case oracle greedy is optimal, stationary, and with the same optimal action for any γ ≥ 0. The
empirical performance of our algorithms in a non-isotropic rising setting is investigated in the next example.
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Rising with non-isotropic initialization. When γ > 0 (rising setting) and A0 ≠ Id (non-isotropic
initialization), there are instances for which oracle greedy is suboptimal, as we show next. Let d = 2, m = 2,
γ = 1, A0 = e1e

⊤
1 , and θ∗ = (

√
ϵ,
√

1− ϵ). With these choices, oracle greedy starts to pull action e1 = (1, 0)
and will always play it, obtaining a cumulative reward of T (1 +m)

√
ϵ. Instead, a better strategy would be to

play e2 = (0, 1) all the time, collecting a cumulative reward of Tm
√

1− ϵ. We call this strategy π2 and in
Figure 2 (right pane) we compare the performance of O3M with oracle greedy, π2, and OFUL. Here OFUL
performs well because the optimal action is stationary and, unlike oracle greedy, OFUL can use exploration
to discover that e2 is better than e1.

6 Conclusions and open problems

We introduced and analyzed a nonstationary generalization of linear bandits that uses a fixed-size memory.
Some interesting future research directions may include the derivation of a matching lower bound or
quantifying the UCB optimization error to better tradeoff the block length L.
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A Technical Proofs

We gather in this section the proofs omitted in the core text.

A.1 Proof of Proposition 1

Proposition 1 The oracle greedy strategy, which plays agreedy
t = arg maxa∈A⟨a,At−1θ

∗⟩ at time step t, can
suffer linear regret, both in rotting or rising scenarios.

Proof We build two instances of LBM, one rotting, one rising, in which the oracle greedy strategy suffers
linear regret. We highlight that the other strategy exhibited, which performs better than oracle greedy, may
not be optimal.

Rotting instance. Let A = Bd, θ∗ = e1, m = d− 1, and A such that

A(a1, . . . , am) =
(
Id +

m∑
s=1

asa
⊤
s

)−γ

,

for some γ > 0 to be specified later. Oracle greedy, which plays at each time step agreedy
t =

arg maxa∈A⟨a,At−1θ
∗⟩, constantly plays e1. After the first m pulls, it collects a reward of 1/dγ at ev-

ery time step. On the other side, the strategy that plays cyclically the block e1 . . . ed collects a reward of 1
every d = m+ 1 time steps, i.e., an average reward of 1/d per step. Hence, up to the transitive first m puuls,
the cumulative reward of oracle greedy after T rounds is T/dγ , and that of the cyclic policy is T/d. The
regret of oracle greedy is thus at least

T

(
1
d
− 1
dγ

)
,

which is linear for γ > 1.

Rising instance. Let m ≥ 1, d = 2, A = B2, θ∗ = (ε, 1) where ε > 0 is to be specified later, and A such that

A(a1, . . . , am) =
(

1 0
0 0

)
+

m∑
s=1

asa
⊤
s .

Oracle greedy constantly plays e1 collecting a reward of (m+ 1)θ∗
1 from round m+ 1 onward. On the other

side, the strategy that plays constantly e2 collects a reward of mθ∗
2 from round m+ 1 onward. Hence, the

regret of oracle greedy from round m + 1 onward is at least (T − m)[m − (m + 1)ε], which is linear for
ε < m/(m+ 1). □

A.2 Proof of Proposition 2

Proposition 2 For any m,L ≥ 1, let ã be the block of m + L actions defined in (5) and (r̃t)T
t=1 be the

expected rewards collected when playing cyclically ã. We have

OPT−
T∑

t=1
r̃t ≤

2mR
m+ L

T . (6)

Proof Recall that the optimal sequence is denoted (a∗
t )T

t=1 and collects rewards (r∗
t )T

t=1. Let L > 0; by
definition, there exists a block of actions of length L in (a∗

t )T
t=1 with average expected reward higher that

OPT/T . Let t∗ be the first index of this block, we thus have (1/L)
∑t∗+L−1

t=t∗ r∗
t ≥ OPT/T . However, this

average expected reward is realized only using the initial matrix At∗−1, generated from a∗
t∗−1, . . . , a

∗
t∗−m.

Let a∗ = a∗
t∗−m, . . . , a

∗
t∗+L−1 of length m + L. Note that, by definition, we have that r̃(ã) ≥ r̃(a∗) =∑t∗+L−1

t=t∗ r∗
t ≥ L OPT/T . Furthermore, by (8), when playing cyclically ã one obtains at least a reward of

−R in each one of the first m pulls of the block. Collecting all the pieces, we obtain
T∑

t=1
r̃t ≥

T

m+ L

(
−mR+ r̃(ã)

)
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≥ T

m+ L

(
−mR+ r̃(a∗)

)
≥ T

m+ L

(
−mR+ L

OPT
T

)
= L

m+ L
OPT− mR

m+ L
T

≥ L

m+ L
OPT + m

m+ L
OPT− mR

m+ L
T − mR

m+ L
T (14)

= OPT− 2mR
m+ L

T ,

where (14) derives from OPT ≤ RT . □

A.3 Proof of Proposition 4

We prove the (stronger) high probability version of Proposition 4.

Proposition 5 Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in Rd(m+L) associated to the bτ defined
in (9). Then, with probability at least 1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ ) ≤ 4L(m+ 1)γ+

√
Td ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

)

·

(
√
λL+

√
ln
(

1
δ

)
+ d(m+ L) ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

))
.

Proof The proof essentially follows that of (Abbasi-Yadkori et al., 2011, Theorem 3). The main difference
is that our version of OFUL operates at the block level. This implies a smaller time horizon, but also and
increased dimension and an instantaneous regret ⟨b̃,θ∗⟩ − ⟨bτ ,θ

∗⟩ upper bounded by 2L(m+ 1)γ+ instead of
1. We detail the main steps of the proof for completeness. Recall that running OFUL in our case amounts to
compute at every block time step τ

θ̂τ = V −1
τ

(
τ∑

τ ′=1
yτ ′ bτ ′

)
,

where

Vτ =
τ∑

τ ′=1
bτ ′b⊤

τ ′ + λId(m+L) , and yτ =
m+L∑

i=m+1
yτ,i ,

since we associate with a block of actions the sum of rewards obtained after time step m. Note that by the
determinant-trace inequality, see e.g., (Abbasi-Yadkori et al., 2011, Lemma 10), with actions bτ that satisfy
∥bτ∥2

2 ≤ m+ L(m+ 1)2γ+ we have

|Vτ |
|λId(m+L)|

≤

(
1 + τ(m+ L(m+ 1)2γ+)

d(m+ L)λ

)d(m+L)

≤

(
1 + τ(m+ 1)2γ+

dλ

)d(m+L)

. (15)

The action played at block time step τ is the block aτ ∈ Bm+L
d associated with

bτ = arg max
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (16)

where
Cτ =

{
θ ∈ Rd(m+L) :

∥∥θ̂τ − θ
∥∥

Vτ
≤ βτ (δ)

}
,
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with

βτ (δ) =

√
2 ln

(
1
δ

)
+ d(m+ L) ln

(
1 + τ(m+ 1)2γ+

dλ

)
+
√
λL . (17)

Applying (Abbasi-Yadkori et al., 2011, Theorem 2) to θ∗ ∈ Rd(m+L) which satisfies ∥θ∗∥2 ≤
√
L we have that

θ∗ ∈ Cτ for every τ with probability at least 1− δ. Denoting by θ̃τ the model that maximizes (16), we thus
have that with probability at least 1− δ, the inequality ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩ holds for every τ , and consequently

T/(m+L)∑
τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ
∗⟩

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

, ⟨bτ , θ̃τ − θ∗⟩
}

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

,
∥∥θ̃τ − θ∗∥∥

Vτ−1
∥bτ∥V −1

τ−1

}

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

, 2βτ (δ) ∥bτ∥V −1
τ−1

}

≤ 2L(m+ 1)γ+
βT/(m+L)(δ)

T/(m+L)∑
τ=1

min
{

1 , ∥bτ∥V −1
τ−1

}

≤ 2L(m+ 1)γ+
βT/(m+L)(δ)

√√√√ T

m+ L

T/(m+L)∑
τ=1

min
{

1 , ∥bτ∥2
V −1

τ−1

}

≤ 2
√

2L(m+ 1)γ+
βT/(m+L)(δ)

√
T

m+ L
ln
|VT/(m+L)|
|λId(m+L)|

≤ 4L(m+ 1)γ+

√
Td ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

)

·

(
√
λL+

√
ln
(

1
δ

)
+ d(m+ L) ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

) )
,

where we have used (Abbasi-Yadkori et al., 2011, Lemma 11), as well as (15) and (17). Note that in the
stationary case, i.e., when m = 0 and L = 1, we exactly recover (Abbasi-Yadkori et al., 2011, Theorem 3).
Proposition 4 is obtained by setting λ ∈ [1, d], L ≥ m, and δ = 1/T . □

A.4 Proof of Proposition 3

Proof Let d = m + 1, A = {0d} ∪ (ek)k≤d, θ∗ = (1/
√
d, . . . , 1/

√
d), and γ ≤ 0. For simplicity, we

note the basis modulo d, i.e., ek+d = ek for any k ∈ N. Note that for any a1, . . . , am+1 ∈ A we have∣∣⟨am+1, Amθ
∗⟩
∣∣ ≤ ∥am+1∥1 ∥Amθ

∗∥∞ ≤ 1/
√
d, such that one can take R = 1/

√
d. Observe now that the

strategy which plays cyclically e1, . . . , ed collects a reward of 1/
√
d at each time step, which is optimal, such

that OPT = T/
√
d. Further, it is easy to check that block ã, composed of m pulls of 0d followed by e1, . . . , eL

satisfies r̃(ã) = L/
√
d, which is optimal for similar reasons. Playing cyclically ã, one gets a reward of L/

√
d

every m+ L pulls. In other terms, we have

OPT−
T∑

t=1
r̃t = T√

d
− L

m+ L

T√
d

= m

m+ L

T√
d

= mR

m+ L
T .

□
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A.5 Proof of Theorem 1

We prove the high probability version of Theorem 1, obtained by setting λ ∈ [1, d], and δ = 1/T .

Theorem 2 Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in Rd(m+L) defined in (11). Then, with
probability at least 1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ ) ≤ 4L(m+ 1)γ+

√
Td ln

(
1 + T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln
(

1
δ

)
+ d ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

) )
.

Let m ≥ 1, T ≥ m2d2 + 1, and set L =
⌈√

m/d T 1/4⌉−m. Let rt be the rewards collected when playing aτ

as defined in (11). Then, with probability at least 1− δ we have

OPT−
T∑

t=1
rt ≤ 4

√
d (m+ 1) 1

2 +γ+
T 3/4

[
1 + 2

√
ln
(

1 + T (m+ 1)2γ+

dλ

)

·

(√
λ

d
+

√
ln(1/δ)
d

+ ln
(

1 + T (m+ 1)2γ+

dλ

) )]
.

Proof The proof is along the lines of OFUL’s analysis. The main difficulty is that we cannot use the
elliptical potential lemma, see e.g., (Lattimore & Szepesvári, 2020, Lemma 19.4) due to the delay accumulated
by Vτ , which is computed every m+ L round only. Let

βτ (δ) =

√
2 ln

(
1
δ

)
+ d ln

(
1 + τ(m+ 1)2γ+

dλ

)
+
√
λ . (18)

By (Abbasi-Yadkori et al., 2011, Theorem 2), we have with probability at least 1− δ that θ∗ ∈ Cτ for every τ .
It follows directly that θ∗ ∈ Dτ for any τ , such that ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩, where θ̃τ = (0d, . . . , 0d, θ̃τ , . . . , θ̃τ )
with θ̃τ ∈ Rd that maximizes (11) over Cτ−1. It can be shown that the regret is upper bounded by∑

τ

∑m+L
i=m+1⟨bτ,i, θ̃τ − θ∗⟩. Following the standard analysis, one could then use〈

bτ,i, θ̃τ − θ∗〉 ≤ ∥bτ,i∥V −1
τ−1

∥∥θ̃t − θ∗∥∥
Vτ−1

.

While the confidence set gives
∥∥θ̃t−θ∗

∥∥
Vτ−1

≤ 2βτ−1(δ), the quantity
∑m+L

i=m+1 ∥bτ,i∥V −1
τ−1

is much more complex
to bound. Indeed, the elliptical potential lemma allows to bound

∑
t ∥at∥2

V −1
t−1

when Vt =
∑

s≤t asa
⊤
s + λId.

However, recall that in our case we have Vτ =
∑τ

τ ′=1
∑m+L

i=m+1 bτ ′,ib
⊤
τ ′,i + λId, which is only computed every

m + L rounds. As a consequence, there exists a “delay” between Vτ−1 and the action bτ,i for i ≥ m + 2,
preventing from using the lemma. Therefore, we propose to use instead

〈
bτ,i, θ̃τ − θ∗〉 ≤ ∥bτ,i∥V −1

τ,i−1

∥∥θ̃t − θ∗∥∥
Vτ,i−1

, where Vτ,i = Vτ−1 +
i∑

j=m+1
bτ,jb

⊤
τ,j . (19)

By doing so, the elliptical potential lemma applies. On the other hand, one has to control
∥∥θ̃t − θ∗

∥∥
Vτ,i−1

,
which is not anymore bounded by 2βτ−1(δ) since the subscript matrix is Vτ,i−1 instead of Vτ−1. Still, one
can show that for any i ≤ m+ L we have∥∥θ̃t − θ∗∥∥2

Vτ,i−1

= Tr
(
Vτ,i−1

(
θ̃t − θ∗)(θ̃t − θ∗)⊤

)
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= Tr

(Vτ−1 +
i−1∑

j=m+1
bτ,jb

⊤
τ,j

) (
θ̃t − θ∗)(θ̃t − θ∗)⊤


= Tr

(Id +
i−1∑

j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤
)
V

1/2
τ−1
(
θ̃t − θ∗)(θ̃t − θ∗)⊤

V
1/2

τ−1


≤
∥∥∥∥Id +

i−1∑
j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤
∥∥∥∥

∗
Tr
(
V

1/2
τ−1
(
θ̃t − θ∗)(θ̃t − θ∗)⊤

V
1/2

τ−1

)

≤
(

1 +
i−1∑

j=m+1

∥∥V −1/2
τ−1 bτ,j

∥∥2
2

)∥∥θ̃t − θ∗∥∥2
Vτ−1

≤
(

1 + (L− 1)(m+ 1)2γ+
) ∥∥θ̃t − θ∗∥∥2

Vτ−1

≤ L(m+ 1)2γ+ ∥∥θ̃t − θ∗∥∥2
Vτ−1

. (20)

Recalling also that ⟨b̃,θ∗⟩ − ⟨bτ ,θ
∗⟩ ≤ 2L(m+ 1)γ+ , we have with probability at least 1− δ

T/(m+L)∑
τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ
∗⟩

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

, ⟨bτ , θ̃τ − θ∗⟩
}

=
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

,

m+L∑
i=m+1

⟨bτ,i, θ̃τ − θ∗⟩

}

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

,

m+L∑
i=m+1

∥bτ,i∥V −1
τ,i−1

∥∥θ̃t − θ∗∥∥
Vτ,i−1

}

≤
T/(m+L)∑

τ=1
min

{
2L(m+ 1)γ+

, 2
√
L(m+ 1)γ+

βτ−1(δ)
m+L∑

i=m+1
∥bτ,i∥V −1

τ,i−1

}

≤ 2L(m+ 1)γ+
βT/(m+L)(δ)

T/(m+L)∑
τ=1

m+L∑
i=m+1

min
{

1 , ∥bτ,i∥V −1
τ,i−1

}

≤ 2L(m+ 1)γ+
βT/(m+L)(δ)

√√√√ T L

m+ L

T/(m+L)∑
τ=1

m+L∑
i=m+1

min
{

1 , ∥bτ,i∥2
V −1

τ,i−1

}

≤ 2
√

2L(m+ 1)γ+
βT/(m+L)(δ)

√
T ln

|VT/(m+L)|
|λId|

≤ 4L(m+ 1)γ+

√
Td ln

(
1 + T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln
(

1
δ

)
+ d ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

) )
, (21)

where we have used (18), (19), and (20). Similarly to Proposition 5, note that in the stationary case, i.e.,
when m = 0 and L = 1, we exactly recover (Abbasi-Yadkori et al., 2011, Theorem 3). The first claim of
Theorem 1 is obtained by setting λ ∈ [1, d], and δ = 1/T .
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Let RT denote the right-hand side of (21). Combining this bound with the arguments of Proposition 2, we
have with probability 1− δ

T∑
t=1

rt ≥
T/(m+L)∑

τ=1
r̃(aτ )− m(m+ 1)γ+

m+ L
T (22)

=
T/(m+L)∑

τ=1
⟨bτ ,θ

∗⟩ − m(m+ 1)γ+

m+ L
T

≥
T/(m+L)∑

τ=1
⟨b̃,θ∗⟩ −RT −

m(m+ 1)γ+

m+ L
T (23)

=
T/(m+L)∑

τ=1
r̃(ã)−RT −

m(m+ 1)γ+

m+ L
T

≥
T∑

t=1
r̃t −RT −

2m(m+ 1)γ+

m+ L
T (24)

≥ OPT−RT −
4m(m+ 1)γ+

m+ L
T (25)

≥ OPT− 4(m+ 1)γ+

[
mT

m+ L
+ (m+ L)

√
Td ln

(
1 + T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln
(

1
δ

)
+ d ln

(
1 + T (m+ 1)2γ+

d(m+ L)λ

) )]
,

where (22) and (24) come from the fact that any instantaneous reward is bounded by (m+ 1)γ+ , see (8), (23)
from (21), and (25) from Proposition 2.

Now, assume that m ≥ 1, T ≥ d2m2 + 1, and let L =
⌈√

m/d T 1/4⌉−m. By the condition on T , we have√
m/d T 1/4 > m ≥ 1, such that L ≥ 1 and√

m

d
T 1/4 ≤

⌈√
m

d
T 1/4

⌉
= L+m ≤

√
m

d
T 1/4 + 1 ≤ 2

√
m

d
T 1/4 .

Substituting in the above bound, we have with probability 1− δ

OPT−
T∑

t=1
rt ≤ 4

√
d (m+ 1) 1

2 +γ+
T 3/4

[
1 + 2

√
ln
(

1 + T (m+ 1)2γ+

dλ

)

·

(√
λ

d
+

√
ln(1/δ)
d

+ ln
(

1 + T (m+ 1)2γ+

dλ

) )]
.

The second claim of Theorem 1 is obtained by setting λ ∈ [1, d], and δ = 1/T . □

A.6 Proof of Corollary 1

Lemma 1 Suppose that a block-based bandit algorithm (in our case the bandit combiner) produces a sequence
of Tbc blocks aτ , with possibly different cardinalities |aτ |, such that

Tbc∑
τ=1

r̃(ã)
|ã|
−

Tbc∑
τ=1

r̃(aτ )
|aτ |

≤ F (Tbc) ,

for some sublinear function F . Then, we have

minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

Tbc∑
τ=1

r̃(aτ ) ≤ min
τ
|aτ |F (Tbc) .

22



Published in Transactions on Machine Learning Research (05/2024)

In particular, if all blocks have the same cardinality the last bound is just the block regret bound scaled by |aτ |.

Proof We have
Tbc∑
τ=1

r̃(aτ ) ≥ min
τ
|aτ |

Tbc∑
τ=1

r̃(aτ )
|aτ |

≥ min
τ
|aτ |

(
Tbc∑
τ=1

r̃(ã)
|ã|
− F (Tbc)

)

= minτ |aτ |
maxτ |aτ |

r̃(ã)
|ã|

max
τ
|aτ | Tbc −min

τ
|aτ |F (Tbc)

≥ minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−min

τ
|aτ |F (Tbc) .

□

Corollary 1 Consider an instance of LBM with unknown parameters (m⋆, γ⋆). Assume a bandit combiner
is run on N ≤ d√m⋆ instances of OFUL-memory (Algorithm 2), each using a different pair of parameters
(mi, γi) from a set S =

{
(m1, γ1), . . . , (mN , γN )

}
such that (m⋆, γ⋆) ∈ S. Let M = (maxj mj)/(minj mj).

Then, for all T ≥ (m⋆ + 1)2γ+
⋆ /m⋆d

4, the expected rewards
(
rbc

t

)T

t=1 of the bandit combiner satisfy

OPT√
M
− E

[
T∑

t=1
rbc

t

]
= Õ

(
M d (m⋆ + 1)1+ 3

2 γ+
⋆ T 3/4

)
.

Proof Let m⋆ be the true memory size, and L⋆ = L(m⋆) the corresponding (partial) block length.
Throughout the proof, ã denotes the block defined in (5) with length m⋆ +L⋆. First observe that only one of
the OFUL-memory instances we test is well-specified, i.e., has the true parameters (m⋆, γ⋆). We can thus
rewrite the regret bound for the Bandit Combiner (Cutkosky et al., 2020, Corollary 2), generalized to rewards
bounded in [−R,R] as follows

Regretbc = Õ

C⋆T
α⋆

bc + C
1

α⋆
⋆ Tbcη

1−α⋆
α⋆

⋆ +R2Tbcη⋆ +
∑
j ̸=⋆

1
ηj

 , (26)

where Tbc = T/(m⋆ + L⋆) is the bandit combiner horizon, C⋆ and α⋆ are the constants in the regret bound
of the well-specified instance (see below how we determine them), and the ηj are free parameters to be tuned.
We now derive C⋆ and α⋆. To that end, we must establish the regret bound of the well-specified instance, and
identify C⋆ and α⋆ such that this bound is equal to C⋆T

α⋆

bc , where C⋆ may contain logarithmic factors. For
the well-specified instance, the first claim of Theorem 2 gives that, with probability at least 1− δ, we have

T/(m⋆+L⋆)∑
τ=1

r̃(ã)− r̃(aτ ) ≤ 4(m⋆ + L⋆)(m⋆ + 1)γ+
⋆

√√√√Td ln
(

1 + T (m⋆ + 1)2γ+
⋆

dλ

)
√λ+

√√√√ln
(

1
δ

)
+ d ln

(
1 + T (m⋆ + 1)2γ+

⋆

d(m⋆ + L⋆)λ

) 
T/(m⋆+L⋆)∑

τ=1

r̃(ã)
|ã|
− r̃(aτ )
|aτ |

≤ T 1/2 4(m⋆ + 1)γ+
⋆

√√√√d ln
(

1 + T (m⋆ + 1)2γ+
⋆

dλ

)
(27)

√λ+

√√√√ln
(

1
δ

)
+ d ln

(
1 + T (m⋆ + 1)2γ+

⋆

d(m⋆ + L⋆)λ

)  ,
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where we have used that |aτ | = |ã| = m⋆ +L⋆ for every τ . Note that the right-hand side of (27) is expressed
in terms of T , which is not the correct horizon, T/(m⋆ + L⋆). However, recall that we have

m⋆ + L⋆ ≤ 2
√
m⋆

d
T 1/4

(m⋆ + L⋆)4 ≤
(

4m⋆

d

)2
T

T 3 ≤
(

4m⋆

d

)2(
T

m⋆ + L⋆

)4

T 1/2 ≤
(

4m⋆

d

)1/3(
T

m⋆ + L⋆

)2/3
,

such that by substituting in (27) and identifying we have α⋆ = 2/3, and

C⋆ = 4
(

4m⋆

d

)1/3
(m⋆ + 1)γ+

⋆

√√√√d ln
(

1 + Tbc(m⋆ + L⋆)(m⋆ + 1)2γ+
⋆

dλ

)
√λ+

√√√√ln
(

1
δ

)
+ d ln

(
1 + Tbc(m⋆ + 1)2γ+

⋆

dλ

)  .

Setting ηj = T
−2/3
bc , and substituting in (26) with R = (m⋆ + 1)γ+

⋆ , we have that with high probability

Tbc∑
τ=1

r̃(ã)
|ã|
− r̃(abc

τ )
|abc

τ |
= Õ

((
C

3/2
⋆ +N

)
T

2/3
bc + (m⋆ + 1)2γ+

⋆ T
1/3
bc

)
.

Now, recall that Tbc = O
(√

d/m⋆ T
3/4), and that C⋆ = Õ

(
(m⋆ + 1) 1

3 +γ+
⋆ d2/3). Hence, N ≤ d√m⋆ implies

N = O
(
C

3/2
j

)
, and (m⋆ + 1)γ+

⋆ ≤ d2√m⋆T implies (m⋆ + 1)γ+
⋆ T

1/3
bc = O

(
C

3/2
⋆ T

2/3
bc
)
. Setting λ ∈ [1, d],

δ = 1/T , we obtain

E

[
Tbc∑
τ=1

r̃(ã)
|ã|
− r̃(abc

τ )
|abc

τ |

]
= Õ

(
d
√
m⋆ (m⋆ + 1) 3

2 γ+
⋆ T

2/3
bc

)
. (28)

Let mτ be the memory size associated to the bandit played at block time step τ by Algorithm 2. Let
mmin = minj mj and mmax = maxj mj . Finally, let Lmin and Lmax the (partial) block length associated with
mmin and mmax. We have

T∑
t=1

rbc
t ≥

Tbc∑
τ=1

(
r̃(abc

τ )−mτ (m⋆ + 1)γ+
⋆

)
≥

Tbc∑
τ=1

r̃(abc
τ )−mmax (m⋆ + 1)γ+

⋆ Tbc ,

such that by Lemma 1 and (28) we obtain

E

[
minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

T∑
t=1

rbc
t

]
≤ mmax (m⋆ + 1)γ+

⋆ Tbc + min
τ
|aτ | Õ

(
d
√
m⋆ (m⋆ + 1) 3

2 γ+
⋆ T

2/3
bc

)
,

E

[
mmin + Lmin

mmax + Lmax

(
L⋆ OPT

T

T

m⋆ + L⋆

)
−

T∑
t=1

rbc
t

]
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≤ mmax (m⋆ + 1)γ+
⋆ T

mmin + Lmin
+ (mmin + Lmin)1/3 Õ

(
d
√
m⋆ (m⋆ + 1) 3

2 γ+
⋆ T 2/3

)
,

E

[√
mmin

mmax
OPT−

T∑
t=1

rbc
t

]
≤ mmax

mmin

√
dm⋆ (m⋆ + 1)γ+

⋆ T 3/4 + Õ
(
dm⋆ (m⋆ + 1) 3

2 γ+
⋆ T 3/4

)
= mmax

mmin
Õ
(
dm⋆ (m⋆ + 1) 3

2 γ+
⋆ T 3/4

)
,

where we have used the fact that mmin + Lmin =
√
mmin/d T

1/4, and mmax + Lmax =
√
mmax/d T

1/4.
Corollary 1 is obtained by setting M = mmax/mmin. □

B Bandit Combiner

In this section we show our adaptation of the numbers Cj and target regrets Rj for the Bandit Combiner
algorithm Algorithm 2 which builds on Cutkosky et al. (2020). For O3M(mj , γj), j = 1, . . . , N , the numbers
Cj and target regrets Rj are defined as

Cj = 4
(

4mj

d

)1/3
(mj + 1)γ+

j

√√√√d ln
(

1 + Tbc(mj + Lj)(mj + 1)2γ+
j

dλ

)
(29)

√λ+

√√√√ln
(

1
δ

)
+ d ln

(
1 + Tbc(mj + 1)2γ+

j

dλ

)  ,

Rj = CjT
αj

bc + (1− αj)
1−αj

αj (1 + αj)
1

αj

α

1−αj
αj

j

C
1

αj

j Tbcη

1−αj
αj

j

+ 1152(mj + 1)2γ+
j log(T 3

bcN/δ)Tbcηj +
∑
k ̸=j

1
ηk
.

Note that the form of the target regret Rj slightly differs from the one presented in (Cutkosky et al., 2020,
Corollary 2) due to the different range of the rewards. The algorithm, which is an adaptation of Bandit
Combiner in Cutkosky et al. (2020), is summarized in Algorithm 2.

C Additional Experiments

We provide an additional experiment comparing the regrets of O3M and OM-Block. In order to be able to plot
the regret, we must know OPT which is hard to compute in general. Since in the rising scenario with an
isotropic initialization OPT is oracle greedy, which is easy to compute, we present this experiment in a rising
setting with m = 1 and γ = 2. We plot the regret of O3M and OM-Block against the number of time steps,
measuring the performance at different time horizons and for different sizes of L (where L depends on T , see
at the end of Section 3.2). Specifically, we instantiated O3M and OM-Block for increasing values of L, setting
the horizon of each instance based on the equations in Theorem 1 and Proposition 4. Figure 3 shows how
the dimension of θ̂, which is d for O3M and d × L for OM-Block, has an actual impact on the performance
since O3M outperforms OM-Block. The code is written in Python and it is publicly available at the following
GitHub repository: Linear Bandits with Memory.
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Figure 3: The regret of O3M and OM-Block. Each dot is a separate run where the value of L is tuned to the
corresponding horizon.

26


	Introduction
	Model
	Regret Analysis
	Approximation
	Estimation
	Model Selection

	Algorithms
	Experiments
	Conclusions and open problems
	Technical Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 4
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Corollary 1

	Bandit Combiner
	Additional Experiments

