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Abstract

Recent advances in speech-enabled Al, in-
cluding Google’s NotebookLM and OpenAl’s
speech-to-speech API, are driving widespread
interest in voice interfaces across sectors such
as finance, health, agritech, legal services, and
call-centers in the global north and south. De-
spite this momentum, there exists no pub-
licly available application-specific model eval-
uation that caters to Africa’s linguistic diver-
sity. We present Afrispeech-MultiBench, the
first domain-specific evaluation suite for over
100 African English accents across 10+ coun-
tries and six application domains: Finance,
Legal, Medical, General dialogue, Call Cen-
ter, and Named Entities. We benchmark a di-
verse range of open, closed, unimodal ASR
and multimodal LLM-based speech recogni-
tion systems using both scripted and unscripted
conversation drawn from various open African
accented English speech datasets. Our em-
pirical analysis reveals systematic variation:
open-source ASR excels in scripted contexts
but degrades on noisy, non-native dialogue;
multimodal LLMs are more accent-robust yet
struggle with domain-specific named entities;
proprietary models deliver high accuracy on
clean speech but vary significantly by coun-
try and domain. Smaller models fine-tuned on
African English achieve competitive accuracy
with lower latency, a practical advantage for
deployment. By releasing this benchmark, we
empower practitioners and researchers to select
voice technologies suited to African use-cases,
fostering inclusive voice applications for under-
served communities.

1 Introduction

Automatic Speech Recognition (ASR) has become
a foundational technology across numerous do-
mains. In customer-support environments, ASR
powers real-time call routing, intent detection, and
agent assistance, substantially reducing response
times and improving user satisfaction (Wang et al.,

2023). In healthcare, voice-enabled digital scribes
transcribe clinician—patient interactions on the fly,
alleviating documentation burdens and cutting
downstream transcription costs (van Buchem et al.,
2021). Emerging applications in legal transcription
(Saadany et al., 2023), financial trading desktops,
and live subtitling further demonstrate the broad
impact of ASR systems in both enterprise and con-
sumer settings.

Selecting the optimal ASR model for a given
task now often means choosing among powerful,
pre-trained foundation systems rather than train-
ing bespoke models from scratch. Self-supervised
representations such as wav2vec 2.0 (Baevski
et al., 2020) learn rich audio features from large
amounts of unlabeled speech and can be applied
in a zero-shot or few-shot manner, achieving
near-state-of-the-art word-error rates on standard
benchmarks (Baevski et al., 2020). Large multi-
task models such as Whisper (Radford et al., 2023),
trained on hundreds of thousands of hours of multi-
lingual and multitask data, exhibit strong zero-shot
transfer across domains and languages without ad-
ditional fine-tuning (Radford et al., 2023). How-
ever, computational budgets, latency requirements,
and domain mismatches mean that one foundation
model may outperform another depending on the
target task, be it medical dictation, legal proceed-
ings, or informal conversational speech.

Accented speech, particularly non-Western and
under-represented varieties, remains a persistent
blind spot in mainstream evaluation suites. African
accents exhibit rich phonetic and prosodic diversity,
which can dramatically widen word-error-rate gaps
when compared to North-American or British En-
glish (Dossou, 2025). Without a dedicated bench-
mark, practitioners cannot reliably predict which
off-the-shelf ASR system will meet accuracy or
latency targets on their specific African-accented
corpus.

Accordingly, we present a unified eval-



uation suite that benchmarks leading ASR
systems, AfriSpeech-MultiBench in zero-shot
mode across medical, legal, conversational, and
named-entity-rich African-accented English. The
suite supplies standardized test sets, and transpar-
ent scoring protocols enabling practitioners to com-
pare models and select the architecture most appro-
priate for their target application or for finetuning.

2 Related Work

IrokoBench introduced a comprehensive text-based
evaluation across seventeen low-resource African
languages, revealing significant performance gaps
between large language models and human com-
petence on tasks such as natural-language infer-
ence, reasoning and question answering (Adelani
et al., 2025). The study underscores the necessity
of domain-specific evaluation: without targeted test
suites, systematic deficiencies remain undetected.

Within automatic speech recognition (ASR),
progress is often measured through the
community-maintained Open ASR Leader-
board, which continuously reports word-error
rate (WER) and real-time factor on LibriSpeech
(Panayotov et al., 2015), TED-LIUM 3 (Hernandez
et al., 2018), GigaSpeech (Chen et al., 2021),
VoxPopuli (Wang et al., 2021), AMI (Carletta
et al., 2005), Earnings22 (Andrew et al., 2022),
SPGISpeech (Guo et al., 2022), and Common
Voice (Ardila et al., 2020). Although these datasets
cover a range of domains, from read audiobooks
to meeting-room recordings, they remain dom-
inated by North-American and British English,
providing limited insight into performance on
African-accented English.

Empirical investigations confirm the practical
consequences of this imbalance. Koenecke et al.
documented a twofold increase in WER for African
American Vernacular English relative to Standard
American English across multiple commercial
recognisers(Koenecke et al., 2020). A global au-
dit involving speakers from 171 birth countries ob-
served the largest error rates for sub-Saharan partic-
ipants(DiChristofano et al., 2022). In the absence
of African-accented evaluation sets, leaderboard
rankings therefore offer an incomplete picture for
stakeholders on the continent.

Modern recognisers are architecturally diverse.
They include multilingual encoders such as Whis-
per (Radford et al., 2023) and XLS-R, proprietary

cloud services (Microsoft Azure Speech-to-Text,
Google Speech-to-Text), Conformer-based systems
like Canary (Puvvada et al., 2024) and Parakeet
(Rekesh et al., 2023), Speech-Augmented Lan-
guage Models (SALMs) (Chen et al., 2023), and
multimodal architectures such as SeamlessM4T
(Schwenk et al., 2023). Their heterogeneous train-
ing regimes and objectives complicate any attempt
to infer accent robustness from results on existing
benchmarks alone.

Several African-accented corpora have been
released to mitigate data scarcity. AfriSpeech-200
provides roughly 200 hours of read speech from
more than 100 indigenous accents (Olatunji et al.,
2023).  AfriSpeech-Dialog adds spontaneous
two-speaker conversations (Sanni et al., 2025);
AfriSpeech-Parliament captures parliamentary
debates (Intron Health, 2025a); Med-Convo-Nig
focuses on Nigerian clinical tele-consultations
(Intron Health, 2025c); Afri-Names targets
named-entity-rich prompts (Intron Health,
2025b); and AfriSpeech-Countries assembles
cross-regional accents under consistent recording
conditions (Intron Health, 2025). Existing baseline
evaluations do not cover modern speech recogni-
tion systems or lack broad application-specific
results.

This study contributes three key advances. First,
six publicly available African-accented corpora are
harmonised into AfriSpeech-MultiBench, an evalu-
ation suite spanning medical, legal, conversational
and named-entity-rich speech. Second, sixteen
contemporary recognisers covering multilingual,
proprietary, Conformer-based, SALM and multi-
modal architectures—are evaluated in zero-shot
mode, with both WER and real-time factor reported.
Third, a fine-grained error analysis disaggregates
results by accent cluster, phonetic context and do-
main, elucidating systematic failure modes and in-
forming future data collection and model selection.

3 Benchmark Methodology

3.1 Source Datasets

We assemble six corpora to form
AfriSpeech-MultiBench, covering  diverse
Anglophone African English accents. The

distribution of sources is shown in Table 1.

* AfriSpeech-200: (Afri) a 200-hour, 67,577
clip dataset, 2,463 speakers across 120 indige-
nous accents from 13 African countries, span-



Domain Data Source Samples Hours Countries Accents Speakers
Medical Afri (clinical), Dialog (medical), Med.Conv 3651 29.88 10 95 519
General Afri (general), Dialog (general) 2741 13.06 9 84 455
Legal Parl 8068 35.86 4 - -
Named Entities Names (names) 3121 2.18 3 6 -
Finance Names (numbers), Names (commands) 3186 6.73 4 9 -
Call Center Call (Private) 16 0.80 2 3 32
Total Unique 18042  75.45 11 108 859

Table 1: Domain-wise breakdown of the Afrispeech-Multibench benchmark. Parentheses denote domain-specific
subsets. Full names of the datasets - Afri: Afrispeech, Dialog: Afrispeech-Dialog, Med.Conv:Med-Conv-Nig, Names:
AfriNames. The Call Center source is private and not disclosed.

ning clinical and general domain read speech
(Olatunji et al., 2023).

* AfriSpeech-Dialog: (Diag) about 50 long-
form medical and non-medical conversational
sessions with African-accented spontaneous
English (about 7 hrs) (Sanni et al., 2025).

AfriSpeech-Parliamentary: (Parl) A real-
world noisy, multi-speaker dataset of tran-
scribed parliamentary speech (about 35.86
hours, 8,068 clips) sampled from Nigeria,
Ghana, South Africa, and Kenya. (In-
tron Health, 2025a).

Med-Conv-Nig: (Med.Conv) about 25 long-
form simulated doctor—patient conversations
capturing multispecialty clinical interactions
in Nigeria, featuring both male and female
speakers and rich in medical vocabulary —
tailored for evaluating domain-specific ASR
in healthcare settings (Intron Health, 2025¢).

AfriNames: (Names) A read-speech cor-
pus with subsets focused on African names
(Name), numbers (Nums), and voice com-
mands (Commands), e.g. "transfer $500
to my HSBC account"; comprising 6,307
single-speaker samples (about 8.92 hours), en-
riched with named entities and number utter-
ances, spanning 12 distinct accents across four
countries, particularly suited for evaluating
ASR performance on entity-rich transcription
tasks (Intron Health, 2025b)

AfriSpeech-Countries: A mixture of
Afrispeech-200, Afrispeech-Parliamentary,
Afrinames and North African accented speech
samples (Ctry-NA), totaling approximately
67 hours and 21,581 clips. The dataset spans
seven African regions and includes both read
and conversational speech. All samples are

Dataset \ Hrs Speakers Accents

Afrispeech 18.68 750 108
Afri-Diag 7.00 98 12
Parl 35.86 - 4
Med.Conv 4.20 11 1
Names 8.91 - 12
Countries (NA)* 4.61 - 7
Total Unique 79.26 859 108

Table 2: Corpus statistics (Test). Countries (NA) repre-
sents speech samples from Northern African countries
not included in other test sets which already have other
African countries. Dashes represent statistics not pro-
vided in the original release of the datasets.

annotated by domain and country.

e Afro-Call-Centers: (Call) A private
unreleased dataset capturing real-world
agent—customer voice interactions rich in
domain-specific vocabulary across finance,
health, and customer support domains (Intron
Health, 2025).

3.2 Domains Studied

We define six domain categories for evaluation with
dataset details described in Table 1:

* Medical: health-related medical speech and
clinician—patient dialogues.

* General: read-speech sourced from
Wikipedia and unscripted multispeaker
dialogues.

* Legal: noisy parliamentary proceeding with
overlapping speech.

* Finance: read speech enriched with numbers
such as currencies, decimals, dates, measure-
ments, locations, trading volumes, and finan-
cial institutions.



* Call Center / Customer Support: real-world
agent—customer interactions

* Named-Entities: Named-Entity-Rich Gen-
eral clips with dense mentions of African per-
son names, locations, organizations, and dates

3.3 Models

Architecture Model Size

Conformer Nvidia Parakeet-tdt-0.6B-v2 0.6B
Nvidia Parakeet-tdt-1.1B 1.1B
Nvidia Parakeet-rnnt-1.1B 1.1B
Nvidia Canary-1B-flash 1B

Whisper OpenAl Whisper-large-v3 1.54B

Variant
Distil-Whisper-v3.5 756M
Nyra Health CrisperWhisper ~ 1.54B

SALM IBM Granite-3.3-2B 2B
Mistral Voxtral-Mini-3B 3B
Nvidia Canary-Qwen-2.5B 2.5B
Microsoft Phi-4 MM-Instruct  14B

Proprietary  Intron-Sahara -

OpenAl GPT-40 Transcribe -
Google Gemini-2.0 F1 -
AWS Transcribe -
Microsoft Azure Speech -

Table 3: Descriptions of evaluated models, including
model size, core architecture, and provider. Model sizes
are in billions (B) of parameters when known.

We evaluate 16 modern ASR systems partly
sourced from the top twenty entries on the Hug-
ging Face Open ASR Leaderboard (snapshot: July
2025)! categorized into model families represent-
ing architectural breadth—Conformer, RNN-T,
CTC, transducer hybrids, and speech-augmented
language models (SALMs) and include both fully
open-source checkpoints and proprietary services
already deployed in commercial workflows.

* NVIDIA’s open models: Open-source ASR
models based on the FastConformer (Rekesh
et al., 2023) such as the Parakeet variants:
CTC, RNN-T and TDT (Galvez et al., 2024)
in sizes of 0.6B and 1.1B, and the 1 billion
parameter Canary-flash model pairing a Fast-
Conformer encoder with a transformer de-
coder (Puvvada et al., 2024).

* Whisper Variants: Transformer encoder
decoder models based on Whisper (Rad-
ford et al., 2023). We consider the vari-
ants: Whisper-large-v3 (Radford et al., 2023),

'Leaderboard URL: https://huggingface.co/spaces/
hf-audio/open_asr_leaderboard.

Distil-Whisper-v3.5%, and CrisperWhisper
(Zusag et al., 2024).

* Open SALMs: Multimodal LLMs and
Speech-Augmented LLMs including IBM
Granite-3.3-2B>, Phi-4 Multimodal Instruct
(Abdin et al., 2024), Nvidia Canary—Qwen4,
and Mistral’s Voxtral Mini-3B (Liu et al.,
2025).

* Proprietary cloud ASR services: Ope-
nAI's GPT-4o transcribe’, Google’s Gemini-
2.0-flash®, AWS Transcribe’, Azure Speech
Recognition® and Intron”. Models are evalu-
ated in zero-shot mode, with neither demon-
strations (Min et al., 2022) nor domain-
specific fine-tuning.

This broad selection of modern ASR systems
facilitate an empirical comparison between com-
mercially deployed services and publicly available
checkpoints, capturing the architectural and com-
mercial diversity of leading ASR systems, provid-
ing a realistic basis for accent-aware model selec-
tion.

3.4 Evaluation Protocol

* Primary metric: Word Error Rate (WER) mea-
sured per model, per domain, per country, and
per dataset.

* Error analysis: Breakdown by domain, accent
group (native vs non-native), named-entity er-
rors, noise robustness; Open-source vs propri-
etary models, unimodal vs multimodal, large
vs compact variants.

4 Experiments

* Dataset splits: We use held-out test sets per
corpus, ensuring some accents appear only
in testing to evaluate zero-shot generalization

https://huggingface.co/distil-whisper/
distil-large-v3.5

3https://huggingface.co/ibm-granite/
granite-speech-3.3-2b

4https://huggingface.co/nvidia/canary—qwen—z.
5b

5https://platform.openai.com/docs/models/
gpt-4o-transcribe

®https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-0-flash

"https://aws.amazon.com/transcribe/

8https://azure.microsoft.com/en—us/products/
ai-services/ai-speech

*https://www.intron.io/
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Model Open ASR Benchmarks AfriSpeech-MultiBench

Lib-S TED-3 Giga VoxP AMI Earn22 SPGI Afrispeech Afri-Diag Parl Med.Conv Names Call

Parakeet-tdt-0.6B-v2 1.69 338 9.74 5.95 11.16 11.15 2.17 30.20 11.23 18.45 29.41 41.88 20.96
Parakeet-tdt-1.1B 1.40 3.59 9.52 5.49 15.87 14.49 3.16 28.45 15.14  27.14 29.98 45.66 25.26
Parakeet-rnnt-1.1B 1.45 3.83 9.89 5.44 17.01 13.94 293 28.18 15.08 26.75 30.59 46.70 2893
Canary-1B-flash 1.48 3.12 9.85 5.63 13.11 12.77 1.95 29.77 48.50 19.13 93.62 44.10 8871
Whisper-large-v3 2.01 3.86 10.02 9.54 15.95 11.29 2.94 26.49 13.49 19.99 31.76 43.23 24.69
Distil-Whisper-v3.5 237 3.64 9.84 8.04 14.63 11.29 2.87 27.58 18.00 11.50 30.41 45.80 21.65
CrisperWhisper 1.82 32 10.24 9.82 8.71 12.89 2.7 63.80 72.72 79.35 83.12 70.14 35.52
IBM Granite-3.3-2B 1.64 4.12 11.05 6.55 10.22 13.86 3.96 34.38 99.59 20.67 96.30 49.51 -
Voxtral (Mistral) 1.86 - 10.04 6.78 - 12.18 2.04 20.17 68.42 21.10 78.73 49.36 -
Canary-Qwen-2.5B 1.61 1.90 9.43 5.66 10.19 10.45 1.90 29.87 96.64 18.18 97.89 4291 -
Phi-4 MM-Instruct 1.68 2.89 9.71 593 11.45 10.50 3.11 26.48 88.91 36.73 130.17 44.28 -
Intron-Sahara - - - - - - - 16.35 14.26 15.41 27.92 8.17 20.08
GPT-40 Transcribe - - - - - - - 24.66 15.03 64.39 30.80 52.49 23.20
Google Gemini-2.0 Flash - - - - - - - 27.80 12.02 20.51 27.59 50.12 22.39
AWS Transcribe - - - - - - - 3277 14.02 18.50 30.08 36.70 2351
Azure Speech Recognition - - - - - - - 28.41 13.29 18.75 26.17 35.69 -

Table 4: Word Error Rate (WER %) for each model on standard open ASR benchmarks and subsets of the
Afrispeech-MultiBench dataset. Dashes represent results that were not available. Full names of datasets: Lib-S:
LibriSpeech; TED-3: TED-LIUM 3; Giga: GigaSpeech; VoxP: VoxPopuli; AMI: AMI Meeting Corpus; Earn22:
Earnings22; SPGI: SPGISpeech; Afrispeech: AfriSpeech-200; Afri-Diag: AfriSpeech-Dialogue; Parl: AfriSpeech-
Parliamentary; Med.Conv: Med-Conv-Nig; Names: AfriNames; Call: Afro-Call-Centers.
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Figure 1: Average of Open ASR Leadearboard vs Afrispeech-Multibench

(e.g. 41 accents exclusively in test partition of open and closed LLMs, e.g. "Transcribe this

AfriSpeech-200) ENGLISH audio". Prompt details are pro-

. . vided in Appendix section 7.
* Transcript Pre- and Post-processing: Model-

specific transcript pre- and post-processing
(described in Appendix section 7) normal-
ized inputs, removed filler words, and mapped § Results

number words to their digit form, e.g.

"twenty" to "20" and "first" to "1st". 5.1 Overall Results

As show in Table 4, model performance on standard
ASR benchmarks (e.g., LibriSpeech, TED-LIUM,
AMI) fails to predict accuracy on African-accented,
domain-specific speech. Leading open-source mod-
els like Parakeet-tdt-0.6B-v2 and Whisper-large-v3,
which achieve WERs below 4% on LibriSpeech,
* Prompting: We use consistent prompts for  degrade to 30—45% on general African speech and

We provide results for single runs.

* Inference setup: Uniform audio input prepro-
cessing (16 kHz mono, no diarization) with
default hyperparameters and decoding settings
for ASR models and proprietary API calls. Lo-
cal runs were on single T4 GPU (16GB).



WER Across African Accents by ASR Model
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Word Error Rate (WER %) for each model across different African English
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Figure 3: Model Sizes vs. Performance on Open ASR Benchmark (Blue) and Afrispeech-Multibench (Orange)

up to 70%+ on medical dialogue or named-entity-
rich inputs in AfriSpeech-MultiBench. This pat-
tern holds across architecture types, with all mod-
els showing 2-5x higher error rates on African
data compared to leaderboard results. In contrast,
Intron-Sahara, a regionally tuned model not fea-
tured on global leaderboards, consistently outper-
forms across domains—achieving 16.35% WER on
general speech and just 8.17% on named entities.

5.2 Domain Performance

5.2.1 Medical

As show in Table 5, Intron-Sahara yields the
lowest average WER (about 19.5%), signifi-
cantly outperforming other models. Open models
(Whisper-large-v3 and Parakeet-0.6Bv2) and pro-
prietary (Gemini, GPT-40, Azure) deliver average
WERSs of about 23-27% in these settings while
Multimodal open LLMs like Phi-4 MM and IBM
Granite perform poorly (>80% WER) in medical

contexts despite taking top spots on the Open ASR
Leaderboard.

5.2.2 Finance

As show in Table 6, Intron-Sahara excels
here—achieving about 13.6% on numbers and
about 1.8% on voice-commands, representing the
finance domain. Proprietary models (Azure, AWS)
perform moderately well (about 20-30% WER).
Open-source and LLLM models deliver higher error
rates (about 40-55%).

5.2.3 Names

As show in Table 6, Intron-Sahara outperforms
all others by a wide margin, reaching about 27%
WER on African named entities. Open, larger, and
proprietary models collapse with over 2x worse
WERs (over 60%).



Model Afri-Med Diag Med.Conv Average
Parakeet-tdt-0.6B-v2 34.55 11.23 29.41 25.06
Parakeet-tdt-1.1B 33.79 15.14 29.98 29.98
Parakeet-rnnt-1.1B 3345 15.08 30.59 30.59
Canary-1B-flash 34.77 72.23 78.92 78.92
Whisper-large-v3 32,59 17.22 31.76 27.19
Distil-Whisper-v3.5 32.18 16.77 30.63 26.53
CrisperWhisper 66.66 78.92 83.12 76.23
IBM Granite-3.3-2B 40.28 99.53 96.30 78.70
Voxtral (Mistral) 30.75 56.32 78.73 55.27
Canary-Qwen-2.5B 32.04 93.08 97.92 74.35
Phi-4 MM-Instruct 31.74 88.91 130.17 83.61
Intron-Sahara 15.85 13.44 29.10 19.46
GPT-40 Transcribe 28.54 15.03 30.80 24.79
Google Gemini-2.0 Flash 31.13 12.02 27.59 23.58
AWS Transcribe 4222 14.02 30.08 28.77
Azure Speech Recognition 32.90 13.29 26.17 24.12
Average 34.59 39.51 53.83 42.89

Table 5: Word Error Rate (WER %) for each model on
the medical domain subsets of AfriSpeech-MultiBench,
including clinical notes, medical dialogues, and doc-
tor—patient conversations. Dataset full name mappings:
Afri-Med: Afrispeech Medical; Diag: AfriSpeech-
Dialogue; Med.Conv: Med-Conv-Nig.

Model Name Commands Nums
Parakeet-tdt-0.6B-v2 65.55 32.65 22.57
Parakeet-tdt-1.1B 76.44 33.67 26.47
Parakeet-rnnt-1.1B 75.78 35.36 26.66
Canary-1B-flash 75.69 30.05 20.15
Whisper-large-v3 73.1 31.58 18.11
Distil-Whisper-v3.5 68.15 37.28 15.28
CrisperWhisper 70.14 70.35 71.18
IBM Granite-3.3-2B 78.97 49.03 -

Voxtral (Mistral) 69.17 41.77 -

Canary-Qwen-2.5B 69.79 31.44 20.15
Phi-4 MM-Instruct 78.09 104.13 51.28
Intron-Sahara 27.06 1.8 13.61
GPT-40 Transcribe 67.43 46.67 17.45
Google Gemini-2.0-F1 ~ 74.12 40.77 18.23
AWS Transcribe 60.07 27.60 20.21
Azure 67.15 23.42 2243

Table 6: Word Error Rate (WER %) for each model on
African named entites and Financial domain subsets of
AfriSpeech-MultiBench. Dashes represent results that
were not available.

5.2.4 Legal

Table 4 shows performance on the parliamentary
dataset. Despite the high level of ambient noise and
overlapping speakers in this dataset, Open Whis-
per variant (Distil-Whisper-v3.5, 11.5%) outper-
forms larger open and proprietary LLMs by a wide
margin. Proprietary systems show slightly higher
rates (about 21-27%) while Intron-Sahara (domain-
tuned) obtains about 15.4% WER.

5.2.5 Call Center

Table 4 shows Intron marginally outperforming the
conformer and whisper variants as well as propri-
etary ASR and LLMs providers on multispeaker
call center conversations.

5.3 Accent and country variations

As shown in Table 7 and Figure 2, most models
show pronounced degradation in Nigeria, South
Africa, and Ghana (about 30%), relative to East and
North Africa (about 24%). Most models perform
comparably except GPT-40 and CrisperWhisper
with WERs above 60%.

5.4 Model size vs performance

Figure 3 and Table 4 shows that, in a handfull of
domains, larger SALMs (Granite, Phi-4, Voxtral,
Canary-Qwen) only marginally outperform smaller
architectures like conformer and Whisper variants
half their size. In conversational speech, they are
worse overall. Figure 3 indicates overall worse
performance for open models with increasing size.

6 Discussion

This study yields a number of key insights that
illuminate performance gaps and opportunities for
advancing ASR systems in African settings:

6.1 Global benchmarks misrepresent African
realities.

Leading models like Whisper and Parakeet achieve
WERSs below 10% on LibriSpeech and GigaSpeech,
yet degrade to over 20-40% on African-accented
data in AfriSpeech-MultiBench. This mismatch
underscores the limits of current leaderboards in
guiding ASR adoption across low-resource geogra-
phies.

6.2 Accent diversity drives large performance
variance.

While models performed well on Kenyan and Ugan-
dan English (average WERSs as low as 12-18%),
WERs doubled or tripled for West African and
North African accents—exceeding 25% for many
systems. This highlights the phonetic and prosodic
diversity across the continent and the inadequacy
of accent-agnostic training.

6.3 Conversational speech remains a major

bottleneck.
Compared to read speech, performance
worsened  significantly on  conversational

corpora—AfriSpeech-Dialog Medical, Med
Convo, and Parliamentary speech. These mirror
Western benchmarks, where models also struggle
on AMI and Earnings2?2 relative to LibriSpeech
or SPGISpeech. However, the drop-off in African



Model Nigeria Ghana Kenya Rwanda Uganda South Africa North Africa Average
Parakeet-tdt-0.6B-v2 32.60 26.27 21.78 23.92 9.38 21.08 2276 2254
Parakeet-tdt-1.1B 28.65 22.08 21.21 20.39 21.35 25.96 24.13 23.40
Parakeet-rnnt-1.1B 32.76 23.69 23.19 24.71 23.08 27.59 24.42 25.63
Canary-1B-flash 29.00 25.06 18.25 20.39 23.65 26.30 24.04 23.81
Whisper-large-v3 26.53 27.22 16.70 21.18 16.16 19.85 20.72 21.19
Distil-Whisper-v3.5 26.69 22.16 18.51 23.53 19.22 24.45 21.43 2228
CrisperWhisper 74.50 80.99 74.72 40.00 58.29 72.11 62.64 66.18
IBM Granite-3.3-2B 33.05 25.27 21.33 21.18 21.55 26.16 30.25 25.54
Voxtral (Mistral) 27.84 2249 21.50 23.53 17.57 26.96 20.17 22.87
Canary-Qwen-2.5B 26.82 22.10 18.49 21.57 2145 25.19 20.99 22.37
Phi-4 MM-Instruct 27.73 18.86 27.92 17.25 18.49 51.26 20.03 25.93
Intron-Sahara 15.85 15.93 12.48 18.04 12.26 17.65 13.14 15.05
GPT-40 Transcribe 40.03 60.41 58.38 15.69 15.22 60.43 22.40 38.94
Google Gemini-2.0 Flash 26.47 24.54 21.29 21.57 19.61 27.59 22.11 23.31
AWS Transcribe 28.16 22.59 18.18 30.98 24.11 25.05 22.23 24.47
Azure Speech Recognition 26.41 23.01 17.59 25.49 19.31 25.10 25.46 23.20
Average 31.44 28.92 25.72 23.09 21.29 31.42 24.81 26.67

Table 7: Word Error Rate (WER %) for each model across African accents in AfriSpeech-MultiBench, including

the updated Parakeet-tdt-0.6B-v2 results.

conversational domains is more severe, revealing
compound challenges likely due to accent, prosody,
and domain shift.

6.4 Named entities and structured commands
still confound models.

Most models scored above 40% WER on the Afri-
Names dataset, numbers, and financial voice com-
mands, often failing to distinguish culturally unique
or phonetically similar terms. This raises usabil-
ity concerns in domains requiring accurate name
capture or transactional integrity.

6.5 Model size and architecture don’t predict
reliability.

Smaller models like Parakeet-tdt-0.6B and Distil-
Whisper sometimes matched larger peers on global
benchmarks but showed inconsistent gains on
African test sets. By contrast, Sahara—a regionally
optimized model—consistently delivered best-in-
class results across medical, legal, and conversa-
tional tasks.

6.6 Benchmarking must evolve beyond
average-case accuracy.

AfriSpeech-MultiBench enables fine-grained,
domain-aware evaluation that reflects real-world
deployment conditions. It provides not only
model ranking, but also insight into where and
why systems fail—offering practical guidance
for building domain- and region-specific ASR
solutions in healthcare, law, finance, and public
service delivery across Africa.

7 Conclusion

This study set out to address the gap between
global ASR benchmarks and real-world per-

formance on African-accented, domain-specific
speech. Through AfriSpeech-MultiBench, we
reveal that top-performing models on standard
datasets like LibriSpeech and TED-3—achieving
sub-5% WER—can exhibit 5-10x higher error
rates on African speech, especially in medical, fi-
nancial, and conversational domains. These dispar-
ities are consistent across open-source and propri-
etary systems, highlighting persistent geographic,
linguistic, and domain biases in existing ASR de-
velopment and evaluation pipelines.

Our findings underscore the need for regionally
grounded benchmarks and models. Intron-Sahara,
a model trained with African-specific data, consis-
tently outperformed global leaders across domains
and accents, particularly in name recognition, doc-
tor—patient dialogue, and financial commands. By
benchmarking 17 models across 8 African coun-
tries and 6 key domains, AfriSpeech-MultiBench
provides actionable insights for building inclusive
ASR systems. This work lays the foundation for fu-
ture research and deployment efforts in healthcare,
legal transcription, customer service, and multilin-
gual voice applications across the African conti-
nent.

Limitations

While AfriSpeech-MultiBench offers a broad and
diverse benchmark across African-accented En-
glish, several limitations warrant consideration.
First, despite including over 10 countries and six
domains, the benchmark does not yet cover all ma-
jor linguistic regions in Africa or fully represent
under-resourced countries with limited public data
availability. Certain domains—such as manufac-
turing, education, and public safety—are not cur-
rently included, and even within included sectors



like healthcare and finance, dataset sizes remain
modest compared to global corpora, which may
limit fine-grained error analysis and generalization
of results.

Second, some datasets used are proxies rather
than fully representative of their target verticals.
For instance, parliamentary proceedings may not
fully capture the legal domain’s complexity, such
as courtroom vernacular, legalese, or multilingual
code-switching common in legal aid and judicial
settings. Similarly, due to privacy constraints, cus-
tomer support datasets from private call centers
were not included, limiting direct benchmarking
for commercial deployments. These gaps high-
light both the urgent need and the opportunity for
continued investment in domain-specific and geo-
graphically expansive data collection to build more
comprehensive benchmarks for inclusive speech
technologies.
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Appendix
Pre- and Post-Processing

Audio pre-processing

Audio files are used exactly as distributed by the
source datasets; no further segmentation or con-
catenation is performed. A single exception con-
cerns the NVIDIA NeMo checkpoints (parakeet-*,
canary-1B), which require 16kHz mono input.
When a file is multi-channel or sampled above
16kHz, it is down-mixed to mono and re-sampled
with sox prior to inference. All other engines
(Whisper variants, API endpoints) accept the origi-
nal wave-forms without modification.

Transcript pre-processing

Reference and hypothesis strings undergo a
three-stage normalisation pipeline, implemented
exactly as in the public evaluation script:

1. clean_text — lower-cases, trims whites-
pace, removes punctuation, deletes 32 variants
of [inaudible], and removes frequent filler
words (uh, hmm,mmhmm,. . .).

text_to_numbers — maps number words
(“twenty” — 20) and ordinal words (“first”
— 1st) to their digit form.

EnglishTextNormalizer — applies the
Whisper normaliser for final case-folding and
whitespace cleanup.

A sentinel token abcxyz replaces empty strings
to avoid undefined denominators in word-error cal-
culations.

11

Post-processing for Nemo models

NeMo/Parakeet outputs include automatically gen-
erated punctuation. Before the three-stage nor-
maliser, inverse text normalisation is applied to re-
store standard spacing around commas and periods,
ensuring a fair comparison with punctuation-free
reference strings.

Metric
Word-error rate (WER) is computed with JIWER

_ S+D+I

WER(r, h) =

r

where S, D and I count substitutions, deletions

and insertions needed to transform hypothesis h
into reference 7.

Prompting for Speech Augmented Language
Models

Default prompts for open source speech augmented
language models where used:

"Transcribe the fol-

* Canary-Qwen-2.5B :
", "audio":

lowing: model.audio_locator_tag",
["speech.wav"]

» Mixtral (Voxtral-Mini-3B-2507): We used its
apply_transcription_request function which
takes an audio file and wraps it with inbuilt
prompts for speech transcription.

* Google Gemini 2.0 Flash: The required
prompt according to Google API documen-

tation was used, prompt = """ Transcribe this
ENGLISH audio. """
* Phi-4 Multimodal Instruct:

<luserl><laudio_1I>Transcribe the audio

to text<lendl><lassistant|>
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