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Abstract001

Recent advances in speech-enabled AI, in-002
cluding Google’s NotebookLM and OpenAI’s003
speech-to-speech API, are driving widespread004
interest in voice interfaces across sectors such005
as finance, health, agritech, legal services, and006
call-centers in the global north and south. De-007
spite this momentum, there exists no pub-008
licly available application-specific model eval-009
uation that caters to Africa’s linguistic diver-010
sity. We present Afrispeech-MultiBench, the011
first domain-specific evaluation suite for over012
100 African English accents across 10+ coun-013
tries and six application domains: Finance,014
Legal, Medical, General dialogue, Call Cen-015
ter, and Named Entities. We benchmark a di-016
verse range of open, closed, unimodal ASR017
and multimodal LLM-based speech recogni-018
tion systems using both scripted and unscripted019
conversation drawn from various open African020
accented English speech datasets. Our em-021
pirical analysis reveals systematic variation:022
open-source ASR excels in scripted contexts023
but degrades on noisy, non-native dialogue;024
multimodal LLMs are more accent-robust yet025
struggle with domain-specific named entities;026
proprietary models deliver high accuracy on027
clean speech but vary significantly by coun-028
try and domain. Smaller models fine-tuned on029
African English achieve competitive accuracy030
with lower latency, a practical advantage for031
deployment. By releasing this benchmark, we032
empower practitioners and researchers to select033
voice technologies suited to African use-cases,034
fostering inclusive voice applications for under-035
served communities.036

1 Introduction037

Automatic Speech Recognition (ASR) has become038

a foundational technology across numerous do-039

mains. In customer-support environments, ASR040

powers real-time call routing, intent detection, and041

agent assistance, substantially reducing response042

times and improving user satisfaction (Wang et al.,043

2023). In healthcare, voice-enabled digital scribes 044

transcribe clinician–patient interactions on the fly, 045

alleviating documentation burdens and cutting 046

downstream transcription costs (van Buchem et al., 047

2021). Emerging applications in legal transcription 048

(Saadany et al., 2023), financial trading desktops, 049

and live subtitling further demonstrate the broad 050

impact of ASR systems in both enterprise and con- 051

sumer settings. 052

Selecting the optimal ASR model for a given 053

task now often means choosing among powerful, 054

pre-trained foundation systems rather than train- 055

ing bespoke models from scratch. Self-supervised 056

representations such as wav2vec 2.0 (Baevski 057

et al., 2020) learn rich audio features from large 058

amounts of unlabeled speech and can be applied 059

in a zero-shot or few-shot manner, achieving 060

near-state-of-the-art word-error rates on standard 061

benchmarks (Baevski et al., 2020). Large multi- 062

task models such as Whisper (Radford et al., 2023), 063

trained on hundreds of thousands of hours of multi- 064

lingual and multitask data, exhibit strong zero-shot 065

transfer across domains and languages without ad- 066

ditional fine-tuning (Radford et al., 2023). How- 067

ever, computational budgets, latency requirements, 068

and domain mismatches mean that one foundation 069

model may outperform another depending on the 070

target task, be it medical dictation, legal proceed- 071

ings, or informal conversational speech. 072

Accented speech, particularly non-Western and 073

under-represented varieties, remains a persistent 074

blind spot in mainstream evaluation suites. African 075

accents exhibit rich phonetic and prosodic diversity, 076

which can dramatically widen word-error-rate gaps 077

when compared to North-American or British En- 078

glish (Dossou, 2025). Without a dedicated bench- 079

mark, practitioners cannot reliably predict which 080

off-the-shelf ASR system will meet accuracy or 081

latency targets on their specific African-accented 082

corpus. 083

Accordingly, we present a unified eval- 084
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uation suite that benchmarks leading ASR085

systems, AfriSpeech-MultiBench in zero-shot086

mode across medical, legal, conversational, and087

named-entity-rich African-accented English. The088

suite supplies standardized test sets, and transpar-089

ent scoring protocols enabling practitioners to com-090

pare models and select the architecture most appro-091

priate for their target application or for finetuning.092

2 Related Work093

IrokoBench introduced a comprehensive text-based094

evaluation across seventeen low-resource African095

languages, revealing significant performance gaps096

between large language models and human com-097

petence on tasks such as natural-language infer-098

ence, reasoning and question answering (Adelani099

et al., 2025). The study underscores the necessity100

of domain-specific evaluation: without targeted test101

suites, systematic deficiencies remain undetected.102

Within automatic speech recognition (ASR),103

progress is often measured through the104

community-maintained Open ASR Leader-105

board, which continuously reports word-error106

rate (WER) and real-time factor on LibriSpeech107

(Panayotov et al., 2015), TED-LIUM 3 (Hernandez108

et al., 2018), GigaSpeech (Chen et al., 2021),109

VoxPopuli (Wang et al., 2021), AMI (Carletta110

et al., 2005), Earnings22 (Andrew et al., 2022),111

SPGISpeech (Guo et al., 2022), and Common112

Voice (Ardila et al., 2020). Although these datasets113

cover a range of domains, from read audiobooks114

to meeting-room recordings, they remain dom-115

inated by North-American and British English,116

providing limited insight into performance on117

African-accented English.118

Empirical investigations confirm the practical119

consequences of this imbalance. Koenecke et al.120

documented a twofold increase in WER for African121

American Vernacular English relative to Standard122

American English across multiple commercial123

recognisers(Koenecke et al., 2020). A global au-124

dit involving speakers from 171 birth countries ob-125

served the largest error rates for sub-Saharan partic-126

ipants(DiChristofano et al., 2022). In the absence127

of African-accented evaluation sets, leaderboard128

rankings therefore offer an incomplete picture for129

stakeholders on the continent.130

Modern recognisers are architecturally diverse.131

They include multilingual encoders such as Whis-132

per (Radford et al., 2023) and XLS-R, proprietary133

cloud services (Microsoft Azure Speech-to-Text, 134

Google Speech-to-Text), Conformer-based systems 135

like Canary (Puvvada et al., 2024) and Parakeet 136

(Rekesh et al., 2023), Speech-Augmented Lan- 137

guage Models (SALMs) (Chen et al., 2023), and 138

multimodal architectures such as SeamlessM4T 139

(Schwenk et al., 2023). Their heterogeneous train- 140

ing regimes and objectives complicate any attempt 141

to infer accent robustness from results on existing 142

benchmarks alone. 143

Several African-accented corpora have been 144

released to mitigate data scarcity. AfriSpeech-200 145

provides roughly 200 hours of read speech from 146

more than 100 indigenous accents (Olatunji et al., 147

2023). AfriSpeech-Dialog adds spontaneous 148

two-speaker conversations (Sanni et al., 2025); 149

AfriSpeech-Parliament captures parliamentary 150

debates (Intron Health, 2025a); Med-Convo-Nig 151

focuses on Nigerian clinical tele-consultations 152

(Intron Health, 2025c); Afri-Names targets 153

named-entity-rich prompts (Intron Health, 154

2025b); and AfriSpeech-Countries assembles 155

cross-regional accents under consistent recording 156

conditions (Intron Health, 2025). Existing baseline 157

evaluations do not cover modern speech recogni- 158

tion systems or lack broad application-specific 159

results. 160

This study contributes three key advances. First, 161

six publicly available African-accented corpora are 162

harmonised into AfriSpeech-MultiBench, an evalu- 163

ation suite spanning medical, legal, conversational 164

and named-entity-rich speech. Second, sixteen 165

contemporary recognisers covering multilingual, 166

proprietary, Conformer-based, SALM and multi- 167

modal architectures—are evaluated in zero-shot 168

mode, with both WER and real-time factor reported. 169

Third, a fine-grained error analysis disaggregates 170

results by accent cluster, phonetic context and do- 171

main, elucidating systematic failure modes and in- 172

forming future data collection and model selection. 173

3 Benchmark Methodology 174

3.1 Source Datasets 175

We assemble six corpora to form 176

AfriSpeech-MultiBench, covering diverse 177

Anglophone African English accents. The 178

distribution of sources is shown in Table 1. 179

• AfriSpeech-200: (Afri) a 200-hour, 67,577 180

clip dataset, 2,463 speakers across 120 indige- 181

nous accents from 13 African countries, span- 182
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Domain Data Source Samples Hours Countries Accents Speakers

Medical Afri (clinical), Dialog (medical), Med.Conv 3651 29.88 10 95 519
General Afri (general), Dialog (general) 2741 13.06 9 84 455
Legal Parl 8068 35.86 4 – –
Named Entities Names (names) 3121 2.18 3 6 –
Finance Names (numbers), Names (commands) 3186 6.73 4 9 –
Call Center Call (Private) 16 0.80 2 3 32

Total Unique 18042 75.45 11 108 859

Table 1: Domain-wise breakdown of the Afrispeech-Multibench benchmark. Parentheses denote domain-specific
subsets. Full names of the datasets - Afri:Afrispeech, Dialog:Afrispeech-Dialog, Med.Conv:Med-Conv-Nig, Names:
AfriNames. The Call Center source is private and not disclosed.

ning clinical and general domain read speech183

(Olatunji et al., 2023).184

• AfriSpeech-Dialog: (Diag) about 50 long-185

form medical and non-medical conversational186

sessions with African-accented spontaneous187

English (about 7 hrs) (Sanni et al., 2025).188

• AfriSpeech-Parliamentary: (Parl) A real-189

world noisy, multi-speaker dataset of tran-190

scribed parliamentary speech (about 35.86191

hours, 8,068 clips) sampled from Nigeria,192

Ghana, South Africa, and Kenya. (In-193

tron Health, 2025a).194

• Med-Conv-Nig: (Med.Conv) about 25 long-195

form simulated doctor–patient conversations196

capturing multispecialty clinical interactions197

in Nigeria, featuring both male and female198

speakers and rich in medical vocabulary —199

tailored for evaluating domain-specific ASR200

in healthcare settings (Intron Health, 2025c).201

• AfriNames: (Names) A read-speech cor-202

pus with subsets focused on African names203

(Name), numbers (Nums), and voice com-204

mands (Commands), e.g. "transfer $500205

to my HSBC account"; comprising 6,307206

single-speaker samples (about 8.92 hours), en-207

riched with named entities and number utter-208

ances, spanning 12 distinct accents across four209

countries, particularly suited for evaluating210

ASR performance on entity-rich transcription211

tasks (Intron Health, 2025b)212

• AfriSpeech-Countries: A mixture of213

Afrispeech-200, Afrispeech-Parliamentary,214

Afrinames and North African accented speech215

samples (Ctry-NA), totaling approximately216

67 hours and 21,581 clips. The dataset spans217

seven African regions and includes both read218

and conversational speech. All samples are219

Dataset Hrs Speakers Accents

Afrispeech 18.68 750 108
Afri-Diag 7.00 98 12
Parl 35.86 – 4
Med.Conv 4.20 11 1
Names 8.91 – 12
Countries (NA)* 4.61 – 7
Total Unique 79.26 859 108

Table 2: Corpus statistics (Test). Countries (NA) repre-
sents speech samples from Northern African countries
not included in other test sets which already have other
African countries. Dashes represent statistics not pro-
vided in the original release of the datasets.

annotated by domain and country. 220

• Afro-Call-Centers: (Call) A private 221

unreleased dataset capturing real-world 222

agent–customer voice interactions rich in 223

domain-specific vocabulary across finance, 224

health, and customer support domains (Intron 225

Health, 2025). 226

3.2 Domains Studied 227

We define six domain categories for evaluation with 228

dataset details described in Table 1: 229

• Medical: health-related medical speech and 230

clinician–patient dialogues. 231

• General: read-speech sourced from 232

Wikipedia and unscripted multispeaker 233

dialogues. 234

• Legal: noisy parliamentary proceeding with 235

overlapping speech. 236

• Finance: read speech enriched with numbers 237

such as currencies, decimals, dates, measure- 238

ments, locations, trading volumes, and finan- 239

cial institutions. 240
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• Call Center / Customer Support: real-world241

agent–customer interactions242

• Named-Entities: Named-Entity-Rich Gen-243

eral clips with dense mentions of African per-244

son names, locations, organizations, and dates245

3.3 Models246

Architecture Model Size

Conformer Nvidia Parakeet-tdt-0.6B-v2 0.6B
Nvidia Parakeet-tdt-1.1B 1.1B
Nvidia Parakeet-rnnt-1.1B 1.1B
Nvidia Canary-1B-flash 1B

Whisper
Variant

OpenAI Whisper-large-v3 1.54B

Distil-Whisper-v3.5 756M
Nyra Health CrisperWhisper 1.54B

SALM IBM Granite-3.3-2B 2B
Mistral Voxtral-Mini-3B 3B
Nvidia Canary-Qwen-2.5B 2.5B
Microsoft Phi-4 MM-Instruct 14B

Proprietary Intron-Sahara –
OpenAI GPT-4o Transcribe –
Google Gemini-2.0 Fl –
AWS Transcribe –
Microsoft Azure Speech –

Table 3: Descriptions of evaluated models, including
model size, core architecture, and provider. Model sizes
are in billions (B) of parameters when known.

We evaluate 16 modern ASR systems partly247

sourced from the top twenty entries on the Hug-248

ging Face Open ASR Leaderboard (snapshot: July249

2025)1 categorized into model families represent-250

ing architectural breadth—Conformer, RNN-T,251

CTC, transducer hybrids, and speech-augmented252

language models (SALMs) and include both fully253

open-source checkpoints and proprietary services254

already deployed in commercial workflows.255

• NVIDIA’s open models: Open-source ASR256

models based on the FastConformer (Rekesh257

et al., 2023) such as the Parakeet variants:258

CTC, RNN-T and TDT (Galvez et al., 2024)259

in sizes of 0.6B and 1.1B, and the 1 billion260

parameter Canary-flash model pairing a Fast-261

Conformer encoder with a transformer de-262

coder (Puvvada et al., 2024).263

• Whisper Variants: Transformer encoder264

decoder models based on Whisper (Rad-265

ford et al., 2023). We consider the vari-266

ants: Whisper-large-v3 (Radford et al., 2023),267

1Leaderboard URL: https://huggingface.co/spaces/
hf-audio/open_asr_leaderboard.

Distil-Whisper-v3.52, and CrisperWhisper 268

(Zusag et al., 2024). 269

• Open SALMs: Multimodal LLMs and 270

Speech-Augmented LLMs including IBM 271

Granite-3.3-2B3, Phi-4 Multimodal Instruct 272

(Abdin et al., 2024), Nvidia Canary-Qwen4, 273

and Mistral’s Voxtral Mini-3B (Liu et al., 274

2025). 275

• Proprietary cloud ASR services: Ope- 276

nAI’s GPT-4o transcribe5, Google’s Gemini- 277

2.0-flash6, AWS Transcribe7, Azure Speech 278

Recognition8 and Intron9. Models are evalu- 279

ated in zero-shot mode, with neither demon- 280

strations (Min et al., 2022) nor domain- 281

specific fine-tuning. 282

This broad selection of modern ASR systems 283

facilitate an empirical comparison between com- 284

mercially deployed services and publicly available 285

checkpoints, capturing the architectural and com- 286

mercial diversity of leading ASR systems, provid- 287

ing a realistic basis for accent-aware model selec- 288

tion. 289

3.4 Evaluation Protocol 290

• Primary metric: Word Error Rate (WER) mea- 291

sured per model, per domain, per country, and 292

per dataset. 293

• Error analysis: Breakdown by domain, accent 294

group (native vs non-native), named-entity er- 295

rors, noise robustness; Open-source vs propri- 296

etary models, unimodal vs multimodal, large 297

vs compact variants. 298

4 Experiments 299

• Dataset splits: We use held-out test sets per 300

corpus, ensuring some accents appear only 301

in testing to evaluate zero-shot generalization 302

2https://huggingface.co/distil-whisper/
distil-large-v3.5

3https://huggingface.co/ibm-granite/
granite-speech-3.3-2b

4https://huggingface.co/nvidia/canary-qwen-2.
5b

5https://platform.openai.com/docs/models/
gpt-4o-transcribe

6https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-0-flash

7https://aws.amazon.com/transcribe/
8https://azure.microsoft.com/en-us/products/

ai-services/ai-speech
9https://www.intron.io/
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Model Open ASR Benchmarks AfriSpeech-MultiBench

Lib-S TED-3 Giga VoxP AMI Earn22 SPGI Afrispeech Afri-Diag Parl Med.Conv Names Call

Parakeet-tdt-0.6B-v2 1.69 3.38 9.74 5.95 11.16 11.15 2.17 30.20 11.23 18.45 29.41 41.88 20.96
Parakeet-tdt-1.1B 1.40 3.59 9.52 5.49 15.87 14.49 3.16 28.45 15.14 27.14 29.98 45.66 25.26
Parakeet-rnnt-1.1B 1.45 3.83 9.89 5.44 17.01 13.94 2.93 28.18 15.08 26.75 30.59 46.70 28.93
Canary-1B-flash 1.48 3.12 9.85 5.63 13.11 12.77 1.95 29.77 48.50 19.13 93.62 44.10 88.71
Whisper-large-v3 2.01 3.86 10.02 9.54 15.95 11.29 2.94 26.49 13.49 19.99 31.76 43.23 24.69
Distil-Whisper-v3.5 2.37 3.64 9.84 8.04 14.63 11.29 2.87 27.58 18.00 11.50 30.41 45.80 21.65
CrisperWhisper 1.82 3.2 10.24 9.82 8.71 12.89 2.7 63.80 72.72 79.35 83.12 70.14 35.52
IBM Granite-3.3-2B 1.64 4.12 11.05 6.55 10.22 13.86 3.96 34.38 99.59 20.67 96.30 49.51 –
Voxtral (Mistral) 1.86 – 10.04 6.78 – 12.18 2.04 20.17 68.42 21.10 78.73 49.36 –
Canary-Qwen-2.5B 1.61 1.90 9.43 5.66 10.19 10.45 1.90 29.87 96.64 18.18 97.89 42.91 –
Phi-4 MM-Instruct 1.68 2.89 9.77 5.93 11.45 10.50 3.11 26.48 88.91 36.73 130.17 44.28 –
Intron-Sahara – – – – – – – 16.35 14.26 15.41 27.92 8.17 20.08
GPT-4o Transcribe – – – – – – – 24.66 15.03 64.39 30.80 52.49 23.20
Google Gemini-2.0 Flash – – – – – – – 27.80 12.02 20.51 27.59 50.12 22.39
AWS Transcribe – – – – – – – 32.77 14.02 18.50 30.08 36.70 23.51
Azure Speech Recognition – – – – – – – 28.41 13.29 18.75 26.17 35.69 –

Table 4: Word Error Rate (WER %) for each model on standard open ASR benchmarks and subsets of the
Afrispeech-MultiBench dataset. Dashes represent results that were not available. Full names of datasets: Lib-S:
LibriSpeech; TED-3: TED-LIUM 3; Giga: GigaSpeech; VoxP: VoxPopuli; AMI: AMI Meeting Corpus; Earn22:
Earnings22; SPGI: SPGISpeech; Afrispeech: AfriSpeech-200; Afri-Diag: AfriSpeech-Dialogue; Parl: AfriSpeech-
Parliamentary; Med.Conv: Med-Conv-Nig; Names: AfriNames; Call: Afro-Call-Centers.

Figure 1: Average of Open ASR Leadearboard vs Afrispeech-Multibench

(e.g. 41 accents exclusively in test partition of303

AfriSpeech-200)304

• Transcript Pre- and Post-processing: Model-305

specific transcript pre- and post-processing306

(described in Appendix section 7) normal-307

ized inputs, removed filler words, and mapped308

number words to their digit form, e.g.309

"twenty" to "20" and "first" to "1st".310

• Inference setup: Uniform audio input prepro-311

cessing (16 kHz mono, no diarization) with312

default hyperparameters and decoding settings313

for ASR models and proprietary API calls. Lo-314

cal runs were on single T4 GPU (16GB).315

• Prompting: We use consistent prompts for316

open and closed LLMs, e.g. "Transcribe this 317

ENGLISH audio". Prompt details are pro- 318

vided in Appendix section 7. 319

We provide results for single runs. 320

5 Results 321

5.1 Overall Results 322

As show in Table 4, model performance on standard 323

ASR benchmarks (e.g., LibriSpeech, TED-LIUM, 324

AMI) fails to predict accuracy on African-accented, 325

domain-specific speech. Leading open-source mod- 326

els like Parakeet-tdt-0.6B-v2 and Whisper-large-v3, 327

which achieve WERs below 4% on LibriSpeech, 328

degrade to 30–45% on general African speech and 329
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Figure 2: Word Error Rate (WER %) for each model across different African English accents in
AfriSpeech-MultiBench. The average is computed across all listed accent categories.

Figure 3: Model Sizes vs. Performance on Open ASR Benchmark (Blue) and Afrispeech-Multibench (Orange)

up to 70%+ on medical dialogue or named-entity-330

rich inputs in AfriSpeech-MultiBench. This pat-331

tern holds across architecture types, with all mod-332

els showing 2–5× higher error rates on African333

data compared to leaderboard results. In contrast,334

Intron-Sahara, a regionally tuned model not fea-335

tured on global leaderboards, consistently outper-336

forms across domains—achieving 16.35% WER on337

general speech and just 8.17% on named entities.338

5.2 Domain Performance339

5.2.1 Medical340

As show in Table 5, Intron-Sahara yields the341

lowest average WER (about 19.5%), signifi-342

cantly outperforming other models. Open models343

(Whisper-large-v3 and Parakeet-0.6Bv2) and pro-344

prietary (Gemini, GPT-4o, Azure) deliver average345

WERs of about 23–27% in these settings while346

Multimodal open LLMs like Phi-4 MM and IBM347

Granite perform poorly (>80% WER) in medical348

contexts despite taking top spots on the Open ASR 349

Leaderboard. 350

5.2.2 Finance 351

As show in Table 6, Intron-Sahara excels 352

here—achieving about 13.6% on numbers and 353

about 1.8% on voice-commands, representing the 354

finance domain. Proprietary models (Azure, AWS) 355

perform moderately well (about 20–30% WER). 356

Open-source and LLM models deliver higher error 357

rates (about 40–55%). 358

5.2.3 Names 359

As show in Table 6, Intron-Sahara outperforms 360

all others by a wide margin, reaching about 27% 361

WER on African named entities. Open, larger, and 362

proprietary models collapse with over 2x worse 363

WERs (over 60%). 364
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Model Afri-Med Diag Med.Conv Average

Parakeet-tdt-0.6B-v2 34.55 11.23 29.41 25.06
Parakeet-tdt-1.1B 33.79 15.14 29.98 29.98
Parakeet-rnnt-1.1B 33.45 15.08 30.59 30.59
Canary-1B-flash 34.77 72.23 78.92 78.92
Whisper-large-v3 32.59 17.22 31.76 27.19
Distil-Whisper-v3.5 32.18 16.77 30.63 26.53
CrisperWhisper 66.66 78.92 83.12 76.23
IBM Granite-3.3-2B 40.28 99.53 96.30 78.70
Voxtral (Mistral) 30.75 56.32 78.73 55.27
Canary-Qwen-2.5B 32.04 93.08 97.92 74.35
Phi-4 MM-Instruct 31.74 88.91 130.17 83.61
Intron-Sahara 15.85 13.44 29.10 19.46
GPT-4o Transcribe 28.54 15.03 30.80 24.79
Google Gemini-2.0 Flash 31.13 12.02 27.59 23.58
AWS Transcribe 42.22 14.02 30.08 28.77
Azure Speech Recognition 32.90 13.29 26.17 24.12

Average 34.59 39.51 53.83 42.89

Table 5: Word Error Rate (WER %) for each model on
the medical domain subsets of AfriSpeech-MultiBench,
including clinical notes, medical dialogues, and doc-
tor–patient conversations. Dataset full name mappings:
Afri-Med: Afrispeech Medical; Diag: AfriSpeech-
Dialogue; Med.Conv: Med-Conv-Nig.

Model Name Commands Nums

Parakeet-tdt-0.6B-v2 65.55 32.65 22.57
Parakeet-tdt-1.1B 76.44 33.67 26.47
Parakeet-rnnt-1.1B 75.78 35.36 26.66
Canary-1B-flash 75.69 30.05 20.15
Whisper-large-v3 73.1 31.58 18.11
Distil-Whisper-v3.5 68.15 37.28 15.28
CrisperWhisper 70.14 70.35 71.18
IBM Granite-3.3-2B 78.97 49.03 –
Voxtral (Mistral) 69.17 41.77 –
Canary-Qwen-2.5B 69.79 31.44 20.15
Phi-4 MM-Instruct 78.09 104.13 51.28
Intron-Sahara 27.06 1.8 13.61
GPT-4o Transcribe 67.43 46.67 17.45
Google Gemini-2.0-Fl 74.12 40.77 18.23
AWS Transcribe 60.07 27.60 20.21
Azure 67.15 23.42 22.43

Table 6: Word Error Rate (WER %) for each model on
African named entites and Financial domain subsets of
AfriSpeech-MultiBench. Dashes represent results that
were not available.

5.2.4 Legal365

Table 4 shows performance on the parliamentary366

dataset. Despite the high level of ambient noise and367

overlapping speakers in this dataset, Open Whis-368

per variant (Distil-Whisper-v3.5, 11.5%) outper-369

forms larger open and proprietary LLMs by a wide370

margin. Proprietary systems show slightly higher371

rates (about 21–27%) while Intron-Sahara (domain-372

tuned) obtains about 15.4% WER.373

5.2.5 Call Center374

Table 4 shows Intron marginally outperforming the375

conformer and whisper variants as well as propri-376

etary ASR and LLMs providers on multispeaker377

call center conversations.378

5.3 Accent and country variations 379

As shown in Table 7 and Figure 2, most models 380

show pronounced degradation in Nigeria, South 381

Africa, and Ghana (about 30%), relative to East and 382

North Africa (about 24%). Most models perform 383

comparably except GPT-4o and CrisperWhisper 384

with WERs above 60%. 385

5.4 Model size vs performance 386

Figure 3 and Table 4 shows that, in a handfull of 387

domains, larger SALMs (Granite, Phi-4, Voxtral, 388

Canary-Qwen) only marginally outperform smaller 389

architectures like conformer and Whisper variants 390

half their size. In conversational speech, they are 391

worse overall. Figure 3 indicates overall worse 392

performance for open models with increasing size. 393

6 Discussion 394

This study yields a number of key insights that 395

illuminate performance gaps and opportunities for 396

advancing ASR systems in African settings: 397

6.1 Global benchmarks misrepresent African 398

realities. 399

Leading models like Whisper and Parakeet achieve 400

WERs below 10% on LibriSpeech and GigaSpeech, 401

yet degrade to over 20–40% on African-accented 402

data in AfriSpeech-MultiBench. This mismatch 403

underscores the limits of current leaderboards in 404

guiding ASR adoption across low-resource geogra- 405

phies. 406

6.2 Accent diversity drives large performance 407

variance. 408

While models performed well on Kenyan and Ugan- 409

dan English (average WERs as low as 12–18%), 410

WERs doubled or tripled for West African and 411

North African accents—exceeding 25% for many 412

systems. This highlights the phonetic and prosodic 413

diversity across the continent and the inadequacy 414

of accent-agnostic training. 415

6.3 Conversational speech remains a major 416

bottleneck. 417

Compared to read speech, performance 418

worsened significantly on conversational 419

corpora—AfriSpeech-Dialog Medical, Med 420

Convo, and Parliamentary speech. These mirror 421

Western benchmarks, where models also struggle 422

on AMI and Earnings22 relative to LibriSpeech 423

or SPGISpeech. However, the drop-off in African 424
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Model Nigeria Ghana Kenya Rwanda Uganda South Africa North Africa Average

Parakeet-tdt-0.6B-v2 32.60 26.27 21.78 23.92 9.38 21.08 22.76 22.54
Parakeet-tdt-1.1B 28.65 22.08 21.21 20.39 21.35 25.96 24.13 23.40
Parakeet-rnnt-1.1B 32.76 23.69 23.19 24.71 23.08 27.59 24.42 25.63
Canary-1B-flash 29.00 25.06 18.25 20.39 23.65 26.30 24.04 23.81
Whisper-large-v3 26.53 27.22 16.70 21.18 16.16 19.85 20.72 21.19
Distil-Whisper-v3.5 26.69 22.16 18.51 23.53 19.22 24.45 21.43 22.28
CrisperWhisper 74.50 80.99 74.72 40.00 58.29 72.11 62.64 66.18
IBM Granite-3.3-2B 33.05 25.27 21.33 21.18 21.55 26.16 30.25 25.54
Voxtral (Mistral) 27.84 22.49 21.50 23.53 17.57 26.96 20.17 22.87
Canary-Qwen-2.5B 26.82 22.10 18.49 21.57 21.45 25.19 20.99 22.37
Phi-4 MM-Instruct 27.73 18.86 27.92 17.25 18.49 51.26 20.03 25.93
Intron-Sahara 15.85 15.93 12.48 18.04 12.26 17.65 13.14 15.05
GPT-4o Transcribe 40.03 60.41 58.38 15.69 15.22 60.43 22.40 38.94
Google Gemini-2.0 Flash 26.47 24.54 21.29 21.57 19.61 27.59 22.11 23.31
AWS Transcribe 28.16 22.59 18.18 30.98 24.11 25.05 22.23 24.47
Azure Speech Recognition 26.41 23.01 17.59 25.49 19.31 25.10 25.46 23.20

Average 31.44 28.92 25.72 23.09 21.29 31.42 24.81 26.67

Table 7: Word Error Rate (WER %) for each model across African accents in AfriSpeech-MultiBench, including
the updated Parakeet-tdt-0.6B-v2 results.

conversational domains is more severe, revealing425

compound challenges likely due to accent, prosody,426

and domain shift.427

6.4 Named entities and structured commands428

still confound models.429

Most models scored above 40% WER on the Afri-430

Names dataset, numbers, and financial voice com-431

mands, often failing to distinguish culturally unique432

or phonetically similar terms. This raises usabil-433

ity concerns in domains requiring accurate name434

capture or transactional integrity.435

6.5 Model size and architecture don’t predict436

reliability.437

Smaller models like Parakeet-tdt-0.6B and Distil-438

Whisper sometimes matched larger peers on global439

benchmarks but showed inconsistent gains on440

African test sets. By contrast, Sahara—a regionally441

optimized model—consistently delivered best-in-442

class results across medical, legal, and conversa-443

tional tasks.444

6.6 Benchmarking must evolve beyond445

average-case accuracy.446

AfriSpeech-MultiBench enables fine-grained,447

domain-aware evaluation that reflects real-world448

deployment conditions. It provides not only449

model ranking, but also insight into where and450

why systems fail—offering practical guidance451

for building domain- and region-specific ASR452

solutions in healthcare, law, finance, and public453

service delivery across Africa.454

7 Conclusion455

This study set out to address the gap between456

global ASR benchmarks and real-world per-457

formance on African-accented, domain-specific 458

speech. Through AfriSpeech-MultiBench, we 459

reveal that top-performing models on standard 460

datasets like LibriSpeech and TED-3—achieving 461

sub-5% WER—can exhibit 5–10× higher error 462

rates on African speech, especially in medical, fi- 463

nancial, and conversational domains. These dispar- 464

ities are consistent across open-source and propri- 465

etary systems, highlighting persistent geographic, 466

linguistic, and domain biases in existing ASR de- 467

velopment and evaluation pipelines. 468

Our findings underscore the need for regionally 469

grounded benchmarks and models. Intron-Sahara, 470

a model trained with African-specific data, consis- 471

tently outperformed global leaders across domains 472

and accents, particularly in name recognition, doc- 473

tor–patient dialogue, and financial commands. By 474

benchmarking 17 models across 8 African coun- 475

tries and 6 key domains, AfriSpeech-MultiBench 476

provides actionable insights for building inclusive 477

ASR systems. This work lays the foundation for fu- 478

ture research and deployment efforts in healthcare, 479

legal transcription, customer service, and multilin- 480

gual voice applications across the African conti- 481

nent. 482

Limitations 483

While AfriSpeech-MultiBench offers a broad and 484

diverse benchmark across African-accented En- 485

glish, several limitations warrant consideration. 486

First, despite including over 10 countries and six 487

domains, the benchmark does not yet cover all ma- 488

jor linguistic regions in Africa or fully represent 489

under-resourced countries with limited public data 490

availability. Certain domains—such as manufac- 491

turing, education, and public safety—are not cur- 492

rently included, and even within included sectors 493
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like healthcare and finance, dataset sizes remain494

modest compared to global corpora, which may495

limit fine-grained error analysis and generalization496

of results.497

Second, some datasets used are proxies rather498

than fully representative of their target verticals.499

For instance, parliamentary proceedings may not500

fully capture the legal domain’s complexity, such501

as courtroom vernacular, legalese, or multilingual502

code-switching common in legal aid and judicial503

settings. Similarly, due to privacy constraints, cus-504

tomer support datasets from private call centers505

were not included, limiting direct benchmarking506

for commercial deployments. These gaps high-507

light both the urgent need and the opportunity for508

continued investment in domain-specific and geo-509

graphically expansive data collection to build more510

comprehensive benchmarks for inclusive speech511

technologies.512
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Appendix697

Pre- and Post-Processing698

Audio pre-processing699

Audio files are used exactly as distributed by the700

source datasets; no further segmentation or con-701

catenation is performed. A single exception con-702

cerns the NVIDIA NeMo checkpoints (parakeet-*,703

canary-1B), which require 16kHz mono input.704

When a file is multi-channel or sampled above705

16kHz, it is down-mixed to mono and re-sampled706

with sox prior to inference. All other engines707

(Whisper variants, API endpoints) accept the origi-708

nal wave-forms without modification.709

Transcript pre-processing710

Reference and hypothesis strings undergo a711

three-stage normalisation pipeline, implemented712

exactly as in the public evaluation script:713

1. clean_text — lower-cases, trims whites-714

pace, removes punctuation, deletes 32 variants715

of [inaudible], and removes frequent filler716

words (uh, hmm,mmhmm,. . . ).717

2. text_to_numbers — maps number words718

(“twenty” → 20) and ordinal words (“first”719

→ 1st) to their digit form.720

3. EnglishTextNormalizer — applies the721

Whisper normaliser for final case-folding and722

whitespace cleanup.723

A sentinel token abcxyz replaces empty strings724

to avoid undefined denominators in word-error cal-725

culations.726

Post-processing for Nemo models 727

NeMo/Parakeet outputs include automatically gen- 728

erated punctuation. Before the three-stage nor- 729

maliser, inverse text normalisation is applied to re- 730

store standard spacing around commas and periods, 731

ensuring a fair comparison with punctuation-free 732

reference strings. 733

Metric 734

Word-error rate (WER) is computed with JIWER 735

WER(r, h) =
S +D + I

|r|
, 736

where S, D and I count substitutions, deletions 737

and insertions needed to transform hypothesis h 738

into reference r. 739

Prompting for Speech Augmented Language 740

Models 741

Default prompts for open source speech augmented 742

language models where used: 743

• Canary-Qwen-2.5B : "Transcribe the fol- 744

lowing: model.audio_locator_tag", "audio": 745

["speech.wav"] 746

• Mixtral (Voxtral-Mini-3B-2507): We used its 747

apply_transcription_request function which 748

takes an audio file and wraps it with inbuilt 749

prompts for speech transcription. 750

• Google Gemini 2.0 Flash: The required 751

prompt according to Google API documen- 752

tation was used, prompt = """ Transcribe this 753

ENGLISH audio. """ 754

• Phi-4 Multimodal Instruct: 755

<|user|><|audio_1|>Transcribe the audio 756

to text<|end|><|assistant|> 757
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