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ABSTRACT

Reinforcement learning (RL) has enabled robots to develop complex skills, but
its success in image-based tasks often depends on effective representation learn-
ing. Prior works have primarily focused on 2D representations, often overlooking
the inherent 3D geometric structure of the world, or have attempted to learn 3D
representations that require extensive resources such as synchronized multi-view
images even during deployment. To address these issues, we propose a novel
RL framework that extracts 3D-aware representations from single-view RGB in-
put, without requiring camera pose or synchronized multi-view images during
the downstream RL. Our method employs an autoencoder architecture, using a
masked ViT as the encoder and a latent-conditioned NeRF as the decoder, trained
with cross-view completion to capture fine-grained, 3D geometry-aware represen-
tations. Additionally, we utilize a time contrastive loss that further regularizes the
learned representation for consistency across different viewpoints. Our method
significantly enhances the RL agent’s performance in complex tasks, demonstrat-
ing superior effectiveness compared to prior 3D-aware representation-based meth-
ods, even when using only single-view RGB images during deployment.

1 INTRODUCTION

Reinforcement learning (RL) has empowered an embodied agent such as a robot to acquire com-
plex skills. However, its capability heavily depends on the representation of the underlying systems,
especially in the image domain. In other words, central to image-based RL is the challenge of repre-
sentation learning, where the goal is to distill high-dimensional visual data into compact, informative
features that capture the essence of the environment. Effective representation learning schemes for
image-based RL enable agents to interpret and act upon visual data more efficiently, facilitating
faster convergence and improving performance in tasks such as robotic manipulation.

Many previous works have focused on learning efficient representation from visual inputs for down-
stream RL tasks. These can be roughly categorized into several approaches: pre-training an image
encoder via contrastive objectives (Laskin et al., 2020; Nair et al., 2022), employing data augmen-
tations (Yarats et al., 2021a;c), using autoencoders for reconstruction (Seo et al., 2023a; Xiao et al.,
2022), and leveraging in-the-wild internet-scale datasets (Ma et al., 2022; Ghosh et al., 2023). While
these methods are effective and widely utilized, they typically treat visual inputs as 2D grids, over-
looking the structured 3D geometric information inherently present in the 3D world. Such a lack of
3D awareness forces the embodied agent to rely on view-specific features such as surface-level pixel
patterns or 2D shapes that are unique to the particular perspective, hindering its ability to adapt to
different viewpoints or address occlusion. Furthermore, this limitation compels the policy network
to implicitly infer 3D actions from 2D visual inputs (2D-to-3D mapping), rather than leveraging
3D-aware representations that are better suited for mapping directly to 3D actions (3D-to-3D map-
ping). Therefore, learning 3D-aware representations from 2D image inputs is crucial for achieving
superior task performance, particularly when precise 3D spatial information inference is critical.

Recent approaches have attempted to learn 3D representation (Ke et al., 2024; Gervet et al., 2023;
Goyal et al., 2024). However, these methods typically require not only expert demonstration data
but also calibrated cameras for accurate depth projection during deployment. Other prior works have
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Figure 1: During pre-training, SinCro learns a view-invariant 3D scene encoder by leveraging cross-
view completion with a few randomly selected reference images from different viewpoints via NeRF.
During deployment, it utilizes the frozen 3D scene encoder for downstream RL, relying solely on
single-view RGB images without performing volume rendering via NeRF.

explored different approaches (Driess et al., 2022; Shim et al., 2023; Li et al., 2022), by mapping
multi-view images into a single latent feature and providing it with a volume rendering network in
neural radiance field (NeRF) (Mildenhall et al., 2021) to reconstruct the 3D world. Despite these
advancements, they often rely on the object-level mask or still require synchronized multi-view
images along with camera pose information even during downstream RL. All of these constraints can
be a significant burden in real-world robotics applications, where calibration and multi-view setups
are impractical. To overcome these challenges, a single-view 3D-aware representation inference
framework that relies solely on RGB images is necessary. It is particularly beneficial in practical
situations where multiple calibrated cameras are available during pre-training, but the robot has to
rely on just single-view RGB images without a camera pose to perform the task during downstream
RL deployment.

To develop such an effective 3D-aware representation, we propose a Single-view 3D-aware repre-
sentation inference framework for RL by performing Cross-view completion via NeRF (SinCro).
Specifically, it adopts an autoencoder structure, trained only with RGB supervision, and consists of
two stages: (1) pre-training a masked ViT-based (Dosovitskiy, 2020) 3D scene encoder through a
latent-conditioned NeRF decoder, and (2) deploying only the pre-trained 3D scene encoder in down-
stream RL tasks. The encoder utilizes a pixel masking strategy (He et al., 2022) with cross-view
completion (Weinzaepfel et al., 2022) for 3D geometry-aware representation, and the NeRF decoder
leverages multi-view reconstruction with a custom ray sampling strategy to capture inherent, essen-
tial 3D information of the environment and fine-grained details crucial for downstream robotic tasks.
Additionally, we further regularize the intermediate representation to ensure consistency across dif-
ferent viewpoints by applying a time contrastive loss (Sermanet et al., 2018). Combining all of
the proposed components for enhanced 3D-aware representation, our method outperforms the prior
works in downstream RL. Further ablation studies and analyses validate that the proposed method
is crucial to perform the single-view inference successfully and enables us to obtain representations
that are view-invariant and robust to the viewpoint changes.

In summary, this work has the following key contributions:

• We present SinCro, a 3D-aware representation-based RL framework. It can extract 3D-
aware representation only with single-view RGB images during the downstream RL.

• The proposed method learns 3D geometry-aware and view-invariant representations of the
scene by leveraging a NeRF-based cross-view completion and contrastive learning.

• The proposed method achieves superior downstream RL results, and we qualitatively
demonstrate that the learned representation provides an implicit understanding of the 3D
world.

2 RELATED WORKS

2.1 2D REPRESENTATION LEARNING FOR RL

Prior works have been proposed to develop an efficient, effective representation learning strategy
for RL in the image domain. Some prior approaches formulate representation learning as encoder
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pre-training via auxiliary learning objectives (Yarats et al., 2021b; Liu & Abbeel, 2021a;b), self-
supervised reconstruction (Nair et al., 2018; Seo et al., 2023a; Xiao et al., 2022), masked image
modeling (Seo et al., 2023a; Xiao et al., 2022; Seo et al., 2023b), and contrastive learning (Sermanet
et al., 2018; Laskin et al., 2020; Nair et al., 2022). Other approaches have introduced objectives
specialized for decision-making such as predicting future states from the current state (Seo et al.,
2022; Hafner et al., 2019; 2020; Hansen et al., 2023), training value functions (Ma et al., 2022;
Ghosh et al., 2023), or data augmentations (Yarats et al., 2021a;c). However, these works do not
consider the innate 3D structure of the environment, which leads the network to lack 3D geometry
awareness and depend on implicit 2D-to-3D mapping. In this work, we utilize the NeRF-based 3D
scene representation learning to enhance the 3D understanding of the image feature.

2.2 3D SCENE REPRESENTATION

Building on recent progress in robot learning and computer vision, several approaches have emerged
that leverage multiple cameras to capture multi-view images for vision-based control (Sermanet
et al., 2018; Chen et al., 2021; Hsu et al., 2022; Guhur et al., 2023; Jangir et al., 2022). While most
of them directly utilize multi-view images as inputs, they do not perform explicit reconstruction of
the 3D world, which is crucial for 3D understanding. Some prior works have attempted to explicitly
model the 3D space (Ke et al., 2024; Shridhar et al., 2023; Gervet et al., 2023; Goyal et al., 2024;
Qian et al., 2024; Ze et al., 2024), but they require calibrated cameras to get depth images and project
the queried pixel into a 3D space during deployment. Other prior works propose to learn implicit
3D-aware representation (Driess et al., 2022; Shim et al., 2023; Li et al., 2022) by reconstructing
the 3D world via neural radiance field (NeRF) (Mildenhall et al., 2021). However, multiple cameras
are still required in these methods to infer the 3D-aware representation and downstream behavioral
learning. Furthermore, some of them even require semantic masks for all pixels in the image for
semantic (Shim et al., 2023) or object-level reconstruction (Driess et al., 2022). In this work, we
propose a NeRF-based cross-view completion for 3D scene representation learning, trained only
with RGB supervision. It allows the inference of 3D scene representation using just single-view
images, eliminating the need for calibrated cameras during the downstream RL.

3 PRELIMINARY

3.1 VISUAL REINFORCEMENT LEARNING

In visual RL, we assume a Partially Observable Markov Decision Process (POMDP) M =
(S,O,A,P, r, γ), where S is the state space of the underlying system, O is the image observa-
tion space, A is the action space, P : S × A → ∆(S) is the environment dynamics, r is the reward
function, and γ is the discount factor. The RL objective is to discover a policy π : O → ∆(A) that
maximizes the expected return Eπ,P [

∑∞
t=0 γ

trt]. Since we utilize the 3D scene encoder Ω : O → Z
that maps the image observation into the latent representation, the RL-relevant networks such as the
policy and critic are modified to take Ω(O) instead of raw image observation O.

3.2 NEURAL RADIANCE FIELDS

The idea behind the neural radiance fields (NeRF) (Mildenhall et al., 2021) is to model a 3D scene
by predicting a learnable continuous volumetric radiance field. It is represented by differentiable
rendering function Fθ that maps a 3D location x and viewing direction d to a color c and a density
σ, i.e. Fθ(x,d) = (c, σ). To render an image from a specific viewpoint, NeRF aggregates the color
information of a camera ray r(t) = o+ td, and computes the expected color C(r) as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (1)

where o is the camera center, T (t) is the accumulated transmittance, and tn, tf are pre-defined near
and far depth bounds, respectively. Then, Fθ is optimized by pixel-level RGB supervision

LRGB =
∑
ri,j

∥Ĉ(ri,j)− C(ri,j)∥22 (2)
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where ri,j denotes the sampled ray j from camera view i. Even though NeRF shows impressive
results in 3D scene reconstruction, its key limitation is the assumption of a static scene. Some prior
works propose methodologies to model the dynamic scenes (Cao & Johnson, 2023; Park et al., 2023;
Pumarola et al., 2021; Fridovich-Keil et al., 2023), but they usually assume a single video input. In
other words, the scene should be uniquely determined given a specific timestep t. However, in the
context of RL, the scene at a specific timestep t could differ across every episode, making the prior
works unavailable. To address this issue, we extract essential information from a few images of the
current scene and use it as a latent condition for the NeRF model to reconstruct the scene.

4 METHOD

This section demonstrates the details of our method. It consists of two stages, pre-training NeRF
for representation learning and downstream RL. In section 4.1, we propose a latent-conditioned
NeRF model that learns 3D geometry-aware scene representations. In section 4.2, time contrastive
loss is proposed to regularize the representation. In section 4.3, we introduce an RL algorithm that
leverages the 3D aware representation extracted from the pre-trained encoder with single-view input.

4.1 3D-AWARE REPRESENTATION LEARNING WITH CROSS-VIEW COMPLETION VIA NERF

To obtain 3D-aware scene representations and address the dynamic scenes, we learn a 3D scene
encoder Ωθ that maps the image observations to a latent scene representation z for each timestep
and learns the rendering function Fθ based on the latent z, i.e. Fθ(x,d, z). Specifically, we employ a
pretext task of cross-view completion (Weinzaepfel et al., 2022). It involves reconstructing an input
image with masked sections by utilizing the visible content and referring to unmasked reference
images from different viewpoints.

Overview. The overall framework is shown in Figure 2. Assuming access to a dataset consisting
of a few episodic rollout videos captured from N different viewpoints, let Oi

t−2:t denote the pri-
mary image observations taken from the ith viewpoint at timestep t − 2 : t. We concatenate three
consecutive images to incorporate trajectory history into the latent scene representations. Since we
leverage reference images for cross-view completion tasks, we also denote O

rj
t−2:t as the reference

image observations taken from the jth viewpoint at timestep t− 2 : t.

For every training iteration, we randomly select primary images from a specific viewpoint (Oi
t−2:t)

and K different reference images from other viewpoints except the viewpoint of the primary im-
age (Or1

t−2:t, · · · , O
rK
t−2:t). All of the selected images are divided into non-overlapping patches

P it−2:t, P
r1
t−2:t, · · · , P

rK
t−2:t, and we mask randomly selected patches from P it−2:t with masking ratio

m, denoted as P im,t−2:t. The masking is applied to ensure the 3D scene encoder Ωθ learns both 3D
geometry-aware information by cross-view completion and contexts within the masked viewpoint by
restoring the original images. Each of P im,t−2:t, P

r1
t−2:t, · · · , P

rK
t−2:t is independently passed through

a shared ViT-based image encoder Eθ. Then, the outputs are concatenated and passed through a ViT-
based state encoder Sθ, resulting in state features corresponding to each image at the latest timestep,
vit, v

r1
t , · · · , vrKt . Finally, these features are combined to generate the latent scene representation zt

and the rendering function Fθ synthesizes images from multiple viewpoints conditioned on zt.

Details on the image encoder. The shared image encoder Eθ follows the standard ViT structure,
but it is modified to meet the requirement for the downstream RL. Specifically, to deal with the
consecutive images, we add 1D learnable parameters representing each timestep along with 2D
sinusoidal positional embeddings for the patches. Then, the patches P im,t−2:t, P

r1
t−2:t, · · · , P

rK
t−2:t

are independently passed through transformer blocks in ViT.

Details on the state encoder. The ViT-based state encoder Sθ follows a similar structure to the im-
age encoder. It concatenates the encoded patches from the image encoder to facilitate the exchange
of scene information across views. Specifically, for the primary images, we take the encoded patches
across all timesteps to guide the state encoder’s attention toward the temporal information which is
crucial for downstream RL such as the agent’s movement or interaction with an object. For the
reference images, we only take the encoded patches of the latest timestep t to encourage the state
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Figure 2: 3D scene encoder Ωθ takes masked primary images and K reference images as inputs to
extract the latent scene representation zt. It is trained by cross-view completion via NeRF, and time
contrastive learning is applied to regularize the scene representation to be view-invariant. Once the
pre-training is finished, only Ωθ will be used for downstream RL, and NeRF will no longer be used.

encoder to focus on 3D geometric information from different viewpoints, while improving memory
and computation efficiency. To fill out the missing patches corresponding to the masked ones, learn-
able mask tokens are concatenated (He et al., 2022). We add 1D learnable parameters representing
whether the encoded patches are from primary images or reference images, along with 1D learnable
parameters representing each timestep and 2D sinusoidal positional embeddings for the patches.

After processing the concatenated inputs by Sθ, the encoded output chunks corresponding to each
Eθ(P im,t−2:t), Eθ(P

r1
t−2:t), · · · , Eθ(P

rK
t−2:t) at the latest timestep t are denoted as vit, v

r1
t , ..., vrKt ,

called state features. Then, the latent scene representation zt is computed by averaging these state
features, followed by a shallow MLP projection and L2 normalization. For notational simplicity in
downstream RL, we define zt = Ωθ(O

i
t−2:t, O

r1
t−2:t, · · · , O

rK
t−2:t), which includes all the processes

from the observation images to the latent scene representation.

NeRF decoder for multi-view reconstruction. Leveraging 2D images from different viewpoints,
the rendering function Fθ is trained to reconstruct images conditioned on the latent scene represen-
tation zt. Since NeRF is inherently designed to model the 3D scene, it naturally encourages the 3D
structural understanding of the 3D scene encoder compared to the typical 2D convolutional neural
network-based one. Also, to further enhance the 3D awareness of zt, we additionally employ multi-
view reconstruction, unlike the prior self-supervised works with masked modeling (He et al., 2022;
Weinzaepfel et al., 2022). Specifically, we reconstruct both the masked primary image and images
from all other viewpoints at the latest timestep t, while excluding the reference images to prevent
self-reconstruction, which would bypass proper 3D understanding of the environment. As the 3D
scene encoder Ωθ learns not just the cross-view information from the reference images, but also
the information from other viewpoints not included in the 3D scene encoder’s inputs, this approach
encourages Ωθ to capture the essential 3D information of the environment.

Also, we have found that NeRF training often gets stuck in local minimum since the NeRF model
tries to reconstruct every single pixel even though it corresponds to non-salient parts such as back-
ground or static objects. It leads to degradation in capturing the fine-grained details crucial for
downstream tasks. To address this, we introduce object-focused ray sampling to improve the fine-
grained details of the object-of-interest in rendered images. While there are prior works that utilize
adaptive sampling (Lin et al., 2022; Rematas et al., 2022), or surface, depth, pixel value changes
(Piala & Clark, 2021; Sun et al., 2024), we uniquely propose to sample rays for the specific regions,
potentially crucial to downstream tasks. It involves weighted sampling of rays within the region of
interest, identified using the Grounded SAM (Ren et al., 2024), instead of uniform random sampling.
By adjusting ray sampling locations, our method strikes a balance between focusing on non-salient
parts and regions crucial for downstream tasks. More details are included in Appendix A.
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4.2 REGULARIZATION FOR VIEWPOINT-INVARIANCE

In addition to the cross-view completion, we propose to regularize zt by applying a multi-view time
contrastive loss (Sermanet et al., 2018) to the state features vit, v

r1
t , ..., vrKt to ensure the 3D scene

encoder Ωθ is view-invariant. Specifically, the multi-view time contrastive loss encourages a pair of
simultaneously observed state features from different viewpoints to be closer to each other, while
repulsing state features from the same viewpoint but different timesteps. We set vit as an anchor and
randomly select a state feature from v

rj
t , where j ∈ {1, · · · ,K}, as a positive, and set vit′ , where t′

indicates a timestep distant from t, as a negative. Then, the objective can be represented as follows:

Lcont = max
(∥∥vit − v

rj
t

∥∥2
2
−

∥∥vit − vit′
∥∥2
2
+ α, 0

)
(3)

where α is the margin that encourages dissimilar pairs and positive pairs to be distant. Finally, the
overall loss function is formulated as

Ltotal = LRGB + λcontLcont (4)
where λcont = 0.0004. Since we have encouraged the 3D scene encoder Ωθ to be not only 3D
geometry-aware but also view-invariant by leveraging the cross-view completion via NeRF along
with the multi-view time contrastive loss, Ωθ is capable of performing inference solely with single-
view images, which is practically desirable for the downstream robotic tasks via RL.

4.3 REINFORCEMENT LEARNING WITH 3D-AWARE REPRESENTATION

Once we train the 3D scene encoder Ωθ, it is exploited as a 3D-aware representation extractor
for the downstream RL algorithm with single-view input. The 3D scene encoder Ωθ takes K
times replicated Oi

t−2:t instead of using reference images from different viewpoints, i.e. zt =

Ωθ(O
i
t−2:t,

[
Oi
t−2:t

]
∗ K), where ∗ denotes replication. Since we consider a deployment setting

with observation images from a single viewpoint, we randomly select a viewpoint from those in the
NeRF pre-training dataset for each episode during the RL process, instead of capturing synchronized
multi-view images. Then, the RL-relevant networks such as the policy and critic take zt as an input
observation. During the downstream RL process, we do not apply masking and freeze the 3D scene
encoder’s weight to preserve the 3D scene representation.

In this work, we adopt DrM (Xu et al., 2023) for the downstream RL algorithm, which is built on
top of DrQ-v2 (Yarats et al., 2021a). It utilizes the dormant ratio of the neural network for active
exploration-exploitation scheduling and shows state-of-the-art performance in the visual RL domain.

5 EXPERIMENT

Following the prior work (Shim et al., 2023), we pre-train and evaluate the proposed method for
each environment in the Meta-world (Yu et al., 2020), where the robot should perform manipulation
tasks with randomly initialized object-of-interest. However, we modified the environment to make
it look more realistic and rich in texture compared to the prior work. For the dataset, we recorded
episodic videos from six distinct viewpoints (N = 6). We used two reference images (K = 2)
during NeRF pre-training. However, with additional computational resources, both N and K could
be expanded. More details about the environments and datasets are included in Appendix A.

To evaluate the learned representation’s effectiveness in downstream RL, we compare our method
with some prior 3D-aware representation-based RL methods, which can be summarized as follows:

NeRF-RL (Driess et al., 2022) – it performs NeRF-based 3D reconstruction by leveraging object
masks for object-level reconstruction, which are required both in pre-training and deployment.

SNeRL (Shim et al., 2023) – it performs NeRF-based 3D reconstruction while distilling the feature
field of DINO (Caron et al., 2021) and semantic labels of each pixel into the latent representation.

3D-NSR (Li et al., 2022) – it learns 3D Neural Scene Representations by performing self-
reconstruction of multi-view images via NeRF while enforcing time contrastive loss for view-
invariancy. SNeRL, NeRF-RL, and 3D-NSR require camera pose information and synchronized
images from multiple viewpoints during the downstream RL process.

6
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Table 1: Conceptual comparison between the proposed method and other baselines. Single-view:
whether the 3D-aware representation can be inferred with single-view input during deployment.
Supervision source: the external supervision source of the representation learning objective. With-
out calibrated cameras: the requirement for camera viewpoint information during deployment.
Reconstruction: whether the method performs self-reconstruction or cross-view reconstruction.

Pre-training Downstream RL deployment
Reconstruction Supervision source Without calibrated cameras Single-view

SNeRL Self RGB, Feature Field, Semantic Label ✗ ✗
NeRF-RL Self RGB, Object mask ✗ ✗
3D-NSR Self RGB ✗ ✗

SinCro(ours) Cross-view RGB ✓ ✓

CNN+view randomization – as a 2D representation baseline, it constructs a naive 2D CNN as an
encoder for the downstream RL, without using the 3D scene encoder, NeRF-based 3D reconstruc-
tion. We apply random cropping for data augmentation to align with the recent image-based RL
training recipe. It performs RL with single-view input while randomly selecting the viewpoint for
every episode, the same as SinCro is trained.

For all baselines, we concatenate proprioceptive states such as the XYZ position of the end-effector
with the learned representation from each method to account for the robot’s internal state, and use
this combined data as input for the RL agent. While proprioceptive data is inherently view-agnostic,
it serves a complementary role, focusing solely on the robot’s dynamics. On the other hand, the
learned 3D-aware representation remains crucial for understanding and interacting with the environ-
ment and object-of-interest, especially in tasks requiring spatial awareness and manipulation. By
combining these two, we ensure that our method is broadly applicable without imposing restrictive
assumptions on the robotics problem and compromising the importance of the 3D-aware represen-
tation. We utilize DrM as the downstream RL algorithm with the same training process for a fair
comparison. The conceptual comparison of the baselines and SinCro is shown in Table 1.

5.1 RL EXPERIMENT RESULTS & 3D SCENE REPRESENTATION VALIDATION

RL experiments. The evaluation results for downstream RL are shown in Figure 3. Since our
method and CNN+view randomization utilize only single-view input, we evaluate these with each
viewpoint used in the NeRF pre-training phase and average the results from all viewpoints. Com-
pared to other baselines that utilize multi-view images to infer 3D-aware representation such as
SNeRL, NeRF-RL, and 3D-NSR, the proposed method consistently shows superior downstream
RL performances despite using single-view input. Since the proposed method mostly outperforms
these baselines rather than just being comparable, it supports the significance of the proposed ar-
chitecture and training framework for 3D geometry-aware representation. In the case of CNN+view
randomization, it shows performance degradation compared to our method since it has to learn every
single representation from each different viewpoint due to the lack of 3D awareness. It shows that
the proposed 3D geometry-aware, view-invariant representation is crucial for consistent, reliable
downstream RL performances.

3D scene representation. To validate whether the proposed method can effectively extract the es-
sential information required to represent the 3D scene, we compare the 3D volume rendering results
of the proposed method and baselines. Note that these qualitative results are indirect validations
for 3D understanding of our learned latent representation zt, and the high-quality image synthesis
is not the primary objective. Given a task-solving trajectory that was not used in pre-training, the
evaluation is performed with a single-view input.

As shown in Figure 4, the proposed method demonstrates superior scene-representing capabilities.
SinCro successfully reconstructs the core components of the scene when only a single-view image
is provided. It consistently achieves superior quantitative results compared to other baselines. Also,
it can accurately position the box for peg insertion, whereas other baselines often overfit to incorrect
positions. This distinction becomes particularly evident when rendering from different viewpoints
(V1, V2). This represents that the proposed method implicitly captures the spatial information of the
3D world. Additionally, other baselines struggle to render key elements such as the robot arm and
peg, often exhibiting issues such as jittering, and teleportation. We also compare with the baselines
in the multi-view input setting. The results for this setting are included in the Appendix B. Consid-
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(a) window-open (b) hammer (c) drawer-open

(d) push-wall (e) stick push (f) peg-insert

Figure 3: Comparison of our method and baselines in Meta-world environments. The shaded regions
represent a standard deviation across different seeds. Note that most of the NeRF-based baselines
fail to perform the task with single-view input, so we do not include the results of these.

Figure 4: 3D volume rendering results of the peg-insert environment (best viewed in the digital ver-
sion). All methods take single-view input from V3 (outlined in red). SinCro demonstrates its ability
to accurately localize the object-of-interest in the scene and achieves more consistent quantitative
results than baselines. Note that we only visualize three among all viewpoints due to the page limit.

ering these baselines exploit synchronized multi-view input or additional supervision sources, the
superior 3D spatial awareness of SinCro demonstrates the effectiveness of the proposed framework
in capturing detailed 3D dynamic scenes, even with just RGB supervision and single-view inference.

5.2 VIEWPOINT-INVARIANCE

RL experiments. Considering the real-world application, it would be beneficial to conduct down-
stream RL with minimal randomization in viewpoints across episodes. To validate such property,
we perform the same RL experiments in Section 5.1, while utilizing only one or two viewpoints for
random view selection during the RL process. We expect that if the learned representation is view-
invariant, the policy will be able to sample an action similar to what would have been chosen from
the viewpoint used during the RL process, even when the inputs for Ωθ come from a previously un-
seen viewpoint during the RL process. As shown in Figure 5, the performance is quite robust to the
decreases in the number of viewpoints, indicating that the learned representation is view-invariant.

3D scene representation. To validate whether the latent scene representation zt is viewpoint-
invariant, we plot t-SNE embeddings of zt in Figure 5. We collect videos of a task-solving trajectory
from six different viewpoints and infer zt for all timesteps and viewpoints with 1) multi-view input,
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(a) t-SNE embeddings (b) Nearest neighbor retrieval (c) RL evaluation

Figure 5: Viewpoint-invariance analysis in drawer-open environment. (a) t-SNE embeddings of
videos from six distinct viewpoints are aligned with similar timesteps across different viewpoints,
even when extracted without reference images. (b) The nearest neighbor search for the query image
(outlined in red) retrieves temporally aligned images from each viewpoint. (c) RL evaluation results
with different numbers of viewpoints for random view selection. These results demonstrate the
view-invariant properties of the representations.

(a) OT matrix (b) RL evaluation (c) Camera configuration examples

Figure 6: Viewpoint perturbation analysis in stick-push. (a) Optimal transport (OT) matrix between
episodic task-solving videos captured from the default and perturbed viewpoints. (b) RL evaluation
results with/without the perturbations. (c) Camera configurations for viewpoint perturbations.

and 2) single-view input. The results demonstrate locally smooth and clear temporal progress of
all trajectories, while the representations are closely aligned with similar timesteps across different
viewpoints, even with single-view input. To further validate the view-invariance, we randomly select
an image from arbitrary timestep and viewpoint, then retrieve the nearest neighbors in the latent
scene representation space based on the Euclidean distance metric. The retrieved images from each
viewpoint are temporally aligned, highlighting that the latent scene representation remains consistent
regardless of the viewpoints.

5.3 ROBUSTNESS TO VIEWPOINT CHANGES

To further explore the benefits of 3D geometry-aware representation, we consider a viewpoint-robust
control setup by continuously shifting the camera to be centered around the default pose, adjusting
it by approximately five degrees in both azimuth and elevation. We evaluate the learned RL policy
in Section 5.1 under these camera perturbations. As shown in Figure 6, our method is robust to
the viewpoint changes (Ours w perturb) due to the 3D geometry-aware representation. We also
compute the optimal transport matrix (Haldar et al., 2023; Hu et al., 2023) for the single-view-based
latent scene representations between episodic task-solving videos captured from the default and per-
turbed viewpoints. It represents the alignment between two distributions, so if the representation is
robust to viewpoint changes, we would expect to observe high values along the diagonal, indicat-
ing strong correspondence. We notice that high values remain concentrated on the diagonal, even
though these perturbed viewpoints were not provided during the NeRF pre-training. It represents
that the latent scene representation maintains strong local consistency and is resilient to variations in
camera configurations, offering a practical advantage for deployment in downstream robotic tasks.

5.4 ABLATION STUDY

To investigate the contribution of each proposed component, we compare the single-view-based
rendering results and downstream RL performance by removing each one (Figure 7).

Cross-view completion and contrastive learning – we ablate reference images (w/o cross-view)
or objective function (3) (w/o contrastive) during pre-training. Without one of these, the RL agent
always fails to perform the task, so we do not include the results. As shown in Figure 7, the absence

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Visual comparison for ablation study (b) RL evaluation

Figure 7: Ablation study in peg-insert environment (best viewed in the digital version). (a) Render-
ing results of single-view inference with a primary input V3 (outlined in red). Note that we only
visualize three viewpoints in the dataset due to the page limit. (b) RL evaluation by ablating multi-
view reconstruction and object-focused ray sampling.

of these components leads to collapsed reconstructions, appearing as blurred images. It indicates the
importance of both cross-view completion, which enhances the 3D scene encoder’s understanding
of the 3D geometry of the environment, and contrastive learning, which offers crucial guidance in
distinguishing different scenes. Together, they provide complementary benefits during pre-training,
ensuring that the 3D-aware representation integrates both spatial and temporal aspects, ultimately
enabling the RL agent to accomplish the task.

Multi-view reconstruction – the absence of multi-view reconstruction (w/o multi recon.) leads to
RL performance degradation. This is because the 3D scene encoder appears to lose some 3D scene
awareness, which is essential for effective policy learning. For example, the failure to localize key
elements such as the robot gripper, unobserved parts in the primary image, and the accurate position
of the green peg impacts the downstream RL tasks. It suggests that multi-view reconstruction plays
a critical role in enhancing the encoder’s understanding of 3D geometry, eventually enhancing the
downstream RL performance.

Object-focused ray sampling – there is also a noticeable degradation in RL performance when
the object-focused ray sampling strategy (w/o obj. sampling.) is not applied. This is because
the blurry or incomplete reconstructions near small objects, such as the green peg, which are often
accompanied by jittering across viewpoints, hinder the 3D scene encoder’s ability to accurately
localize the object. Accurate object localization is critical for solving the robotic manipulation task,
directly impacting the effectiveness of the downstream RL.

More experimental results, analysis, and evaluation details in Section 5 are included in supplemen-
tary video and Appendix B

6 CONCLUSION

In this work, we considered a 3D-aware representation-based RL framework where the agent should
learn how to perform the given task from multiple viewpoints. We proposed SinCro, which can
extract 3D geometry-aware representation while enabling a single-view inference without synchro-
nized calibrated cameras during deployment. We have shown that the proposed method outperforms
the baselines in qualitative and quantitative ways. However, SinCro still has some limitations. For
example, we have experimented with a small number of camera viewpoints due to the huge require-
ments of the computational resources, but access to more camera viewpoints will enable us to obtain
more fine-grained details and perform more viewpoint-robust control. Also, the proposed method
still requires synchronized and calibrated cameras during the NeRF pre-training, which might hin-
der real-world application if we want it to be used with dozens of cameras. An interesting future
research direction could involve using multiple videos captured from moving cameras with varying
viewpoints in place of the current prerequisites.
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Reproducibility Statement. We have included the source code in the supplementary materials,
along with detailed instructions for running the experiments. All necessary configurations, datasets,
and parameters used in our experiments are clearly specified, ensuring that others can replicate our
results under the same conditions and achieve consistent outcomes.
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supervised pre-training for 3d vision tasks by cross-view completion. Advances in Neural Infor-
mation Processing Systems, 35:3502–3516, 2022.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
Xiaoyu Liu, Jiaxin Yuan, Pu Hua, et al. Drm: Mastering visual reinforcement learning through
dormant ratio minimization. arXiv preprint arXiv:2310.19668, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021b.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International conference on learning representations,
2021c.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy. arXiv preprint arXiv:2403.03954, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 ENVIRONMENT

• window-open: The window’s spatial location is randomly initialized on the table with
the window in a closed position. The robot should open the window by manipulating the
handle.

• drawer-open: The drawer’s spatial location is randomly initialized on the table with the
drawer in a closed position. The robot should open the drawer by manipulating the handle.

• hammer: The hammer’s spatial location is randomly initialized on the table. The robot
should manipulate the hammer to hit the nail attached to the box.

• peg-insert-side: The peg and box’s spatial location is randomly initialized on the table.
The robot should pick up the peg and insert it into the hole in the box.

• push-wall: The block’s spatial location is randomly initialized on the table. The robot
should push the block to the desired location while detouring the wall.

• stick-push: The stick’s spatial location is randomly initialized on the table. The robot
should pick up the stick and push the bottle to the desired location by using the stick.

A.2 SINCRO IMPLEMENTATIONS

We used NVIDIA A6000 and AMD EPYC 9274F for encoder pre-training, and NVIDIA A5000
and AMD Ryzen Threadripper 3960X for RL training. Each encoder pre-training took 1 day and
each RL experiment took 2∼3 days for RL training.

Dataset for pre-training NeRF. Following the prior work (Shim et al., 2023), the dataset for
each environment consists of 14400 scenes (120 episodes x 120 timesteps). Half of the dataset is
collected by using the scripted policy (suboptimal) provided by Meta-world (Yu et al., 2020) and the
other half is collected by random action. We record images from 6 different viewpoints located in
the hemisphere with a radius of 0.6 m, centered around the environment. All cameras are set up to
look at the center of the hemisphere. The size of observed images from each camera is 128× 128.

Encoder pre-training details in Section 4. The hyperparameters for encoder pre-training are
presented in Table 2. We conducted the encoder pre-training for a total of 300K iterations with a
batch size of 8. Each data in the batch includes a pair of images (e.g. one for the primary image,
two for the reference images, and four for the reconstruction) from a specific episode and timestep.
During the first 2000 training iterations, we sampled rays from center-cropped image regions with
size 64× 64 to facilitate initial training by focusing on rich texture regions.

For each training iteration, we randomly sample an episode, a timestep, and three non-duplicated
camera viewpoints from a dataset, then concatenate three temporally consecutive images from each
viewpoint. One of these images serves as the primary input (Oi

t−2:t) and the remaining two view-
points serve as references (Or1

t−2:t, O
r2
t−2:t). The image patches (P it−2:t, P

r1
t−2:t, P

r2
t−2:t) are embedded

into 256 dimensions before entering the image encoder. Each ViT block in the image encoder Eθ
consists of multi-head self-attention and an MLP layer, and then layer normalization is applied at
the end of the image encoder.

Both the primary input and reference patches are processed by a fully connected layer, before con-
catenating mask tokens to the primary input patches from the image encoder. Then, the concate-
nated inputs and reference patches are fed into transformer blocks in the state encoder Sθ, followed
by layer normalization for each view. To obtain the state features for the primary input and refer-
ences, vit, v

r1
t , vr2t , the latest timestep patches for each view are concatenated and embedded into

256 dimensions via a fully connected layer. The scene representation zt is subsequently generated
by averaging the state features, followed by processing through a two-layer MLP and L2 normaliza-
tion. Then, a latent-conditioned NeRF Fθ(x,d, zt) utilizes this scene representation as an additional
input. Specifically, building upon the vanilla NeRF architecture (Mildenhall et al., 2021), the scene
representation zt is concatenated with the high-frequency embedded position x both in the first and
fifth MLP layers.
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We additionally sample negative image observations at each training iteration for time contrastive
learning. These negative observations are acquired from the same viewpoints of the previous input
batch but they correspond to a different timestep within the same episode. The negative image obser-
vations are processed through the frozen image encoder and state encoder, Sθ(Eθ(.)). The resulting
state feature from the primary viewpoint, vit′ , is used as a negative pair for the time contrastive loss
Lcont, with a margin of α = 0.2.

Additionally, we introduce object-focused ray sampling to improve the fine-grained details of small
objects in the rendered images, which is crucial for accomplishing downstream robotic tasks. Specif-
ically, we identified regions of interest by utilizing the off-the-shelf text-prompt-based segmentation
network, Grounded SAM (Ren et al., 2024). We use text prompt for each environment as follows:
green window, white window handle for the window-open environment, light green drawer, white
drawer handle for the drawer-open environment, hammer with green hand, gray nail for the hammer
environment, green rectangular stick for the peg-insert-side environment, small green cube for the
push-wall environment, and green peg for the stick-push environment. During NeRF pre-training,
half of the rays are sampled within the region of interest and the other rays are sampled uniformly
from the entire image pixels.

Table 2: Hyperparameters for pre-training

# of viewpoints, N 6 non-linearity ReLU
# of references, K 2 optimizer AdamW
masking ratio, m 75 % learning rate 5e-4
image resolution 128× 128 patch size 16× 16

batch size 8 α 0.2
embedding dimensions of Eθ and Sθ 256 hidden units (MLP) in Eθ and Sθ 1024

# of transformer blocks in Eθ 4 # of attention heads in Eθ 4
# of transformer blocks in Sθ 2 # of attention heads in Sθ 2

MLP layers for NeRF 8 hidden units (MLP) in NeRF 256
# of rays per iteration 2048 # of samples per ray 64

RL experiments details in Section 5.1. The hyperparameters for downstream RL are shown in
Table 3. DrM-specific hyperparameters are adopted from the default values of the original imple-
mentation. For proprioceptive inputs, we utilize the end-effector’s XYZ position (3-dim) and gripper
state that represent its open/close status (1-dim). We additionally utilize a high-frequency mapping
function in NeRF Mildenhall et al. (2021) to embed this 4-dimensional proprioceptive state into a
high-dimensional feature before passing it to the RL agent.

During RL training, we randomly sampled the camera viewpoint from the dataset for pre-training
NeRF. Since there are six distinct camera viewpoints in the dataset, we randomly sample a viewpoint
from these six viewpoints at each episode. Then, we evaluate the RL agent with each viewpoint for
every 10k steps, compute the episode rewards for each viewpoint, and plot the averaged episode
rewards in evaluation graphs in Section 5.

Table 3: Hyperparameters for downstream RL

critic hidden dimension 512 exploitation expectile 0.9
critic hidden depth 2 exploitation temperature T´ 0.02

critic target τ 0.005 target exploitation parameter λ̂ 0.6
critic target update frequency 2 awaken exploration temperature T 0.1

actor hidden dimension 512 linear exploration stddev. clip 0.3
actor hidden depth 2 n-step returns 10

actor update frequency 2 τ -dormant ratio 0.025
batch size 128 replay buffer B capacity (# of transitions) 5e5

Replay buffer B capacity (# of transitions) 5e5 dormant ratio threshold β̂ 0.2
discount factor γ 0.99 minimum perturb factor αmin 0.2

proprioception layer hidden dimension 256 maximum perturb factor αmax 0.9
proprioception layer depth 2 perturb interval 100000

learning rate 1e-4 optimizer ADAM
episode steps 200 training steps 1000000
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Viewpoint-invariance experiments details in Section 5.2. RL – we train the RL agent, following
the same process in Section 5.1. However, we select only a single viewpoint and do not randomize
the viewpoint during the RL process (Ours (# view=1)) in Figure 6), or select two viewpoints and
only randomize the viewpoint within these two during the RL process (Ours (# view=2)) in Figure
6). For example, let’s assume there are viewpoints [1,2,3,4,5,6]. If we selected [6] in the case
of (# view=1), then we train the RL agent only with the image from viewpoint 6 during the RL
process, and evaluate the trained RL agent with all viewpoints [1,2,3,4,5,6]. Ideally, if the learned
3D-aware representation is perfectly view-invariant, the output of the 3D scene encoder will be the
same regardless of the viewpoint, leading to sampling the same action regardless of the viewpoint.

Robustness to viewpoint changes experiments details in Section 5.3. For perturbation, we con-
tinuously shift the camera to follow the circle around the default camera pose, while maintaining
the maximum deviation of azimuth and elevation angle as 5 degrees for each. The camera is set to
rotate in the circle every 20 steps.

A.3 BASELINE IMPLEMENTATIONS

The baseline algorithms are trained as follows,

• SNeRL (Shim et al., 2023): We refer to the original implementation in https://
github.com/jayLEE0301/snerl_official, and follow the default setting.

• NeRF-RL (Driess et al., 2022): Since there is no official code implementation, we imple-
mented it ourselves by closely following the paper.

• 3D-NSR (Li et al., 2022): Since there is no official code implementation, we implemented
it ourselves by closely following the paper.

• CNN+view randomization: We replace the proposed encoder with a CNN and utilize
random cropping of the image for data augmentation.

A.4 ALGORITHM

Algorithm 1 pre-training of SinCro

1: Definition: total training iterations N , multi-view dataset D, 3D scene encoder Ωθ, image
encoder Eθ, state encoder Sθ, NeRF decoder Fθ, λcont = 0.0004

2: for iteration=1,2,...,N do
3: randomly select the primary input viewpoint i and K reference viewpoints.
4: sample observations Oi

t−2:t, O
r1
t−2:t, . . . , O

rK
t−2:t from D

5: zt ← Ωθ(O
i
t−2:t, O

r1
t−2:t, . . . , O

rK
t−2:t)

6: reconstruct Ôj
t ,∀j via Fθ conditioned on zt, while excluding the reference viewpoints, and

compute LRGB .
7: sample negative observations Oi

t′−2:t′ , O
r1
t′−2:t′ , . . . , O

rK
t′−2:t′ within the same episode but dif-

ference timestep t′.
8: vit, v

r1
t , . . . , vrKt ← Sθ(Eθ(Oi

t−2:t, O
r1
t−2:t, . . . , O

rK
t−2:t)) (already obtained during line 5)

9: vit′ , v
r1
t′ , . . . , v

rK
t′ ← Sθ(Eθ(Oi

t′−2:t′ , O
r1
t′−2:t′ , . . . , O

rK
t′−2:t′))

10: compute Lcont using vit, v
rj
t and vit′ , where j ∈ {1, · · · ,K}.

11: Ltotal ← LRGB + λcontLcont

12: update the parameters of Ωθ and Fθ by minimizing Ltotal
13: end for
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Algorithm 2 Downstream RL of SinCro

1: Definition: environment horizon H , total training episodes N , env, policy πψ , critic Qψ , replay
buffer B, pre-trained encoder Ωθ, number of reference views K, proprioceptive state s,

2: for iteration=1,2,...,N do
3: randomly select viewpoint i from the NeRF pre-training dataset D in Algorithm 1.
4: Oi

0, s0 ∼ env.reset()
5: for t=0,1,...,H-1 do
6: at ← πψ(·|Ωθ(Oi

t, [O
i
t] ∗K), st)

7: Oi
t+1, st+1 ← env.step(at)

8: end for
9: B ← B ∪ {Oi

0, s0, a0, O
i
1, s1, ...}

10: Get a minibatch b from B and train the policy πψ and the critic Qψ with b via DrM (Xu et al.,
2023)

11: end for

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 3D RECONSTRUCTION

This section presents additional reconstruction results across various environments. As shown in
Figure 8, 9, 10, 11, 12, 13, SinCro shows consistent qualitative and qualitative results compared to
the baselines, particularly outperforming in the single-view inference.

In the multi-view input case, SinCro clearly captures small objects, such as the window handle in the
window environment, the green cube in the push environment, or the hammerhead in the hammer en-
vironment, whereas all baselines struggle to render these parts. Despite using only three viewpoints
(one primary input and two references), SinCro achieves competitive quantitative results compared
to the baselines, which are provided with six viewpoints. Although the baselines show comparable
PSNR, SSIM, and LPIPS to SinCro in the multi-view input case, this is essentially attributed to the
baselines prioritizing the accurate reconstruction of non-salient parts of the image, which are not
crucial for downstream tasks, and their RL performances are inferior to SinCro since capturing tiny
objects in the scene is crucial for downstream RL tasks. Since our method is designed to take a
handful of reference images rather than relying on multi-view images from densely located cam-
eras, it requires significantly fewer viewpoints compared to the baselines. Therefore, the efficiency
becomes even more pronounced with access to datasets from more diverse viewpoints, making the
proposed method highly advantageous for memory efficiency and practical application in robotics.

In the single-view input case, SinCro outperforms the baselines both qualitatively and quantita-
tively. Moreover, our approach demonstrates consistent qualitative and quantitative results similar
to those in the multi-view input case. In contrast, baselines experience significant rendering qual-
ity degradations in most environments, showing incomplete reconstruction, severe noise, jittering,
teleportation, and confusion in distinguishing each different scene, leading to rapid degradations in
PSNR and SSIM, and increases in LPIPS. These results are illustrated in the our supplementary
video. Notably, 3D-NSR, which leverages time contrastive learning between image features, expe-
riences less quantitative degradation than SNeRL and NeRF-RL. This suggests that time contrastive
loss plays a key role in promoting view-invariancy in scene representations, encouraging them to be
less sensitive to the number of viewpoints.
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Figure 8: 3D volume rendering results in the peg-insert-side environment.

Figure 9: 3D volume rendering results in the window-open environment.
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Figure 10: 3D volume rendering results in the push-wall environment.

Figure 11: 3D volume rendering results in the hammer environment.
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Figure 12: 3D volume rendering results in the drawer-open environment.

Figure 13: 3D volume rendering results in the stick-push environment.
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B.2 THE EFFECT OF OBJECT-FOCUSED RAY SAMPLING FOR BASELINES

We apply the proposed object-focused ray sampling strategy to the baselines (SNeRL/NeRF-RL/3D-
NSR w/ obj. sampling) to examine its effect. We perform image rendering using single-view input,
and the results are shown in Figure 14. The baselines with our ray sampling strategy produce less
blurry renderings of small objects, such as a green stick in the peg-insert-side environment or a small
green cube in the push-wall environment, compared to the ones without the ray sampling strategy
(SNeRL/NeRF-RL/3D-NSR original). However, these small objects’ locations remain inaccurate,
and the overall reconstruction results still exhibit severe noise, jittering of objects and the robot
arm, or teleportation phenomena throughout the episode. This suggests that, even though our ray
sampling strategy aids in reconstructing small but essential components of the environment, this
strategy alone is insufficient to enhance 3D scene representation. In addition to the proposed ray
sampling strategy, our proposed 3D scene representation learning scheme is required to acquire
well-formed single-view 3D scene representations.

Figure 14: Qualitative results of the baselines with/without our proposed ray sampling strategy.
The results are obtained using single-view input. Although the baselines with the ray sampling
strategy achieve less blurry renderings of small objects, such as a green stick in the peg-insert-side
task or a small green cube in the push-wall task, they still struggle to render the entire scenes,
exhibiting inaccurate object and robot arm locations, as well as severe noise and jittering throughout
the episode.
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B.3 ROBUSTNESS TO VIEWPOINT CHANGE

Computing optimal transport matrix. A comparison of the optimal transport (OT) matrix be-
tween SinCro and baselines is presented in Figure 15. To compute the OT matrix, we utilize two
observations of a task-solving trajectory from a default camera setting used in encoder pre-training
and perturbed camera viewpoints. The perturbed camera continuously rotates around the default
camera pose with maximum perturbations of five degrees in both azimuth and elevation. We collect
all scene representations throughout the episode from each observation, then compare the two dis-
tributions using the equations provided in (Haldar et al., 2023; Hu et al., 2023). Due to the definition
of the optimal transport, if the two distributions are similar, a scene representation z′t of the observa-
tion from the perturbed viewpoints will be transported to a representation zt of the observation with
the same timestep t obtained from the default camera pose. That is, bright colors (high values) will
be aligned on the diagonal of the OT matrix, indicating strong correspondences between the two
trajectories. Therefore, we can implicitly validate that the proposed method is robust to viewpoint
perturbations as the scene representations are still aligned on the diagonal despite the perturbations.
Compared to the baselines, SinCro demonstrates clear alignments of scene representations between
the two observations. It indicates that the proposed method possesses 3D geometry-aware represen-
tations, enabling the agent to be robust in camera perturbations.

Figure 15: Comparison of the OT matrix in the stick-push environment (best viewed in the digital
version).

RL experiments for evaluating the robustness to viewpoint changes. We conducted view-point
robust control experiments across all environments as outlined in the main script. As shown in
Figure 16, the analysis in most environments aligns consistently with the results presented in the
main text.

(a) window-open (b) hammer (c) drawer-open

(d) push-wall (e) stick push (f) peg-insert

Figure 16: RL experiments for evaluating the robustness to viewpoint change.
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B.4 ABLATION STUDY

3D volume rendering for ablation study. Additional visual ablation results with single-view in-
put are presented in Figure 17, 18. The results show the importance of each component in the
proposed scene representation learning scheme. The reconstruction results of both models, trained
without cross-view completion (w/o cross-view) and time contrastive loss (w/o contrastive), col-
lapse into blurred images throughout the entire scenes. It indicates that cross-view completion and
time contrastive loss are essential components of the proposed architecture for understanding 3D
scene geometry and task progression. The ablation model without multi-view reconstruction (w/o
multi recon.) occasionally shows errors in rendering object locations. For example, in Figure 17, the
small green cube is inaccurately positioned in the V2 perspective when V3 is provided as a primary
input, supporting that multi-view reconstruction enhances spatial understanding. Finally, without
the object-focused ray sampling strategy (w/o obj. sampling), the model struggles to capture fine-
grained details of small objects in the scene, such as the green cube in the push-wall environment
and the green stick in the stick-push environment, both of which are crucial for success in down-
stream RL tasks. Our ray sampling strategy significantly improves the render quality of tiny objects
in the scene.

Figure 17: Visual ablation results with single-view input (outlined in V3) in push-wall environment.

Figure 18: Visual ablation results with single-view input (outlined in V3) in stick-push environment.
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RL experiments for ablation study. We conducted ablation studies across all environments as
outlined in the main script. As shown in Figure 19, the analysis in most environments aligns consis-
tently with the results presented in the main text.

(a) window-open (b) hammer (c) drawer-open

(d) push-wall (e) stick push (f) peg-insert

Figure 19: RL experiments for ablation study
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