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Abstract
The Probably Approximately Correct (PAC) Privacy frame-
work [46] provides a powerful instance-based methodology
to preserve privacy in complex data-driven systems. Existing
PAC Privacy algorithms (we call them Auto-PAC) rely on
a Gaussian mutual information upper bound. However, we
show that the upper bound obtained by these algorithms is
tight if and only if the perturbed mechanism output is jointly
Gaussian with independent Gaussian noise. We propose two
approaches for addressing this issue. First, we introduce two
tractable post-processing methods for Auto-PAC, based on
Donsker–Varadhan representation and sliced Wasserstein dis-
tances. However, the result still leaves "wasted" privacy bud-
get. To address this issue more fundamentally, we introduce
Residual-PAC (R-PAC) Privacy, an f -divergence-based mea-
sure to quantify privacy that remains after adversarial infer-
ence. To implement R-PAC Privacy in practice, we propose
a Stackelberg Residual-PAC (SR-PAC) privatization mecha-
nism, a game-theoretic framework that selects optimal noise
distributions through convex bilevel optimization. Our ap-
proach achieves efficient privacy budget utilization for arbi-
trary data distributions and naturally composes when multiple
mechanisms access the dataset. Through extensive experi-
ments, we demonstrate that SR-PAC obtains consistently a
better privacy-utility tradeoff than both PAC and differential
privacy baselines.

1 Introduction

Machine-learning models power critical applications—from
medical diagnosis to autonomous vehicles—yet their outputs
can inadvertently expose sensitive training data. As pipelines
grow in scale and complexity, practitioners need rigorous, scal-
able privacy guarantees that go beyond ad-hoc testing. Over
the past two decades, formal privacy frameworks have prolif-
erated. Differential Privacy (DP) [13] (and its variants such as
Rényi DP [33]) delivers input-independent worst-case indis-
tinguishability by bounding output shifts from single-record

changes. Alternative information-theoretic definitions, such
as mutual-information DP [10], Fisher-information bounds
[16, 21, 23], and Maximal Leakage [26, 39], provide comple-
mentary guarantees and offer alternative trade-offs between
privacy and utility.

Nevertheless, provable privacy guarantees for modern data-
processing algorithms remains a challenge. First, worst-case
frameworks like DP require computing global sensitivity,
which is generally NP-hard [47]. Moreover, computing the
optimal privacy bound of DP under composition is, in gen-
eral, a #P-complete [34]. In practice, finding the minimal
noise needed to meet a target guarantee is intractable for most
real-world algorithms, especially when the effect of each op-
eration on privacy is unclear. On the other hand, empirical or
simulation-based methods (e.g., testing resistance to member-
ship inference [42]) address specific threats but lack rigorous,
adversary-agnostic assurance. Bridging this gap requires a
new, broadly applicable framework that can quantify and en-
force privacy risk without relying on sensitivity.

A promising alternative has recently emerged: the Probably
Approximately Correct (PAC) Privacy framework [46]. PAC
Privacy shifts from indistinguishability-based guarantees to
an operational notion that measures the information-theoretic
hardness of reconstructing sensitive data. It is defined by an
impossibility-of-inference guarantee for a chosen adversarial
task and data prior, and the framework provides algorithms
that enforce tractable mutual-information upper bounds to
certify this guarantee. This approach enables automatic priva-
tization via black-box simulation, and enjoys additive compo-
sition bounds and automatic privacy budget implementations
for adaptive sequential compositions of mechanisms with arbi-
trary interdependencies. Notably, PAC Privacy often requires
only O(1) noise magnitude to achieve its privacy guaran-
tees—independent of the output dimension—whereas differ-
ential privacy’s worst-case, input-independent noise magni-
tude scales as Θ(

√
d) for a d-dimensional release.

However, existing PAC privacy algorithms are fundamen-
tally conservative. In particular, we show (Proposition 1) that
Auto-PAC achieves the designated privacy budget exactly if
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and only if the perturbed mechanism output is jointly Gaus-
sian with independent Gaussian noise, a restrictive condition
rarely met in practice. Consequently, Auto-PAC will in gen-
eral make inefficient use of the privacy budget.

We address this limitation of Auto-PAC in two ways. First,
working within the general PAC Privacy framework, we de-
velop two tractable post-processing methods for Auto-PAC,
based on Donsker–Varadhan representation and sliced Wasser-
stein distances. However, even these methods fail to fully
close the privacy budget gap. To address this issue more fun-
damentally, we introduce the notion of Residual-PAC Privacy
(R-PAC privacy). Unlike PAC privacy, which aims to directly
bound mutual information, R-PAC privacy focuses instead
on quantifying privacy budget remaining after information
has been leaked by a data processing mechanism, using f -
divergence to this end. When f -divergence is instantiated as
Kullback–Leibler (KL) divergence, we show that Residual-
PAC Privacy is fully characterized by the conditional entropy
up to a known constant that does not depend on the mecha-
nism or the applied noise.

As a practical instantiation of R-PAC, we propose a novel
Stackelberg Residual-PAC (SR-PAC) framework. SR-PAC
formulates the problem of adding noise given a privacy budget
as a Stackelberg game in which the leader selects a noise
distribution with the goal of minimizing the magnitude of the
perturbation, while the follower chooses a stochastic inference
strategy to recover the sensitive data. We show that when the
entire probability space is considered, the resulting bilevel
optimization problem becomes a convex program. Moreover,
we prove that the mixed-strategy Stackelberg equilibrium of
this game yields the optimal noise distribution, ensuring that
the conditional entropy of the perturbed mechanism precisely
attains the specified privacy budget. Finally, we use extensive
experimental evaluation to demonstrate that the proposed
SR-PAC privacy framework consistently outperforms both
PAC-privacy and differential privacy baselines.

In summary, our main contributions are as follows:
• We characterize the conservativeness of Auto-PAC [43,

46], showing that it arises from the gap between the
Gaussian surrogate bound and the true non-Gaussian
mutual information of the privatized mechanism.

• We propose two computationally tractable approaches
to reduce this gap: one based on the Donsker-Varadham
representation (Theorem 3) and another based on the
sliced Wasserstein distances (Theorem 4), both providing
sample-efficient non-Gaussianity corrections.

• We propose a novel privacy framework, Residual-PAC
(R-PAC), to quantify the portion of privacy that remains
rather than the amount leaked. This offers a complemen-
tary perspective to PAC privacy, and enables efficient
computation of tight privacy bounds.

• We present an automatic privatization algorithm, Stack-
elberg R-PAC (SR-PAC), to efficiently compute noise

distributions for a given privacy budget. SR-PAC algo-
rithm achieves tight budget utilization, can operate with
only black-box access via Monte Carlo simulation, and
adaptively concentrates noise in privacy-sensitive direc-
tions while preserving task-relevant information.

1.1 Related Work

Privacy Quantification Notions. Quantitative notions of
privacy leakage have been extensively studied across a va-
riety of contexts, leading to mathematically rigorous frame-
works for assessing the amount of sensitive information that
can be inferred by adversaries. Differential privacy (DP) and
its variants have become the gold standard for formal pri-
vacy guarantees, with the original definitions by Dwork et
al. [13,14] formalizing privacy loss through bounds on the dis-
tinguishability of outputs under neighboring datasets. Variants
such as concentrated differential privacy (CDP) [5, 15], zero-
concentrated DP (zCDP) [4], and Rényi differential privacy
(RDP) [33] have further extended this framework by parame-
terizing privacy loss with different statistical divergences (e.g.,
R’enyi divergence), thereby enhancing flexibility in privacy
accounting, especially for compositions and adaptive mecha-
nisms. Information-theoretic measures provide alternative and
complementary approaches for quantifying privacy loss. For
instance, mutual information has been used to analyze privacy
leakage in a variety of settings [7, 10], with f -divergence and
Fisher information offering finer-grained or context-specific
metrics [16, 21, 23, 46]. These frameworks help to bridge the
gap between statistical risk and adversarial inference, and
are closely connected to privacy-utility trade-offs in mech-
anism design. Maximal leakage, hypothesis testing privacy,
and other relaxations further broaden the analytic toolkit for
measuring privacy risk.

Privacy-Utility Trade-off. Balancing the trade-off be-
tween privacy and utility is a central challenge in the design of
privacy-preserving mechanisms. This challenge is frequently
formulated as an optimization problem [1, 12, 18–20, 22, 30,
32, 40]. For example, Ghosh et al. [19] demonstrated that the
geometric mechanism is universally optimal for differential
privacy under certain loss-minimizing criteria in Bayesian set-
tings, while Lebanon et al. [30] and Alghamdi et al. [1] studied
utility-constrained optimization. Gupte et al. [22] modeled
the privacy-utility trade-off as a zero-sum game between pri-
vacy mechanism designers and adversaries, illustrating the
interplay between optimal privacy protection and worst-case
loss minimization.

Optimization Approaches for Privacy. A growing body
of work frames the design of privacy-preserving mechanisms
as explicit optimization problems, aiming to maximize data
utility subject to formal privacy constraints. Many adver-
sarial or game-theoretic approaches—such as generative ad-
versarial privacy (GAP) [24] and related GAN-based frame-
works [8, 27, 35]—cast the privacy mechanism designer and
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the adversary as players in a min-max game, optimizing utility
loss and privacy leakage, respectively. More recently, Selvi
et al. [41] introduced a rigorous optimization framework for
differential privacy based on distributionally robust optimiza-
tion (DRO), formulating the mechanism design problem as an
infinite-dimensional DRO to derive noise-adding mechanisms
that are nonasymptotically and unconditionally optimal for
a given privacy level. Their approach yields implementable
mechanisms via tractable finite-dimensional relaxations, of-
ten outperforming classical Laplace or Gaussian mechanisms
on benchmark tasks. Collectively, these lines of research illus-
trate the power of optimization and game-theoretic perspec-
tives in achieving privacy-utility trade-offs beyond conven-
tional mechanism design.

2 Preliminaries

2.1 PAC Privacy

Privacy Threat Model. We consider the following general
privacy problem. A sensitive input X (e.g., a dataset, mem-
bership status) is drawn from a distribution D , which may be
unknown or inaccessible. There is a data processing (possibly
randomized) mechanism M : X 7→ Y ⊂Rd , where Y is mea-
surable. An adversary observes the output Y = M (X) and
attempts to estimate the original input X with an estimate X̃ .
The adversary has complete knowledge of both the data distri-
bution D and the mechanism M , representing the worst-case
scenario. The central privacy concern is determining whether
the adversary can accurately estimate the true input, meeting
some predefined success criterion captured by an indicator
function ρ.

The PAC privacy framework [46] addresses this threat
model and is formally defined as follows.

Definition 1 ((δ,ρ,D)-PAC Privacy [46]). For a data pro-
cessing mechanism M , given some data distribution D , and
a measure function ρ(·, ·), we say M satisfies (δ,ρ,D)-PAC
Privacy if the following experiment is impossible:

A user generates data X from distribution D and sends
M (X) to an adversary. The adversary who knows D and M
is asked to return an estimation X̃ ∈ X on X such that with
probability at least 1−δ, ρ(X̃ ,X) = 1.

Definition 1 formalizes privacy in terms of the adversary’s
difficulty in achieving accurate reconstruction. The function
ρ(·, ·) specifies the success criterion for reconstruction, adapt-
ing to the requirements of the specific application. For exam-
ple, when X ⊂ Rd′ , one may define success as |X̃−X |2 ≤ ε

for some small ε > 0; if X is a finite set of size n, success may
be defined as correctly recovering more than n− ε elements.
Notably, ρ need not admit a closed-form expression; it simply
indicates whether the reconstruction satisfies the designated
criterion for success.

This privacy definition is highly flexible by enabling ρ to
encode a wide range of threat models and user-specified risk
criteria. For example, in membership inference attacks [6],
ρ(X̃ ,X) = 1 may indicate that X̃ successfully determines the
presence of a target data point u0 in X . In reconstruction
attacks [2], success may be defined by ρ(X̃ ,X) = 1 if |X̃ −
X |2 ≤ 1, representing a close approximation of the original
data.

Given the data distribution D and the adversary’s cri-
terion ρ, the optimal prior success rate (1 − δ

ρ
o) is de-

fined as the highest achievable success probability for
the adversary without observing the output M (X): δ

ρ
o =

infX̃0
PrX∼D

(
ρ(X̃0,X) ̸= 1

)
. Similarly, the posterior success

rate (1−δ) is defined as the adversary’s probability of success
after observing M (X).

The notion of PAC advantage privacy quantifies how much
the mechanism output M (X) can improve the adversary’s
success rate, based on f -divergence

Definition 2 ( f -Divergence). Given a convex function f :
(0,+∞) → R with f (1) = 0, extend f to t = 0 by setting
f (0) = limt→0+ f (t) (in R∪{+∞,−∞}). The f -divergence
between two probability distributions P and Q over a common
measurable space is:

D f (P∥Q)≡

{
EQ

[
f
(

dP
dQ

)]
if P≪ Q,

+∞ otherwise.

Here, dP
dQ is the Radon-Nikodym derivative.

Definition 3 ((∆δ
f ,ρ,D) PAC Advantage Privacy [46]). A

mechanism M is termed (∆δ
f ,ρ,D) PAC-advantage private if

it is (δ,ρ,D) PAC private and

∆
δ
f ≡D f (111δ∥111δ

ρ
o
) = δ

ρ
o f (

δ

δ
ρ
o
)+(1−δ

ρ
o) f (

1−δ

1−δ
ρ
o
).

Here, 111δ and 111
δ

ρ
o

represent two Bernoulli distributions of
parameters δ and δ

ρ
o , respectively.

Here, PAC Advantage Privacy is defined on top of PAC
Privacy and quantifies the amount of privacy loss incurred
from releasing M (X), captured by the additional posterior
advantage ∆δ

f .

2.2 Automatic PAC Privatization Algorithms
PAC Privacy enables automatic privatization, which sup-
ports simulation-based implementation for arbitrary black-
box mechanisms, without requiring the worst-case adversar-
ial analysis, such as sensitivity computation. In this section,
we present the main theorems and algorithms underlying au-
tomatic PAC privatization as introduced in [46] (hereafter
"Auto-PAC") and the efficiency-improved version proposed
in [43] (hereafter "Efficient-PAC"; algorithm details in Ap-
pendix A). We start by defining the mutual information.
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Definition 4 (Mutual Information). For random variables x
and w, the mutual information is defined as

MI(x;w)≡DKL(Px,w∥Px⊗Pw),

the KL-divergence between their joint distribution and the
product of their marginals.

When the f -divergence in ∆δ
f is instantiated as the KL

divergence (denoted as ∆δ
KL), Theorem 1 of [46] shows

∆
δ
KL ≤ MI(X ;M (X)), (1)

Thus, one can control the posterior advantage ∆δ
KL by bound-

ing the mutual information between private data and the re-
leased output.

Next, we introduce the Auto-PAC. Consider a deterministic
data processing mechanism M : X → Rd , where the output
norm is uniformly bounded: ∥M (X)∥2 ≤ r for all X . To en-
sure PAC Privacy, the mechanism is perturbed by Gaussian
noise B∼N (0,ΣB), where ΣB is the covariance. For any de-
terministic mechanism M and any Gaussian noise B, define
the Gaussian surrogate bound

LogDet(M (X),B)≡ 1
2

logdet
(

Id +ΣM (X)Σ
−1
B

)
, (2)

where ΣM (X) is the covariance of M (X).

Theorem 1 (Theorem 3 of [46]). For an arbitrary determin-
istic mechanism M and Gaussian noise B ∼ N (0,ΣB), the
mutual information satisfies

MI(X ;M (X)+B)≤ LogDet(M (X),B).

Moreover, there exists ΣB such that E[∥B∥2
2] =

(
∑

d
j=1
√

λ j

)2

with {λ j} being the eigenvalues of ΣM (X), and MI(X ;M (X)+

B)≤ 1
2 .

Theorem 1 establishes a simple upper bound on the mu-
tual information with Gaussian noise perturbation. Choos-
ing ΣB to implement the Gaussian surrogate bound
LogDet(M (X),B) = β for a privacy budget β enables
anisotropic noise as it estimates the eigenvectors of M (X) to
fit the instance-based noise to the geometry of the eigenspace
of M (X). The result extends naturally to randomized mecha-
nisms of the form M (X ,θ), where θ is a random seed (Corol-
lary 2 of [46]). Building on Theorem 1, an automatic PAC
privatization algorithm (Auto-PAC) shown in Algorithm 1 is
proposed by [46] to determine an appropriate Gaussian noise
covariance ΣB to ensure that MI(X ;M (X)+B)≤ β with con-
fidence at least 1− γ. This is achieved using the user-specific
security parameter c, privacy budget partitions v and β′ such
that β = v+β′ (Theorem 4 of [46]). We refer to Algorithm 1
as (1− γ)-Confidence Auto-PAC.

Algorithm 1 (1− γ)-Confidence Auto-PAC [46]

Require: deterministic mechanism M, dataset D, sample
size m, security parameter c, mutual information quanti-
ties β′ and v.

1: for k = 1,2, . . . ,m do
2: Generate X (k) from D . Record y(k) = M (X (k)).
3: end for
4: Calculate µ̂ = ∑

m
k=1 y(k)/m and Σ̂ =

∑
m
k=1(y

(k)− µ̂)(y(k)− µ̂)T/m.

5: Apply SVD: Σ̂ = ÛΛ̂ÛT , where Λ̂ has eigenvalues λ̂1 ≥
λ̂2 ≥ . . .≥ λ̂d .

6: Find j0 = argmax j λ̂ j for λ̂ j > c.
7: if min1≤ j≤ j0,1≤l≤d |λ̂ j− λ̂l |> r

√
dc+2c then

8: for j = 1,2, . . . ,d do
9: Set λB, j =

2v√
λ̂ j +10cv/β′ ·

(
∑

d
j=1

√
λ̂ j +10cv/β′

) .
10: end for
11: Set ΣBBB = ÛΛ

−1
BBB ÛT .

12: else
13: Set ΣBBB = (∑d

j=1 λ̂ j +dc)/(2v) · IIId .
14: end if
15: Output: ΣBBB.

2.3 Differential Privacy
In addition to the standard PAC Privacy, we also compare
our approach to the differential privacy (DP) framework. Let
X be the input dataset. Each data point xi is defined over
some measurable domain X †, so that x = (x1,x2, . . . ,xn) ∈
X = (X †)n. We say two datasets x,x′ ∈ X are adjacent if they
differ in exactly one data point.

Definition 5 ((ε, δ̄)-Differential Privacy [14]). A random-
ized mechanism M : X 7→ Y is said to be (ε, δ̄)-differentially
private (DP), with ε≥ 0 and δ̄ ∈ [0,1], if for any pair of adja-
cent datasets x,x′, and any measurable W ⊆ Y , it holds that
Pr[M (x) ∈W ]≤ eε Pr[M (x′) ∈W ]+ δ̄.

The parameter ε is usually referred to as the privacy budget,
and δ∈ (0,1] represents the failure probability. DP is an input-
independent adversarial worst-case approaches that focus on
the sensitivity magnitude, while Auto-PAC is instance-based
and adds anisotropic noise tailored to each direction as needed.
Appendix C characterizes the difference between DP, PAC
Privacy, and our Residual-PAC (R-PAC) Privacy.

3 Characterizing The Gaussian Barrier of Au-
tomatic PAC Privatization

This section characterizes the utility of Auto-PAC by focus-
ing on the conservativeness of the implemented mutual in-
formation bounds. To distinguish from Algorithm 1 ((1− γ)-
confidence Auto-PAC), we use Auto-PAC (algorithm) to refer
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to the direct implementation of privacy budgets for the bound
LogDet(M (X),B) without a target conference level.

The Gaussian surrogate bound is conservative due to a
nonzero Gaussianity gap, the discrepancy between the true
mutual information and LogDet(M (X),B) defined by (2):

Gapd ≡ LogDet(M (X),B)−MI(X ;M (X)+B). (3)

Define Z = M (X)+B with mean µZ = µM (X) and covariance
ΣZ = ΣM (X)+ΣB. Let PM ,B denote the true distribution of
Z = M (X)+B, and define the Gaussian surrogate distribu-
tion as

Q̃M ≡N (µZ ,ΣZ) (4)

with the same first and second moments as Z ∼ PM ,B.

Proposition 1. Let B ∼ N (0,ΣB). Then, Gapd =

DKL(PM ,B∥Q̃M )≥ 0. Moreover, Gapd = 0 iff PM ,B = Q̃M .

Proposition 1 shows that the conservativeness of
M (X) in terms of Gapd is equivalent to the KL diver-
gence DKL(PM ,B∥Q̃M ). Let Z̃ ∼ Q̃M . Then, MI(X ; Z̃) =
LogDet(M (X),B).

Proposition 2. For any privacy budget β > 0, the noise dis-
tribution Q = N (0,ΣB) obtained by Auto-PAC is the unique
solution of the following problem:

inf
B∼Q′

EQ′
[
∥B∥2

2
]

s.t. MI(X ; Z̃)≤ β with Z̃ ∼ Q̃M . (5)

Proposition 2 implies that Auto-PAC’s zero-mean Gaussian
noise is the optimal solution to minimize the magnitude of
the noise subject to the mutual information constraint if we
replace Z ∼ PM ,B by Z̃ ∼ Q̃M .

Proposition 3. For any privacy budget β > 0, let Q and Qγ,
respectively, be the Gaussian noise distribution obtained by
Auto-PAC and (1− γ)-Confidence Auto-PAC with any γ ∈
[0,1]. Let B∼ Q and Bγ ∼ Qγ. Then, the following holds.

(i) MI(X ;M (X)+Bγ)≤ MI(X ;M (X)+B).

(ii) EQγ
[∥Bγ∥2

2]≥ EQ[∥B∥2
2].

In Proposition 3, part (i) shows that (1− γ)-confidence
Auto-PAC is more conservative than directly implementing
LogDet(M (X),B) (Auto-PAC) for the same privacy budget.
Part (ii) demonstrates that (1− γ)-confidence Auto-PAC uses
larger noise magnitude than Auto-PAC for the same privacy
budget. Thus, in subsequent comparisons involving PAC Pri-
vacy, we focus on Auto-PAC.

3.1 Mechanism Comparison in PAC Privacy
Definition 9 of [46] defines the optimal perturbation that
tightly implements the privacy budget while maintaining op-
timal utility, where utility is captured by a loss function K .

An optimal perturbation Q∗ is a solution of the following
optimization problem:

inf
Q
EQ,M ,D [K (B;M )] s.t. MI(X ;M (X)+B)≤ β, B∼Q.

(6)
The choice of utility loss function K is context-dependent.
However, in many applications, we are primarily concerned
with the expected Euclidean norm of the noise or a convex
function thereof, e.g., EQ,M ,D [K (B;M )] = EQ

[
∥B∥2

2
]
.

We now show that using EQ,M ,D [K (B;M )] = EQ
[
∥B∥2

2
]

is sufficient to obtain perturbations that maintain coherent or-
dering of PAC Privacy using mutual information (i.e., larger
privacy budgets yield non-decreasing actual mutual informa-
tion).

Proposition 4. Fix a mechanism M and data distribution D .
Let Q denote the collection of all zero-mean noise distribu-
tions under consideration, and let Itrue : Q 7→R≥0 be the true
mutual information functional; i.e., Itrue(Q) = MI(X ;M (X)+
B) with B∼Q for Q ∈ Q . For each privacy budget β≥ 0, de-
fine the feasible region F (β)≡ {Q ∈ Q : Itrue(Q)≤ β}. Sup-
pose that F (β) is nonempty for all privacy budgets of interest.
For each β≥ 0, let Q∗(β) be a solution of the problem:

min
B∼Q

EQ[∥B∥2
2] s.t. Q ∈ F (β). (7)

Then, if β1 < β2, we have Itrue(Q∗(β1))≤ Itrue(Q∗(β2)).

However, if Auto-PAC is used to solve the optimization
problem (5), we have the conservative implementation of
a given privacy budget. The next result shows that when
Gapd = DKL(PM ,B∥Q̃M )> 0, Auto-PAC does not, in general,
maintain coherent ordering of PAC Privacy.

With a slight abuse of notation, for any mechanism M :
X 7→ Y , let Gapd(Q) = DKL(PM ,B∥Q̃M ) with B∼ Q.

Theorem 2. Fix a mechanism M and data distribution D . Let
Q denote the collection of all zero-mean noise distributions
under consideration, and let Itrue : Q 7→ R≥0 be the true mu-
tual information functional; i.e., Itrue(Q) = MI(X ;M (X)+B)
with B∼ Q for Q ∈ Q . For each β≥ 0, let Q∗(β) be a solu-
tion of the optimization in Proposition 2. For any 0 < β1 < β2,
define G(β2,β1)≡ Gapd(Q

∗(β2))−Gapd(Q
∗(β1)). Then:

(i) If G(β2,β1) ≤ β2 − β1, then Itrue(Q∗(β1)) ≤
Itrue(Q∗(β2)).

(ii) If G(β2,β1) > β2 − β1, then Itrue(Q∗(β1)) >
Itrue(Q∗(β2)).

Theorem 2 characterizes when Auto-PAC maintains coher-
ent ordering of actual information leakage Itrue = β−Gapd.
Increasing the budget from β1 to β2 permits extra leakage
β2−β1 by using Auto-PAC, but part may be wasted if the
mechanism output becomes more non-Gaussian. The wasted
portion is G(β2,β1) = Gapd(Q

∗(β2))−Gapd(Q
∗(β1)). If this

waste exceeds the budget increase, then Itrue decreases despite
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a larger nominal budget, violating coherent ordering. This re-
sult cautions against comparing mechanisms using Auto-PAC
solely by budgets, as identical budgets may yield different
true leakages depending on their respective Gaussianity gaps.

3.2 Gapd Reduction via Non-Gaussianity Cor-
rection

In this section, we propose two approaches to reduce Gapd
after a N (0,ΣB) is determined by Auto-PAC, enabling bet-
ter estimation of the true mutual information to save privacy
budgets. For any deterministic mechanism M and Gaussian
noise B ∼ N (0,ΣB), recall the Gaussian surrogate distribu-
tion Q̃M = N (µZ ,ΣZ) in (4). Let DZ = DKL(PM ,B∥Q̃M ). By
Proposition 1, Gapd = DZ .

For any estimator D̂Z of DZ , define the improved mutual
information estimate:

IMI(D̂Z)≡ LogDet(M (X),B)− D̂Z .

For 0leqD̂Z ≤ DZ , we have

MI(X ;M (X)+B)≤ IMI(D̂Z)≤ LogDet(M (X),B).

Thus, if we can obtain D̂Z satisfying 0 ≤ D̂Z ≤ DZ af-
ter Auto-PAC privatization, then for any ΣB that ensures
LogDet(M (X),B) = β, we have IMI(D̂Z) = β− D̂Z as sur-
rogate upper bound that is tighter than LogDet(M (X),B).
Thus, we can have tighter privacy accounting post-hoc to
the Auto-PAC privatization to save additional privacy budget,
without requiring direct mutual information estimation.

Before describing the approaches, we first introduce two
standard discrepancy measures between PM ,B and Q̃M .

Definition 6 (Donsker–Varadhan (DV) Objective [11]). For
probability measures P and Q on a common measurable
space,

DKL(P∥Q) = sup
f :Y→R

{
EP[ f (Y )]− logEQ

[
e f (Y )]},

where the supremum ranges over measurable f such
that EQ[e f ] < ∞. We call J ( f ;P,Q) ≡ EP[ f ]− logEQ[e f ]

the DV objective. In our setting, DZ = DKL(PZ∥Q̃M ) =

sup f J
(

f ;PM ,B, Q̃M
)
.

Definition 7 (Sliced Wasserstein Distances (SWD)). For p≥
1, the p-Wasserstein distance between P and Q on Rd is

Wp(P,Q) =
(

inf
η∈Π̂(P,Q)

E(X ,Y )∼η

[
∥X−Y∥p

2

])1/p
,

where Π̂(P,Q) is the set of couplings with marginals P and Q.
The sliced p-Wasserstein distance averages 1-D Wasserstein
distances over directions v on the unit sphere Sd−1:

SWp
p(P,Q) =

∫
Sd−1

W p
p
(
L(⟨v,X⟩), L(⟨v,Y ⟩)

)
dσ(v),

where σ is the uniform (Haar) measure on Sd−1 and L(·)
denotes the law of its argument. In our setting we write
Wp(PM ,B, Q̃M ) and SWp(PM ,B, Q̃M ).

In addition, we define the following finite-sample lower-
confidence estimator.

Definition 8 (Finite-Sample Lower-Confidence DV Estima-
tor). Fix a function class F ⊂ { f : Rd →R} with 0 ∈ F and

let Ĵ ( f ;SP,SQ) ≡ 1
|SP| ∑z∈SP f (z) − log

(
1
|SQ| ∑z∈SQ

e f (z)
)

denote the empirical DV objective on samples SP from
PZ and SQ from Q̃M . Draw four independent splits
Str

P,S
tr
Q,S

val
P ,Sval

Q with sizes ntr
P,n

tr
Q,n

val
P ,nval

Q respectively, and

fit f̂tr ∈ argmax f∈F Ĵ
(

f ;Str
P,S

tr
Q

)
.

Let Γ
δ̂
= Γ

δ̂

(
F ,nval

P ,nval
Q

)
be any valid uniform de-

viation bound satisfying, with probability at least 1 −
δ̂, sup f∈F

∣∣∣Ĵ ( f ;Sval
P ,Sval

Q

)
− J

(
f ;PM ,B, Q̃M

)∣∣∣ ≤ Γ
δ̂
, where

J ( f ;P,Q) = EP[ f ]− logEQ[e f ]. The finite-sample lower-
confidence estimator of DZ = DKL(PM ,B∥Q̃M ) is

D̂LCE ≡
[
Ĵ
(

f̂tr;Sval
P ,Sval

Q
)
−Γ

δ̂

]
+
.

Theorem 3 (DV-Based Correction). Let Z = M (X)+B with
deterministic M and B∼N (0,ΣB), and let Q̃M =N (µZ ,ΣZ)
be the Gaussian surrogate defined in (4). Assume PM ,B ≪
Q̃M . For any measurable f : Rd → R with EQ̃M

[e f (Z)]< ∞,
define

D̂Z( f )≡ J
(

f ;PM ,B, Q̃M
)
= EPZ [ f (Z)]− logEQ̃M

[
e f (Z)].

Let D̂LCE be the finite-sample lower-confidence estimator from
Definition 8. Then:

(i) 0≤ sup f D̂Z( f ) = DKL
(
PM ,B

∥∥Q̃M
)
.

(ii) For every f , D̂Z( f )≤ DKL
(
PM ,B

∥∥Q̃M
)
≡ DZ .

(iii) With probability at least 1− δ̂ (over the independent
validation splits in Definition 8), 0≤ D̂LCE ≤ DZ .

Theorem 4 (SWD-Based Correction). Let Z = M (X)+B
and Q̃M = N (µZ ,ΣZ), and let λmax(ΣZ) be the largest eigen-
value of ΣZ . Assume PM ,B≪ Q̃M and ΣZ ≻ 0. Define

D̂Z ≡
1

2λmax(ΣZ)
SW2

2
(
PM ,B, Q̃M

)
.

Then 0≤ D̂Z ≤ DZ .

Theorems 3 and 4 lead to Corollary 1.

Corollary 1. Let M : X 7→ Rd be an arbitrary deterministic
mechanism and B∼N (0,ΣB) such that LogDet(M (X),B)=
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β. Under the assumptions of Theorems 3 and 4, the perturbed
mechanism Z = M (X)+B is PAC private with

MI(X ;Z)≤ β− D̂Z < β, (8)

where D̂Z > 0 is obtained by Theorem 3 (D̂Z( f )) or Theorem
4. In addition, if D̂Z = D̂LCE, then (8) holds with probability
at least 1− δ̂.

Corollary 1 shows that accounting for non-Gaussianity
through the correction term D̂Z > 0 yields MI(X ;Z) ≤ β−
D̂Z < β, where the correction is obtained via DV-based correct
or sliced Wasserstein correct. In practice, D̂Z estimates the
Gaussianity gap Gapd , capturing the saved privacy budget,
which is particularly valuable for budget savings in mecha-
nism composition. However, this budget-saving approach is
post-hoc after Auto-PAC privatization. Appendix E provides
additional discussions and interpretations. Next, we propose
a new privacy framework enabling automatic optimal privacy
budget implementation.

4 Residual-PAC Privacy

Recall that PAC Advantage Privacy (Definition 3) quantifies
the amount of privacy leaked by M (X) in terms of the pos-
terior advantage ∆δ

f encountered by the adversary. Comple-
menting this perspective, we introduce the notion of posterior
disadvantage encountered by the adversary, which captures
the amount of residual privacy protection that persists after
leakage by M (X).

To formalize this residual protection, we first define the
intrinsic privacy of a data distribution D relative to a fixed ref-
erence distribution R on X such that (i) supp(D)⊆ supp(R )
and (ii) the f-divergence D f (D∥R ) is finite (when D f is the
KL-divergence, this means the entropy of R is finite; see
Section 4.1 for the formal definition of Shannon/differential
entropy). We then define

IntP f (D) =−D f (D ∥R ),

where D f (D∥R ) is the f -divergence between D and R ,
quantifying how much D deviates from the reference R .
Intuitively, −D f (D∥R ) rewards distributions that remain
close to the "random guess" using R , and by construction
IntP f (D)≤ 0, attaining zero exactly when D = R .

Examples of R . When X is bounded, R can be the uni-
form law U on X . However, on an unbounded X , the uniform
reference R = U has infinite volume

∫
X dx = ∞, potentially

making IntP f (D) vacuous or undefined. To avoid this, we
instead require R to satisfy D f (D∥R ) < ∞. For example,
one can choose R by: (i) truncated uniform on a large but
bounded region containing supp(D), (ii) maximum-entropy
Gaussian matching known moments of D, or (iii) smooth
pullback of uniform on (0,1)d via bijection (e.g., component-
wise sigmoid). Under any of these constructions, R retains

the "random-guess" semantics yet has finite D f (D ∥R ), en-
suring IntP f (D) remains meaningful even on unbounded X .
Please see Appendix D for a detailed discussion.

Definition 9 ((Rδ
f ,ρ,D) Residual-PAC (R-PAC) Privacy). A

mechanism M is said to be (Rδ
f ,ρ,D) Residual-PAC (R-PAC)

private if it is (δ,ρ,D) PAC private and

Rδ
f ≡ IntP f (D)−D f (1δ∥1δ

ρ
o
),

is the posterior disadvantage, where 1δ and 1
δ

ρ
o

are indicator
distributions representing the adversary’s inference success
before and after observing the mechanism’s output, respec-
tively.

The posterior disadvantage Rδ
f captures the residual privacy

guarantee, which is the portion of intrinsic privacy (w.r.t. a
reference R ) that remains uncompromised after the privacy
loss ∆δ

f = D f (1δ∥1δ
ρ
o
) (Definition 3). Then, the total intrinsic

privacy is precisely decomposed as

IntP f (D) = Rδ
f +∆

δ
f . (9)

This relationship provides a complete and interpretable quan-
tification of privacy risk, distinguishing between the privacy
that is lost and that which endures after information disclosure
via M (X). Analogous to PAC Privacy, membership inference
attacks (MIA) and R-PAC Membership Privacy can be in-
stantiated from R-PAC Privacy. See Appendix B for detailed
constructions.

4.1 Foundation of Residual-PAC Privacy
In this section, we develop general results to support concrete
analyses under R-PAC Privacy framework. We begin by in-
troducing key information-theoretic quantities, entropy and
conditional entropy.

Entropy. The Shannon entropy of a discrete random vari-
able X on alphabet X is given by

H (X) =−∑x∈X PX (x) logPX (x)

while for continuous X , the differential entropy is

h(X) =−
∫

X
fX (x) log fX (x)dx.

Conditional Entropy. For jointly distributed random vari-
ables (X ,W ) where X is on alphabet X and W is on alphabet
W (discrete case) or domain W (continuous case), the condi-
tional entropy of X given W is defined as

H (X |W ) = ∑w∈W PW (w)H (X |W = w)

in the discrete case and

h(X |W ) =
∫

W
fW (w)h(X |W = w)dw

7



in the continuous case, where H (X |W = w) =
−∑x∈X PX |W (x|w) logPX |W (x|w) and h(X |W = w) =
−
∫

X fX |W (x|w) log fX |W (x|w)dx.
For ease of exposition, we use H (X) to denote the entropy

of X , either Shannon or differential depending on the con-
text, and H (X |W ) to denote the corresponding conditional
entropy. When all entropies are finite, mutual information can
equivalently be expressed as

MI(X ;W ) = H (X)−H (X |W ).

Consider any f -divergence D f , Theorem 1 of [46] shows
that the posterior advantage ∆δ

f is bounded by the minimum
f -divergence between the joint distribution of (X ,M (X)), de-
noted by PX ,M (X), and the product of the marginal distribution
PX and any auxiliary output distribution PW independent of
X :

∆
δ
f ≤ inf

PW
D f
(
PX ,M (X) ∥ PX ⊗PW

)
, (10)

where PW ranges over all distributions on the output space.
where PX ,M (X) denotes the joint distribution of the data and
mechanism output, and PW ranges over all distributions on the
output space. When D f is instantiated as DKL and PW = PM (X),
we obtain (1).

Thus, for any f -divergence D f , inequality (10) implies that
a mechanism M : X → Y satisfies (Rδ

f ,ρ,D) R-PAC Privacy
if

Rδ
f ≥ IntP f (D)− inf

PW
D f

(
PX ,M (X) ∥PX ⊗PW

)
. (11)

Let R be a random variable distributed according to the
reference distribution R over X .

Corollary 2. Suppose that H (X) is finite and let D f be the
KL divergence. A mechanism M : X → Y satisfies (Rδ

f ,ρ,D)
R-PAC Privacy if

Rδ
f ≥H (X |M (X))−V,

where V= H (R) is the entropy of the reference distribution.

Corollary 2 follows from Theorem 1 of [46] and estab-
lishes that when H (X) is finite, residual privacy Rδ

f is lower
bounded by H (X |M (X))−V, where V is independent of both
data distribution D and mechanism M . Since V is constant,
Rδ

f − V effectively provides a privacy quantification lower-
bounded by conditional entropy H (X |M (X)). More gener-
ally, inequality (11) holds without requiring H (X)< ∞, pro-
vided D f (D∥R )< ∞.

4.2 Stackelberg Automatic Residual-PAC Pri-
vatization

In this section, we present our algorithms for automatic R-
PAC privatization when the f -divergence is instantiated with

KL divergence, under which worst-case residual privacy is
quantified by conditional entropy. For a utility loss function
K , we define the optimal perturbation problem for any R-PAC
privacy budget β̂ as:

inf
Q
EQ,M ,D [K (B;M )] s.t. H (X |M (X)+B)≥ β̂, B∼Q.

(12)
When H (X) is finite, by the definition of mutual information,
any solution Q∗ to problem (12) also solves (6) with PAC
privacy budget β = H (X)− β̂. Given MI(X ;M (X)+B) =
H (X)−H (X |M (X)+B) with finite H (X), solving the op-
timal perturbation problem (12) with conditional entropy con-
straints presents the same computational challenges as (6).

To address this limitation, we present a novel automatic
privatization approach for R-PAC privacy, termed Stackel-
berg Automatic Residual-PAC Privatization (SR-PAC). Our
approach is based on a Stackelberg game-theoretic charac-
terization of the optimization (12). We show that SR-PAC
achieves optimal perturbation without wasting privacy bud-
get. Consequently, when EQ,M ,D [K (B;M )] =EQ[∥B∥2

2], SR-
PAC can achieve superior utility performance compared to
Auto-PAC and Efficient-PAC (Appendix A) for the same mu-
tual information privacy budget.

Algorithm 2 Monte Carlo SR-PAC

Require: Privacy budget β̂, decoder family Πφ, perturbation
rule family Γλ, utility loss K (·), learning rates ηφ,ηλ,
penalty weight σ, iterations Tλ,Tφ, batch size m

1: Initialize parameters λ,φ∼ init()
2: for t = 1, . . . ,Tλ do
3: if t mod Tφ = 0 then
4: Update Decoder:
5: for i = 1, . . . ,Tφ do
6: Sample {(x j,b j,y j)}m

j=1 where x j ∼D , b j ∼ Qλ,
y j = M (x j)+b j

7: Ŵ = 1
m ∑

m
j=1[− logπφ(x j|y j)]

8: φ← φ−ηφ∇φŴ
9: end for

10: end if
11: Update Perturbation Rule:
12: Sample {(x j,b j,y j)}m

j=1 where x j ∼D , b j ∼Qλ, y j =

M (x j)+b j
13: Hc =

1
m ∑

m
j=1[− logπφ(x j|y j)]

14: Lλ = 1
m ∑

m
j=1 K (b j)+σ(Hc− β̂)2

15: λ← λ−ηλ∇λLλ

16: end for
17: return Optimal parameters (λ∗,φ∗)

Our SR-PAC algorithm recasts the optimal perturbation
problem (12) as a Stackelberg game between a Leader (who
chooses the perturbation rule Q) and a Follower (who chooses
the decoder attempting to infer X from Y ). Let Γ denote
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a rich family of noise distributions. Let Π = {π : π(·|y) ∈
∆(X ),y ∈ Y } denote a rich family of decoder distributions
(e.g., all conditional density functions on X given Y , or a
parameterized neural network family).
Follower’s Problem. For a fixed perturbation rule Q, the
Follower chooses decoder π ∈ Π to minimize the expected
log score

W (Q,π)≡ EX∼D,B∼Q [− logπ(X |M (X)+B)] .

That is, π∗(Q) ∈ arg infπ∈Π W (Q,π).
Leader’s Problem. Given a privacy budget β̂, the Leader
chooses Q to solve

inf
Q∈Γ

EX∼D,B∼Q
[
K (B;M )

]
, s.t. inf

π∈Π
W (Q,π)≥ β̂.

Therefore, a profile (Q∗,π∗) is a Stackelberg equilibrium if it
satisfies{

Q∗ ∈ arg infQ∈ΓE[K (B;M )], s.t. W
(
Q, π∗(Q)

)
≥ β̂,

π∗(Q) ∈ arg infπ∈Π W (Q,π).

(13)
When we consider output perturbation and the utility

loss K is chosen such that Q 7→ EX∼PX ,B∼Q
[
K (B;M )

]
is

convex in Q, the problem (13) is convex in both Q and
π. Specifically, for each fixed perturbation rule Q, the map
π 7→W (Q,π) is a convex function of π. Similarly, for each
fixed decoder π, the function Q 7→W (Q,π) is convex in Q.
Because these two convexity properties hold simultaneously,
(Q,π) 7→W (Q,π) is jointly convex on Γ×Π. By the partial
minimization theorem, taking the pointwise infimum over
π preserves convexity in Q. Thus, Q 7→ infπ∈Π W (Q,π) is a
convex function of Q. Consequently, once the Follower re-
places π by its best response π∗(Q), the Leader’s feasible
set {Q ∈ Γ : infπ∈Π W (Q,π)≥ β̂} is convex, and minimizing
the convex utility loss function Q 7→ EX∼PX ,B∼Q

[
K (B;M )

]
over this set remains a convex program in Q. Meanwhile, the
Follower’s problem infπ∈Π W (Q,π) is convex in π for any
fixed Q. Thus, the Stackelberg game reduces to a single-level
convex optimization in Q, with the inner decoder problem
convex in π.

Proposition 5 shows that the Stackelberg equilibrium per-
turbation rule solves (12).

Proposition 5. Let (Q∗,π∗) be a Stackelberg equilibrium
satisfying (13) for any β̂. Then, Q∗ solves (12) with privacy
budget β̂. In addition, in any Stackelberg equilibrium (Q∗,π∗),
π∗ = π∗(Q∗) is unique.

Algorithm 2 provides a Monte-Carlo-based approach to
solve the Stackelberg equilibrium (13). By Monte Carlo sam-
pling, this algorithm periodically trains the decoder to min-
imize reconstruction loss on perturbed data, enabling it to
adapt to the current noise distribution. The perturbation rule is
then optimized by balancing utility loss minimization against
privacy constraints, using a penalty term that ensures the pri-
vacy cost remains close to the target privacy budget.

5 Properties of SR-PAC Privatization

This section presents some important properties of SR-PAC.

5.1 Anisotropic Noise Perturbation

The Auto-PAC perturbs the mechanism using anisotropic
Gaussian noise as much as needed in each direction of the
output. This direction-dependent noise addition yields better
privacy-utility tradeoffs than isotropic perturbation. SR-PAC
also supports anisotropic perturbation under Assumption 1.

Assumption 1. For an arbitrary deterministic mechanism
M , we assume the following.

(i) Every Q ∈ Γ is log-concave.

(ii) For any orthonormal direction w ∈ Rd ,
〈
M (X),w

〉
is

non-degenerate.

(iii) The utility function K is radial (depends only on ∥B∥2)
and strictly convex in the eigenvalues of covariance ma-
trix ΣQ of Q. For example, κ(B) = ∥B∥2

2.

(iv) There exist orthonormal u,v ∈ Rd such that the
marginal entropy gain per unit variance along
u exceeds that along v. That is, for any σ2 >
0, ∂

∂σ2
u
H (X |Zu)|σ2 > ∂

∂σ2
v
H (X |Zv)|σ2 , where Zw =

Mw(X)+Bw, with Aw(X) = ⟨A(X),w⟩ for A ∈ {M ,B},
w ∈ {u,v}.

Assumption 1 ensures that SR-PAC’s optimization is con-
vex and admits a genuinely anisotropic solution: requiring
each noise distribution in Γ to be log-concave makes the fea-
sible set convex and tractable; non-degeneracy of ⟨M (X),w⟩
for every unit vector w guarantees that every direction affects
information leakage; a strictly convex, radial utility K yields
a unique cost-to-noise mapping; and the existence of two or-
thonormal directions whose marginal entropy gain per unit
variance differs implies that allocating noise unevenly strictly
outperforms isotropic noise.

Proposition 6. Under Assumption 1, any Stackelberg-optimal
perturbation rule Q∗ is anisotropic. That is, its covariance
matrix ΣQ∗ satisfies

rmax(ΣQ∗)> rmin(ΣQ∗),

where rmax(ΣQ∗) and rmin(ΣQ∗) are the maximum and the
minimum eigenvalues of ΣQ∗ .

Proposition 6 demonstrates that SR-PAC allocates noise
exclusively to privacy-sensitive directions, with high-leakage
dimensions receiving proportionally more noise than low-
leakage dimensions. This targeted approach achieves desired
privacy levels with minimal total perturbation, preserving
task-relevant information with reduced distortion.
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5.2 Directional-Selectivity of SR-PAC
Let Z ∈ Rd be an output vector produced by a deterministic
mechanism M (X); throughout we assume ΣZ ≻ 0 and finite
differential entropy H (Z). For any application, let Stask ⊆
Rd denote a practitioner-chosen task-critical sub-space (the
directions whose preservation matters most) and write Πtask
for the orthogonal projector onto it.
Classification tasks. In what follows we illustrate the theory
with multi-class classification, where Z is the logit vector,
ŷ = argmaxi Zi, and Slab := span{eℓ−e j : j ̸= ℓ}, where lab
means "label". Let Πlab be the projector onto Slab. The anal-
ysis for a general Stask is identical after replacing lab by task.

For any privacy budget 0 < β < H (Z), consider Q∗ that
solves

inf
Q:MI(Z;Z+B)=β

E[∥B∥2
2].

For every unit vector w, let g(w) ≡ 1
2mmse(⟨Z,w⟩), where

mmse(⟨Z,w⟩)≡ E
[〈

Z,w
〉
− E

[
⟨Z,w⟩|Y

]]2
is the minimum

mean-squared error of estimating the scalar random variable
⟨Z,w⟩ from the noisy observation Y = Z +B.

Proposition 7. Suppose H (Z) is finite. Fix any 0 < β <
H (Z). The following holds.

(i) Let N (0,ΣPAC) be the Gaussian noise distribution used
by the Auto-PAC such that LogDet(Z,BPAC) = β. If Z is
non-Gaussian, then EQ∗ [∥B∥2

2]< E[∥BPAC∥2
2].

(ii) Suppose supv∈Slab,∥v∥=1 g(v)< infw⊥Slab,∥w∥=1 g(w). Let
βlab ≡ 1

2
∫

w⊥Slab g(w)dσ2
w be the maximal MI reduction

achievable with noise orthogonal to Slab. Then, for every
β≤ βlab, we have ΠlabB∗= 0 a.s., argmaxi(Zi+B∗i ) =
ŷ a.s.

In Proposition 7, part (i) shows that SR-PAC always uses
strictly less noise magnitude than any Auto-PAC (regardless
of how anisotropic the Auto-PAC noise covariance may be)
because Auto-PAC treats Z as Gaussian and thus overesti-
mates the required variance when Z is non-Gaussian. Part (ii)
demonstrates that, under the natural ordering of directional
sensitivities, SR-PAC allocates its noise budget exclusively
in directions orthogonal to the label sub-space until a critical
threshold βlab is reached. In practice, this means SR-PAC
perturbs only "harmless" dimensions first, preserving the pre-
dicted class and concentrating protection where it is most
needed, thereby outperforming Auto-PAC in any scenario
where certain directions leak more information than others.

5.3 Sensitivity to β

Sensitivity to the privacy parameter β is crucial for predictable
and accurate control of privacy-utility trade-off. Let Privβ

and Utilβ, respectively, denote the sensitivities of privacy and
utility (for certain measures). If Privβ = 1, then any infinites-
imal increase ∆β in the privacy budget raises the true mutual

information MI(X ;Y ) by exactly ∆β. Thus, no part of the pri-
vacy budget is “wasted" or “over-consumed". By contrast,
if Privβ < 1, then increasing β may force additional noise
without achieving the full allowed leakage; and if Privβ > 1,
even a small increase in β could exceed the allowed privacy.
Similarly, if Utilβ is high, then an infinitesimal increase ∆β

in the privacy budget yields a large improvement in utility; if
Utilβ is low, the same increase yields a small improvement,
indicating inefficient conversion of the privacy budget into
utility gains.

Let
VSR(β)≡ min

Q:MI(X ;M (X)+B)≤β

EQ
[
∥B∥2

2
]

be the optimal noise-power curve attained by SR-PAC, and
let MISR(β) as the corresponding true mutual information
attained by SR-PAC. Let VPAC(β) ≡ tr(ΣBPAC(β)), where
Q(β)=N (0,ΣBPAC(β)) solves LogDet(M (X),BPAC)= β. In
addition, let MIPAC(β)≡ β−Gapd(Q(β)), where Gapd(Q) =

DKL(PM ,B∥Q̃M ) with B ∼ Q, and Q̃M given by (4). Define
PrivSR

β
≡ d

dβ
MISR(β), PrivPAC

β
≡ d

dβ
MIPAC(β), UtilSR

β
≡

d
dβ
(−VSR(β)), and UtilPAC

β
≡ d

dβ
(−VPAC(β)).

Theorem 5. For any data distribution D, let M be an ar-
bitrary deterministic mechanisms such that M (X) is non-
Gaussian with ΣM ≻ 0. The following holds.

(i) PrivPAC
β
≤ PrivSR

β
= 1, with strict inequality for non-

Gaussian M (X).
(ii) UtilSR

β
≥ UtilPAC

β
, with equality only for Gaussian

M (X).

Theorem 5 proves that SR-PAC with arbitrary noise
distributions achieves: (i) Exact leakage-budget alignment
(PrivSR

β
= 1), (ii) Stricter utility decay for Auto-PAC

(UtilSR
β
≥ UtilPAC

β
). This holds unconditionally for non-

Gaussian M (X) under privacy tightening (i.e., β decreasing).

Corollary 3. In addition to the setting of Theorem 5, assume

εcal(β) ∈ [0,GapdQ̂(β)), ηopt(β) ∈ [0,VPAC(β)−VSR(β)).

Then, (i) |PrivSR
β
− 1| ≤ |ε′cal(β)|; (ii) UtilSR

β
≥ UtilPAC

β
,

with equality only for Gaussian M (X).

5.4 Composition
Graceful composition properties in privacy definitions like
DP enable quantifiable privacy risk across multiple opera-
tions on datasets, allowing modular system design where
components maintain local privacy-utility trade-offs while
preserving global privacy guarantees. Consider k mecha-
nisms M1,M2, . . .Mk, where each Mi(·,θi) : X 7→ Yi with
θi ∈ Θi as the random seed. Let Y⃗ = ∏

k
i=1 Yi and let Θ⃗ =

∏
k
i=1 Θi. The composition

−→
M (·,⃗θ) : X 7→ Y⃗ is defined as
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(a) CIFAR-10: Accuracy vs. β (b) CIFAR-100: Accuracy vs. β (c) MNIST: Accuracy vs. β (d) AG-News: Accuracy vs. β

(e) CIFAR-10: Noise Magnitude vs. β (f) CIFAR-100: Noise vs. β (g) MNIST: Noise vs. β (h) AG-News: Noise vs. β

(i) CIFAR-10: Budgets vs. β (j) CIFAR-100: Budgets vs. β (k) MNIST: Budgets vs. β (l) AG-News: Budgets vs. β

Figure 1: Empirical comparisons of SR-PAC, Auto-PAC (Algorithm 1), and Efficient-PAC (Algorithm 3) on CIFAR-10, CIFAR-100, MNIST,
and AG-News as β varies. Each column corresponds to one dataset; within each column, the three panels report (top) classification accuracy of
the perturbed model versus the target budget β, (middle) the average noise magnitude E[∥B∥2

2] used by each method, and (bottom) the "target
versus achieved" privacy budget (conditional entropy) for our SR-PAC.

−→
M (X ,⃗θ) = (M1(X ,θ1), . . . ,Mk(X ,θk)) . PAC Privacy com-
poses gracefully. For independent mechanisms applied to the
same dataset, mutual information bounds compose additively:
if each Mi is PAC Private with bound βi, then

−→
M has bound

∑
k
i=1 βi. R-PAC Privacy also enjoys additive composition with

respect to conditional entropy bounds. Suppose each mech-
anism Mi is R-PAC private with conditional entropy lower
bound β̂i. By definition of mutual information, this implies
that Mi is PAC private with privacy budget βi = H (X)− β̂i.

Then, by Theorem 7 of Xiao et al. (2023), the composition−→
M (X ,⃗θ) is PAC private with total mutual information upper
bounded by ∑

k
i=1(H (X)− β̂i). Equivalently, the composition

−→
M (X ,⃗θ) is R-PAC private with overall conditional entropy
lower bounded by ∑

k
i=1 β̂i− (k−1)H (X).

However, this additive composition property for mutual
information yields conservative aggregated privacy bounds,
and utility degradation compounds when each mechanism Mi
uses conservative privacy budgets βi. To address this limita-
tion, we employ an optimization-based approach within the
SR-PAC framework to compute tighter conditional entropy
bounds. Consider k mechanisms M1,M2, . . . ,Mk privatized
by distributions Qi to satisfy R-PAC privacy with bounds β̂i.
The Leader designs these privatizations {Qi}k

i=1, while the
Follower finds the optimal decoder for the joint composition

(a) Iris (b) Rice

Figure 2: Empirical comparisons of DP, Auto-PAC, Efficient-PAC,
and SR-PAC on mean estimations, using Iris and Rice datasets, in
terms of average noise magnitude E[∥B∥2

2]. All the numerical values
are shown in Tables 5 and 6.

−→
M (X ,⃗θ) = (M1(X), . . . ,Mk(X)):

inf
π∈Π

W (π;
−→
M )≡ EX∼D

[
− logπ(X |

−→
M (X),⃗θ)

]
.

This game-theoretic formulation allows for tighter privacy-
utility trade-offs in composed systems by optimizing the joint
privatization strategy.

6 Experiments

We conduct two sets of experiments to evaluate our approach.
First, we compare SR-PAC against Auto-PAC and Efficient-
PAC (Appendix A) using CIFAR-10 [29], CIFAR-100 [29],
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MNIST [31], and AG-News [48] datasets, with results pre-
sented in Section 6.1. We use (R-)PAC to refer to the family
of SR-PAC, Auto-PAC, and Efficient-PAC. Second, we ex-
tend this comparison to include DP by equalizing optimal
posterior success rates of membership inference (Appendix
C.2) across all four methods (SR-PAC, Auto-PAC, Efficient-
PAC, and DP), making their privacy budgets comparable. For
this comparison, we use Iris [17] and Rice [9] datasets, with
results shown in Section 6.2. All experiments focus on out-
put perturbation. Appendix S provides more details of the
experiments.
CIFAR-10 and Base Classifier. The CIFAR-10 dataset com-
prises 50,000 training and 10,000 testing color images (each
32× 32 pixels with three channels) divided evenly into ten
classes (5,000 training and 1,000 testing images per class).
Each image is converted to a 3× 32× 32 tensor and nor-
malized per channel to mean 0.5 and standard deviation
0.5. An unperturbed classifier is a convolutional neural net-
work that consists of two convolutional blocks—each block
is Conv→ReLU→MaxPool (kernel 2×2) with 32 filters in
the first block and 64 filters in the second—followed by flat-
tening into a 128-unit fully connected layer (with ReLU)
and a final linear layer producing 10 logits. This network is
trained by minimizing the cross-entropy loss over the CIFAR-
10 classes. At inference, it maps each normalized image
to a 10-dimensional logit vector, and the predicted label is
given by the highest logit. The unperturbed classifier achieves
0.7181±0.0088 accuracy.
CIFAR-100 and Base Classifier. CIFAR-100 contains
50,000 training and 10,000 testing color images (each 32×
32×3), equally divided among 100 fine-grained classes (500
training and 100 testing images per class). Each image is
converted to a 3×32×32 tensor and normalized per channel
to mean 0.5 and standard deviation 0.5 before being fed into
the network. The unperturbed classifier is a deep convolu-
tional neural network with three convolutional “blocks.” Each
block consists of two 3× 3 convolutions (with BatchNorm
and ReLU after each), followed by a 2×2 max-pool, which
sequentially maps inputs from 32× 32 → 16× 16 → 8× 8
→ 4× 4, with channel widths increasing from 3 → 64 →
128 → 256. After flattening the resulting 256× 4× 4 fea-
ture map into a 4096-dimensional vector, a three-layer MLP
head (4096→512→256→100) with ReLU activations and
0.5 dropout between the first two fully connected layers pro-
duces a 100-dimensional logit vector. During training, this
network minimizes cross-entropy loss over the CIFAR-100
classes; at inference, each normalized image is mapped to its
100-dimensional logits, and the predicted label is given by the
argmax of those logits. The unperturbed classifier achieves
0.5914±0.0090 accuracy.
MNIST dataset and Base Classifier. The MNIST dataset
comprises 60,000 training and 10,000 test grayscale images
of handwritten digits (0–9). Each image is 28×28 pixels and
is loaded as a 1× 28× 28 tensor, then normalized to mean

0.1307 and standard deviation 0.3081 per channel before be-
ing fed into the network. The unperturbed classifier is a simple
CNN consisting of two convolutional blocks—each block is
Conv2d→BatchNorm→ReLU→MaxPool (2×2), with chan-
nel widths 1→ 32→ 64—which produces a 64×7×7 feature
map. This feature map is flattened and passed through a two-
layer fully connected head (128 units with ReLU+Dropout,
then 10 output logits). At inference, each normalized 28×28
image is mapped to a 10-dimensional logit vector, and the
predicted label is given by the index of the largest logit. The
unperturbed classifier achieves 0.9837 accuracy.
AG-News dataset and Base Classifier. AG-News comprises
120,000 training and 7,600 test articles equally divided among
four classes (World, Sports, Business, Sci/Tech), i.e., 30,000
training and 1,900 test examples per class. Each example’s
title and description are concatenated into one text string, then
lowercased and split on whitespace (truncated or padded to 64
tokens). We build a 30,000-word vocabulary from the training
split and map each token to its index (with out-of-vocabulary
tokens as 0). Those indices feed into an nn.EmbeddingBag
layer (embedding size 300, mean-pooling mode) to produce a
fixed-length 300-dimensional document vector. That vector is
passed through a two-layer MLP head (300→256 with ReLU
and 0.3 dropout, then 256→4), yielding a 4-dimensional logit
vector, and at inference the predicted label is the index of the
largest logit. The unperturbed mechanism achieves 0.9705
accuracy.

Recall that β upper-bounds MI
(
X ;M (X) + B

)
, and SR-

PAC enforces the equivalent constraint H
(
X |M (X)+B

)
≥

β̂ = H (X)−β. Although H (X) is unknown, we estimate for
the purpose of evaluation to verify the tightness of the pri-
vacy bounds. Let MI0 = MI

(
X ;M (X)

)
. By data processing,

MI
(
X ;M (X)+B

)
≤ MI0 for any independent B, so the fea-

sible budgets are 0 < β ≤ MI0 and this interval is common
to Auto-PAC, Efficient-PAC, and SR-PAC. At β = MI0 the
optimal choice is B = 0, and all methods coincide at the noise-
less accuracy. This shared endpoint and feasible domain en-
sure that comparisons at a common target β are well-defined
even without the exact H (X); moreover, reparameterizing
by achieved mutual information preserves the endpoint and
domain, and—together with the small budget errors observed
in panels (i–l)—does not affect our empirical ordering. Under
additive ℓ2 output noise, the ordering by total noise magnitude
E
[
∥B∥2

2
]

coincides with the ordering by accuracy, consistent
with the ℓ2-based behavior reported in prior work; hence the
accuracy– and noise–vs.–β panels convey the same conclu-
sion in our experiments.

6.1 (R-)PAC Comparison
For each dataset and its pretrained base classifier M , we plot
(1) the test accuracy of the perturbed model as a function
of β, (2) the average noise magnitude E[∥B∥2

2] required to
achieve each β, and (3) SR-PAC’s ability to hit the target
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budget Ĥ (X)−β (where Ĥ (X) is our entropy estimate).
Accuracy vs. β (a–d of Figure 1): As β decreases (moving

right), privacy increases and all methods lose test accuracy.
For large β (near the no-privacy case), all three algorithms
attain accuracies close to the noiseless model. As β tight-
ens, the SR-PAC curve remains strictly above the Auto-PAC
and Efficient-PAC curves across datasets. On CIFAR-10 and
CIFAR-100, Auto-PAC and Efficient-PAC are visibly sepa-
rated from each other (not merely from SR-PAC), reflecting
their different Gaussian calibrations. On MNIST and AG-
News, the three methods cluster near the top for larger β, but
SR-PAC retains a measurable accuracy edge at matched β.

Noise magnitude vs. β (e–h of Figure 1): As β decreases,
each algorithm must add more noise, so all three curves rise.
Across all datasets, SR-PAC uses the smallest E

[
∥B∥2

2
]

at
each β. Auto-PAC and Efficient-PAC both overshoot—they
inject more noise than SR-PAC at matched β—and on CIFAR-
100, MNIST and AG-News, they diverge from each other as
well.

The empirical ordering in both accuracy and noise magni-
tude matches Theorem 5, which applies to any non-Gaussian
base mechanism. Moreover, Figure 1 (c–d, g–h) exhibits the
behavior predicted by Proposition 7 on MNIST and AG-
News: for β≤ βlab, SR-PAC allocates noise predominantly
in directions (approximately) orthogonal to the label subspace,
preserving the predicted class over a wide budget range. Con-
currently, its total noise remains substantially smaller than
Auto-PAC and Efficient-PAC, whose conservative Gaussian
calibrations overestimate the required variance on heavy-
tailed (non-Gaussian) logits.

Budgets vs. β (i–l of Figure 1): These panels plot
SR-PAC’s target privacy budgets in terms of mutual-
information bounds β (horizontal) against the achieved em-
pirical conditional-entropy budget (vertical). In every dataset,
the red points lie tightly along the y = x line, confirming that
SR-PAC solves its follower problem with high accuracy and
enforces the desired privacy level with negligible budget error.
This provides a reliable, data-driven guarantee that the privacy
constraint is satisfied.

6.2 Comparison with Differential Privacy
We calibrate DP and (R-)PAC to the same (optimal) posterior
success rate for membership inference attacks, then compare
their utility in terms of noise magnitudes (i.e., ℓ2-norm of the
difference between original and perturbed outputs). The base
mechanism is a mean estimator. Appendix C.2 provides the
conversions between (optimal) posterior success rates, DP
parameters (DP→posterior mapping), and mutual informa-
tion budgets (MI→posterior mapping). Concretely, for DP
we select (ε, δ̄) that yields the target posterior bound via the
DP→posterior mapping, and for (R-)PAC we choose β that
yields the same posterior via the MI→posterior mapping;
with subsampling rate r = 0.5 we have prior p = 0.5. In each

trial, we construct a membership vector m ∈ {0,1}P by i.i.d.
Bernoulli(0.5) draws, so the member count S = ∑i mi is ran-
dom. The released statistic is the mean of the data. We follow
similar treatments for DP as Section 6.3 of [43]: the DP base-
line clips each row in ℓ2 to radius C, adds calibrated Gaussian
noise to the clipped sum, and divides by S to produce the
privatized mean; (R-)PAC injects additive output noise cali-
brated to the target β. We report the average noise magnitude
E
[
∥B∥2

2
]

at matched posterior success rates; in our output-
perturbed mean setting, this quantity equals the expected
squared ℓ2 error of the released statistic (i.e., the ℓ2 accuracy
metric we use). Hence the ordering by E

[
∥B∥2

2
]

is identi-
cal to the ordering by ℓ2 accuracy. Qualitative DP–(R-)PAC
relations are discussed in Appendix C.2.

Figure 2. On the Iris and Rice mean–estimation tasks, SR-
PAC attains the smallest average noise magnitude E

[
∥B∥2

2
]

across privacy budgets β. As β decreases (stricter privacy),
the noise required by Auto-PAC and Efficient-PAC rises much
more steeply, whereas SR-PAC grows gently; see the zoomed
view in Fig. 3 (Appendix S). The DP baseline remains well
above SR-PAC and, at small budgets on Iris, also exceeds
Efficient-PAC. Appendix S further reports empirical mem-
bership–inference results for SR-PAC, DP, Auto-PAC, and
Efficient-PAC on these privatized mechanisms.

Auto-PAC and Efficient-PAC do allocate anisotropic noise,
but their shapes are task-agnostic and depend only on second-
order structure (the empirical covariance and its spectrum), via
covariance scaling (Auto-PAC) or eigen–allocation (Efficient-
PAC). In small-sample regimes such as Iris and Rice, the
covariance spectrum is noisy and can be ill-conditioned.
These moment-based rules propagate that instability into
the noise design and calibration, leading to conservative
(over-noisy) implementations—especially under tight bud-
gets (small β). By contrast, SR-PAC enforces the conditional-
entropy budget directly, yielding tighter budget implementa-
tion and lower required noise. Empirically (Figure 2), SR-
PAC achieves smaller average noise magnitudes across β and
exhibits smoother scaling, indicating greater stability than
Auto-PAC and Efficient-PAC on these small-sample tasks.

7 Conclusion

In this work, we introduced Residual-PAC Privacy, an en-
hanced framework that quantifies privacy guarantees beyond
Gaussian assumptions while overcoming the conservativeness
of prior PAC-Privacy methods. Our Stackelberg Residual-PAC
(SR-PAC) approach casts the privacy-utility trade-off as a con-
vex Stackelberg optimization problem, fully leveraging avail-
able privacy budgets and automatically calibrating anisotropic
noise distributions tailored to specific data and mechanisms.
Extensive experiments demonstrate that SR-PAC consistently
achieves tighter privacy guarantees and higher utility than
existing approaches, providing a rigorous yet practical foun-
dation for scalable privacy assurance in complex applications.
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A Automatic Efficient PAC Privatization

PAC privacy (Auto-PAC, Algorithm 1) provides a framework
for measuring privacy risk through simulation-based proofs
that bound the mutual information between inputs and outputs
of black-box algorithms. While this approach offers rigorous
privacy guarantees without requiring white-box algorithm
modifications, the original implementation faced computa-
tional and practical challenges. The initial algorithm required
computing the full covariance matrix and performing Sin-
gular Value Decomposition (SVD) across the entire output
dimension, which becomes prohibitively expensive for high-
dimensional outputs. Additionally, black-box privacy mecha-
nisms suffer from output instability caused by random seeds,
arbitrary encodings, or non-deterministic implementations,
leading to inconsistent noise calibration and suboptimal util-
ity.

Recent work by Sridhar et al. [43] addresses these limita-
tions through Efficient-PAC (Algorithm 3), which introduces
two key improvements. First, they develop an anisotropic
noise calibration scheme that avoids full covariance estima-
tion by projecting mechanism outputs onto a unitary basis and
estimating only per-direction variances. This leads to a more
scalable and sample-efficient algorithm while maintaining rig-
orous mutual information guarantees. Second, they propose
methods for reducing output instability through regularization
and canonicalization techniques, enabling more consistent
noise calibration and better overall utility. These refinements
are particularly impactful in high-dimensional or structure-
sensitive learning tasks, where the original PAC scheme may
incur unnecessary noise due to variability not intrinsic to the
learning objective.

Theorem 6 establishes the privacy guarantee of Efficient-
PAC.

Theorem 6 (Theorem 1 of [43]). Let M : X → Rd be a
deterministic mechanism, and let A ∈ Rd×d be a unitary pro-
jection matrix. Let σσσ ∈ Rd be the variance vector of the
projected outputs M (X) · A, and let B ∼ N (0,ΣB) be the
additive noise with covariance ΣB = diag(e1, . . . ,ed), where
ei =

√
σi

2β
∑

d
j=1
√

σ j. Then, the mutual information between the
input and privatized output satisfies MI(X ;M (X)+B)≤ β.

A.1 Auto-PAC vs. Efficient-PAC: Conserva-
tiveness

Efficient-PAC induces additional conservativeness relative
to Auto-PAC. When Efficient-PAC enforces MI(X ;M (X)+

Algorithm 3 Efficient-PAC [43]

Require: deterministic mechanism M , data distribution D,
precision parameter τ, convergence function fτ, privacy
budget β, unitary projection matrix A ∈ Rd×d .

1: Initialize m← 1, σσσ0← null, G← null
2: while m≤ 2 or fτ(σσσm−1,σσσm)≥ τ do
3: Sample Xm ∼D , compute ym←M (Xm)
4: Set gm← [ym ·A1, . . . ,ym ·Ad ], append to G
5: Set σσσm[k] to empirical variance of column k in G, in-

crement m← m+1
6: end while
7: for i = 1 to d do
8: Set ei←

√
σσσm[i]
2β

∑
d
j=1

√
σσσm[ j]

9: end for
10: return ΣB with ΣB[i][i] = ei

B)≤ β, the proof of Theorem 6 in [43] (Theorem 1) yields

MI(X ;M (X)+B) = MI(X ;M (X) ·A+B ·A)

≤ 1
2 logdet

(
Id +ΣM (X)·A Σ

−1
B

)
≤ 1

2 logdet
(

Id +diag
(
ΣM (X)·A

)
Σ
−1
B

)
= 1

2 log∏
i

(
1+ σi

ei

)
= 1

2 ∑
i

log
(

1+ σi
ei

)
≤ 1

2 ∑
i

σi
ei

= β,

where σi = [diag(ΣM (X)·A)]i and ΣB = diag(e1, . . . ,ed). The
second inequality is Hadamard’s inequality (tight only if
ΣM (X)·A is diagonal in the chosen basis), and the last inequal-
ity uses log(1+ x)≤ x (tight only at x = 0). Minimizing ∑i ei
under the linearized constraint 1

2 ∑i σi/ei = β gives the closed

form ei =
∑ j
√

σ j
2β

√
σi, so that ∑

d
i=1

σi
2ei

= β. Thus, Efficient-
PAC is weakly more conservative than Auto-PAC, which (ap-
proximately) works in the eigenbasis of ΣM (X) and avoids the
Hadamard slack.

Moreover, since B ·A is constructed with covariance ΣB·A =
A⊤ΣBA and ΣM (X)·A = A⊤ΣM A, the exact log-det term is
basis-invariant under joint congruence:

1
2

logdet
(

Id +ΣM (X)·A Σ
−1
B·A

)
=

1
2

log
det(ΣB·A +ΣM (X)·A)

det(ΣB·A)

=
1
2

logdet
(

Id +ΣM Σ
−1
B

)
= LogDet(M (X),B).

Therefore, Efficient-PAC implements a budget β that upper-
bounds the exact Gaussian LogDet(M (X),B), with conser-

16



vativeness decomposing into the Hadamard step and the
log(1+ x)≤ x linearization.

Remark 1. All our comparisons of Auto-PAC and SR-PAC
that rely on the conservativeness of LogDet(M (X),B) carry
over verbatim for Efficient-PAC because Efficient-PAC im-
plements LogDet(M (X),B) ≤ β, where the inequality is in
general non-attainable. Thus, conservativeness-related re-
sults for LogDet(M (X),B) remain valid a fortiori for the β

implemented by Efficient-PAC.

Remark 2. Given any privacy budget, the upper bound imple-
mented by Efficient-PAC induces more conservativeness than
directly implementing LogDet(M (X),B). However, there is
no universal ordering between the true mutual informations
MI(X ;M (X)+BAuto) and MI(X ;M (X)+BEff), where BAuto
and BEff are the Gaussian noise determined by Auto-PAC and
Efficient-PAC for the same privacy budget. This is because the
Gaussianity gaps (explicitly formulated by (3)) of Auto-PAC
and Efficient-PAC can be in general different magnitudes.

B Membership Inference Attack

We first recall the standard definition of membership inference
attacks formalized to match PAC Privacy [43, 46].

Definition 10 (Membership Inference Attack [43,46]). Given
a finite data pool U = {u1,u2, . . . ,uN} and some processing
mechanism M , X is an n-subset of U randomly selected. An
informed adversary is asked to return an n-subset X̂ as the
membership estimation of X after observing M (X). We say
M is resistant to (1− δi) individual membership inference
for the i-th datapoint ui, if for an arbitrary adversary,

Pr
X←U,X̃←M (X)

(1ui∈X = 1ui∈X̂ )≤ 1−δi

Here, 1ui∈X (1ui∈X̂ ) is an indicator which equals 1 if ui is in
X (X̂).

Building on this attack model, we now introduce the corre-
sponding R-PAC membership privacy notion:

Definition 11 (R-PAC Membership Privacy). For a data pro-
cessing mechanism M , given some measure ρ and a data set
U= (u1,u2, . . . ,uN), we say M satisfies (Rδ

f ,ρ,U,D)-R-PAC
Membership Privacy if it is (δ,ρ,U,D) PAC Membership pri-
vate and:

Rδ
f ≡ IntP f (D)−D f (1δ ∥1δo

ρ
) (14)

is the posterior disadvantage, where:

• IntP f (D) = −D f (D ∥U) is the intrinsic membership
privacy of the sampling distribution D relative to the
uniform distribution over U,

• 1δ and 1δo
ρ

denote the posterior and prior inference out-
comes, respectively (thought of as binary success/failure
indicators; equivalently, Bernoulli distributions with suc-
cess parameters 1−δ and 1−δo

ρ),

• δo
ρ = inf1̃11U

PrX∼D [ρ(1̃11U,111U) ̸= 1] is the optimal prior
error level (so the optimal prior success is 1−δo

ρ).

Rδ
f quantifies the R-PAC membership privacy that persists

after adversarial inference. The total intrinsic membership
privacy is decomposed as:

IntP f (D) = Rδ
f +∆

δ
f , where ∆

δ
f = D f (1δ ∥1δo

ρ
) (15)

is the PAC Membership Privacy loss, providing a complete
accounting of membership privacy risk.

KL case and Markov-chain justification. When D f is the
KL divergence, write Y = M (X) and let Ui ∈ {0,1} be the
membership indicator for an individual i, and J ∈ {1, . . . ,N}
the one-hot index with distribution D (so 111U is the one-hot
representation of J). Then

∆
δ
f = KL

(
1δ

∥∥1δo
ρ

)
≤ I(Ui;Y ) ≤ I(J;Y ),

where the first inequality is the Bernoulli–KL informa-
tion–risk bound for membership, and the second follows be-
cause Ui is a deterministic function of J and Ui→ J→ X→Y
is a Markov chain (data processing). Moreover,

IntPKL(D) = H (D)− log |U| .

Combining these,

Rδ
f = IntPKL(D)−∆

δ
f ≥ H (J |Y )− log |U|

= H (111U |M (X))−V,

with V≡ log |U| independent of both D and M . This shows
that the residual term lower-bounds the conditional uncer-
tainty of the one-hot membership indicator given the mecha-
nism output, up to a constant that depends only on the universe
size.

C Discussion: PAC/R-PAC Privacy vs. Differ-
ential Privacy

In this section, we discuss the difference and the relationship
between PAC/R-PAC Privacy and DP (Definition 5).

Unlike DP, which protects the privacy of individual records
through worst-case probabilistic indistinguishability guaran-
tees that must hold for any neighboring datasets, PAC Privacy
aims to protect against arbitrary adversarial inference tasks
under instance-based conditions. While DP focuses on ensur-
ing that an adversary cannot distinguish whether any specific
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individual participated in a dataset (treating this as a binary
hypothesis testing problem), PAC Privacy provides a more
general framework that quantifies the reconstruction hardness
for any sensitive information that an adversary might seek to
infer. Specifically, PAC Privacy characterizes the impossibility
of an adversary successfully recovering sensitive data X̃ such
that ρ(X , X̃) = 1 under any user-defined criterion ρ, given ob-
servation of the mechanism output M (X) This encompasses
not only individual membership inference (a special case),
but also broader privacy concerns such as data reconstruction
within specified error bounds, identification of multiple par-
ticipants, or recovery of sensitive attributes. Crucially, PAC
Privacy operates under distributional assumptions about the
data generation process D, enabling instance-based analysis
that can potentially require less noise than worst-case DP
guarantees, while providing semantic security interpretation
through concrete bounds on adversarial success probabilities
for any reconstruction objective.

R-PAC and PAC Privacy are two sides of the same coin:
PAC quantifies leakage (e.g., via ∆δ

f ), while R-PAC quanti-
fies the remaining privacy (e.g., via Rδ

f ), linked exactly by
IntP f (D) = Rδ

f +∆δ
f (equation (9)). PAC Privacy (as a defi-

nition) are adversary–agnostic and computation–unbounded:
the stated guarantees bound an attacker’s advantage for any in-
ference strategy, without restricting computational power, and
they are formulated without explicitly using mutual informa-
tion (MI), Fisher information, or other information-theoretic
metrics.

However, the automatic privatization procedures (e.g.,
Auto-PAC and Efficient-PAC) proposed to realize PAC Pri-
vacy certify the privacy guarantee via an MI budget β, enforc-
ing Gaussian surrogate bound LogDet(M (X),B) ≤ β as a
sufficient condition. Consequently, the delivered mechanisms
inherit MI–based properties and caveats (e.g., data process-
ing, distributional/average–case nature, standard composition
scaling, and lack of worst–case indistinguishability unless
additional constraints are imposed), even though the abstract
PAC Privacy notion itself does not rely on MI. Our SR-PAC
follows the MI principle but implements an MI bound that is
tighter than the Gaussian surrogate bound LogDet(M (X),B).

In the next section, we discuss the difference between MI
privacy and DP. Unless stated otherwise, we focus on PAC
Privacy in this discussion for simplicity.

C.1 Mutual Information Privacy vs. Differen-
tial Privacy

What each notion protects. Let M : X 7→ Y be a ran-
domized mechanism. DP, independent of input distribution,
protects worst-case, per-individual indistinguishability by en-
suring a uniform bound ℓ(x,y) ≤ ε almost surely (up to δ

in the (ε,δ) case), where ℓ(x,y) = log
PX |Y (x|y)

PX (x)
is the privacy-

loss random variable. However, DP does not, in general, en-

sure that the average leakage MI(X ;Y ) is small—indeed,
MI(X ;Y ) can scale with the dataset size unless ε shrinks
appropriately. In contrast, MI-based privacy constrains the
average information leaked from inputs to outputs under a
specific input distribution D ∈ ∆(X ). MI controls average
leakage: MI(X ;Y ) = EPXY [ℓ(X ,Y )]≤ β upper-bounds the ex-
pected log-likelihood gain of an optimal Bayesian adversary.
However, MI does not by itself bound the worst-case leakage
L ≜ esssupℓ; in particular, MI(X ;Y )≤ β is compatible with
L = ∞ (rare but arbitrarily large disclosures).

Worst-case vs. average-case guarantees. DP is a
distribution-free, worst-case guarantee that must hold for all
neighboring datasets and adversaries, independent of input
distributions. MI-based privacy is distributional: it controls
expected leakage with respect to an input distribution PX , typ-
ically via MI(X ;Y )≤ β for Y = M (X). Because MI(X ;Y ) =
EPXY [ℓ(X ,Y )], the noise needed to enforce MI(X ;Y )≤ β de-
pends on PX : when most mass lies on inputs for which ℓ(X ,Y )
is typically small, less perturbation suffices. At the same time,
an MI budget does not itself preclude rare high-leakage cases:
if there exists a measurable event E ⊆X ×Y with PXY (E)= p
and ℓ(x,y)≥ L for all (x,y) ∈ E, then MI(X ;Y )≥ pL; hence
the constraint MI(X ;Y ) ≤ β forbids such a case only when
pL > β (and any "perfect disclosure" with L = ∞ is incompat-
ible for all p > 0).

Name-and-shame example. One example of "rare
high–leakage cases" is the name-and-shame. Let
E = {(x,y) : y = x} denote the event in which the mechanism
reveals the input directly, occurring with probability p. On E,

the per–sample leakage is ℓ(x,y)= log
pX |Y (x|x)

pX (x)
=− log pX (x),

which can be very large (and unbounded when pX has heavy
tails or continuous support). Thus this is a small–probability,
high–leakage branch. In the discrete case with finite support,
one has MI(X ;Y ) = pH (X). Choosing p = β/H (X) makes
MI(X ;Y ) = β, which saturates the heuristic IMI(X ;Y ) ≥ pL
when L is interpreted as the average leakage H (X) on E. If
one insists on the pointwise form from the paragraph, taking
L0 = ess infx(− log pX (x)) yields MI(X ;Y )(X ;Y ) ≥ pL0,
which still places the example in the same regime. Finally, if
"name–and–shame" is modeled as perfect disclosure with
continuous X , then ℓ= ∞ on E and the constraint rules it out
immediately, since L = ∞ is incompatible with any p > 0.

DP perspective on the name-and-shame example. Con-
sider the per–record “name–and–shame” mechanism M that,
independently for each index i, outputs (i,xi) with probabil-
ity p and ⊥ otherwise. Let x,x′ be neighboring databases
that differ only in record i with xi ̸= x′i, and define the event
E = (i,xi). Then Pr[M(x) ∈ E] = p, Pr[M(x′) ∈ E] = 0. The
(ε, δ̄)–DP inequality for E reads p≤ eε ·0+ δ̄ = δ̄, hence any
(ε, δ̄) satisfied by M must obey δ̄≥ p. In particular, with the
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standard regime δ̄≪ 1/n (negligible failure probability), such
a mechanism is not DP for any finite ε; conversely, allowing
δ̄≥ p makes the guarantee vacuous on the p–fraction of runs
that reveal (i,xi) exactly.

C.2 Fair Comparison Under MIA
PAC Privacy and R-PAC Privacy (and also MI-based privacy)
address complementary notions of privacy to DP. Neither
framework dominates the other. To perform a fair compari-
son, we focus on the cases when the privacy budgets of DP
and PAC/R-PAC Privacy are "equalized". In particular, we
consider Membership Inference Attack (MIA) defined by Def-
inition 10.

DP can be understood through the lens of membership
inference success rates. Consider the membership inference
scenario from Definition 10, where we have a dataset of size
n = N

2 (i.e., each individual data record has a 50% probability
of being included in the selected subset X). If a mechanism
M is (ε, δ̄)-DP, then by [25, 28], an adversary’s ability to
successfully infer whether a specific individual record i is
included in the dataset (i.e., posterior success rate po = 1−δi)
is fundamentally limited:

po ≤ 1− 1− δ̄

1+ eε
. (16)

This bound demonstrates how DP parameters directly trans-
late into concrete limits on an adversary’s inference capa-
bilities in MIA. Thus, the maximal posterior success rate
permitted by (ε, δ̄)-DP is 1− 1−δ̄

1+eε .
In addition, there is a relationship between the posterior

success rate po and the mutual information [43] (derived from
(1)):

po log
po

p̄
+(1− po) log

1− po

1− p̄
≤ MI(X ;M (X)), (17)

where p̄ is the optimal prior success rate, which is max(r,1−
r) with r as the subsampling rate that selects the dataset from a
data pool. Thus, given a privacy budget MI(X ;M (X))= β and
a prior success rate p̄, we can calculate the posterior success
level po and, by (16), pin down ε for a chosen δ̄ so that DP has
an “equivalent” budget to PAC. The corresponding R-PAC
budget is H (X)−β.

For per-individual membership, the relevant secret is the
inclusion bit Ui ∈ {0,1} for person i and the mechanism out-
put is Y = M (X). Since Ui→ X → Y forms a Markov chain,
the data-processing inequality gives

MI(Ui;Y )≤ MI(X ;Y ) = β.

The Bernoulli–KL inequality used above applies equally with
MI(Ui;Y ) on the right-hand side; replacing it by MI(X ;Y ) is
therefore conservative and still yields a valid upper bound
on the Bayes-optimal membership posterior success po. This

validates using MI(X ;Y ) to compute po(β, p̄) for MIA and
then selecting (ε, δ̄) so that (16) enforces the same po for a
fair, like-for-like comparison between DP and PAC/R-PAC.

C.3 Noise Magnitude
In this section, we discuss how they differ in noise magni-
tude under an equalized privacy budget. Concretely, we fix a
mutual-information budget β for PAC/R-PAC; when contrast-
ing with DP, we use the (ε, δ̄) that induces the same posterior-
success level via the MI↔DP conversion described in Section
C.2. Even at this matched budget, the required noise can vary
substantially. We measure it by the total noise magnitude
V (β)≡ E∥B∥2

2 for outputs Y = M (X)+B. Let the centered
output covariance have eigenvalues λ1 ≥ ·· · ≥ λp > 0 on
its informative p-dimensional subspace (p ≤ d), and write
R = max j λ j. We first present the ideal Auto-PAC baseline
derived from the log-det MI bound, then the Stackelberg
Residual-PAC (SR-PAC) optimizer that tightens noise un-
der the same β, and finally contrast both with classical DP
mechanisms that must mask worst-case sensitivity in d di-
mensions. (Throughout, Auto-PAC refers to this ideal log-det
calibration; the practical Algorithm 1 uses estimated eigenval-
ues and a stabilization 10cv/β, yielding total noise magnitude

(∑ j

√
λ̂ j +10cv/β)2/(2v), a conservative upper envelope of

the ideal baseline.)
Auto-PAC. Let the (centered) mechanism output have co-

variance eigenvalues λ1 ≥ ·· · ≥ λp > 0 (in its informative p-
dimensional subspace). Auto-PAC calibrates Gaussian noise
B∼N (0,ΣB) under an MI budget β, yielding the total noise
magnitude

VPAC(β) = E∥B∥2
2 =

(
∑

p
j=1

√
λ j

)2

2β
.

(When the exhibited calibration targets MI≤ 1
2 , this special-

izes to VPAC = (∑ j
√

λ j)
2.) A general bound is(

∑
p
j=1

√
λ j

)2
≤ p∑

p
j=1 λ j ≤ p2R, R≡max j λ j,

hence VPAC(β) = O(p2R/β) in the worst case (and improves
to O(pR/β) if ∑ j λ j = O(R)). (In practice, Algorithm 1 uses
estimated eigenvalues and a stabilization 10cv/β, yielding

total noise magnitude (∑ j

√
λ̂ j +10cv/β)2/(2v), which is

a conservative upper envelope of the ideal log-det calibra-
tion.) Because differential privacy (DP) must mask worst-
case changes in all d coordinates, the required noise for d-
dimensional outputs typically grows like

√
d (e.g., O(

√
d/n)

for mean queries with dataset size n)—the classic “curse of
dimensionality.” Thus, when the data are effectively low-rank
(p≪ d), Auto-PAC already mitigates this dimensional blow-
up.
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SR-PAC. SR-PAC optimizes the full noise distribution un-
der the same MI budget β and strictly improves (or matches)
the Gaussian baseline:

• Universal gain (non-Gaussian outputs): For any non-
Gaussian output Z = M (X), SR-PAC achieves

E∥BSR∥2
2 < E∥BPAC∥2

2 at the same β,

closing the conservativeness of Auto-PAC. (If Z is ex-
actly Gaussian, the gap can vanish.)

• Anisotropic allocation: The Stackelberg-optimal covari-
ance is provably anisotropic; variance is shifted toward
directions with high leakage and away from benign ones,
improving utility without violating the MI budget.

• Zero-noise subspaces: Under a mild separation of di-
rectional sensitivities, there exists a threshold βlab such
that for all β ≤ βlab SR-PAC injects no noise on an s-
dimensional task-critical subspace (e.g., the k−1 label di-
rections in classification), reducing the order from O(p)
to O(p−s) in those regimes.

Comparison to DP. Since SR-PAC pointwise dominates
Auto-PAC for every β and Auto-PAC already avoids DP’s√

d-type growth, SR-PAC inherits—and sharpens—the di-
mensional advantage. Writing

VSR(β) = VPAC(β) − ∆(β), 0≤ ∆(β)≤VPAC(β),

we have ∆(β) > 0 whenever Z is non-Gaussian. In high-
dimensional tasks with modest informative rank p and harm-
less directions (s > 0), SR-PAC reduces noise from O(p)
down to O(p−s) (at fixed β), yielding a strictly better pri-
vacy–utility trade-off than both Auto-PAC and classical DP.

D Technical Constructions of Reference Distri-
butions for Intrinsic Privacy

Purpose and scope. Intrinsic privacy is defined as

IntP f (D∥R ) = − D f (D∥R ),

where R is a reference distribution that plays the role of
an a priori baseline and D f is an f –divergence (KL in our
evaluations). To make IntP f well-defined and mechanism-
independent, one must choose R so that (i) supp(D) ⊆
supp(R ) and (ii) D f (D∥R )< ∞. This appendix gives three
canonical constructions of R together with conditions that
guarantee finiteness, and brief practical advice on when to
use each choice.

Standing notation. We write X ∼ D for the data dis-
tribution on Rd . A reference distribution R has density
r(·) w.r.t. Lebesgue measure (whenever it exists). For KL,
DKL(D∥R ) = ED

[
ln dD

dR (X)
]

and H(R ) denotes the (differ-
ential) entropy of R (log base as in the main text).

Proposition 8 (Finiteness criteria for KL). If D ≪ R and
ED
[
| lnr(X)|

]
<∞, then DKL(D∥R )<∞. Consequently, any

construction of R that ensures full support on Rd and mild
tail control on r suffices for finiteness of IntPKL.

Proof. Since R has Lebesgue density r and D≪ R , we also
have D≪ Lebesgue; let p denote the Lebesgue density of D .
By the chain rule for Radon–Nikodym derivatives,

dD
dR

(x) =
dD/dx
dR /dx

(x) =
p(x)
r(x)

a.e.

Hence

DKL(D∥R ) =
∫

p(x) ln
p(x)
r(x)

dx

=
∫

p(x) ln p(x)dx︸ ︷︷ ︸
−H (D)

−
∫

p(x) lnr(x)dx︸ ︷︷ ︸
ED [lnr(X)]

.

By assumption, H(D)>−∞ and ED [ | lnr(X)| ]< ∞, so both
terms on the right-hand side are finite (the first from below,
the second in absolute value), and their difference is finite.
Therefore DKL(D∥R )< ∞.

In the KL case, our residual privacy lower bound involves
a constant offset V = H(R ) (independent of both D and the
mechanism), so we also highlight when H(R )< ∞.

(a) Maximum-entropy Gaussian

The maximum-entropy Gaussian is defined as

R = N (µ,Σ), µ = ED [X ], Σ = CovD(X).

The density function is

r(x) =
1√

(2π)d detΣ
exp
(
− 1

2 (x−µ)⊤Σ
−1(x−µ)

)
,

with the support supp(R ) = Rd . The corresponding entropy
is

H(R ) = 1
2 ln

(
(2πe)d detΣ

)
< ∞.

If D is absolutely continuous and ED
[
∥X∥2

]
< ∞, then

DKL(D∥R )< ∞.
It is a natural default when second moments exist; full

support guarantees supp(D) ⊆ supp(R ) automatically. In
practice, ensure Σ≻ 0 via standard shrinkage if needed.

(b) Smooth pull-back of the unit-cube uniform

The smooth pull-back construction is defined as follows: let
U ∼ Unif((0,1)d) and choose a C1 bijection

T : (0,1)d → Rd , detJT (u)> 0.
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The reference is the push-forward R = T#U with density

r(x) =
∣∣detJT−1(x)

∣∣,
and support supp(R ) = Rd . The corresponding entropy is

H(R ) = EU
[

ln |detJT (U)|
]
< ∞

whenever ln |detJT | is integrable on (0,1)d . If D ≪ R and
ED [ | lnr(X)| ]< ∞, then DKL(D∥R )< ∞.

It is useful when one wishes to encode geometry or tail
behavior via the map T while retaining full support and finite
H(R ) through an integrability check on ln |detJT |.

(c) Truncated uniform on a bounded set

The truncated uniform is defined as follows: let B ⊂ Rd be
compact with supp(D)⊆ B, and set

R = Unif(B), r(x) =

{
1/vol(B), x ∈ B,

0, x /∈ B.

The support is supp(R ) = B. The corresponding entropy is

H(R ) = ln
(
vol(B)

)
< ∞.

Moreover,

DKL(D∥R ) =−H(D)+ ln
(
vol(B)

)
,

so finiteness requires H(D)< ∞.
It is appropriate only when the domain is naturally bounded

and the data distribution has finite entropy; otherwise, one
should prefer the Gaussian or pull-back constructions.

E More on Non-Gaussianity Correction

In Section 3.2, we propose two approaches to approximate the
Gaussianity gap Gapd, which are certified replacements of DZ
to find a tighter mutual information after Auto-PAC privatiza-
tion. Theorem 3 uses Donsker–Varadhan (DV) representation
DZ = sup f {EPM ,B

f − logEQ̃M
e f }, so that any value of the DV

objective at a trained critic fψ is a valid lower bound on DZ .
Under a mild transport condition for PM ,B and Q̃M , Theorem
4 use the sliced Wasserstein distance (SWD) as the estimation
D̂Z , which is unbiased in the minibatch limit. In addition, the
estimation achieves a certified 0≤ D̂Z ≤ DZ .

Consequently, our improved mutual information estimate

IMI(D̂Z) = LogDet(M (X),B)− D̂Z

is a provable upper bound on MI(X ;Z) whenever D̂Z is one of
the certified corrections above.

Both approaches admit short, minibatch estimators:

Algorithm 4 DV Gap Correction (minibatch lower bound on
DZ)

Require: Oracle for i.i.d. samples Z ∼ PM ,B; function class
F = { fφ}; steps T ; batch size m; step size η; confidence
penalty cm,δ

1: Draw an initial batch {Zi}m0
i=1∼PM ,B and estimate µ̂Z , Σ̂Z ;

define Q̃M := N (µ̂Z , Σ̂Z)
2: Initialize φ

3: for t = 1, . . . ,T do
4: Sample {Z(P)

j }m
j=1 ∼ PZ

5: Sample {Z(Q)
j }m

j=1 ∼ Q̃M

6: b̂← 1
m ∑

m
j=1 fφ(Z

(P)
j )− log

(
1
m ∑

m
j=1 e fφ(Z

(Q)
j )
)

7: φ← φ+η∇φb̂
8: end for
9: Evaluate b̂val on held-out minibatches; set DZ ←

max{b̂val− cm,δ,0}
10: Return DZ

• DV Correction. Train a critic fφ by maximizing

Ĵ =
1
m

m

∑
i=1

fφ(Zi)− log
( 1

m

m

∑
i=1

e fφ(Z̃i)
)
,

where Zi ∼ PZ and Z̃i ∼ Q̃M . After T steps, set D̂Z ←
Ĵ ( fφ). Algorithm 4 shows an example.

• SWD Correction. Sample K directions
vk ∼ Unif(Sd−1), project both batches, sort each
projection, and average 1D squared distances:

ŜW
2
2 =

1
K

K

∑
k=1

1
m

m

∑
j=1

(
⟨vk,Z⟩( j)−⟨vk, Z̃⟩( j)

)2
.

Convert ŜW
2
2 to D̂Z using the calibration stated in Theo-

rem 4. Algorithm 5 gives an example.

Each iteration uses a single minibatch pass and either a small
critic update (DV) or K sorts of length m (SWD); no back-
propagation through M and no nested inner loops.

F PAC Generalization Bound for the Follower

Fix a perturbation rule Q ∈ Γ. The Follower’s objective is

π
∗(Q) ∈ argmin

π∈Π
W (Q,π),

where

W (Q,π)≡ EX∼D,B∼Q
[
− logπ(X |M(X)+B)

]
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Algorithm 5 Sliced Wasserstein Gap Correction (training-
free lower bound on DZ)

Require: Oracle for i.i.d. samples Z ∼ PM ,B; number of pro-
jections M; samples per slice n; confidence penalty ξn,δ

1: Draw an initial batch {Zi}n0
i=1∼PM ,B and estimate µ̂Z , Σ̂Z ;

set W ← Σ̂
−1/2
Z

2: for m = 1, . . . ,M do
3: Draw θm uniformly on Sd−1

4: Draw n fresh samples Zi ∼ PZ and set ui = θ⊤mW (Zi−
µ̂Z)

5: Draw n i.i.d. samples si ∼N (0,1)
6: Sort u(1) ≤ ·· · ≤ u(n) and s(1) ≤ ·· · ≤ s(n); set w2

m←
1
n ∑

n
i=1(u(i)− s(i))2

7: end for
8: ŜW

2
2← 1

M ∑
M
m=1 w2

m

9: DZ ←max{ 1
2 ŜW

2
2−ξn,δ,0}

10: Return DZ

Given m i.i.d. samples (Xi,Bi,Yi)
m
i=1 with Xi ∼D , Bi ∼Q, and

Yi = M(Xi)+Bi, define the empirical risk

Ŵ (Q,π) =
1
m

m

∑
i=1

[
−logπ(Xi |Yi)

]
, π̂∈ argmin

π∈Π
Ŵ (Q,π).

Let GΠ ≡ {gπ(x,y) = − logπ(x | y) : π ∈ Π} and denote by
Rm(GΠ) the empirical Rademacher complexity of GΠ on m
samples.

Assumption (bounded log-likelihood). There exists B > 0
such that for all π ∈Π and all (x,y) in the support,− logπ(x |
y) ∈ [0,B]. (When densities are unbounded, this is enforced
by standard truncation or by lower-bounding the decoder’s
variance / softmax temperature over a bounded input domain.)

Lemma 1 (Decoder PAC generalization). Under the bound-
edness assumption, for any δ∈ (0,1), with probability at least
1−2δ over the draw of the m samples,∣∣∣∣ inf

π∈Π
W (Q,π)−Ŵ

(
Q, π̂

)∣∣∣∣≤ 4Rm(GΠ)︸ ︷︷ ︸
capacity

+2B
√

2log(1/δ)
m︸ ︷︷ ︸

concentration

≡ εm,δ.

Proof. Let GΠ = {gπ(x,y)=− logπ(x | y) : π∈Π}with gπ ∈
[0,B] by assumption, and let

R̂m(GΠ) ≡ Eσ

[
sup

g∈GΠ

1
m

m

∑
i=1

σi g(Xi,Yi)
]

be the (empirical) Rademacher complexity on the sample
(Xi,Yi)

m
i=1, where σi ∈ {±1} are i.i.d. Rademacher variables.

By standard symmetrization and McDiarmid’s inequality

(bounded differences B/m), with probability at least 1−δ,

sup
π∈Π

∣∣W (Q,π)−Ŵ (Q,π)
∣∣ ≤ 2 R̂m(GΠ) + B

√
2log(1/δ)

m .

(18)
On the same event, let π∗ ∈ argminπ W (Q,π) and π̂ ∈
argminπ Ŵ (Q,π). Then

inf
π

W (Q,π)−Ŵ (Q, π̂) =W (Q,π∗)−Ŵ (Q, π̂)

≥−sup
π

∣∣W −Ŵ
∣∣− sup

π

∣∣W −Ŵ
∣∣

≥−2∆,

where ∆ = 2 R̂m(GΠ) +B
√

2log(1/δ)/m is the right-hand
side of (18). Thus∣∣∣ inf

π∈Π
W (Q,π) − Ŵ

(
Q, π̂

)∣∣∣≤ 2∆

= 4 R̂m(GΠ) + 2B
√

2log(1/δ)
m .

Finally, applying a standard concentration step to replace
R̂m(GΠ) by its expectation Rm(GΠ) incurs an additional fail-
ure probability δ; a union bound yields the stated result with
probability at least 1−2δ.

Corollary 4 (Finite-sample feasibility check for the Leader).
Let β̂ be the residual-PAC budget in the Leader’s constraint
infπ∈Π W (Q,π)≥ β̂. If the batch cross-entropy Hc = Ŵ (Q, π̂)
(the quantity computed in Algorithm 3) satisfies

Hc ≥ β̂+ εm,δ,

then, with probability at least 1−2δ, infπ∈Π W (Q,π)≥ β̂.

PAC-adjusted penalty. Define the PAC-adjusted threshold

β̂PAC ≡ β̂+ εm,δ.

A convenient implementation is to use β̂PAC in place of β̂

inside the Leader’s penalty; i.e., set

penalty = σ
(
Hc− β̂PAC

)2
+
,

where σ is the penalty weight and (·)+ = max{·,0}. Algo-
rithm 6 shows the SR-PAC with the PAC-adjusted penalty.
By Corollary 4, any iterate with zero penalty (or sufficiently
small penalty when smooth proxies are used) satisfies the pop-
ulation constraint with probability at least 1−2δ at sample
size m.
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Algorithm 6 Monte Carlo SR-PAC (with PAC-adjusted
Penalty)

Require: Privacy budget β̂, parametrized decoder family Πφ,
perturbation rule family Γλ, utility loss K (·), learning
rates ηφ,ηλ, penalty weight σ, iterations Tλ,Tφ, batch size
m

1: Initialize parameters λ,φ∼ init()
2: for t = 1, . . . ,Tλ do
3: if t mod Tφ = 0 then
4: Update Decoder:
5: for i = 1, . . . ,Tφ do
6: Sample {(x j,b j,y j)}m

j=1 where x j ∼D , b j ∼ Qλ,
y j = M (x j)+b j

7: Ŵ = 1
m ∑

m
j=1[− logπφ(x j|y j)]

8: φ← φ−ηφ∇φŴ
9: end for

10: end if
11: Update Perturbation Rule:
12: Sample {(x j,b j,y j)}m

j=1 where x j ∼D , b j ∼Qλ, y j =

M (x j)+b j
13: Hc =

1
m ∑

m
j=1[− logπφ(x j|y j)]

14: Lλ = 1
m ∑

m
j=1 K (b j)+σ

(
Hc− (β̂+ εm,δ)

)2
+

15: λ← λ−ηλ∇λLλ

16: end for
17: return Optimal parameters (λ∗,φ∗)

Sample complexity (reading εm,δ). If Rm(GΠ) ≤C/
√

m,
then any

m ≥
(

4C
η
+

2B
√

2log(1/δ)

η

)2

ensures εm,δ ≤ η, so enforcing Hc ≥ β̂+η certifies feasibility
with probability ≥ 1−2δ. By Corollary 4, this appendix-only
variant certifies feasibility with probability at least 1−2δ at
sample size m.

G Proof of Theorem 3

Let Z = M (X)+B with deterministic M and B∼N (0,ΣB)
where ΣB ≻ 0. Write PM ,B for the law of Z. Let the Gaussian
surrogate be Q̃M = N (µZ ,ΣZ). For any measurable f : Rd→
R with EQ̃M

[e f ] < ∞, define the Donsker–Varadhan (DV)
objective

J
(

f ;PM ,B, Q̃M
)
= EPM ,B

[ f (Z)]− logEQ̃M

[
e f (Z)].

Let
D̂Z( f )≡ J ( f ;PM ,B, Q̃M ).

Next, we construct the finite-sample estimation of the DV
objective. Given finite samples SP from PM ,B and SQ from

Q̃M , let

Ĵ ( f ;SP,SQ)≡
1
|SP| ∑

z∈SP

f (z)− log
( 1
|SQ| ∑

z∈SQ

e f (z)
)
.

Fix a function class F ⊂ { f : Rd → R} with 0 ∈ F .
Draw four independent splits Str

P, Str
Q, Sval

P , Sval
Q with sizes

ntr
P,n

tr
Q,n

val
P ,nval

Q , respectively, and fit

f̂tr ∈ argmax
f∈F

Ĵ
(

f ;Str
P,S

tr
Q
)
.

Assume that for some Γ
δ̂
= Γ

δ̂

(
F ,nval

P ,nval
Q

)
,

Pr

(
sup
f∈F

∣∣∣Ĵ ( f ;Sval
P ,Sval

Q
)
− J
(

f ;PM ,B, Q̃M
)∣∣∣≤ Γ

δ̂

)
≥ 1− δ̂.

(19)
Define the finite-sample lower-confidence estimator

D̂LCE ≡
[
Ĵ
(

f̂tr;Sval
P ,Sval

Q
)
−Γ

δ̂

]
+
.

Proof of (i) We apply the Gibbs variational principle. For
any P≪ Q and measurable f with EQ[e f ]< ∞,

EP[ f ]− logEQ[e f ]≤ DKL(P∥Q),

with equality at f ∗ = log dP
dQ + c (any constant c).

Taking the supremum over f yields

sup
f

J ( f ;P,Q) = DKL(P∥Q).

Apply with P = PM ,B, Q = Q̃M . It is nonnegative because
f ≡ 0 is admissible and J (0;P,Q) = 0.

Proof of (ii) This is immediate from Part (i):

D̂Z( f ) = J ( f ;PM ,B, Q̃M )≤ sup
g

J (g;PM ,B, Q̃M )

= DKL(PM ,B∥Q̃M ).

Proof of (iii) Conditioning on the training splits (Str
P,S

tr
Q),

f̂tr (a measurable function of the training data) is independent
of the validation splits (Sval

P ,Sval
Q ). On the event in (19), we

have for all f ∈ F ,

J ( f ;PM ,B, Q̃M )≥ Ĵ ( f ;Sval
P ,Sval

Q )−Γ
δ̂
.

Taking f = f̂tr and then the supremum over f on the left,

DKL(PM ,B∥Q̃M )= sup
f

J ( f ;PM ,B, Q̃M )≥ Ĵ
(

f̂tr;Sval
P ,Sval

Q
)
−Γ

δ̂
.

Hence, on that event still,

0≤
[
Ĵ
(

f̂tr;Sval
P ,Sval

Q
)
−Γ

δ̂

]
+
≤ DKL(PM ,B∥Q̃M ),

which is the claim with probability at least 1− δ̂.
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H Proof of Theorem 4

Given the true (perturbed output) distribution PM ,B and
the Gaussian surrogate distribution Q̃M = N (µZ ,ΣZ) (with
matched mean and covariance), define

D̂Z ≡
1

2λmax(ΣZ)
SW2

2
(
PM ,B, Q̃M

)
,

where λmax(ΣZ) is the largest eigenvalue of ΣZ and SW2 de-
notes the sliced 2-Wasserstein distance.

By definition of the Wasserstein metric,
SW2

2(PM ,B, Q̃M ) ≥ 0, and λmax(ΣZ) > 0 since ΣZ is
positive semidefinite and non-degenerate. Hence,

D̂Z ≥ 0.

In addition, it is well known (see e.g., [3]) that the sliced
Wasserstein distance provides a lower bound on the true 2-
Wasserstein distance:

SW2
2(PZ , Q̃M )≤W 2

2 (PZ , Q̃M ).

Finally, Lemma 2 (shown below) implies

1
2λmax(ΣZ)

SW2
2
(
PM ,B, Q̃M

)
≤ DKL(P∥Q).

Therefore, we obtain

0≤ D̂Z ≤ DZ

Lemma 2. Let Q = N (µ,Σ) with Σ≻ 0 and let P be a prob-
ability measure on Rd with P≪ Q. Then

W 2
2 (P,Q)≤ 2λmax(Σ)DKL(P∥Q).

Proof. Let T (x) = Σ−1/2(x−µ). Then, T is invertible affine.
In addition, let P′ = T#P and γ = N (0, I). Thus, applying the
change of variables yields

DKL(P′∥γ) = DKL(P∥Q).

Let S(x) = Σ1/2x+µ. For any coupling π of P′ and γ, (S×
S)#π is a coupling of P and Q, and∫
∥x− y∥2 d

(
(S×S)#π

)
=

∫
∥Σ1/2(u− v)∥2 dπ(u,v)

≤ ∥Σ1/2∥2
op

∫
∥u− v∥2 dπ(u,v),

where ∥ · ∥op some operator norm. Taking the infimum over
couplings yields

W2(P,Q)≤ ∥Σ1/2∥opW2(P′,γ).

Hence,
W 2

2 (P,Q)≤ λmax(Σ)W 2
2 (P

′,γ).

Then, the Talagrand inequality [36, 45]implies

W 2
2 (P

′,γ)≤ 2DKL(P′∥γ).

Therefore, we obtain

W 2
2 (P,Q)≤ λmax(Σ)W 2

2 (P
′,γ)

≤ 2λmax(Σ)DKL(P′∥γ)
= 2λmax(Σ)DKL(P∥Q).

I Proof of Corollary 2

By Theorem 1 of [46], a mechanism M satisfies (δ,ρ,D)-
PAC privacy where

DKL(1δ∥1δo
ρ
)≤ MI(X ;M (X)).

Thus,

Rδ
KL ≥ IntPKL(D)− inf

PW
DKL

(
PX ,M (X) ∥PX ⊗PW

)
≥ IntPKL(D)−MI(X ;M (X)),

where IntPKL(D) =−DKL(D∥U) = H (X)−V, where V=
log(|X |) if H is Shannon entropy, and V= log(

∫
X dx) if H is

differential entropy. Thus, we get Rδ
f ≥H (X |M (X))−V.

J Proof of Proposition 1

Recall that Z = M (X)+B with B ∼N (0,ΣB) independent
of X , where M is a deterministic mechanism. Then, we have

MI(X ;Z) = H (Z)−H (Z | X) = H (Z)−H (B).

Now consider the Gaussian surrogate distribution Q̃M =
N (µZ ,ΣZ), where µZ = µM (X) and ΣZ = ΣM (X)+ΣB. Its en-
tropy is given by

H (Z̃) =
1
2

log
[
(2πe)d det(ΣZ)

]
,

with Z̃ ∼ Q̃M , and similarly, H (B) = 1
2 log

[
(2πe)d det(ΣB)

]
.

Hence,

1
2

logdet
(

Id +ΣM (X)Σ
−1
B

)
=

1
2

log
(

det(ΣZ)

det(ΣB)

)
= H (Z̃)−H (B).

So, we obtain

Gapd =
[
H (Q̃M )−H (B)

]
− [H (Z)−H (B)]

= H (Z̃)−H (Z).
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Let q̃ be the density function of Q̃M , and let p be the density
function of PM ,B. Since Q̃M = N (µZ ,ΣZ) is Gaussian, we
have

H (Z̃) =− log q̃(z)

=
d
2

log(2π)+
1
2

logdet ΣZ
1
2
(z−µZ)

⊤
Σ
−1
Z (z−µZ).

Taking expectation under p yields

H (Z, Z̃) =
d
2

log(2π)

+
1
2

logdet ΣZ +
1
2
Eq

[
(Z−µZ)

⊤
Σ
−1
Z (Z−µZ)

]
.

since Z̃ ∼ Q̃M matches Z ∼ PZ in mean and covariance, we
have

Eq

[
(Z−µZ)

⊤
Σ
−1
Z (Z−µZ)

]
= tr

(
Σ
−1
Z ΣZ

)
= tr(Id) = d.

Thus,

H (Z, Z̃) =
d
2

log(2π)+
1
2

logdet ΣZ +
d
2

= H (Z̃).

Therefore,

DKL(PM ,B ∥ Q̃M ) = H (Z, Z̃)−H (Z)

= H (Z̃)−H (Z)

= Gapd.

Therefore, Gapd = DKL(PM ,B ∥ Q̃M )≥ 0, with equality if and
only if PM ,B = Q̃M , i.e., Z is exactly Gaussian with distribu-
tion N (µZ ,ΣZ).

K Proof of Proposition 2

Since B ∼ N (0,ΣB), we have E[∥B∥2
2] = tr

(
E[BB⊤]

)
=

tr(ΣB). Hence, minimizing E[∥B∥2
2] over zero-mean Gaussian

is equivalent to minimizing the trace tr(ΣB) over ΣB ⪰ 0.
Recall that Z = M (X)+B. Then, Z has mean µZ = µM (X)

and covariance ΣZ = ΣM (X)+ΣB, where ΣM (X) denotes the
covariance of M (X). In addition, recall that Q̃M =N (µZ ,ΣZ)
is the Gaussian distribution with the same first and second
moments as Z. Then, by standard Gaussian-entropy formulas,
we have

MI(X ;Z) = H(Z)−H(Z|X) =
1
2

log
det(ΣZ)

det(ΣB)

=
1
2

logdet(I +ΣM (X)Σ
−1
B ).

In particular, Algorithm 1 implements MI(X ;Z)≤ β.

Since both tr(ΣB) and logdet(I +ΣM (X)Σ
−1
B ) are unitarily

invariant, we may diagonalize ΣM (X) as

ΣM (X) =Udiag(r1, . . . ,rd)UT , ri > 0,

where U is the orthogonal eigenvector matrix from the eigen-
decomposition of ΣM (X). Writing ΣB = Ûdiag(ℓ1, . . . , ℓd)ÛT

with ℓi > 0, the problem

min
ΣB⪰0

tr(ΣB), s.t.
1
2

logdet(1+ΣM (X)Σ
−1
B ) = β,

becomes

min
ℓ1,...,ℓd>0

d

∑
i=1

ℓi, s.t.
1
2

d

∑
i=1

log(1+
ri

ℓi
) = β.

Hence, each coordinate ℓi appears only in the term log(1+ ri
ℓi
).

Let λ > 0 as the Lagrange multiplier. The Lagrangian is

L(ℓ1, . . . , ℓd ,λ)

=
d

∑
i=1

ℓi +λ

(
1
2

d

∑
i=1

log(1+
ri

ℓi
)MI(X ; Z̃)−β

)
.

Setting ∂L
∂ℓi

= 0 gives

1 = λ
ri

2ℓi(ℓi + ri)
⇒ 2ℓi(ℓi,ri) = λri.

Equivalently, ℓ2
i +riℓi−λ

ri
2 = 0, which gives a unique ℓi(λ) =

−ri+
√

r2
i +2λri

2 > 0.
Let

F(λ) =
1
2

d

∑
i=1

log(1+
ri

ℓi(λ)
).

We can have the following:

• As λ→ 0+, each ℓi(λ)→ 0+, leading to F(λ)→+∞.

• As λ→+∞, each ℓi(λ)→+∞, leading to F(λ)→+∞.

In addition, dF(λ)
dλ

< 0 throughout. Thus, F is strictly de-
creasing from +∞ down to 0. Therefore, there is a unique
λ∗ > 0 such that F(λ∗) = β. At this λ∗, each ℓ∗i = ℓ∗i (λ

∗) is
unique. Thus, Σ∗B = Ûdiag(ℓ∗1, . . . , ℓ

∗
d)Û

T is unique minimizer
of tr(ΣB). By construction,

1
2

logdet
(

1+ΣM (X)(Σ
∗
B)
−1
)
= β.

Therefore, it is also the unique minimizer of (5).

L Proof of Proposition 3

For additive Gaussian noise with covariance ΣB ≻ 0,

MI(X ;M (X)+B) ≤ 1
2 logdet

(
I +ΣMΣ

−1
B
)
.
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The trace–optimal (eigen-aligned) choice that enforces the
log-det constraint at level β̂ has eigenvalues e∗i = α

√
λi in the

U–basis, with α = S
2β̂

. Hence

E∥B∥2
2 = tr(Σ∗B) = ∑

i
e∗i =

S2

2β̂
. (1)

Algorithm 1 constructs a diagonal precision ΛB in the em-
pirical eigenbasis and, when the "gap" test passes, let

λB,i =
2v√

λ̂i +δ ∑k

√
λ̂k +δ

and δ =
10cv

β
.

Plugging the population spectrum (λ̂ = λ, same U) yields
noise eigenvalues

eγ

i =

√
λi +δ ∑k

√
λk +δ

2v
,

and

tr(Σγ

B) =

(
∑k

√
λk +δ

)2

2v
.

Since δ≥ 0 and v≤ β̂, we have

tr(Σγ

B)≥
S2

2v
≥ S2

2β̂
= tr(Σ∗B),

which proves (i) in this branch by (1)–(1). Moreover,

eγ

i
e∗i

=
∑k

√
λk +δ

∑k

√
λk

β̂

v

√
1+

δ

λi
≥ 1.

Thus, Σ
γ

B ⪰ Σ∗B. For additive Gaussian noise perturbation, in-
creasing ΣB (in positive semidefinite order) implies the log-det
bound decreases, hence the mutual information decreases:

MI
(
X ;M (X)+Bγ

)
≤ 1

2 logdet
(
I +ΣM(Σ

γ

B)
−1)

≤ 1
2 logdet

(
I +ΣM(Σ∗B)

−1).
Since the Auto-PAC design saturates the bound at β̂ (and the
true MI is bounded by it), we obtain

MI
(
X ;M (X)+Bγ

)
≤ MI

(
X ;M (X)+B

)
,

establishing (ii) in this branch.
When the "gap" test fails, Algorithm 1 uses Σiso

B = αI with
α = (∑i λ̂i +dc)/(2v), hence

tr(Σiso
B ) =

d
2v

(
∑

i
λi +dc

)
≥ 1

2v
S2 ≥ S2

2β̂
= tr(Σ∗B),

where we used Cauchy–Schwarz S2 = (∑i
√

λi)
2 ≤ d ∑i λi

and v≤ β̂. Thus (i) also holds in this branch.

For (ii), both designs enforce the same budget β̂:

MI
(
X ;M (X)+Bγ

)
≤ β̂, MI

(
X ;M (X)+B

)
≤ β̂.

In the distinct–eigenvalues branch we proved the stronger
order ≤ between the two MI’s. In the isotropic fallback, the
same order holds whenever αI ⪰ Σ∗B (e.g., for nearly isotropic
spectra); otherwise we keep the common upper bound β̂. Ei-
ther way, the stated inequality (ii) is satisfied in the branch
where Algorithm 1’s eigenbasis matches U , and the confi-
dence guarantee always preserves the budget.

M Proof of Proposition 4

Since β1 < β2, any distribution Q satisfying Itrue(Q) ≤ β1
necessarily satisfies Itrue(Q)≤ β2. Consequently, we have the
inclusion F (β1)⊆ F (β2). Let A and Â be arbitrary sets with
A ⊆ B̂, and let f be any real-valued function defined on B.
Then, infx∈A f (x)≥ infx∈Â f (x), with equality holding when
the infimum over Â is attained within the subset A. Apply-
ing this with A = A(β1), Â = F (β2), and f (Q) = EQ

[
∥B∥2

2
]

yields

inf
Q∈F (β1)

EQ
[
∥B∥2

2
]
≥ inf

Q∈F (β2)
EQ
[
∥B∥2

2
]

By definition, Q∗(βi) achieves the infimum of EQ
[
∥B∥2

2
]

over
F (βi) for i = 1,2. Therefore,

EQ∗(β1)

[
∥B∥2

2
]
= inf

Q∈F (β1)
EQ
[
∥B∥2

2
]
≥ inf

Q∈F (β2)
EQ
[
∥B∥2

2
]

= EQ∗(β2)

[
∥B∥2

2
]
.

N Proof of Theorem 2

By Lemma 3 (which is shown and proved later), the function
g(β) = Gapd(Q

∗(β)) is nondecreasing in β. Thus, for any
0 < β1 < β2, we have Gapd(Q

∗(β2))≥ Gapd(Q
∗(β1)), which

yields G(β2,β1)= Gapd(Q
∗(β2))−Gapd(Q∗(β1))≥ 0. Recall

the relationship between true mutual information and the
bound LogDet(M (X),B) = β:

Itrue
(
Q∗(β)

)
= β − Gapd

(
Q∗(β)

)
.

Hence, for 0 < β1 < β2,

Itrue
(
Q∗(β2)

)
− Itrue

(
Q∗(β1)

)
=
[
β2−Gapd(Q

∗(β2))
]
−
[
β1−Gapd(Q

∗(β1))
]

= (β2−β1) −
[
Gapd(Q

∗(β2))−Gapd(Q
∗(β1))

]
= (β2−β1) − G(β2,β1).

The two bullet points now follow immediately: (i) If
G(β2,β1)≤ β2−β1, then

Itrue(Q∗(β2))−Itrue(Q∗(β1)) = (β2−β1)−G(β2,β1)≥ 0,
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i.e. Itrue(Q∗(β1))≤ Itrue(Q∗(β2)). (ii) If G(β2,β1)> β2−β1,
then

Itrue(Q∗(β2))−Itrue(Q∗(β1)) = (β2−β1)−G(β2,β1)< 0,

i.e. Itrue(Q∗(β1))> Itrue(Q∗(β2)).

Lemma 3. Fix a mechanism M and a data distribution D.
Let Q∗(β) be the solution of (5). Then, Gapd(Q

∗(β)) is a
nondecreasing function of β.

Proof. Let g(β) = Gapd(Q
∗(β)) and ΣZ = ΣM (X)+ΣB with

ΣB = Σ∗B(β). By definition,

g(β) = H
(
N (0,ΣZ)

)
−H

(
PM ∗N (0,ΣB)

)
.

Differentiate with respect to β via the chain rule:

dg
dβ

=

〈
∇ΣB [H(N (0,ΣZ))−H(PM ∗N (0,ΣB))] ,

dΣB

dβ

〉
.

The gradient of Gaussian entropy is ∇ΣB H(N (0,ΣZ)) =
1
2 Σ
−1
Z . By de Bruijn’s identity [44],

∇ΣBH(PM ∗N (0,ΣB)) =
1
2

J(PM ∗N (0,ΣB)),

where J(·) is the Fisher information. The Cramér–Rao bound
gives J(PM ∗N (0,ΣB))⪰ Σ

−1
Z . Thus,

∇ΣBg =
1
2
(
Σ
−1
Z − J(PM ∗N (0,ΣB))

)
⪯ 0.

From Proposition 2, dΣB
dβ
⪯ 0 (strictly negative when ΣB

changes). Since both ∇ΣB g and dΣB
dβ

are symmetric negative
semidefinite,

dg
dβ

=

〈
∇ΣB g,

dΣB

dβ

〉
= tr

(
(∇ΣBg)

(
dΣB

dβ

))
≥ 0,

as the trace of the product of two negative semidefinite matri-
ces is nonnegative. Hence g(β) is nondecreasing.

O Proof of Proposition 5

Fix any Q. The Follower’s problem is to find π∗(Q) solving
infπ∈Π W (Q,π). By definition

W (Q,π) = EX∼D,B∼Q [− logπ(X |M (X)+B)]

−
∫

X ,Y ,Rd
PX (x)GM ,Q(y|x,b) logπ(x|y+b)dxdydb,

where PX (x) is the density function associated with data distri-
bution D , and GM ,Q(y|x,b) is the conditional density function
given M and Q.

Let ηQ : Y 7→ ∆(X ) denote the posterior distirbution given
PX and GM ,Q. For any π ∈Π, consider

W (Q,π)−W (Q,ηQ)

=
∫

X ,Y ,Rd
PX (x)GM ,Q(y|x,b) logηQ(x|y+b)dxdydb

−
∫

X ,Y ,Rd
PX (x)GM ,Q(y|x,b) logπ(x|y+b)dxdydb

=
∫

X ,Y ,Rd
PX (x)GM ,Q(y|x,b) log

ηQ(x|y+b)
π(x|y+b)

dxdydb.

Let
PQ(y)≡

∫
X ,Rd

PX (x)GM ,Q(y|x,b)dxdb.

By definition, we have

ηQPQ(y) =
∫

X
PX (x)GM ,Q(y|x,b).

Thus, for all Q ∈ Γ,

W (Q,π)−W (Q,ηQ) = DKL(ηQ∥π)≥ 0.

Then, W (Q,π)≥W (Q,ηQ), where the equality holds if and
only if π = ηQ. That is, for any Q ∈ Γ, there is a unique π(Q)
as a solution of infπ∈Π W (Q,π). In addition, when π(Q) = ηQ,
W (Q,π(Q)) is the conditional entropy.

P Proof of Proposition 6

Based on (iii) of Assumption 1, consider K(Q) =
EB∼Q

[
g(∥B∥)

]
, where g : R+→ R is strictly increasing and

strictly convex.
Suppose, to reach a contradiction, that an optimal Q∗ is

isotropic with ΣQ∗ = σ2Id and attains the constraint with
equality: H (X |M (X)+B) = β̂.

For small ∆v > 0 define the perturbed covariance

Σ
′(∆v)≡ (σ2−∆v)vv⊤+(σ2 +∆u)uu⊤+σ

2P{u,v}⊥ ,

with ∆u ∈ (0,∆v) to be chosen. Denote by h(σ2
u,σ

2
v) ≡

H (X |Y ) the conditional entropy evaluated at those directional
variances.

Because h is C1 and strictly increasing in each argument,
we have

∂h

∂σ2
u

∣∣∣∣
σ2

>
∂h

∂σ2
v

∣∣∣∣
σ2

> 0.

Hence the map

φ∆v(∆u)≡ h(σ2 +∆u,σ
2−∆v)

is continuous and strictly increasing near ∆u = 0, with

φ∆v(0) = β̂− ∂h
∂σ2

v
∆v +o(∆v)< β̂.

27



By the Intermediate Value Theorem, there exists a unique
∆u ∈ (0,∆v) such that φ∆v(∆u) = β̂, i.e. the perturbed noise
Q′ satisfies the privacy constraint exactly.

Because g is strictly convex,

g(σ2 +∆u)−g(σ2)< g′(σ2)∆u,

g(σ2−∆v)−g(σ2)> g′(σ2)(−∆v).

Therefore K (Q′)−K (Q∗) < g′(σ2)(∆u−∆v) < 0. That is,
Q′ is feasible and cheaper than Q∗, contradicting optimality.
Hence no optimum can be isotropic, so every minimiser must
have λmax(Σ)> λmin(Σ).

Q Proof of Proposition 7

Q.1 Part (i):
Since entropy is maximised by a Gaussian with fixed covari-
ance, the entropy-power inequality give

H (Z +Bpac)< H (ZG +Bpac),

where ZG is Gaussian with covariance ΣZ . Thus, MI(Z;Z +
Bpac)< MI(ZG;ZG +Bpac) = β. To raise the mutual informa-
tion back up to β, we can strictly reduce every directional
variance of Bpac. The optimizer Q∗ therefore expands strictly
less power. That is, EQ∗ [∥B∥2

2]< E[∥Bpac∥2
2].

Q.2 Part (ii):
Let σ2

w ≡ Var⟨B,w⟩. Form the Lagrangian

L(Q,λ) = EQ[∥B∥2
2]+λ

(
MI(Z;Z +B)−β

)
.

For the stationarity condition w.r.t. each σ2
w we need the gra-

dient of mutual information. By [37], we have

∂σ2
w
MI(Z;Z +B) = g(w).

Hence ∂σ2
w

L = 1+ λg(w). The KKT conditions therefore
read

1+λg(w) = 0 if σ
2
w > 0, 1+λg(w)≥ 0 if σ

2
w = 0,

for a unique λ < 0. Under the assumption

sup
v∈Slab,∥v∥=1

g(v)< inf
w⊥Slab,∥w∥=1

g(w),

these equalities can hold only for as long as the required
mutual information reduction does not exceed βlab. There-
fore, σ2

v = 0 for every v ∈ Slab. With those label-directions
undisturbed, each class margin eℓ−e j retains its sign, whence
argmaxi(Zi +B∗i ) = ŷ.

R Proof of Theorem 5

R.1 Part (i)
Let Z = M (X) + B. For SR-PAC, the perurbation rule
QSR satisfies H (X |Z) = H (X)−β. By definition, we have
MISR(β) = β. Thus, PrivSR

β
= 1.

For Auto-PAC, the noise BPAC ∼N (0,ΣBPAC(β)) satisfies
1
2 logdet

(
Id +ΣM (X)Σ

−1
BPAC

(β)
)
= β. By Proposition 1, the

true mutual information is

MIPAC(β) = β−Gapd(β),

where Gapd(β) = DKL(PM ,BPAC
∥Q̃M ) ≥ 0. When M (X) is

non-Gaussian, Gapd(β) > 0 for all β > 0. By de Bruijin’s
idensity (e.g., [38]),

d
dβ

Gapd(β) =
1
2

J (PM +BPAC]
(β)∥Q̃M )> 0,

where J (·∥·) is the relative Fisher information. Thus,
PrivPAC

β
= d

dβ
MIPAC(β)< 1 = MISR(β).

R.2 Part (ii)
It is well known that for a fixed prior, mutual information is
convex in the channel law. When Z = M (X)+B, the “chan-
nel law" in our setting of the deterministic mechanism is
determined by the perturbation rule Q. Thus, the mapping
Q 7→ MI(Q) ≡ MI(X ;M (X) + B is convex. The objective
K (Q) = EQ[∥B∥2

2] is linear (hence convex) in Q. In addition,
the constraint set {Q : MI(Q)≤ β} is convex. Then, Slater’s
condition holds because:

(i) when ΣB→ ∞, MI(Q)→ 0 < β;

(ii) V (β) is finite for all β > 0 since E[∥M (X)∥2
2]< ∞.

Hence, the strong duality applies here. Thus, V (β) is convex
and differentiable. The primal-dual problem is formulated as

V̂ (β) =∈Q max
λ

K (Q)+λ(MI(Q)−β).

The envelop theorem implies V̂ ′(β) = λ∗(β) > 0, where
λ∗(β) is the unique optimal dual variable (because K (Q)+
λ(MI(Q)− β) is strict convex in Q for λ > 0). Therefore,
λ∗(β) is non-decreasing.

Let β̃(β) = β−Gapd(Q(β))< β. Since the Gaussian noise
BPAC(β) satisfies MIPAC(BpAC(β)) = β̃(β), we have

VPAC(β) = K (BPAC(β))≥V (β̃(β)).

Since β̃(β)< β and V is strictly increasing, V (β̃(β))>V (β).
Therefore, for all β > 0,

∆(β)≡VPAC(β)−VSR(β)> 0,
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and limβ→0+ ∆(β) = 0.
By Lemma 4 (stated and proved below) to g(β) =VPAC(β)

and f (β) =V (β), we have g′(β)> f ′(β) for all β > 0. That is,
V ′PAC(β) > V ′SR(β). Thus, UtilSR

β
≥ UtilPAC

β
, with equality

only for Gaussian M (X).

Lemma 4 (Height gap⇒ slope gap). Let g, f : (0,∞)→ R
be differentiable, and assume f is convex. If g(β)> f (β) for
every β > 0 and g(0) = f (0), then g′(β) > f ′(β) for every
β > 0.

Proof. Fix β > 0. For h > 0 small, f (β+h)≥ f (β)+h f ′(β)
by convexity. Hence

g(β+h)−g(β)
h

≥ f ′(β)+
g(β)− f (β)

h
.

Sending h ↓ 0 gives g′(β)≥ f ′(β). If equality held we would
need g(β) = f (β), contradicting the strict height gap. Hence
g′(β)> f ′(β).

S More on Experiments

S.1 More On The results of Fig. 2
Fig. 3 zooms in on the SR-PAC curves from Fig. 2 and shows
a clear monotone increase in expected noise power E∥B∥2 =
tr(Σ) as β decreases. This is consistent with the tighter privacy
requirement Hc≥HM−β pushing the mechanism to add more
noise in the high-privacy (small-β) regime.

Fig. 4 further shows that SR-PAC implements the pri-
vacy constraint conservatively: the achieved conditional en-
tropy Hc typically lies at or slightly above the target line
H (X )− β. Equivalently, the effective mutual information
MI(M;Y ) = H (X )−Hc is at or below the nominal budget β;
i.e., the realized mechanism is (slightly) more private than
necessary. This benign overshoot is expected from finite-
sample estimation and our fixed-CRN calibration with a posi-
tive tolerance, which is designed to avoid budget violations.
If desired, the conservatism can be reduced by tightening the
calibration tolerance, enlarging the CRN bank, or applying a
final back-off on the noise scale until Hc falls within a small
band above the target. Importantly, even with this conservative
bias, SR-PAC attains lower noise power and higher accuracy
than Auto-PAC and Efficient-PAC at the same nominal β.

S.2 Empirical Membership Inference Attack
We use the Likelihood-Ratio Attack (LIRA) described in
[6] to perform the empirical membership inference attacks
(MIAs) on the mechanisms privatized by SR-PAC, Auto-PAC,
Efficient-PAC, and DP in Section 6.2, using Iris and Rice
datasets. The empirical posterior success rate (PSR) is mea-
sured as the average accuracy of the MIA.

(a) Iris

(b) Rice

Figure 3: Noise magnitudes of SR-PAC of Fig. 2 a and b. All the
numerical values are shown in Tables 5 and 6.

A theoretical ordering of privacy budgets in mutual in-
formation or conditional entropy does not in general imply
an ordering of a membership–inference attack’s PSR. Fi-
nite–sample effects, non–optimal attacks, calibration error,
and run–to–run variance can all break that implication. We
therefore read the PSR curves in Fig. 5 empirically, as a diag-
nostic rather than a ground–truth ranking of privacy strength.

As β decreases (higher privacy), all mechanisms tend to
push PSR toward 0.5 (chance), but the trends are not strictly
monotone and the rankings cross. This is expected. In partic-
ular, DP is generally conservative and can display lower PSR
at very small β, while PAC–based methods may sit closer to
chance but with visible fluctuations. Auto-PAC and Efficient-
PAC allocate anisotropic noise from second–order structure
(covariance scaling or eigen–allocation); in small–sample
regimes (e.g, Iris and Rice), those moment estimates are noisy
or ill–conditioned, so the resulting implementations are un-
stable and can become conservative (over–noisy), which may
depress PSR at a fixed β.

Our goal with SR-PAC is privacy budget fidelity (i.e., to ad-
dress the conservativeness of Auto-PAC and Efficient-PAC pri-
vatization), not to minimize PSR per se. SR-PAC enforces the
conditional–entropy target directly and typically attains the
desired leakage with less noise than Auto-PAC and Efficient-
PAC. Hence it is plausible—and observed in Fig. 5—that
SR-PAC’s PSR can be comparable to, or occasionally above,
over–noised baselines at the same β. The take–away is that
PSR complements our main metric: SR-PAC achieves tighter
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(a) Iris

(b) Rice

Figure 4: SR-PAC’s performance of implementing the target privacy
budget of Fig. 2 a and b. All the numerical values are shown in
Tables 5 and 6.

budget implementation with lower noise power, while differ-
ences in PSR reflect both budget alignment and attack/model
mismatch rather than a strict ordering induced by β.

S.3 Discussion On The results of Fig. 1

Fig. 1 empirically demonstrates that SR-PAC enforces the
mutual-information budget more tightly than Auto-PAC and
Efficient-PAC, yielding higher accuracy with lower noise. The
performance gaps (both accuracy and noise magnitude) in-
crease as β decreases (i.e., in higher-privacy regimes). This
behavior can be understood as follows.

Budget alignment vs. Gaussian surrogate. SR-PAC en-
forces the privacy constraint directly in terms of conditional
entropy, aligning the mutual information budget with the ac-
tual leakage bound. In contrast, Auto-PAC and Efficient-PAC
rely on Gaussian surrogates that ignore the higher-order, non-
Gaussian structure of the outputs, leading to conservative
privacy budget implementation. This conservativeness can
lead them to add more noise than necessary to meet a given
β, and the inefficiency becomes a larger fraction of the to-
tal budget when β is small, amplifying their disadvantage in
high-privacy regimes.

Directional selectivity under tight budgets. SR-PAC learns
an anisotropic, task-directed noise shape that concentrates
perturbations away from task-critical directions (Theorem 7),
thereby preserving classification margins while still raising

(a) Iris

(b) Rice

Figure 5: The performance of empirical membership inference at-
tack using empritical LIRA, measured by the empirical posterior
success rate (PSR). All the numerical values are shown in Tables 5
and 6.

conditional entropy to the desired level. By contrast, Auto-
PAC and Efficient-PAC are also anisotropic but task-agnostic:
Auto-PAC scales the raw logit covariance (ΣB ∝ Σraw), and
Efficient-PAC allocates along the eigenbasis with ei ∝

√
λi.

Both rely only on second-order statistics and ignore label-
conditioned and higher-order structure, so they can spend
budget along decision-sensitive axes whenever those coincide
with high-variance directions. This mismatch is particularly
costly under tight privacy budgets (small β), where misallo-
cated power yields larger accuracy loss for the same leakage
target.

Non-Gaussian exploitation. As β decreases, the non-
Gaussian structure of the outputs matters more. SR-PAC can
use less total noise by optimally exploiting the geometries
of the outputs (e.g., via leveraging flexible posteriors and
calibration with fixed common random numbers). Gaussian
surrogates cannot capture this effect, so their "privacy per unit
noise" degrades as β shrinks.

Utility sensitivity. Viewing the required noise power as a
utility curve UtilSR

β
(Theorem 5), SR-PAC exhibits better

sensitivity (i.e., larger accuracy retention per unit budget).
As β decreases, the noise power of Auto-PAC and Efficient-
PAC baselines grows faster than that of SR-PAC, widening
the gap in both accuracy and magnitude. When β is large
(loose privacy), all methods add little noise and their perfor-
mance converges. As β decreases (stricter privacy), SR-PAC
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optimally places noise where it is least harmful, yielding pro-
gressively larger gains over Auto-PAC and Efficient-PAC in
both accuracy and noise efficiency.
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Table 1: CIFAR-10 dataset results. Accuracy: higher is better. Noise Magnitude E[∥B∥2
2]: lower is better. Target Match: smaller ∆/Rel.% is

better. All results are averaged over 35 trials.
(a) Accuracy (Fig. 1a)

β Auto-PAC Efficient-PAC SR-PAC

10.00 64.3 % 62.8 % 67.7%
9.50 63.5 % 61.8 % 67.2%
9.00 62.8 % 60.8 % 66.7%
8.50 61.8 % 59.9 % 66.0%
8.00 61.0 % 58.8 % 65.2%
7.50 59.7 % 57.8 % 64.3%
7.00 58.5 % 56.7 % 63.5%
6.50 57.0 % 55.5 % 62.6%
6.00 55.5 % 54.1 % 61.3%
5.50 53.9 % 52.5 % 60.0%
5.00 52.1 % 50.9 % 58.7%
4.50 50.0 % 49.1 % 57.0%
4.00 48.0 % 46.8 % 55.0%
3.50 45.6 % 44.2 % 53.1%
3.00 42.6 % 41.8 % 50.9%
2.50 39.3 % 38.6 % 48.2%
2.00 35.8 % 35.2 % 45.1%
1.50 31.5 % 31.3 % 41.4%
1.00 26.8 % 26.8 % 36.4%
0.50 20.8 % 20.9 % 30.9%
0.25 17.0 % 17.1 % 27.5%

(b) Noise Magnitude (Fig. 1e)

β Auto-PAC Efficient-PAC SR-PAC

10.00 203.6 194.1 86.717
9.50 228.8 218.3 101.123
9.00 257.6 245.9 113.220
8.50 290.8 277.8 127.892
8.00 329.1 314.6 144.288
7.50 373.6 357.5 162.920
7.00 425.8 407.7 184.447
6.50 487.4 467.1 209.897
6.00 560.7 537.8 238.969
5.50 649.1 623.2 272.759
5.00 757.1 727.6 311.272
4.50 891.3 857.5 357.395
4.00 1061.5 1022.4 409.579
3.50 1283.3 1237.3 474.419
3.00 1582.4 1527.5 553.758
2.50 2005.3 1938.1 652.985
2.00 2645.0 2559.4 781.609
1.50 3718.4 3602.3 979.469
1.00 5875.7 5699.4 1290.274
0.50 12369.4 12013.0 1844.353
0.25 25373.0 24657.0 2327.319

(c) Target Match (Fig. 1i)

β Target Achieved ∆ Rel.%

10.00 3.0 2.9762 0.0238 0.8
9.50 3.5 3.4901 0.0099 0.3
9.00 4.0 3.9872 0.0128 0.3
8.50 4.5 4.4889 0.0111 0.3
8.00 5.0 4.9873 0.0127 0.3
7.50 5.5 5.4868 0.0132 0.2
7.00 6.0 5.9853 0.0147 0.2
6.50 6.5 6.4895 0.0105 0.2
6.00 7.0 6.9897 0.0103 0.2
5.50 7.5 7.4881 0.0119 0.2
5.00 8.0 7.9863 0.0137 0.2
4.50 8.5 8.4852 0.0148 0.2
4.00 9.0 8.9867 0.0133 0.2
3.50 9.5 9.4868 0.0132 0.1
3.00 10.0 9.9873 0.0127 0.1
2.50 10.5 10.4908 0.0092 0.1
2.00 11.0 10.9896 0.0104 0.1
1.50 11.5 11.4915 0.0085 0.1
1.00 12.0 11.9920 0.0080 0.1
0.50 12.5 12.4939 0.0061 0.1
0.25 12.8 12.7420 0.0080 0.1

Table 2: CIFAR-100 dataset results. Accuracy: higher is better. Noise Magnitude E[∥B∥2
2]: lower is better. Target Match: smaller ∆/Rel.% is

better. All results are averaged over 35 trials.
(a) Accuracy (Fig. 1b)

β Auto-PAC Efficient-PAC SR-PAC

80.00 55.7% 56.4% 59.1%
75.00 55.2% 56.2% 59.3%
70.00 54.5% 56.0% 58.4%
65.00 53.8% 55.7% 57.8%
60.00 52.8% 55.4% 57.2%
55.00 51.8% 55.1% 56.2%
50.00 50.4% 54.6% 55.7%
45.00 48.9% 54.1% 55.8%
40.00 46.9% 53.7% 54.8%
35.00 44.4% 52.9% 53.4%
30.00 41.3% 51.6% 52.1%
25.00 37.6% 50.1% 50.3%
20.00 33.3% 48.3% 49.2%
15.00 27.5% 45.4% 48.0%
10.00 20.4% 39.8% 46.6%

7.00 15.2% 34.2% 46.3%
5.00 11.7% 28.7% 45.5%
4.00 9.6% 24.7% 45.0%
3.00 7.5% 20.1% 45.1%
2.00 5.5% 15.0% 44.8%
1.00 3.3% 8.7% 45.0%
0.50 2.3% 5.1% 45.1%

(b) Noise Magnitude (Fig. 1e)

β Auto-PAC Efficient-PAC SR-PAC

80.00 295.7 156.1 0.015
75.00 335.7 166.5 9.210
70.00 382.6 178.4 73.285
65.00 437.9 192.1 121.950
60.00 503.8 208.1 173.816
55.00 583.3 227.0 217.047
50.00 680.3 249.7 256.837
45.00 800.9 277.5 267.036
40.00 953.8 312.2 318.676
35.00 1153.1 356.8 409.873
30.00 1421.9 416.2 480.533
25.00 1801.9 499.5 659.901
20.00 2376.8 624.3 709.042
15.00 3341.2 832.4 799.096
10.00 5279.8 1248.6 927.919
7.00 7778.9 1783.8 955.096
5.00 11114.8 2497.3 1060.981
4.00 14035.3 3121.6 1027.777
3.00 18904.0 4162.1 1057.745
2.00 28643.4 6243.2 1114.597
1.00 57865.4 12486.4 1059.941
0.50 116312.4 24972.7 1062.913

(c) Target Match (Fig. 1i)

β Target Achieved ∆ Rel.%

80.00 30.0 32.9105 2.9105 9.7
75.00 35.0 35.0027 0.0027 0.0
70.00 40.0 40.0269 0.0269 0.1
65.00 45.0 45.0010 0.0010 0.0
60.00 50.0 50.0244 0.0244 0.1
55.00 55.0 55.0116 0.0116 0.0
50.00 60.0 60.0306 0.0306 0.1
45.00 65.0 65.0453 0.0453 0.1
40.00 70.0 70.0253 0.0253 0.0
35.00 75.0 75.0114 0.0114 0.0
30.00 80.0 80.0208 0.0208 0.0
25.00 85.0 85.0612 0.0612 0.1
20.00 90.0 90.0738 0.0738 0.1
15.00 95.0 95.0488 0.0488 0.1
10.00 100.0 100.0729 0.0729 0.1
7.00 103.0 103.0800 0.0800 0.1
5.00 105.0 105.0304 0.0304 0.0
4.00 106.0 106.1096 0.1096 0.1
3.00 107.0 107.0857 0.0857 0.1
2.00 108.0 108.0618 0.0618 0.1
1.00 109.0 109.0935 0.0935 0.1
0.50 109.5 109.5334 0.0334 0.0

Table 3: MNIST dataset. Accuracy: higher is better. Noise Magnitude E[∥B∥2
2]: lower is better. Target Match: smaller ∆/Rel.% is better. All

results are averaged over 35 trials.
(a) Accuracy (Fig. 1c)

β Auto-PAC Efficient-PAC SR-PAC

7.00 92.3% 85.6% 98.4%
6.50 91.3% 84.3% 98.4%
6.00 89.4% 82.9% 98.4%
5.50 87.1% 81.0% 97.0%
5.00 84.4% 78.9% 95.4%
4.50 81.1% 76.5% 93.4%
4.00 77.5% 73.8% 91.3%
3.50 73.2% 70.4% 89.1%
3.00 68.0% 66.5% 87.1%
2.50 62.1% 62.0% 85.2%
2.00 55.3% 56.7% 83.6%
1.50 47.3% 50.2% 82.0%
1.00 38.5% 41.9% 80.5%
0.50 28.1% 30.6% 79.1%
0.25 21.0% 23.5% 78.3%

(b) Noise Magnitude (Fig. 1g)

β Auto-PAC Efficient-PAC SR-PAC

7.00 86.7 133.5 0.000
6.50 99.3 143.7 0.000
6.00 114.2 155.7 0.000
5.50 132.2 169.9 28.292
5.00 154.2 186.8 55.036
4.50 181.6 207.6 77.870
4.00 216.2 233.6 97.935
3.50 261.4 266.9 116.500
3.00 322.4 311.4 133.862
2.50 408.5 373.7 150.256
2.00 538.8 467.1 164.749
1.50 757.5 622.8 179.350
1.00 1197.0 934.2 194.086
0.50 2519.9 1868.4 208.289
0.25 5169.0 3736.8 215.495

(c) Target Match (Fig. 1k)

β Target Achieved ∆ Rel.%

7.00 4.7 5.8283 1.0805 22.8
6.50 5.2 5.8283 0.5805 11.1
6.00 5.7 5.8283 0.0805 1.4
5.50 6.2 6.2481 0.0003 0.0
5.00 6.7 6.7489 0.0011 0.0
4.50 7.2 7.2529 0.0051 0.1
4.00 7.7 7.7541 0.0063 0.1
3.50 8.2 8.2578 0.0100 0.1
3.00 8.7 8.7573 0.0095 0.1
2.50 9.2 9.2510 0.0032 0.0
2.00 9.7 9.7523 0.0045 0.1
1.50 10.2 10.2496 0.0018 0.0
1.00 10.7 10.7519 0.0041 0.0
0.50 11.2 11.2606 0.0128 0.1
0.25 11.5 11.5088 0.0110 0.1
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Table 4: Ag-news dataset results. Accuracy: higher is better. Noise Magnitude E[∥B∥2
2]: lower is better. Target Match: smaller ∆/Rel.% is

better. All results are averaged over 35 trials.
(a) Accuracy (Fig. 1d)

β Auto-PAC Efficient-PAC SR-PAC

9.50 96.7% 89.6% 96.6%
9.00 96.6% 89.3% 95.8%
8.50 96.5% 88.9% 95.1%
8.00 96.3% 88.4% 94.6%
7.50 96.0% 87.9% 93.5%
7.00 95.7% 87.3% 92.6%
6.50 95.3% 86.7% 92.3%
6.00 94.8% 85.9% 91.8%
5.50 94.1% 85.1% 91.6%
5.00 93.1% 84.2% 91.6%
4.50 91.9% 83.0% 89.3%
4.00 90.2% 81.7% 89.5%
3.50 88.1% 80.1% 89.5%
3.00 85.2% 78.1% 89.4%
2.50 81.5% 75.6% 87.1%
2.00 76.6% 72.4% 88.6%
1.50 70.2% 68.0% 86.2%
1.00 61.8% 61.8% 87.8%
0.50 50.2% 52.0% 87.0%
0.25 42.2% 44.2% 87.6%
0.08 35.4% 36.9% 85.1%
0.06 34.2% 35.6% 86.0%
0.02 33.6% 34.9% 86.8%

(b) Noise Magnitude (Fig. 1h)

β Auto-PAC Efficient-PAC SR-PAC

9.50 1.2 20.7 0.54
9.00 1.5 21.9 1.79
8.50 2.0 23.2 3.07
8.00 2.5 24.6 3.99
7.50 3.3 26.2 6.05
7.00 4.3 28.1 7.70
6.50 5.5 30.3 8.70
6.00 7.2 32.8 9.90
5.50 9.3 35.8 10.57
5.00 12.2 39.4 10.24
4.50 16.1 43.7 15.72
4.00 21.4 49.2 15.88
3.50 28.7 56.2 16.05
3.00 39.2 65.6 16.49
2.50 54.8 78.7 23.51
2.00 79.5 98.4 19.39
1.50 122.3 131.2 25.96
1.00 210.5 196.8 21.14
0.50 480.8 393.6 23.16
0.25 1025.7 787.3 21.77
0.08 3346.4 2460.3 26.33
0.06 4484.3 3280.3 27.45
0.02 13588.6 9841.0 29.47

(c) Target Match (Fig. 1l)

β Target Achieved ∆ Rel.%

9.50 0.2 0.2112 0.0003 0.1
9.00 0.7 0.7119 0.0010 0.1
8.50 1.2 1.2166 0.0057 0.5
8.00 1.7 1.7179 0.0070 0.4
7.50 2.2 2.2207 0.0098 0.4
7.00 2.7 2.7178 0.0069 0.3
6.50 3.2 3.2152 0.0043 0.1
6.00 3.7 3.7220 0.0111 0.3
5.50 4.2 4.2152 0.0043 0.1
5.00 4.7 4.7198 0.0089 0.2
4.50 5.2 5.2149 0.0040 0.1
4.00 5.7 5.7188 0.0079 0.1
3.50 6.2 6.2142 0.0033 0.1
3.00 6.7 6.7129 0.0020 0.0
2.50 7.2 7.2273 0.0164 0.2
2.00 7.7 7.7260 0.0151 0.2
1.50 8.2 8.2306 0.0197 0.2
1.00 8.7 8.7154 0.0045 0.1
0.50 9.2 9.2115 0.0006 0.0
0.25 9.5 9.4754 0.0145 0.2
0.08 9.6 9.6524 0.0215 0.2
0.06 9.7 9.6534 0.0025 0.0
0.02 9.7 9.6975 0.0066 0.1

Table 5: Iris dataset results. Empirical Posterior Success Rate (PSR), Noise Magnitude, and Target Match. Empirical PSR: higher is better.
Noise Magnitude: lower is better. Target Match: smaller ∆/Rel.% is better. All results are averaged over 35 trials.

(a) Empirical PSR

β SR-PAC DP Auto-PAC Efficient-PAC

0.5000 0.5560 0.5249 0.5609 0.5547
0.2500 0.5643 0.5202 0.5415 0.5225
0.1250 0.5538 0.5197 0.5391 0.5187
0.0625 0.5695 0.5089 0.5284 0.5325
0.0312 0.5330 0.5112 0.5218 0.5165
0.0156 0.5141 0.5176 0.5241 0.5399
0.0078 0.5278 0.5201 0.5422 0.5236

(b) Noise Magnitude

β SR-PAC DP Auto-PAC Efficient-PAC

0.5000 0.006399 0.0042 0.0865 0.0256
0.2500 0.006410 0.0085 0.0909 0.0261
0.1250 0.007846 0.0136 0.1073 0.0321
0.0620 0.007379 0.0208 0.0991 0.0283
0.0310 0.007079 0.0314 0.1087 0.0400
0.0160 0.007284 0.0481 0.1147 0.0379
0.0080 0.007979 0.0753 0.1161 0.0381

(c) Target Match (SR-PAC)

β Target Hc Achieved Hc ∆ Rel.%

0.5000 20.3 20.467 0.1730 0.9
0.2500 20.5 20.600 0.0560 0.3
0.1250 20.7 20.884 0.2150 1.0
0.0620 20.7 20.889 0.1570 0.8
0.0310 20.8 20.780 0.0170 0.1
0.0160 20.8 20.776 −0.0030 0.0
0.0080 20.8 20.908 0.1210 0.6

Table 6: Rice dataset results. Empirical Posterior Success Rate (PSR), Noise Magnitude, and Target Match. Empirical PSR: higher is better.
Noise Magnitude: lower is better. Target Match: smaller ∆/Rel.% is better. All results are averaged over 35 trials.

(a) Empirical PSR

β SR-PAC DP Auto-PAC Efficient-PAC

0.5000 0.5506 0.5409 0.5672 0.5752
0.2500 0.5940 0.5383 0.5738 0.5825
0.1250 0.5631 0.5354 0.5812 0.5690
0.0625 0.5697 0.5606 0.5507 0.5695
0.0312 0.5762 0.5452 0.5749 0.5698
0.0156 0.5775 0.5377 0.5534 0.5294
0.0078 0.5782 0.5325 0.5736 0.5505

(b) Noise Magnitude

β SR-PAC DP Auto-PAC Efficient-PAC

0.5000 0.003159 0.0020 0.1168 0.0112
0.2500 0.003148 0.0030 0.1291 0.0117
0.1250 0.003217 0.0038 0.1417 0.0165
0.0620 0.003230 0.0047 0.1348 0.0115
0.0310 0.003427 0.0056 0.1589 0.0225
0.0160 0.003380 0.0068 0.2287 0.0475
0.0080 0.003985 0.0082 0.2136 0.0907

(c) Target Match (SR-PAC)

β Target Achieved ∆ Rel.%

0.5000 20.3 22.896 2.6020 12.8
0.2500 20.5 22.825 2.2810 11.1
0.1250 20.7 22.884 2.2150 10.7
0.0620 20.7 23.156 2.4240 11.7
0.0310 20.8 23.444 2.6810 12.9
0.0160 20.8 23.516 2.7370 13.2
0.0080 20.8 27.687 6.9000 33.2
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