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Abstract

In this paper, we examine the convergence landscape of multi-agent learning under
uncertainty. Specifically, we analyze two stochastic models of regularized learning
in continuous games—one in continuous and one in discrete time—with the aim
of characterizing the long-run behavior of the induced sequence of play. In stark
contrast to deterministic, full-information models of learning (or models with a
vanishing learning rate), we show that the resulting dynamics do not converge in
general. In lieu of this, we ask instead which actions are played more often in
the long run, and by how much. We show that, in strongly monotone games, the
dynamics of regularized learning may wander away from equilibrium infinitely
often, but they always return to its vicinity in finite time (which we estimate),
and their long-run distribution is sharply concentrated around a neighborhood
thereof. We quantify the degree of this concentration, and we show that these
favorable properties may all break down if the underlying game is not strongly
monotone—underscoring in this way the limits of regularized learning in the
presence of persistent randomness and uncertainty.

1 Introduction

In its most abstract form, the standard model for online learning in games unfolds as follows: (i ) at
each stage of the process, every participating agent selects an action; (ii ) the agents receive a reward
determined by their chosen actions and their individual payoff functions; (iii ) the agents update their
actions, and the process repeats. In this general context, the agents have to contend with various—and
varying—degrees of uncertainty: (a) uncertainty about the game, the strategic interests of other
players, and/or who else is involved in the game; (b) uncertainty about the outcomes of their actions,
and which update directions may lead to better outcomes; and (c) uncertainty stemming from the
environment, manifesting as random shocks to the players’ payoffs and / or other disturbances. In this
regard, uncertainty could be either endogenous or exogenous; but, in either case, it leads to players
having to take decisions with very limited information at their disposal.

Our goal in this paper is to quantify the impact of uncertainty on multi-agent learning—and, more
precisely, to understand the differences that arise in the players’ long-run behavior when such
uncertainty is present versus when it is not. A natural framework for exploring this question is within
the greater setting of no-regret learning and, in particular, the family of “follow-the-regularized-
leader” (FTRL) algorithms and dynamics [38, 64, 65]. This class contains several mainstay learning
methods—like online gradient descent (or, in our case, ascent) [74], the exponential / multiplicative
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weights (EW) algorithm and its variants (HEDGE, EXP3, etc.) [1, 2, 40, 69], and many others—so it
has become practically synonymous with the notion of online learning in games. Accordingly, we
seek to answer the following questions:

What is the long-run distribution of regularized learning under uncertainty?
Which actions are played more often, and by how much?

Do the dynamics concentrate—and, if so, where?

Our contributions in the context of related work. Needless to say, the interpretation of these
questions is context-specific, and it depends on the particular learning setting at hand. In this paper,
motivated by applications to machine learning, signal processing and data science (which typically
involve continuous action spaces and rewards), we focus on continuous games, and we consider two
models of regularized learning, one in continuous time, and one in discrete time.

In continuous time, we model the dynamics of FTRL in the presence of uncertainty as a stochastic
differential equation (SDE) perturbed by a general Itô diffusion process, i.e., a continuous-time
martingale with possibly colored and/or correlated components. In the context of finite games,
models of this type have been studied by, among others, Bravo & Mertikopoulos [10], Foster &
Young [20], Fudenberg & Harris [21] and Mertikopoulos & Moustakas [43, 44], the first two in an
evolutionary setting, the latter as a continuous-time model of the EW algorithm in the presence of
random disturbances. Follow-up works in this direction include [10–12, 18, 25, 28, 49] on finite
games, while [33–35, 47] considered a regularized learning model in convex minimization problems.
The model which is closest to our own is that of [46, 48], who study the regret properties and
guarantees of a stochastic version of the dual averaging dynamics of Nesterov [57].

At a high level, our findings reveal a crisp dichotomy between games that are null-monotone (like
bilinear min-max games or zero-sum bimatrix games), and strongly monotone games (like Kelly
auctions, Cournot competitions, joint signal covariance optimization problems, etc.). Specifically:

1. In null-monotone games, uncertainty induces a persistent drift away from equilibrium: the
dynamics reach greater distances from equilibrium in finite time (which we estimate) and they
require, on average, infinite time to return. In particular, if the game admits an interior equilibrium,
the dynamics diffuse away—escaping in the mean toward infinity or to the boundary of the game’s
action space—and they exhibit no concentration in any region of interior actions.

2. In strongly monotone games, uncertainty still induces a persistent outward drift, but this is now
partially countered by the dynamics’ deterministic component. Thus, in stark contrast to the
null-monotone case, the players’ learning trajectories end up in a near-equilibrium region whose
size scales with the level of uncertainty, and we estimate both the size of this region and the time
required to reach it. Somewhat paradoxically, the dynamics return with probability 1 arbitrarily
close to where they started, infinitely often, in a way reminiscent of Poincaré recurrence in
bimatrix min-max games [52, 59]; however, these returns can be exceedingly far apart, so there is
no antinomy.

In discrete time, we consider a standard implementation of FTRL with a constant learning rate and
stochastic first-order oracle feedback. Variants with a vanishing learning rate have been studied
extensively in the stochastic approximation literature, and they are known to exhibit favorable
convergence guarantees in, among others, strongly monotone games, cf. [50, 54] and references
therein. At the same time however, these properties typically come at the expense of the algorithm
slowing down to a crawl; for this reason, owing to their simplicity, robustness, and superior empirical
performance, constant / non-vanishing learning rate schedules are much more common in practice.

On the downside, the long-run behavior of FTRL is much less understood in this case. To the best of
our knowledge, the most relevant results come from recent works by Loizou et al. [41] and Huang
& Zhang [27], who established upper bounds on the mean distance to equilibrium for stochastic
gradient descent / ascent in strongly monotone games, and Vlatakis et al. [68], who studied the
ergodic properties of constant step-size variants of the stochastic extragradient and stochastic gradient
descent–ascent algorithms for weakly quasi-strongly monotone variational inequalities. Dually to
this, in the null-monotone regime, Cauvin et al. [12] showed that FTRL exhibits a similar tendency to
escape from interior equilibria in finite min-max and harmonic games; our continuous-time analysis
is, in this view, an extension of the corresponding result of [12].
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One reason that results about the statistics of the long-run behavior of FTRL are particularly scarce
in the literature is that, in discrete time, even the most basic tools of stochastic analysis are often
inapplicable; for an illustration of the difficulties involved, see e.g., Azizian et al. [3, 4] and references
therein. Nevertheless, based in no small part on the insights gained by our continuous-time analysis,
we manage to establish the following version of the strong-null dichotomy in discrete time:

1. In null-monotone games with an unbounded action space, the sequence of play under FTRL drifts
away to infinity on average (though not necessarily with probability 1).

2. In strongly monotone games, we show that the mean time required to reach a given distance
from the game’s equilibrium is finite, and we provide an explicit estimate thereof. If the game’s
equilibrium is interior, we also show that FTRL converges strongly to a unique invariant measure,
which is concentrated in a certain region around the game’s equilibrium, which we also estimate.

We find these results particularly appealing as they provide the first glimpse into the distributional
properties of multi-agent regularized learning under uncertainty.

2 Preliminaries

2.1. Continuous games. Throughout the sequel, we consider games with a finite number of players
and a continuum of actions per player. Formally, players will be indexed by 𝑖 ∈ N = {1, . . . , 𝑁}
and, during play, each player will be selecting an action 𝑥𝑖 from a closed convex subset X𝑖 of some
𝑑𝑖-dimensional normed space V𝑖 . Aggregating over all players, we will write X =

∏
𝑖 X𝑖 for the

space of the players’ joint action profiles 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) and 𝑑 =
∑

𝑖 𝑑𝑖 for the dimension of the
ambient space V =

∏
𝑖 V𝑖 . Finally, we will use the shorthand 𝑥 = (𝑥𝑖; 𝑥−𝑖) when we want to highlight

the action of player 𝑖 ∈ N against the action profile 𝑥−𝑖 = (𝑥 𝑗 ) 𝑗≠𝑖 of all other players—and, in similar
notation, X−𝑖 =

∏
𝑗≠𝑖 X 𝑗 for the space thereof.

The reward of each player 𝑖 ∈ N in a given action profile will be determined by an associated payoff
function 𝑢𝑖 : X → ℝ, assumed here to be individually concave in the sense that 𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) is concave
in 𝑥𝑖 for all 𝑥−𝑖 ∈ X−𝑖 . We will further assume that each 𝑢𝑖 is 𝛽-Lipschitz smooth, and we will write
respectively

𝑣𝑖 (𝑥) = ∇𝑥𝑖𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) and 𝑣(𝑥) = (𝑣1 (𝑥), . . . , 𝑣𝑁 (𝑥)) (1)

for the individual gradient field of each player and the ensemble thereof.1

The tuple G ≡ G (N ,X , 𝑢) will be referred to as a concave game [62]. Mainstay examples of such
games include (mixed extensions of) finite games, resource allocation problems, Kelly auctions,
Cournot competitions, etc.; for completeness, we detail some of these applications in Appendix A.

2.2. Nash equilibrium. The leading solution concept in game theory is that of a Nash equilibrium,
defined here as an action profile 𝑥∗ ∈ X which discourages unilateral deviations, i.e.,

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥𝑖 ∈ X𝑖 and all 𝑖 ∈ N . (NE)

A concave game always admits a Nash equilibrium if X is compact, and it admits a unique equilibrium
if the game is strongly monotone in the sense of Definition 1 below:
Definition 1. A game G ≡ G (N ,X , 𝑢) is called 𝛼-monotone if there exists some 𝛼 ≥ 0 such that

⟨𝑣(𝑥′) − 𝑣(𝑥), 𝑥′ − 𝑥⟩ ≤ −𝛼∥𝑥′ − 𝑥∥2 for all 𝑥, 𝑥′ ∈ X . (Mon)

If (Mon) holds for some 𝛼 > 0, the game will be called strongly monotone; otherwise, if (Mon) only
holds for 𝛼 = 0, G will be called merely monotone (or simply monotone when the distinction is not
important). Finally, if (Mon) binds for 𝛼 = 0 and all 𝑥, 𝑥′ ∈ X—that is, ⟨𝑣(𝑥′) − 𝑣(𝑥)), 𝑥′ − 𝑥⟩ = 0
for all 𝑥, 𝑥′ ∈ X—the game will be called null-monotone. ❦

Remark 1. Merely monotone games could be viewed as a “hybrid” between null and strictly monotone
games: generically, at any given action profile of a merely monotone game, there would be directions
of motion where the (symmetrized) Jacobian of the players’ gradient field has a zero eigenvalue, and
directions with positive eigenvalues; either set (but not both) could be empty, the former corresponding
to the “null-monotone” directions, the latter corresponding to the “strongly monotone” ones. ❦

1We are tacitly assuming here that the players’ payoff functions are defined in an open neighborhood of X in
V; this assumption is done only for convenience, and it does not affect any of our results.
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Remark 2. A weighted variant of (Mon) is sometimes called diagonal (strict / strong) concavity, in
reference to the work of Rosen [62]; for a pointed version of these conditions known as variational
stability [26, 50, 54] or coherence [53, 73]. These variants will not be important for our purposes. ❦

2.3. Regularized learning. In the rest of our paper, we will consider a family of online learning
schemes adhering to the following model of “regularized learning”: players aggregate gradient
feedback on their payoff functions over time and, at each instance of play, they choose the action
which is most closely aligned to this aggregate. We provide a detailed description of this model in
Sections 3 and 4—in continuous and discrete time respectively—and only describe here the core idea.

At a high level, the common denominator of these schemes is the way that players choose their
actions based on the accumulation of payoff gradients over time. Formally, we will treat payoff
gradients as dual vectors and we will write Y𝑖 :=V∗

𝑖
for the dual space of V𝑖 and Y =

∏
𝑖 Y𝑖 = V∗ for

the ensemble thereof. Then, given an aggregate of gradient steps 𝑦𝑖 ∈ Y𝑖 , we will assume that the
𝑖-th player chooses an action via a “generalized projection”—or mirror—map 𝑄𝑖 : Y𝑖 → X𝑖 of the
general form

𝑄𝑖 (𝑦𝑖) = arg max𝑥𝑖
{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} for all 𝑦𝑖 ∈ Y𝑖 . (2)

In the above ℎ𝑖 : X𝑖 → ℝ is a continuous 𝐾𝑖-strongly convex function, that is,

ℎ𝑖 (𝜆𝑥𝑖 + (1 − 𝜆)𝑥′𝑖) ≤ 𝜆ℎ𝑖 (𝑥𝑖) + (1 − 𝜆)ℎ𝑖 (𝑥′𝑖) − 1
2𝐾𝑖𝜆(1 − 𝜆)∥𝑥′𝑖 − 𝑥𝑖 ∥2 (3)

for all 𝑥𝑖 , 𝑥′𝑖 ∈ X𝑖 and all 𝜆 ∈ [0, 1]. This function is known as the regularizer of the method and it
acts as a penalty term that smooths out the “hard” arg max correspondence 𝑦𝑖 ↦→ arg max𝑖 ⟨𝑦𝑖 , 𝑥𝑖⟩.
This regularization scheme has a very long and rich history in game theory and optimization, where
𝑄 is often referred to as a “quantal” or “regularized” best response operator, cf. [38, 42, 50, 64, 67]
and references therein. For concreteness, we describe below the two leading examples of this
regularization setup (suppressing in both cases the player index 𝑖 ∈ N for notational clarity):
Example 1 (Euclidean regularization). Let ℎ(𝑥) = 1

2 ∥𝑥∥
2
2. Then (B.12) boils down to the Euclidean

projection map
𝑄(𝑦) = ΠX (𝑦) ≡ arg max𝑥∈X ∥𝑦 − 𝑥∥2 . (4)

Thus, in particular, if X = V , we readily recover the identity map 𝑄(𝑦) = 𝑦. ❦

Example 2 (Entropic regularization). Let X = {𝑥 ∈ ℝ𝑑
+ : ∑𝑑

𝑘=1 𝑥𝑘 = 1} be the unit simplex of ℝ𝑑 ,
and let ℎ(𝑥) = ∑𝑑

𝑘=1 𝑥𝑘 log 𝑥𝑘 denote the (negative) entropy on X . Then (B.12) yields the logit map

𝑄(𝑦) = Λ(𝑦) ≡ (exp(𝑦1), . . . , exp(𝑦𝑑))
exp(𝑦1) + · · · + exp(𝑦𝑑)

. (5)

This map forms the basis of the seminal HEDGE and EXP3 algorithms in online learning, cf. [1, 2,
13, 38, 40, 64] and references therein. ❦

To ease notation in the sequel, we will write ℎ(𝑥) :=∑
𝑖 ℎ𝑖 (𝑥𝑖) for the players’ aggregate regularizer,

𝐾 :=min𝑖 𝐾𝑖 for the strong convexity modulus of ℎ, and 𝑄 :=∏
𝑖 𝑄𝑖 : Y → X for the resulting

ensemble mirror map. In the next sections, we describe in detail how this regularization setup is used
in a learning context.

3 Learning under uncertainty in continuous time

To set the stage for the sequel, we begin with two simple games that will serve as “minimal working
examples” for the more general model and results presented in the sections to come. We focus for the
moment on continuous-time interactions; the discrete-time setting is presented in Section 4.

3.1. A gentle start. Consider the following 2-player, convex-concave min-max games:
(𝑎) Bilinear saddle: 𝑢1 (𝑥1, 𝑥2) = −𝑢2 (𝑥1, 𝑥2) = −𝑥1𝑥2 for 𝑥1, 𝑥2 ∈ ℝ. (6a)

(𝑏) Quadratic saddle: 𝑢1 (𝑥1, 𝑥2) = −𝑢2 (𝑥1, 𝑥2) = 𝑥2
2/2 − 𝑥

2
1/2 for 𝑥1, 𝑥2 ∈ ℝ. (6b)

Both games are monotone and they admit a unique Nash equilibrium at the origin. Their gradient
fields are 𝑣(𝑥1, 𝑥2) = (−𝑥2, 𝑥1) and 𝑣(𝑥1, 𝑥2) = −(𝑥1, 𝑥2) respectively, so the first game is null-
monotone and the second one is 1-strongly monotone. Accordingly, if each player follows their
individual payoff gradient to increase their rewards, we obtain the gradient descent / ascent dynamics

(𝑎) ¤𝑥(𝑡) = (−𝑥2 (𝑡), 𝑥1 (𝑡)) and (𝑏) ¤𝑥(𝑡) = −(𝑥1 (𝑡), 𝑥2 (𝑡)) (GDA)
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for the bilinear and quadratic games (6a) and (6b) respectively. It is then trivial to see that, in the
bilinear case, (GDA) cycles periodically at a constant distance from the game’s equilibrium, whereas,
in the quadratic case, the dynamics converge to the game’s equilibrium at a geometric rate.

To model uncertainty in this setting, we will consider the stochastic gradient dynamics

𝑑𝑋 (𝑡) = 𝑣(𝑋 (𝑡)) 𝑑𝑡 + 𝜎 𝑑𝑊 (𝑡) (S-GDA)

where𝑊 (𝑡) = (𝑊1 (𝑡),𝑊2 (𝑡)) is a Brownian motion in ℝ2 and 𝜎 > 0 is the magnitude of the noise
entering the process. Intuitively, this SDE should be viewed as a rigorous formulation of the informal
model ¤𝑥(𝑡) = 𝑣(𝑥 (𝑡)) + “noise”, with the Brownian term𝑊 (𝑡) capturing all sources of randomness
and uncertainty in the players’ environment.2 Consequently, to understand the impact of uncertainty
in each case of (GDA), we will examine the following quantities:

1. The distance ∥𝑋 (𝑡)∥22 of 𝑋 (𝑡) from the game’s equilibrium (that is, the origin of ℝ2).
2. The time 𝜏𝑟 = inf{𝑡 > 0 : ∥𝑋 (𝑡)∥2 ≤ 𝑟} at which 𝑋 (𝑡) gets within 𝑟 of the game’s equilibrium.
3. The density P (𝑥, 𝑡) of 𝑋 (𝑡)—and, if it exists, its long-run limit P∞ (𝑥) := lim𝑡→∞ P (𝑥, 𝑡).
When it exists, P∞ is known as the stationary—or invariant—distribution of 𝑋 , and it is closely
related to the occupation measure 𝜇𝑡 of the process, defined here as

𝜇𝑡 (B) =
1
𝑡

∫ 𝑡

0
1{𝑋 (𝑠) ∈ B} 𝑑𝑠 for every Borel B ⊆ X . (7)

Under mild ergodicity conditions [30, Cor. 25.9], we have lim𝑡→∞ 𝜇𝑡 (B) =
∫
B P∞ so, concretely, P∞

measures the fraction of time that 𝑋 (𝑡) spends in a given subset of X in the long run.

Taken together, these metrics provide a fairly complete picture of the statistics of 𝑋 (𝑡) so, in the rest
of this section, we analyze them in the context of (S-GDA) applied to the games (6a) and (6b).

Case 1: Bilinear saddles. In this case, by a direct application of Itô’s formula—the chain rule of
stochastic calculus [58, Chap. 4]—we readily obtain

𝑑
(
∥𝑋 (𝑡)∥22

)
= 2𝑋 (𝑡) · 𝑑𝑋 (𝑡) + 𝑑𝑋 (𝑡) · 𝑑𝑋 (𝑡) = 2𝜎2 𝑑𝑡 + 𝜎 𝑋 (𝑡) · 𝑑𝑊 (𝑡) . (8)

This suggests that, on average, ∥𝑋 (𝑡)∥22 increases as Θ(𝜎2𝑡). Building on this observation, we show
in Appendix D that the dynamics (S-GDA) for the bilinear game (6a) enjoy the following properties:

Proposition 1. Suppose that (S-GDA) is run on the game (6a) with initial condition 𝑥0 ∈ ℝ2. Then:

1. lim𝑡→∞ 𝔼𝑥0

[
∥𝑋 (𝑡)∥22

]
= ∞, i.e., 𝑋 (𝑡) escapes to infinity in mean square.

2. 𝔼𝑥0 [𝜏𝑟 ] = ∞ if 𝑟 < ∥𝑥0∥, i.e., 𝑋 (𝑡) takes infinite time on average to get closer to equilibrium.

3. The limit P∞ (𝑥) = lim𝑡→∞ P (𝑥, 𝑡) does not exist, i.e., 𝑋 does not admit an invariant distribution.

Proposition 1 shows that, in the presence of uncertainty, the periodicity of the deterministic dynamics
(GDA) is completely destroyed. In fact, despite random fluctuations that occasionally bring 𝑋 (𝑡)
closer to equilibrium, (S-GDA) exhibits a consistent drift away from equilibrium, escaping any
compact set in finite time and requiring infinite time to return on average. As a result, 𝑋 (𝑡) becomes
infinitely spread out in the long run, exhibiting no measurable concentration in any region of ℝ2. For
a partial illustration of this behavior—which we view as antithetical to convergence—cf. Fig. 1. ❦

Case 2: Quadratic saddles. We now proceed to examine the behavior of (S-GDA) in the quadratic
min-max problem (6b), where (S-GDA) gives

𝑑𝑋 (𝑡) = −𝑋 (𝑡) 𝑑𝑡 + 𝜎 𝑑𝑊 (𝑡) . (9)

As is well known [36, Chap. 7.4], this SDE describes the 2-dimensional Ornstein–Uhlenbeck (OU)
process

𝑋 (𝑡) = 𝑋 (0)𝑒−𝑡 + 𝜎
∫ 𝑡

0 𝑒
−(𝑡−𝑠) 𝑑𝑊 (𝑠) . (OU)

Hence, by unfolding the stochastic integral in (OU), we can draw the following conclusions:
Proposition 2. Suppose that (S-GDA) is run on the game (6b) with initial condition 𝑥0 ∈ ℝ2. Then:

2For a primer on SDEs, see [36, 58]; for completeness, we also present some basic definitions in Appendix C.
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1. lim𝑡→∞ 𝔼𝑥0

[
∥𝑋 (𝑡)∥22

]
= 𝜎2, i.e., the dynamics fluctuate at mean distance 𝜎 from equilibrium.

2. The mean time required to get within distance 𝑟 of the game’s equilibrium is bounded as

𝔼𝑥0 [𝜏𝑟 ] ≤
1
2
∥𝑥0∥22 − 𝑟

2

𝑟2 − 𝜎2 for all 𝜎 < 𝑟 < ∥𝑥0∥2. (10)

3. The density of 𝑋 (𝑡) is P (𝑥, 𝑡) = [𝜋𝜎2 (1 − 𝑒−2𝑡 )]−1 exp
(
− ∥𝑥−𝑒

−𝑡 𝑥0 ∥22
(1−𝑒−2𝑡 )𝜎2

)
. In particular, 𝑋 (𝑡) con-

verges in distribution to a Gaussian random variable centered at 0, viz.

P∞ (𝑥) ≡ lim𝑡→∞ P (𝑥, 𝑡) = 1/(𝜋𝜎2) · 𝑒−∥𝑥 ∥22/𝜎2
. (11)

Proposition 2 shows that the geometric convergence properties of the deterministic dynamics (GDA)
are again destroyed in the presence of uncertainty. However, in stark contrast to Proposition 1 for
the bilinear case, 𝑋 (𝑡) now exhibits a consistent drift toward equilibrium, and it ends up being
sharply concentrated at a distance of O(𝜎2) from equilibrium. This interplay between recurrence
and concentration will play a crucial role in the sequel, and our aim in the rest of this section will be
to quantify the extent to which it holds in a more general setting.

3.2. Learning in continuous time. We now proceed to describe our general model for multi-agent
learning under uncertainty, hinging on the stochastic “follow-the-regularized-leader” template

𝑑𝑌𝑖 (𝑡) = 𝑣𝑖 (𝑋 (𝑡)) 𝑑𝑡 + 𝑑𝑀𝑖 (𝑡) 𝑋𝑖 (𝑡) = 𝑄𝑖 (𝑌𝑖 (𝑡)) . (S-FTRL)

In the above, (i) 𝑌𝑖 (𝑡) ∈ Y𝑖 is a “score” variable that tracks the aggregation of individual payoff
gradients in Y𝑖; (ii) 𝑀𝑖 (𝑡) ∈ Y𝑖 is a continuous square-integrable martingale acting as a catch-all,
“colored noise” disturbance term; and (iii )𝑄𝑖 : Y𝑖 → X𝑖 is the regularized mirror map of player 𝑖 ∈ N ,
as per (B.12). In this regard, (S-FTRL) represents a noisy “stimulus-response” mechanism, where
each player 𝑖 ∈ N tracks the aggregation of payoff gradients under uncertainty—the “stimulus”—and
“responds” to this aggregate via their individual regularized mirror map 𝑄𝑖 .

Remark 3. The terminology “follow-the-regularized-leader” is due to [64, 65], who first studied this
scheme in the context of online convex optimization in discrete time. This family of algorithms and
dynamics has been widely studied in the literature; we provide more details on this in Appendix B. ❦

For concreteness, we will assume that the noise term 𝑀(𝑡) = (𝑀𝑖 (𝑡))𝑖∈N in (S-FTRL) is of the form

𝑑𝑀(𝑡) = 𝜎(𝑋 (𝑡)) · 𝑑𝑊 (𝑡) or, more explicitly 𝑑𝑀𝑖 (𝑡) = 𝜎𝑖 (𝑋 (𝑡)) · 𝑑𝑊 (𝑡) (12)

where𝑊 (𝑡) = (𝑊1 (𝑡), . . . ,𝑊𝑚 (𝑡)) is a standard Brownian motion in ℝ𝑚, and 𝜎(𝑥) = (𝜎𝑖 (𝑥))𝑖∈N is
an ensemble of state-dependent diffusion matrices 𝜎𝑖 : X𝑖 → ℝ𝑑𝑖×𝑚, 𝑖 ∈ N .3 Importantly, the model
(12) allows for correlated uncertainty between different components of the process—e.g., accounting
for random disturbances on shared road segments in a congestion game—so it will be the base model
for our analysis. Our only standing assumption will be that 𝜎 : X → ℝ𝑑×𝑚 is bounded and Lipschitz
continuous, which ensures that (S-FTRL) is well-posed, i.e., it admits a unique strong solution that
exists for all time and for every initial condition 𝑌(0) ← 𝑦 ∈ Y (cf. Appendix C).

Remark 4. To connect the above with Section 3.1, note that (S-GDA) is recovered from (S-FTRL) by
taking X𝑖 = ℝ, 𝑀𝑖 (𝑡) = 𝜎𝑊𝑖 (𝑡), and ℎ𝑖 (𝑥𝑖) = 𝑥2

𝑖
/2 for 𝑖 = 1, 2 (so 𝑄𝑖 (𝑦𝑖) = 𝑦𝑖 by Example 1). ❦

3.3. Analysis and results. We now proceed to describe our main results for the stochastic dynamics
(S-FTRL)—which, as we show shortly, reflect the dichotomy between bilinear and quadratic saddle-
point problems that we noted in Section 3.1. To state them, it will be convenient to introduce a “primal-
dual”generalization of the Euclidean distance that is more closely aligned with the regularization
setup underlying the players’ response scheme. Deferring the details to Appendix B, we define here
the Fenchel coupling induced by the regularizer ℎ𝑖 of player 𝑖 ∈ N as

𝐹𝑖 (𝑝𝑖 , 𝑦𝑖) = ℎ𝑖 (𝑝𝑖) + ℎ∗𝑖 (𝑦𝑖) − ⟨𝑦𝑖 , 𝑥𝑖⟩ for all 𝑖 ∈ N , and all 𝑝𝑖 ∈ X𝑖 , 𝑦𝑖 ∈ Y𝑖 (13)

3The representation (12) of 𝑀 (𝑡) via a Brownian integrator is not an assumption per se, but a consequence
of the martingale representation theorem, which allows us to express any homogeneous square-integrable
martingale in this form [58, Thm. 4.3.4]. Under this light, the loss in generality is negligible in our case.
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where ℎ∗
𝑖
(𝑦𝑖) :=max𝑥𝑖∈X𝑖

{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} denotes the convex conjugate of ℎ𝑖 . For example, in
the unconstrained Euclidean case (Example 1), we recover the Euclidean distance squared, viz.
𝐹𝑖 (𝑝𝑖 , 𝑦𝑖) = 1

2 ∥𝑄𝑖 (𝑦𝑖) − 𝑝𝑖 ∥2; by comparison, under entropic regularization on the simplex (Ex-
ample 2), we get a “dualized” version of the Kullback–Leibler divergence, cf. Appendix B. In all
cases, 𝐹𝑖 is positive-semidefinite in the sense that 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖) ≥ 0 for all 𝑦𝑖 ∈ Y𝑖 , with equality if and
ony if 𝑄𝑖 (𝑦𝑖) = 𝑝𝑖 . In view of this, the total coupling 𝐹(𝑥, 𝑦) :=∑

𝑖 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖) is a valid measure of
“divergence” between 𝑝 ∈ X and 𝑦 ∈ Y , and we will use it freely in the sequel as such.

The last ingredient that we will need is two measures of the amount of randomness in (S-FTRL), viz.

𝜎2
min :=min𝑥∈X 𝜆min (Σ(𝑥)) and 𝜎2

max :=max𝑥∈X 𝜆max (Σ(𝑥)) (14)

where Σ ≡ 𝜎𝜎⊤ denotes the quadratic covariation matrix of the martingale 𝑀(𝑡), and 𝜆min (resp. 𝜆max)
denotes the minimum (resp. maximum) eigenvalue thereof.

With all this in hand, we will focus on two broad classes of games, null-monotone and strongly
monotone, of which the bilinear and quadratic examples of Section 3.1 are archetypal examples. To
state our results, we will assume that (S-FTRL) is initialized at 𝑥0 ← 𝑄(𝑦0) ∈ riX for some 𝑦0 ∈ Y ,
and we will write 𝐹𝑡 ≡ 𝐹 (𝑥∗, 𝑌(𝑡)) where 𝑥∗ is an equilibrium of the game. We then have:
Theorem 1 (Null-monotone games). Suppose that (S-FTRL) is run with a smooth mirror map 𝑄
in a null-monotone game G. Suppose further that the game admits an interior equilibrium 𝑥∗, and
consider the hitting times 𝜏−𝜀 := inf{𝑡 > 0 : 𝐹𝑡 ≤ 𝐹0 − 𝜀} and 𝜏+𝜀 := inf{𝑡 > 0 : 𝐹𝑡 ≥ 𝐹0 + 𝜀}. If
𝜎2

min > 0 and 𝜀 > 0 is small enough, then

𝔼𝑥0 [𝜏−𝜀 ] = ∞ and 𝔼𝑥0 [𝜏+𝜀 ] ≤ 2𝜀
/ (
𝜅 𝜎2

min
)

(15)

for some constant 𝜅 ≡ 𝜅𝜀 > 0; in addition, 𝑋 (𝑡) does not admit a limiting distribution in this case.

Theorem 2 (Strongly monotone games). Suppose that (S-FTRL) is run in an 𝛼-strongly monotone
game G, and consider the hitting time

𝜏𝑟 := inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)} (16)

where 𝔹𝑟 (𝑥∗) = {𝑥 : ∥𝑥 − 𝑥∗∥ ≤ 𝑟} is a ball of radius 𝑟 centered on the (necessarily unique)
equilibrium 𝑥∗ of G. Then:

𝔼𝑥0 [𝜏𝑟 ] ≤ (𝐹0/𝛼)
/
(𝑟2 − 𝑟2

𝜎) for all 𝑟 > 𝑟𝜎 , (17)

where 𝑟𝜎 :=𝜎max/
√

2𝐾𝛼. If, in addition, 𝜎min > 0 and 𝑥∗ is interior, 𝑋 (𝑡) admits an invariant
distribution concentrated in a ball of radius O(𝜎max) around 𝑥∗, and we have

lim𝑡→∞ 𝜇𝑡 (𝔹𝑟 (𝑥∗)) ≥ 1 − 𝑟2
𝜎/𝑟2 for all 𝑟 > 𝑟𝜎 . (18)

Remark 5. The bounds depend implicitly on the regularizer through its strong convexity modulus 𝐾
and they indicate a trade-off between the degree of concentration of the process around the radius
beyond which the noise dominates the drift, and the time required to hit this region. ❦

Remark 6. The result of Theorem 2 holds for radius of concentration not sharper than O(𝜎). This
coincides with the special case of Proposition 2, indicating that our bound is tight in this regard. ❦

Conceptually, Theorems 1 and 2 reflect the dichotomy between the bilinear and quadratic examples
studied in detail in Section 3.1. Indeed, we see that:

1. In null-monotone games, the stochastic dynamics (S-FTRL) exhibit a consistent drift away from
equilibrium, moving to greater distances in finite time, and requiring infinite time to return. As
a result, if the game has an interior equilibrium, 𝑋 (𝑡) becomes infinitely spread out in the long
run, exhibiting no concentration in any region of X other than, possibly, its boundary (if X is
constrained).

2. In strongly monotone games, the dynamics drift toward equilibrium, and they end up being
concentrated around the game’s (necessarily unique) equilibrium. However, the players’ learning
trajectories continue to fluctuate at a distance which scales as O(𝜎max) and, with probability 1,
they return arbitrarily close to where they started, infinitely often.

These properties paint a sharp separation between null- and strongly monotone games, with uncer-
tainty carrying drastically different consequences in each case; for an illustration, see Fig. 1.
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The proof of Theorems 1 and 2 is detailed in Appendix D. From a technical standpoint, our analysis
hinges on the use of the Fenchel coupling (13) as a “mean” energy function for the dynamics. In
the null-monotone case, the hitting time estimates (15) rely on an application of Dynkin’s formula
[58, Chap. 7.4], coupled with an eigenvalue estimation for the growth of 𝐹. Then, by descending
to a specific quotient of Y that compactifies the sublevel sets of 𝐹, we are able to leverage the fact
that 𝔼𝑥0 [𝜏𝑟 ] = ∞ for 𝑟 < 𝐹0 to show that the dynamics are not positively recurrent—and hence, they
do not admit an invariant distribution. The analysis for the strongly monotone case has the same
starting point, but it then branches out almost immediately: the hitting time estimate (17) is again
obtained via Dynkin’s stopping time formula, but positive recurrence can no longer be established
in X , because the infinitesimal generator of 𝑋 (𝑡) is not uniformly elliptic (that is, its eigenvalues
are not bounded away from zero). Instead, we work directly with the infinetisimal generator of the
score process 𝑌(𝑡) whose generator is uniformly elliptic after taking a specific quotient in Y . This
allows us to deduce positive recurrence in Y , which we then push forward to X via 𝑄, and leverage
the convergence of the occupation measures to the invariant distribution of the process to derive the
concentration bound (18). We detail these steps in a series of technical lemmas in Appendix D.
Remark 7. If the game is neither null- nor strongly monotone, our analysis suggests that (S-FTRL)
would tend to “wander around” the null-monotone directions, and be carried along the strongly
monotone directions toward the game’s set of equilibria. However, obtaining a precise version of
such a result is quite involved, so we defer it to future work. ❦

4 Learning under uncertainty in discrete time

We now turn to the discrete-time setting, which is of more direct algorithmic relevance. Compared to
Section 3, the analysis here is considerably more involved due to the lack of closed-form solutions
and the limited applicability of diffusion-based methods. Nevertheless, as we shall see later in this
section, the structural insights gained from the continuous-time analysis remain highly valuable as
they form the foundation of the tools and techniques developed here.

4.1. Learning in discrete time. In discrete time, the most widely used implementation of the FTRL
template unfolds for 𝑡 = 0, 1, . . . as

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑣̂𝑖,𝑡 𝑋𝑖,𝑡+1 = 𝑄𝑖 (𝑌𝑖,𝑡+1) . (FTRL)
In addition to the notions already introduced and discussed in Section 3.2, (i) 𝑣̂𝑖,𝑡 denotes here a
stochastic estimate of the player’s payoff gradient vector at 𝑋𝑖,𝑡 ; and (ii ) 𝛾 > 0 is a step-size parameter,
interchangeably referred to as the learning rate of the process. We discuss these two new elements
below.

The feedback process. In terms of feedback, we assume that, at every round 𝑡 = 0, 1, . . . , each
player 𝑖 ∈ N receives stochastic gradient feedback of the form

𝑣̂𝑖,𝑡 = V𝑖 (𝑋𝑡 ;𝜔𝑡 ) or, aggregating over all players 𝑣̂𝑡 = V(𝑋𝑡 ;𝜔𝑡 ) (19)
where 𝑣̂𝑡 = (𝑣̂𝑖,𝑡 )𝑖∈N and V(𝑥;𝜔) = (V𝑖 (𝑥;𝜔))𝑖∈N is a stochastic first-order oracle for 𝑣(𝑥), viz.

V(𝑥;𝜔) = 𝑣(𝑥) + U(𝑥;𝜔) . (SFO)
In the above, 𝜔𝑡 , 𝑡 = 0, 1, . . . , is an i.i.d. sequence of random seeds drawn from some complete
probability space Ω, and U(𝑥;𝜔) is a random Y-valued vector satisfying the standard assumptions

𝔼𝜔 [U(𝑥;𝜔)] = 0 and 𝔼𝜔 [∥U(𝑥;𝜔)∥2∗] ≤ 𝜎2 (20)
for some 𝜎 > 0. In this way, letting F𝑡 , 𝑡 = 0, 1, . . . , denote the history of the process up to time 𝑡,
and writing𝑈𝑡 :=U(𝑋𝑡 ;𝜔𝑡 ) for the noise in the players’ gradient feedback at time 𝑡, we get

𝑣̂𝑡 = 𝑣(𝑋𝑡 ) +𝑈𝑡 with 𝔼[𝑈𝑡 |F𝑡 ] = 0 and 𝔼[∥𝑈𝑡 ∥2∗ |F𝑡 ] ≤ 𝜎2. (21)
Following standard practice in the field—see e.g., [68, 71] and references therein—we further assume
that the probability distribution 𝜈𝑥 of U(𝑥) decomposes as 𝜈𝑥 = 𝜈𝑐𝑥 + 𝜈⊥𝑥 where: (a) 𝜈⊥𝑥 is singular
relative to the Lebesgue measure 𝜆Y on Y; (b) 𝜈𝑐𝑥 is absolutely continuous relative to 𝜆Y ; and (c) the
density 𝑝𝑥 (𝑦) of 𝜈𝑐𝑥 is jointly continuous in 𝑥 and 𝑦, and it satisfies inf𝑥∈K 𝑝𝑥 (𝑦) > 0 for every
compact set K ⊆ X and all 𝑦 ∈ Y . This last assumption is relatively mild and ensures that the noise
retains a non-degenerate, smooth component across X , much like the assumption 𝜎min > 0 for the
diffusion matrix of (S-FTRL) in Section 3.4

4This condition is trivially satisfied by most continuous error distributions in practice, and it can always be
enforced by injecting a small uniform Gaussian noise component into the process, a technique which is widely
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Figure 1: Trajectories and statistics of play under (FTRL) with entropic regularization in two min-max games
over X = [0, 1]2, a bilinear and a quadratic one (left vs. right half respectively). Deterministic orbits are plotted
in red and stochastic trajectories in shades of blue, with darker hues indicating later points in time; the density
plots depict the resulting visitation frequency in X . In tune with Theorems 3 and 4, we see that learning in
null-monotone games drifts toward the extremes of X ; by contrast, in strongly monotone games, learning orbits
drift toward equilibrium, but continue to fluctuate around it. More details are provided in Appendix F.

The algorithm’s learning rate. The second feature which sets the discrete-time framework apart
is the method’s learning rate 𝛾. Here and throughout, we consider a constant learning rate schedule;
this should be contrasted to the stochastic approximation literature [6, 9, 37, 50, 54], where (FTRL)
is run with a vanishing step-size 𝛾𝑡 → 0, typically satisfying some form of the Robbins–Monro
summability conditions

∑
𝑡 𝛾𝑡 = ∞,

∑
𝑡 𝛾

2
𝑡 < ∞.

In many cases, the use of a vanishing step-size enables convergence of the algorithm because
it dampens the impact of the noise over time [50]; at the same time however, in many applied
settings, algorithms are implemented with a constant—or, at the very least, non-vanishing—step-size.
This choice is largely driven by practical considerations: constant step-size schedules are easier to
calibrate and maintain, particularly in large-scale systems where adaptivity and simplicity are critical.
Moreover, vanishing step-size schedules often exhibit prolonged transient phases and converge
slowly toward equilibrium neighborhoods; by contrast, constant step-size methods tend to reach
near-stationary regions much faster, even within 0.1% accuracy or lower [16]. This behavior underlies
their widespread use in modern machine learning pipelines, where learning rates are kept effectively
constant throughout training, even for models trained over billions of samples and/or hundreds of
billions of tokens [15].

4.2. Analysis and results. We now have the necessary machinery in place to present our results for
(FTRL). Before doing so, we should only stress that the discrete-time analysis is, by necessity, more
qualitative than the more explicit, continuous-time results presented in Section 3. This gap is difficult
to avoid: in continuous time, the rules of stochastic calculus comprise a very sharp set of tools with
which to obtain closed-form estimates for the processes involved; on the other hand, in discrete time,
even the most basic tools of stochastic analysis—like Dynkin’s formula—are dulled down because of
measurability and subsampling issues.

As before, we split our focus between null- and strongly monotone games.

The null-monotone regime. A key take-away from the analysis of Section 3 is that, in null-
monotone games, uncertainty causes the dynamics of regularized learning to spread out, diverging to
infinity on average, without concentrating at any region of X other than its boundary. Our first result
below shows that a version of this tenet continues to hold in discrete time:
Theorem 3 (Null-monotone games). Suppose that (FTRL) is run in a null-monotone game G, and let
𝑥∗ be an equilibrium of G. Suppose further that ℎ∗ is strongly convex, and let 𝐹𝑡 = 𝐹 (𝑥∗, 𝑌𝑡 ), where
𝐹 is the induced Fenchel coupling (B.22). Then lim𝑡→∞ 𝔼[𝐹𝑡 ] = ∞.

This result shows that (FTRL) drifts away to infinity on average—though, of course, as in the
continuous-time case, this does not mean that this occurs with probability 1. What is missing from
Theorem 3 relative to Theorem 1 is a bound on the mean time required for 𝐹𝑡 to increase or decrease
by 𝜀. In the absence of a consistent drift component, our continuous-time estimates were only made
possible through the use of stochastic calculus. In discrete time however, 𝑋𝑡 evolves in discrete,
driftless jumps, introducing overshoots and upcrossings that render this question significantly harder.

used in both optimization and reinforcement learning to promote sufficient exploration and avoid degeneracy
issues and saddle-points [6, 22, 39, 70]. In such cases, the density of the absolutely continuous component is
strictly positive everywhere and independent of 𝑥 ∈ X , so the uniform lower bound condition holds trivially.
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We conjecture that similar bounds do hold in discrete time, but we leave this open as a conjecture.
[We only note here for completeness that a similar result holds for any decaying step-size sequence
𝛾𝑡 with

∑
𝑡 𝛾

2
𝑡 = ∞.]

The strongly monotone regime. We now turn to the long-run behavior of (FTRL) in strongly
monotone games. Based in no small part on the continuous-time analysis of the previous section, our
goal will be to understand the distributional properties of the dynamics, with a particular focus on
(a) the existence and uniqueness of an invariant measure; and (b) the extent to which this measure is
concentrated around the game’s equilibrium—which, in turn, quantifies the long-run proximity of the
iterates of (FTRL) to equilibrium. With all this in mind, our results can be stated as follows:
Theorem 4 (Strongly monotone games). Suppose that (FTRL) is run in an 𝛼-strongly monotone
game G, and consider the hitting time

𝜏𝑟 := inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)} (22)

where 𝔹𝑟 (𝑥∗) = {𝑥 : ∥𝑥 − 𝑥∗∥ ≤ 𝑟} is a ball of radius 𝑟 centered on the (necessarily unique)
equilibrium 𝑥∗ of G. Then, for all 𝑟 > 𝑟𝜎 :=

√︁
𝛾(𝜎2 + 𝛽2)/(𝛼𝐾), we have

𝔼[𝜏𝑟 ] ≤
1

𝛼𝛾(𝑟2 − 𝑟2
𝜎)
×
{
𝐹0 if 𝑋0 ∉ 𝔹𝑟 (𝑥∗),
𝐹0 + 𝛼𝛾𝑟2 if 𝑋0 ∈ 𝔹𝑟 (𝑥∗),

(23)

where 𝐹0 = 𝐹 (𝑥∗, 𝑌0). If, in addition, 𝑥∗ is interior, 𝑋𝑡 admits a unique invariant distribution to
which it converges in total variation, and we have

lim
𝑡→∞

1
𝑡
𝔼

[
𝑡∑︁

𝑠=0
1{𝑋𝑡 ∈ 𝔹𝑟 (𝑥∗)}

]
≥ 1 − 𝑟2

𝜎

/
𝑟2 (24)

for all 𝑟 > 𝑟𝜎 such that 𝔹𝑟 (𝑥∗) ⊆ riX .
Remark. Unlike the continuous-time setting of Section 3, we must treat the cases 𝑋0 ∈ 𝔹𝑟 (𝑥∗) and
𝑋0 ∉ 𝔹𝑟 (𝑥∗) separately. This distinction arises only in discrete time, because the iterates may exhibit
large jumps—so, returning to 𝔹𝑟 (𝑥∗) is not guaranteed, even if the process is initialized within. ❦

We prove Theorem 4 in Appendix E following the strategy outlined below. First, shadowing the
continuous-time analysis of Section 3, we reduce the dynamics to a suitable quotient space of Y ,
eliminating redundant directions and ensuring that the process evolves in a minimal, non-degenerate
domain. Building on this, we then show that the induced dynamics are Lebesgue-irreducible, i.e.,
every measurable set with positive Lebesgue measure is reachable with positive probability under
the transition kernel of the process. Moreover, invoking (23), we further deduce that ℙ(𝜏𝑟 < ∞) = 1
for any initial condition, implying that 𝔹𝑟 (𝑥∗) is visited infinitely often. Finally, we also show that
𝔹𝑟 (𝑥∗) satisfies a minorization condition, meaning that the transition kernel from any point in the
ball dominates a fixed reference measure. In turn, this implies that, upon returning to 𝔹𝑟 (𝑥∗), the
process has a nonzero chance of “forgetting” its past, allowing us to construct a regeneration structure
via a coupling argument. Then, leveraging the continuity of 𝐹 (𝑥∗, 𝑦), we obtain a uniform bound
on the expected return times 𝔼[𝜏𝑟 ] over any initialization in 𝔹𝑟 (𝑥∗), which allows us to conclude
that the process 𝑌𝑡 is positive Harris recurrent. As a result, it can be shown that the iterates of
(FTRL) converge to a unique invariant measure, and we obtain quantitative control over their long-run
concentration by means of our previous estimates.

5 Concluding remarks

Our aim in this paper was to quantify the impact of noise and uncertainty on the dynamics of
multi-agent regularized learning. Our findings reveal a sharp separation between games that are
null-monotone (like bilinear min-max games), and strongly monotone games (like Kelly auctions or
Cournot competitions). In the former case, the quasi-periodic profile of the deterministic dynamics
is destroyed, and learning under uncertainty drifts away on average toward extreme points (or
escapes to infinity); in the latter, the sharp convergence guarantees of the deterministic dynamics
are diluted by noise, and the resulting dynamics end up concentrated in a region around the game’s
equilibrium (which we estimate). This paves the way for further explorations of the long-run statistics
of regularized learning in games—especially pertaining to the invariant measure of the process—a
topic which we find particularly promising for advancing our understanding of the field.
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A Examples

In this appendix, we present several examples of games satisfying the standing assumptions we
outlined in Section 2. Overall, these assumptions are quite standard in the study of online learning
and games with continuous action spaces, and most of the positive results in the literature hinge on
precisely these assumptions or close variants thereof.

To provide some context, the monotonicity assumption (cf. Definition 1) provides an amenable
“convex structure”, which is essential for establishing the existence and characterization of equilibria
via first-order variational condtions. Without a structural characteriztion of this type, even defining a
meaningful solution concept becomes unclear, and global convergence cannot be expected—at least in
general. In a sense, these assumptions parallel the convex/non-convex separation in optimization—but
with the added challenge that, in non-convex games, equilibria may fail to exist altogether, unlike
minimizers (either local or global) in non-convex minimization problems.

Our regularity assumptions—closed action sets, Lipschitz smoothness, etc.—are largely technical,
standard in practice and, as such, nearly universal in the literature. They could be relaxed, for instance,
by assuming local or relative smoothness, Hölder continuity, or something of the sort—though
the resulting analysis would be considerably more involved. Relaxing monotonicity, however, is
considerably trickier: some of our results would go through as long as the game’s equilibrium
admits a global variational characterization, e.g., in the spirit of variational stability or a Minty-type
condition, cf. [50, 53, 73] and references therein. If, however, the game admits distinct components
of equilibria, all bets are off: in that case, FTRL could transit in perpetuity between the game’s
different equilibrium components, and characterizing the mean sojourn and transition times of the
process would only be possible in very special cases.

All in all, the set of assumptions that we consider represents a certain “sweet spot” between theoretical
tractability and practical relevance, which explains their prevalence in the literature. The examples
below illustrate the range of settings where these assumptions arise naturally.

Example A.1 (Zero-sum bimatrix games). A bimatrix game consists of two players, each with a
finite set of actions A𝑖 , 𝑖 = 1, 2, and a min-max objective function 𝐿 : A1 × A2 → ℝ, typically
encoded in a matrix 𝑀 ∈ ℝA1×A2 with 𝑀𝛼𝛽 = 𝐿 (𝛼, 𝛽) for all 𝛼 ∈ A1, 𝛽 ∈ A2. The first player is
cast in the role of the minimizer and the second player in that of the maximizer, so their corresponding
payoff functions are defined as 𝑢1 = −𝐿 = −𝑢2.

In the mixed extension of the game, each player can mix their actions by selecting a probability
distribution—a mixed strategy—over A𝑖 , that is, an element 𝑥𝑖 of the probability simplex X𝑖 ≡
Δ(A𝑖) = {𝑥𝑖 ∈ ℝA𝑖

+ : ∥𝑥𝑖 ∥1 = 1}. Accordingly, in matrix notation, the players’ corresponding mixed
payoffs are given by

𝑢1 (𝑥1, 𝑥2) = −𝑥⊤1 𝑀𝑥2 = −𝑢2 (𝑥1, 𝑥2) (A.1)

so their individual gradient fields can be expressed as

𝑣1 (𝑥1, 𝑥2) = −𝑀𝑥2 and 𝑣2 (𝑥1, 𝑥2) = 𝑀⊤𝑥1 (A.2)

for all 𝑥1 ∈ X1 and all 𝑥2 ∈ X2.

By definition, a mixed-strategy Nash equilibrium of a bimatrix zero-sum game satisfies

𝐿 (𝑥∗1, 𝑥2) ≤ 𝐿 (𝑥∗1, 𝑥
∗
2) ≤ 𝐿 (𝑥1, 𝑥

∗
2) for all 𝑥1 ∈ X1, 𝑥2 ∈ X2. (A.3)

If, in addition, 𝑥∗1, 𝑥
∗
2 both have full support—that is, 𝑥∗1 ∈ riX1 and 𝑥∗2 ∈ riX2—we also have the

“equalizing payoffs” condition

𝐿 (𝑥∗1, 𝑥2) = 𝐿 (𝑥1, 𝑥
∗
2) for all 𝑥1 ∈ X1, 𝑥2 ∈ X2 (A.4)

which means that (A.3) binds identically. In this case, we readily get

⟨𝑣1 (𝑥1, 𝑥2), 𝑥1 − 𝑥∗1⟩ + ⟨𝑣2 (𝑥1, 𝑥2), 𝑥2 − 𝑥∗2⟩
= 𝑢1 (𝑥1, 𝑥2) − 𝑢1 (𝑥∗1, 𝑥2) + 𝑢2 (𝑥1, 𝑥2) − 𝑢2 (𝑥1, 𝑥

∗
2) = 0 (A.5)

for all 𝑥1 ∈ X1, 𝑥2 ∈ X2, i.e., the game is null-monotone in the sense of Definition 1. ❦

14



Example A.2 (Cournot competition). In the standard Cournot competition model, there is a finite
set of firms, indexed by 𝑖 ∈ N = {1, . . . , 𝑁}, each providing the market with a quantity 𝑥𝑖 ∈ [0, 𝐵𝑖]
of some good (or service) up to the firm’s production budget 𝐵𝑖 . Following the law of supply and
demand, this good is priced following the simple linear model 𝑃(𝑥) = 𝑎 − 𝑏∑𝑖 𝑥𝑖 , i.e., as a linearly
decreasing function of the total supply. Accordingly, in this model, the utility of firm 𝑖 is given by

𝑢𝑖 (𝑥) = 𝑥𝑖𝑃(𝑥) − 𝑐𝑖𝑥𝑖 =
[
𝑎 − 𝑏

∑︁
𝑗∈N 𝑥 𝑗 − 𝑐𝑖

]
𝑥𝑖 , (A.6)

where 𝑐𝑖 represents the marginal production cost of firm 𝑖.

By a straightforward derivation, the players’ individual payoff gradients are given by

𝑣𝑖 (𝑥) =
𝜕𝑢𝑖

𝜕𝑥𝑖
=

[
𝑎 − 𝑏

∑︁
𝑗∈N 𝑥 𝑗 − 𝑐𝑖

]
− 𝑏𝑥𝑖 (A.7)

and hence, the Hessian matrix of the game will be

𝐻𝑖 𝑗 (𝑥) :=
1
2
𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥𝑖

+ 1
2
𝜕2𝑢 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
= −𝑏 − 𝑏𝛿𝑖 𝑗 (A.8)

where 𝛿𝑖 𝑗 is the standard Kronecker delta. Since 𝐻 is circulant, standard linear algebra considerations
show that its eigenvalues are −𝑏 and −(𝑁 + 1)𝑏 (with multiplicity 𝑁 − 1 and 1 respectively), so it
follows by a well-known second-order criterion that the Cournot competition game is 𝑏-strongly
monotone [50, 62]. ❦

Example A.3 (Signal covariance optimization). Consider a vector Gaussian channel of the form

y =
∑︁
𝑖∈N

H𝑖x𝑖 + z (A.9)

where x𝑖 ∈ ℂ𝑚𝑖 is the (complex-valued) signal transmitted by the 𝑖-th user of the channel, H ∈ ℂ𝑛×𝑚𝑖

is the transfer matrix of the channel, z ∈ ℂ𝑛 is the noise in the channel (assumed zero-mean Gaussian
and, without loss of generality, with unit covariance), and y ∈ ℂ𝑛 is the aggregate signal output of the
channel [72]. In this context, each user 𝑖 ∈ N controls the covariance matrix X𝑖 = 𝔼[x𝑖x†𝑖 ] subject to
the power constraint tr(X𝑖) = 𝔼[∥x𝑖 ∥2] ≤ 𝑃𝑖 , where 𝑃𝑖 denotes the user’s maximum transmit power.
In this case, by the celebrated Shannon–Telatar formula [66], and assuming a single-user decoding
scheme at the receiver, the achievable rate of the 𝑖-th user is

𝑢𝑖 (X𝑖; X−𝑖) = log det
(
I +

∑︁
𝑗
H 𝑗X 𝑗H†𝑗

)
− log det

(
I +

∑︁
𝑗≠𝑖

H 𝑗X 𝑗H†𝑗
)
. (A.10)

Putting everything together, this defines a continuous game with players 𝑖 ∈ N = {1, . . . , 𝑁},
spectrahedral action sets of the form

Q𝑖 = {X𝑖 ∈ ℂ𝑚𝑖×𝑚𝑖 : X𝑖 ≽ 0 and tr X𝑖 ≤ 𝑃𝑖} (A.11)

for all 𝑖 ∈ N , and payoff functions given by (A.10). By a calculation of Belmega et al. [5], it is
known that this game is concave and monotone—and, in fact, strongly monotone if the linear mapping
(X1, . . . ,X𝑁 ) ↦→

∑
𝑖 H𝑖X𝑖H†𝑖 is not rank-deficient. ❦

Examples that are closer to signal processing and data science include distributed metric learning,
multimedia classification, etc. For a range of applications along these lines, we refer the reader to
[51, 63] and references therein.

B Mirror maps and regularization

In this appendix, we collect some background material, properties and examples regarding the
regularization machinery underlying (FTRL) and (S-FTRL). To lighten notation—especially with
respect to the player index 𝑖 ∈ N—we base everything in this appendix on an abstract closed convex
subset of some 𝑑-dimensional vector space, which could either be X𝑖 or X , depending on the context.

The results presented below (or a version thereof) are known in the literature; nevertheless, we
provide detailed proofs for completeness and to resolve any conflicts or ambiguities with different
conventions in the literature.
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B.1. Preliminaries. Let V be a 𝑑-dimensional normed space, let Y :=V∗ denote the (algebraic) dual
of V , and let ⟨𝑦, 𝑥⟩ denote the canonical bilinear pairing between 𝑥 ∈ V and 𝑦 ∈ V∗. If ∥·∥ is a norm
on V will also write

∥𝑦∥∗ = max{⟨𝑦, 𝑥⟩ : ∥𝑥∥ ≤ 1} (B.1)
for the induced dual norm on Y , so |⟨𝑦, 𝑥⟩| ≤ ∥𝑥∥∥𝑦∥∗ for all 𝑥 ∈ V and all 𝑦 ∈ Y by construction.

Given a closed convex subset C of V , we also define:

1. The tangent cone to C at 𝑝 ∈ C as

TC(𝑝) = cl{𝑧 ∈ V : 𝑝 + 𝑡𝑧 ∈ C for some 𝑡 > 0} (B.2)

i.e., as the closure of the set of rays emanating from 𝑝 and meeting C in at least one other point.
2. The dual cone to C at 𝑝 ∈ C as

TC∗ (𝑝) = {𝑤 ∈ Y : ⟨𝑤, 𝑧⟩ ≥ 0 for all 𝑧 ∈ TC(𝑝)} (B.3)

3. The polar cone to C at 𝑝 ∈ C as

PC(𝑝) = {𝑤 ∈ Y : ⟨𝑤, 𝑧⟩ ≤ 0 for all 𝑧 ∈ TC(𝑝)} (B.4)

Following standard conventions in the field [60], convex functions will be allowed to take values
in the extended real line ℝ ∪ {∞}, and we will denote the effective domain of a convex function
𝑓 : V → ℝ∪ {∞} as

dom 𝑓 :={𝑥 ∈ V : 𝑓 (𝑥) < ∞} . (B.5)
When there is no danger of confusion, we will identify a convex function 𝑓 : V → ℝ with its
restriction on dom 𝑓 ; in other words, we will treat 𝑓 interchangeably as a function on dom 𝑓 with
values in ℝ, or as a function on V with values in ℝ∪ {∞} (and finite on dom 𝑓 ).

Throughout the sequel, we will assume that all functions under study are proper, that is, dom 𝑓 ≠ ∅.
Then, given a proper function 𝑓 : V → ℝ∪ {∞}, the subdifferential of 𝑓 at 𝑥 ∈ dom 𝑓 is defined as

𝜕 𝑓 (𝑥) :={𝑦 ∈ Y : 𝑓 (𝑥′) ≥ 𝑓 (𝑥) + ⟨𝑦, 𝑥′ − 𝑥⟩ for all 𝑥′ ∈ V} (B.6)

and we denote the domain of subdifferentiability of 𝑓 as

dom 𝜕 𝑓 = {𝑥 ∈ V : 𝜕 𝑓 (𝑥) ≠ ∅} . (B.7)

With all this in hand, a regularizer on a closed convex subset C of V is a continuous function
ℎ : C → ℝ which is strongly convex, i.e., there exists some 𝐾 > 0 such that

ℎ(𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝑡ℎ(𝑥) + (1 − 𝜆)ℎ(𝑥′) − 𝐾
2
𝜆(1 − 𝜆)∥𝑥′ − 𝑥∥2 (B.8)

for all 𝑥, 𝑥′ ∈ C and for all 𝜆 ∈ [0, 1]. By standard arguments [7, 61], this immediately implies that

ℎ(𝑥′) ≥ ℎ(𝑥) + 𝜕ℎ(𝑥; 𝑥′ − 𝑥) + 𝐾
2
∥𝑥′ − 𝑥∥2 for all 𝑥, 𝑥′ ∈ X , (B.9)

where
𝜕ℎ(𝑥; 𝑥′ − 𝑥) = lim

𝜃→0+
[ℎ(𝑥 + 𝜃 (𝑥′ − 𝑥)) − ℎ(𝑥)]/𝜃 (B.10)

denotes the one-sided directional derivative of ℎ at 𝑥 along the direction of 𝑥′ − 𝑥. In addition, we
also define the following objects associated to ℎ:

1. The prox-domain of ℎ:

Cℎ := dom 𝜕ℎ (B.11)

2. The mirror map 𝑄 : Y → X induced by ℎ:

𝑄(𝑦) := arg max
𝑥∈X

{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} for all 𝑦 ∈ Y . (B.12)

3. The convex conjugate ℎ∗ : Y → ℝ of ℎ:

ℎ∗ (𝑦) :=max
𝑥∈X
{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} for all 𝑦 ∈ Y . (B.13)
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The proposition below provides some basic properties linking all the above:
Proposition B.1. Let ℎ be a 𝐾-strongly convex regularizer on C. Then:

(a ) 𝑄 is single-valued on Y .

(b ) For all 𝑥 ∈ Cℎ and all 𝑦 ∈ Y , we have

𝑥 = 𝑄(𝑦) if and only if 𝑦 ∈ 𝜕ℎ(𝑥) . (B.14)

(c ) The image im𝑄 of 𝑄 is equal to the prox-domain of ℎ, and we have

ri C ⊆ im𝑄 = Cℎ ⊆ C . (B.15)

(d ) The convex conjugate ℎ∗ : Y → ℝ of ℎ is differentiable and satisfies

𝑄(𝑦) = ∇ℎ∗ (𝑦) for all 𝑦 ∈ Y . (B.16)

(e ) 𝑄 is (1/𝐾)-Lipschitz continuous, that is,

∥𝑄(𝑦′) −𝑄(𝑦)∥ ≤ (1/𝐾)∥𝑦′ − 𝑦∥∗ for all 𝑦, 𝑦′ ∈ Y . (B.17)

(f ) Fix some 𝑦 ∈ Y and let 𝑥 = 𝑄(𝑦). Then, for all 𝑥′ ∈ X we have:

𝜕ℎ(𝑥; 𝑥′ − 𝑥) ≥ ⟨𝑦, 𝑥′ − 𝑥⟩ . (B.18)

(g ) Fix some 𝑦 ∈ Y , and let 𝑥 = 𝑄(𝑦). Then 𝑄(𝑦 + 𝑤) = 𝑥 for all 𝑤 ∈ PC(𝑥).

Proof. For the most part, these properties are well known in the literature (except possibly the last
one), so we only provide a pointer or a short sketch for most of them.

(a) This readily follows from the fact that ℎ is strongly convex, so the arg max in (B.12) is attained
and is unique for all 𝑦 ∈ Y .

(b) By Fermat’s rule [60, Chap. 26], we readily see that 𝑥 solves (B.12) if and only if 𝑦 − 𝜕ℎ(𝑥) ∋ 0,
that is, if and only if 𝑦 ∈ 𝜕ℎ(𝑥). Since this implies that 𝜕ℎ, our claim follows.

(c) By (B.14), we readily get im𝑄 = Cℎ. As for the second part of our claim, it follows from basic
properties of the subdifferential, cf. Rockafellar [60, Chap. 26].

(d) This is simply Danskin’s theorem, see e.g., Bertsekas [7, Proposition 5.4.8, Appendix B].

(e) This is a consequence of the fact that ℎ∗ is (1/𝐾)-Lipschitz smooth, cf. Rockafellar & Wets [61,
Theorem 12.60(b)].

(f) Since 𝑦 ∈ 𝜕ℎ(𝑥) by (B.14), we readily get that

ℎ(𝑥 + 𝜃 (𝑥′ − 𝑥)) ≥ ℎ(𝑥) + 𝜃⟨𝑦, 𝑥′ − 𝑥⟩ for all 𝜃 ∈ [0, 1] . (B.19)

Hence, by rearranging and taking the limit 𝜃 → 0+, we conclude that

𝜕ℎ(𝑥; 𝑥′ − 𝑥) = lim
𝜃→0+

ℎ(𝑥 + 𝜃 (𝑥′ − 𝑥)) − ℎ(𝑥)
𝜃

≥ ⟨𝑦, 𝑥′ − 𝑥⟩ (B.20)

as claimed.5

(g) By (B.14) it suffices to show that 𝑦 + 𝑤 ∈ 𝜕ℎ(𝑥) for all 𝑤 ∈ PC(𝑥). However, if 𝑤 ∈ PC(𝑥), we
also have ⟨𝑤, 𝑥′ − 𝑥⟩ ≤ 0 for all 𝑥′ ∈ X , and hence, with 𝑦 ∈ 𝜕ℎ(𝑥), we readily get

ℎ(𝑥′) ≥ ℎ(𝑥) + ⟨𝑦, 𝑥′ − 𝑥⟩
≥ ℎ(𝑥) + ⟨𝑦 + 𝑤, 𝑥′ − 𝑥⟩ for all 𝑥′ ∈ X . (B.21)

This shows that 𝑦 + 𝑤 ∈ 𝜕ℎ(𝑥) and completes our proof. ■

Following [45, 50], we also define the Fenchel coupling associated to ℎ as

𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ for all 𝑝 ∈ X , 𝑦 ∈ Y . (B.22)

The next proposition shows that the Fenchel coupling can be seen as a “primal-dual” measure of
divergence between 𝑝 ∈ C and 𝑦 ∈ Y:

5The existence of the limit is guaranteed by elementary convex analysis arguments, cf. Bertsekas [7, App. B].
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Proposition B.2. Let ℎ be a 𝐾-strongly convex regularizer on C. Then, for all 𝑝 ∈ X and all 𝑦 ∈ Y ,
we have:

(𝑎) 𝐹 (𝑝, 𝑦) ≥ 0 with equality if and only if 𝑝 = 𝑄(𝑦). (B.23a)

(𝑏) 𝐹 (𝑝, 𝑦) ≥ 1
2𝐾 ∥𝑄(𝑦) − 𝑝∥

2. (B.23b)

Proof. These properties are known in the literature, but we provide a quick proof for completeness.

(a) By the Fenchel–Young inequality, we have ℎ(𝑝) + ℎ∗ (𝑦) ≥ ⟨𝑦, 𝑝⟩ for all 𝑝 ∈ X , 𝑦 ∈ Y , with
equality if and only if 𝑦 ∈ 𝜕ℎ(𝑝). Our claim then follows from (B.14).

(b) Let 𝑥 = 𝑄(𝑦) so 𝑦 ∈ 𝜕ℎ(𝑥) by (B.14). Then, by the definition of 𝐹, we have

𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩
= ℎ(𝑝) + ⟨𝑦, 𝑥⟩ − ℎ(𝑥) − ⟨𝑦, 𝑝⟩ # since 𝑦 ∈ 𝜕ℎ(𝑥)
≥ ℎ(𝑝) − ℎ(𝑥) − 𝜕ℎ(𝑥; 𝑝 − 𝑥) # by Proposition B.1

≥ 1
2𝐾 ∥𝑥 − 𝑝∥

2 # by (B.8)

so our proof is complete. ■

Our last result at this point is a useful differentiation formula for the Fenchel coupling:

Lemma B.1. For all 𝑝 ∈ X and all 𝑦 ∈ Y , we have:

∇𝑦𝐹 (𝑝, 𝑦) = 𝑄(𝑦) − 𝑝 . (B.24)

Proof. The proof follows immediately from Danskin’s theorem, cf. Eq. (B.16) of Proposition B.1. ■

B.2. Update lemmas. Moving forward, we note that the basic update step of (FTRL) can be written
as

𝑦+ = 𝑦 + 𝑤 and 𝑥+ = 𝑄(𝑦+) (B.25)

for some 𝑦, 𝑤 ∈ Y . With this in mind, we state below a series of identities and estimates for the
Fenchel coupling before and after an update of the form (B.25).

The first is a primal-dual version of the so-called “three-point identity” for Bregman functions [14]:

Lemma B.2. Fix some 𝑝 ∈ X , 𝑦 ∈ Y , and let 𝑥 = 𝑄(𝑦). Then, for all 𝑦+ ∈ Y , we have:

𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + 𝐹 (𝑥, 𝑦+) + ⟨𝑦+ − 𝑦, 𝑥 − 𝑝⟩. (B.26)

Proof. By definition, we have:

𝐹 (𝑝, 𝑦+) = ℎ(𝑝) + ℎ∗ (𝑦+) − ⟨𝑦+, 𝑝⟩ (B.27a)
𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ (B.27b)
𝐹 (𝑥, 𝑦+) = ℎ(𝑥) + ℎ∗ (𝑦+) − ⟨𝑦+, 𝑥⟩ (B.27c)

Thus, subtracting (B.27b) and (B.27c) from (B.27a), and rearranging, we get

𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + 𝐹 (𝑥, 𝑦+) − ℎ(𝑥) − ℎ∗ (𝑦) + ⟨𝑦+, 𝑥⟩ − ⟨𝑦+ − 𝑦, 𝑝⟩ . (B.28)

Our assertion then follows by recalling that 𝑥 = 𝑄(𝑦), so ℎ(𝑥) + ℎ∗ (𝑦) = ⟨𝑦, 𝑥⟩. ■

The next result we present concerns the Fenchel coupling before and after a direct update step; similar
results exist in the literature, but we again provide a proof for completeness.

Lemma B.3. Fix some 𝑝 ∈ X and 𝑦, 𝑤 ∈ Y . Then, letting 𝑥 = 𝑄(𝑦), 𝑦+ = 𝑦 + 𝑤, and 𝑥+ = 𝑄(𝑦+) as
per (B.25), we have:

𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥+ − 𝑝⟩ − 𝐹 (𝑥+, 𝑦) (B.29a)

≤ 𝐹 (𝑝, 𝑥) + ⟨𝑤, 𝑥 − 𝑝⟩ + 1
2𝐾
∥𝑤∥2∗ . (B.29b)
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Proof. By the three-point identity (B.26), we have

𝐹 (𝑥, 𝑦) = 𝐹 (𝑥, 𝑦+) + 𝐹 (𝑥+, 𝑥) + ⟨𝑦 − 𝑦+, 𝑥+ − 𝑝⟩ (B.30)

so our first claim is immediate. For our second claim, rearranging terms and employing the
Fenchel–Young inequality gives

𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥+ − 𝑝⟩ − 𝐹 (𝑥+, 𝑦)
= 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥 − 𝑝⟩ + ⟨𝑤, 𝑥+ − 𝑥⟩ − 𝐹 (𝑝, 𝑦)

≤ 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥 − 𝑝⟩ + 1
2𝐾
∥𝑤∥2∗ +

𝐾

2
∥𝑥 − 𝑝∥2 − 𝐹 (𝑝, 𝑦) (B.31)

so our claim follows from Proposition B.2. ■

C A short primer on stochastic analysis

In this appendix, we collect some standard results from stochastic analysis in order to provide a
degree of self-completeness to the main text. For an introduction to stochastic analysis and the theory
of SDEs, we refer the reader to the masterful accounts of Øksendal [58] and Kuo [36].

The main focus of the theory is the study of ordinary differential equations (ODEs) perturbed by
noise, modeled informally after the Langevin equation

𝑑𝑍

𝑑𝑡
= 𝑏(𝑍 (𝑡)) + 𝜂(𝑡) (LE)

where 𝑍 (𝑡) is a stochastic process in ℝ, 𝑏 : ℝ→ ℝ is the drift of the process, and 𝜂(𝑡) is the “noise”
perturbing the deterministic ODE ¤𝑧 = 𝑏(𝑧). Unfortunately, albeit natural, the problem with (LE) is
that any reasonable continuous-time model of noise would lead to trajectories that are almost nowhere
differentiable, so the meaning of “𝑑𝑍/𝑑𝑡” in (LE) is rather precarious.6

In lieu of this, to give formal meaning to (LE), we consider instead the stochastic differential equation

𝑑𝑍 (𝑡) = 𝑏(𝑍 (𝑡)) 𝑑𝑡 + 𝜎(𝑍 (𝑡)) 𝑑𝑊 (𝑡) (SDE)

which is shorthand for the integral equation

𝑍 (𝑡) =
∫ 𝑡

0
𝑏(𝑍 (𝑠)) 𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑍 (𝑠)) 𝑑𝑊 (𝑠) . (C.1)

for some state-dependent diffusion coefficient 𝜎 : ℝ→ ℝ. The key element in the above formulation
is the so-called Itô integral that appears in the right-hand side of (SDE), and which is defined relative
to what is known as a standard Brownian motion on ℝ. Intuitively, what this means is that the integral∫ 𝑡

0 𝜎(𝑍 (𝑠)) 𝑑𝑊 (𝑠) is obtained in the limit 𝛿𝑡 = 𝑡𝑘+1 − 𝑡𝑘 → 0 of the discrete-time approximation∫ 𝑡

0
𝜎(𝑍 (𝑠)) 𝑑𝑊 (𝑠) ≈

⌈𝑡/𝛿𝑡 ⌉∑︁
𝑘=1

𝜎(𝑍 (𝑡𝑘)) [𝑊 (𝑡𝑘+1) −𝑊 (𝑡𝑘)] (C.2)

where 𝑊 (𝑡) is some stochastic process that satisfies what one would expect from a “white noise”
process (zero-mean, with independent increments), but is still “regular enough” to possess a reasonable
behavior in the limit 𝛿𝑡 → 0. These considerations lead to the formal definition of a Brownian
motion—or, more precisely, the Wiener process—which is characterized by the following properties:

1. The increments of𝑊 are independent, that is, for all 𝑡, 𝜏 > 0, the future increments𝑊 (𝑡+𝜏) −𝑊 (𝑡)
of𝑊 are independent of its past values𝑊 (𝑠), 𝑠 < 𝑡.

2. The increments of𝑊 are Gaussian, that is, for all 𝑡, 𝜏 > 0, the future increments𝑊 (𝑡 + 𝜏) −𝑊 (𝑡)
of𝑊 are normally distributed with mean 0 and variance 𝜏, i.e.,𝑊 (𝑡 + 𝜏) −𝑊 (𝑡) ∼ N (0, 𝜏).

3. The sample paths of 𝑊 are continuous (a.s.), i.e., 𝑊 (𝑡) is a continuous function of 𝑡 for almost
every realization of𝑊 .

6In particular, consider a noise process 𝜂(𝑡) which is a) zero-mean: 𝔼[𝜂(𝑡] = 0; b) uncorrelated:
𝔼[𝜂(𝑡1)𝜂(𝑡2)] = 0 if 𝑡2 ≠ 𝑡1; and c) stationary, in the sense that 𝜂(𝑡 + 𝑠) and 𝜂(𝑡) are identically distributed for
all 𝑠 > 0. Then, any such process does not have continuous paths [58, p. 21].
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The existence of a process with the above properties is by no means a trivial affair, but it can
constructed e.g., as the scaling limit of a random walk, or some other discrete-time stochastic
processes with stationary independent increments.

Providing a more detailed account of the definition of 𝑊 (𝑡) and the associated stochastic integral
which appears in (SDE) is well beyond the scope of our paper; for an accessible introduction, we
refer the reader to Øksendal [58, Chap. 2]. What is more important for our purposes is that, albeit
non-differentiable, the solution 𝑍 (𝑡) still satisfies a certain version of the chain rule, known as Itô’s
formula [29]. Specifically, for any 𝐶2 function 𝑓 : ℝ→ ℝ, we have

𝑑𝑓 (𝑍 (𝑡)) = 𝑓 ′ (𝑍 (𝑡))𝑏(𝑍 (𝑡)) 𝑑𝑡 + 1
2 𝑓
′′ (𝑍 (𝑡))𝜎2 (𝑡) 𝑑𝑡 + 𝑓 ′ (𝑍 (𝑡)) 𝜎(𝑍 (𝑡)) 𝑑𝑊 (𝑡) (C.3)

or, more compactly:

𝑑𝑓 (𝑍 (𝑡)) = 𝑓 ′ (𝑍 (𝑡)) 𝑑𝑍 (𝑡) + 1
2 𝑓
′′ (𝑍 (𝑡)) 𝑑𝑍 (𝑡) · 𝑑𝑍 (𝑡) (C.4)

where the product 𝑑𝑍 · 𝑑𝑍 is computed according to the rules of stochastic calculus [58]:
𝑑𝑡 · 𝑑𝑡 = 0 𝑑𝑡 · 𝑑𝑊 (𝑡) = 0 and 𝑑𝑊 (𝑡) · 𝑑𝑊 (𝑡) = 𝑑𝑡 . (C.5)

Thanks to Itô’s formula, we can still do calculus with stochastic processes satisfying (SDE); the
resulting set of differentiation rules is known as Itô—or stochastic—calculus.

For our purposes, we will consider multi-dimensional analogues of (SDE) where, mutatis mutandis,
(i ) 𝑍 (𝑡) evolves in ℝ𝑛; (ii ) the drift of the process is given by a vector field 𝑏 : ℝ𝑛 → ℝ𝑛; (iii )𝑊 (𝑡)
is an 𝑚-dimensional Brownian motion evolving in ℝ𝑚; and (iv) 𝜎 : ℝ𝑛 → ℝ𝑛×𝑚 is the diffusion
matrix of the SDE. In this case, Itô’s formula for a 𝐶2 function 𝑓 : ℝ𝑛 → ℝ becomes

𝑑𝑓 (𝑍 (𝑡)) =
𝑛∑︁
𝑖=1

𝑏𝑖 (𝑍 (𝑡))
𝜕 𝑓

𝜕𝑧𝑖
𝑑𝑡 + 1

2

𝑛∑︁
𝑖, 𝑗=1

𝑚∑︁
𝑘=1

𝜎𝑖𝑘 (𝑍 (𝑡))𝜎𝑗𝑘 (𝑍 (𝑡))
𝜕2 𝑓

𝜕𝑧𝑖𝜕𝑧 𝑗
𝑑𝑡

+
𝑛∑︁
𝑖=1

𝑚∑︁
𝑘=1

𝜎𝑖𝑘 (𝑍 (𝑡))
𝜕 𝑓

𝜕𝑧𝑖
𝑑𝑊𝑘 (𝑡)

(C.6)

In our analysis, we will also require a weaker version of Itô’s formula for convex functions 𝑓 : ℝ𝑛 →
ℝ that are not 𝐶2 but are only 𝐿-Lipschitz smooth, i.e., 𝐶1-smooth with 𝐿-Lipschitz continuous
derivatives. We borrow the precise statement from [47, Proposition C.2] which, in our notation, gives

𝑓 (𝑍 (𝑡)) ≤ 𝑓 (𝑍 (0)) +
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝜕𝑧𝑖 𝑓 (𝑍 (𝑠)) 𝑑𝑍𝑖 (𝑠) +

𝐿

2

∫ 𝑠

0
tr[𝜎(𝑍 (𝑠)) 𝜎(𝑍 (𝑠))⊤] 𝑑𝑠 (C.7)

or, more explicitly,

𝑓 (𝑍 (𝑡)) ≤ 𝑓 (𝑍 (0)) +
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑏𝑘 (𝑍 (𝑠)) 𝜕𝑧𝑖 𝑓 (𝑍 (𝑠)) 𝑑𝑠 +

𝐿

2

∫ 𝑠

0
tr[𝜎(𝑍 (𝑠)) 𝜎(𝑍 (𝑠))⊤] 𝑑𝑠

+
𝑛∑︁
𝑖=1

𝑚∑︁
𝑘=1

∫ 𝑡

0
𝜎𝑖𝑘 (𝑍 (𝑠)) 𝜕𝑧𝑖 𝑓 (𝑍 (𝑠)) 𝑑𝑊𝑘 (𝑠) . (C.8)

The deterministic part of (the strong version of) Itô’s formula for 𝐶2-smooth functions is captured
by the so-called infinitesimal generator of (SDE), defined here as the differential operator L whose
action on 𝑓 is given by

L 𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑏𝑖 (𝑧)
𝜕 𝑓

𝜕𝑧𝑖
+ 1

2

𝑛∑︁
𝑖, 𝑗=1

𝑚∑︁
𝑘=1

𝜎𝑖𝑘 (𝑧)𝜎𝑗𝑘 (𝑧)
𝜕2 𝑓

𝜕𝑧𝑖𝜕𝑧 𝑗
for all 𝑧 ∈ ℝ𝑛. (C.9)

Accordingly, Itô’s formula can be written more compactly as
𝑑𝑓 (𝑍 (𝑡)) = L 𝑓 (𝑍 (𝑡)) 𝑑𝑡 + ∇𝑧 𝑓 (𝑍 (𝑡))⊤ 𝜎(𝑍 (𝑡)) 𝑑𝑊 (𝑡) . (C.10)

Thus, letting ℙ𝑧 (·) denote the law of 𝑍 initialized at 𝑍 (0) ← 𝑧 ∈ ℝ𝑛, and writing 𝔼𝑧 [·] for the
corresponding expectation, we readily get

𝔼𝑧 [ 𝑓 (𝑍 (𝑡))] = 𝑓 (𝑧) + 𝔼𝑧

[∫ 𝑡

0
L 𝑓 (𝑍 (𝑠)) 𝑑𝑠

]
for all 𝑡 ≥ 0. (C.11)

This shows that the infinitesimal generator of 𝑍 captures precisely the mean part of the evolution of
𝑓 (𝑍 (𝑡)) under (SDE). In fact, this simple expression admits a far-reaching generalization known as
Dynkin’s formula [58, Chap. 7.4]:
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Proposition C.1 (Dynkin’s formula). Suppose that 𝑍 (𝑡) is initialized at 𝑍 (0) ← 𝑧 ∈ ℝ𝑛. Then, for
every bounded stopping time 𝜏 and every 𝐶2-smooth function 𝑓 : ℝ𝑛 → ℝ, we have

𝔼𝑧 [ 𝑓 (𝑍 (𝜏))] = 𝑓 (𝑧) + 𝔼𝑧

[∫ 𝜏

0
L 𝑓 (𝑍 (𝑠)) 𝑑𝑠

]
. (C.12)

Moving forward, the matrix
𝐴(𝑧) = 𝜎(𝑧)𝜎(𝑧)⊤ (C.13)

or, in components,

𝐴𝑖 𝑗 (𝑧) =
𝑚∑︁
𝑘=1

𝜎𝑖𝑘 (𝑧)𝜎𝑗𝑘 (𝑧) 𝑖, 𝑗 = 1, . . . , 𝑛, (C.14)

is known as the principal symbol of L, and we say that L is uniformly elliptic if there exists some
𝑐 > 0 such that 𝑢⊤𝐴(𝑧)𝑢 ≥ 𝑐∥𝑢∥2 for all 𝑧, 𝑢 ∈ ℝ𝑛 (that is, if the eigenvalues of 𝐴(𝑧) are positive
and uniformly bounded away from 0). If this is the case, the noise in (SDE) is “uniformly exciting”
in the sense that it does not vanish along any direction at any point of the state space of the process.
Concretely, by standard results—see e.g., [56, Sec. 3.3.6.1] and references therein—this implies that
every region of ℝ𝑛 is visited by 𝑍 (𝑡) with positive probability, viz.

ℙ𝑧 (𝑍 (𝑡) = 𝑧′ for some 𝑡 > 0) > 0 for all 𝑧, 𝑧′ ∈ ℝ𝑛. (C.15)

If (SDE) is uniformly elliptic—i.e., if the infinitesimal generator thereof is uniformly elliptic—the
behavior of 𝑍 (𝑡) can be further classified as transient or recurrent. Formally, these two fundamental
notions are defined as follows:

Definition C.1. Suppose that (SDE) is initialized at some 𝑧 ∈ ℝ𝑛. Then:

1. 𝑍 (𝑡) is transient from 𝑧 ∈ ℝ𝑛 if it escapes every compact subset K of ℝ𝑛 in finite time, i.e., there
exists some (possibly random) 𝑇K < ∞ such that

ℙ𝑧 (𝑍 (𝑡) ∉ K for all 𝑡 ≥ 𝑇K) = 1 . (C.16)

2. 𝑍 (𝑡) is recurrent relative to a compact subset K of ℝ𝑛 if the hitting time

𝜏K = inf{𝑡 > 0 : 𝑍 (𝑡) ∈ K} (C.17)

is finite (a.s.). If, in addition, 𝔼[𝜏K] < ∞, we will say that 𝑍 (𝑡) is positive recurrent; otherwise,
𝑍 (𝑡) will be called null recurrent.

If (SDE) is uniformly elliptic, we have the following fundamental dichotomy:

Theorem C.1 (Transience / recurrence dichotomy). Suppose that (SDE) is uniformly elliptic. Then:

1. If (SDE) is positive recurrent (resp. null recurrent) for some initial condition 𝑧 ∈ ℝ𝑛 and some
compact subset K of ℝ𝑛, then it is positive recurrent (resp. null recurrent) for every initial
condition and every compact subset of ℝ𝑛.

2. If (SDE) is transient from some initial condition 𝑧 ∈ ℝ𝑛, it is transient from every initial condition.

For a more detailed version of Theorem C.1, we refer the reader to Bhattacharya [8, Proposition 3.1]
who, to the best of our knowledge, was the first to state and prove this criterion. In words, Theorem C.1
simply states that, as long as (SDE) is uniformly elliptic, then it is either transient or recurrent; and
if it is recurrent, it is either positive or null recurrent; no other outcome is possible. The choice of
initialization or compact set in Definition C.1 does not matter (so, in particular, 𝑍 cannot be transient
from some region of ℝ𝑛 and recurrent from another). This crisp separation of regimes will play a
major role in our analysis, and we will refer to it as the transience / recurrence dichotomy.

An important consequence of positive recurrence is that, under uniform ellipticity, 𝑍 (𝑡) admits a
unique invariant measure, that is, a probability measure 𝜈 on ℝ𝑛 such that 𝑍 (𝑡) ∼ 𝜈 for all 𝑡 ≥ 0
whenever 𝑍 (0) ∼ 𝜈. Importantly, the proviso that 𝜈 is a probability measure implies that 𝜈(ℝ𝑛) < ∞;
if the process is null-recurrent, the semigroup of flows of (SDE) still admits an invariant meassure in
the sense of Khasminskii [32], but this measure is no longer finite, i.e., 𝜈(ℝ𝑛) = ∞. Finally, if the
process is transient, (SDE) does not admit such a measure.
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D Analysis and results in continuous time

We now proceed to prove the continuous-time results for (S-FTRL) that we presented in Section 3.

D.1. Proofs omitted from Section 3.1. We begin with the “gentle start” results of Section 3.1, which
we restate below for convenience.
Proposition 1. Suppose that (S-GDA) is run on the game (6a) with initial condition 𝑥0 ∈ ℝ2. Then:

1. lim𝑡→∞ 𝔼𝑥0

[
∥𝑋 (𝑡)∥22

]
= ∞, i.e., 𝑋 (𝑡) escapes to infinity in mean square.

2. 𝔼𝑥0 [𝜏𝑟 ] = ∞ if 𝑟 < ∥𝑥0∥, i.e., 𝑋 (𝑡) takes infinite time on average to get closer to equilibrium.

3. The limit P∞ (𝑥) = lim𝑡→∞ P (𝑥, 𝑡) does not exist, i.e., 𝑋 does not admit an invariant distribution.
Proposition 2. Suppose that (S-GDA) is run on the game (6b) with initial condition 𝑥0 ∈ ℝ2. Then:

1. lim𝑡→∞ 𝔼𝑥0

[
∥𝑋 (𝑡)∥22

]
= 𝜎2, i.e., the dynamics fluctuate at mean distance 𝜎 from equilibrium.

2. The mean time required to get within distance 𝑟 of the game’s equilibrium is bounded as

𝔼𝑥0 [𝜏𝑟 ] ≤
1
2
∥𝑥0∥22 − 𝑟

2

𝑟2 − 𝜎2 for all 𝜎 < 𝑟 < ∥𝑥0∥2. (10)

3. The density of 𝑋 (𝑡) is P (𝑥, 𝑡) = [𝜋𝜎2 (1 − 𝑒−2𝑡 )]−1 exp
(
− ∥𝑥−𝑒

−𝑡 𝑥0 ∥22
(1−𝑒−2𝑡 )𝜎2

)
. In particular, 𝑋 (𝑡) con-

verges in distribution to a Gaussian random variable centered at 0, viz.

P∞ (𝑥) ≡ lim𝑡→∞ P (𝑥, 𝑡) = 1/(𝜋𝜎2) · 𝑒−∥𝑥 ∥22/𝜎2
. (11)

Proof of Proposition 1. For our first claim, note that Itô’s formula (C.6) applied to the function
𝑓 (𝑥) = ∥𝑥∥22 under the dynamics (S-GDA) for the game (6a) readily yields the expression

𝑑
(
∥𝑋 (𝑡)∥22

)
= 2𝑋 (𝑡) · 𝑑𝑋 (𝑡) + 𝑑𝑋 (𝑡) · 𝑑𝑋 (𝑡) = 2𝜎2 𝑑𝑡 + 𝜎 𝑋 (𝑡) · 𝑑𝑊 (𝑡) . (D.1)

Hence, by (C.11), we get
𝔼𝑥0 [∥𝑋 (𝑡)∥22] = 2𝜎2𝑡 , (D.2)

which proves our claim.

For our second claim, consider the hitting time 𝜏 = inf{𝑡 > 0 : ∥𝑋 (𝑡)∥2 ≤ 𝑟} with 𝑟 < ∥𝑥0∥2, and
assume that 𝔼[𝜏] < ∞. Then, by Dynkin’s formula (Proposition C.1) applied to 𝑓 (𝑥) = ∥𝑥∥22 and 𝜏,
we readily get

𝔼𝑥0 [ 𝑓 (𝑋 (𝜏))] = 𝑓 (𝑥0) + 𝔼𝑥0

[∫ 𝜏

0
2𝜎2 𝑑𝑠

]
= 𝑓 (𝑥0) + 2𝜎2 𝔼𝑥0 [𝜏] ≥ ∥𝑥0∥22 . (D.3)

However, since 𝑓 (𝑋 (𝜏)) = 𝑟2 by construction, we readily get 𝑟2 ≥ ∥𝑥0∥22, a contradiction. This
shows that 𝔼𝑥0 [𝜏] = ∞, as asserted.

Finally, for our third claim, it is easy to check that (S-GDA) is uniformly elliptic under the stated
assumptions. Thus, by Theorem C.1 and the fact that 𝔼𝑥0 [𝜏] = ∞, it follows that 𝑋 (𝑡) cannot be
positive recurrent. By the discussion following Theorem C.1, this implies that 𝑋 (𝑡) does not admit an
inveriant measure, so the density P (𝑥, 𝑡) of 𝑋 (𝑡) does not converge to a limit either. ■

Proof of Proposition 2. Under the dynamics (S-GDA) for the game (6b), each coordinate of 𝑋 (𝑡)
evolves as an Ornstein–Uhlenbeck process, viz.

𝑑𝑋𝑖 (𝑡) = −𝑋𝑖 (𝑡) 𝑑𝑡 + 𝜎 𝑑𝑊𝑖 (𝑡) for 𝑖 = 1, 2. (D.4)

Since the processes are decoupled, we conclude by standard stochastic analysis arguments [36,
Example 7.4.5] that

𝑋𝑖 (𝑡) = 𝑋𝑖 (0)𝑒−𝑡 + 𝜎
∫ 𝑡

0
𝑒−(𝑡−𝑠) 𝑑𝑊𝑖 (𝑠) . (D.5)

In turn, by [36, Theorem 7.4.7], this implies that the transition probability kernel of 𝑋𝑖 (𝑡) is given by

P𝑖 (𝑥𝑖 , 𝑡) =
1

𝜎
√︁
𝜋(1 − 𝑒−2𝑡 )

exp
(
−
(𝑥𝑖 − 𝑒−𝑡𝑥𝑖,0)2

(1 − 𝑒−2𝑡 )𝜎2

)
for 𝑖 = 1, 2, (D.6)
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that is, 𝑋𝑖 (𝑡) follows a Gaussian distribution with mean 𝔼𝑥𝑖,0 [𝑋𝑖 (𝑡)] = 𝑥𝑖,0𝑒−𝑡 and variance

𝔼[𝑋2
𝑖 (𝑡)] =

𝜎2

2

(
1 − 𝑒−2𝑡

)
. (D.7)

Our first and third claims then follow immediately.

For our second claim, note that the infinitesimal generator of 𝑋 (𝑡) is now given by

L 𝑓 (𝑥) = −⟨∇ 𝑓 (𝑥), 𝑥⟩ + 1
2
𝜎2Δ 𝑓 (𝑥) , (D.8)

where Δ 𝑓 ≡ tr∇2 𝑓 denotes the Laplacian of 𝑓 . Then, Dynkin’s formula (Proposition C.1) applied to
𝑓 (𝑥) = ∥𝑥∥22 at the truncated hitting time 𝜏𝑟 ∧ 𝑡 ≡ min{𝜏𝑟 , 𝑡}, 𝑡 > 0, readily yields

𝔼𝑥0 [∥𝑋 (𝜏𝑟 ∧ 𝑡)∥22] = ∥𝑥0∥22 + 𝔼𝑥0

[∫ 𝜏𝑟∧𝑡

0
2[𝜎2 − ∥𝑋 (𝑠)∥22] 𝑑𝑠

]
≤ ∥𝑥0∥22 + 𝔼𝑥0

[∫ 𝜏𝑟∧𝑡

0
2(𝜎2 − 𝑟2) 𝑑𝑠

]
= ∥𝑥0∥22 + 2(𝜎2 − 𝑟2) 𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] . (D.9)

Since ∥𝑋 (𝜏𝑟 ∧ 𝑟)∥22 ≥ 𝑟
2 by construction (recall that ∥𝑥0∥2 > 𝑟), we get

𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] ≤
∥𝑥0∥22 − 𝑟

2

2(𝑟2 − 𝜎2)
for all 𝑡 > 0. (D.10)

Since 𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] is uniformly bounded, our claim follows by taking the limit 𝑡 →∞ (so 𝜏𝑟 ∧ 𝑡 → 𝜏𝑟
pointwise), and invoking the dominated convergence theorem. ■

D.2. General properties of the dynamics (S-FTRL). We now proceed to establish the properties
of the stochastic dynamics (S-FTRL) in the general case, for null- and strongly monotone games
respectively. Before doing so, we begin with a result of a book-keeping nature (which is, however,
necessary to ensure that the ensuing questions are meaningful).
Proposition D.1. Suppose that 𝜎 is Lipschitz continuous. Then, for every initial condition 𝑋 (0) ←
𝑥0 = 𝑄(𝑦0) ∈ X , the dynamics (S-FTRL) admit a unique strong solution that exists for all time.

Proof. Note that the dynamics (S-FTRL) can be recast in fully autonomous form as
𝑑𝑌(𝑡) = 𝑣(𝑄(𝑌(𝑡))) 𝑑𝑡 + 𝜎(𝑄(𝑌(𝑡))) · 𝑑𝑊 (𝑡) . (D.11)

Note further that 𝑣, 𝜎 and 𝑄 are all Lipschitz, by our standing assumptions for the game, our
assumptions here, and Proposition B.1 respectively. In turn, this implies that the compositions
𝑣̃ = 𝑣 ◦𝑄 and 𝜎̃ = 𝜎 ◦𝑄 are likewise Lipschitz continuous, so our claim follows from the existence
and uniqueness theorem for SDEs with Lipschitz data, see e.g., [58, Theorem 5.2.1]. ■

Our next result is an ancillary calculation responsible for much of the heavy lifting in the upcoming
analysis.
Proposition D.2. Fix a base point 𝑝 ∈ X and consider the energy function

𝐸 (𝑦) := 𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ for 𝑦 ∈ Y . (D.12)
Then, for every stopping time 𝜏 ≥ 0, we have

𝐸 (𝑌(𝜏)) − 𝐸 (𝑌(0)) ≤
∫ 𝜏

0
⟨𝑣(𝑋 (𝑠)), 𝑋 (𝑠) − 𝑝⟩ 𝑑𝑠 +

𝜎2
max

2𝐾
𝜏

+
∫ 𝜏

0
(𝑋 (𝑠) − 𝑝)⊤𝜎(𝑋 (𝑠)) 𝑑𝑊 (𝑠) . (D.13)

If, in particular, 𝑄 is smooth, we have

𝐸 (𝑌(𝜏)) − 𝐸 (𝑌(0)) =
∫ 𝜏

0
⟨𝑣(𝑋 (𝑠)), 𝑋 (𝑠) − 𝑝⟩ 𝑑𝑠

+ 1
2

∫ 𝜏

0
tr[Σ(𝑋 (𝑠)) Jac𝑄(𝑌(𝑠))] 𝑑𝑠

+
∫ 𝜏

0
(𝑋 (𝑠) − 𝑝)⊤𝜎(𝑋 (𝑠)) 𝑑𝑊 (𝑠) . (D.14)
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Proof. Assume first that 𝑄 is 𝐶1-smooth; In this case, by Lemma B.1, we have ∇𝐹 (𝑝, 𝑦) = 𝑄(𝑦) − 𝑝,
and hence,

∇2𝐸 (𝑦) = ∇2ℎ∗ (𝑦) = Jac𝑄(𝑦) . (D.15)
Thus, by Itô’s formula (C.6), we readily get

𝑑𝐸 (𝑌(𝑡)) = (𝑋 (𝑡) − 𝑝) · 𝑑𝑌(𝑡) + 1
2

tr[𝜎⊤ (𝑋 (𝑡)) ∇2𝐸 (𝑌(𝑡)) 𝜎(𝑋 (𝑡))] 𝑑𝑡

= ⟨𝑣(𝑋 (𝑡)), 𝑋 (𝑡) − 𝑝⟩ 𝑑𝑡

+ 1
2

tr[Σ(𝑋 (𝑡)) Jac𝑄(𝑌(𝑡))] 𝑑𝑡

+ (𝑋 (𝑡) − 𝑝)⊤𝜎(𝑋 (𝑡)) 𝑑𝑊 (𝑡) (D.16)

so (D.14) follows.

Now, if 𝑄 is not smooth, Proposition B.1 shows that it is still (1/𝐾)-Lipschitz continuous, which,
equivalently, means that ℎ∗ is (1/𝐾)-Lipschitz smooth. Thus, (D.13) follows by the weak Itô formula
for Lipschitz smooth functions (C.7) applied to ℎ∗, and noting that tr[𝜎(𝑥)𝜎(𝑥)⊤] ≤ 𝑑𝜎2

max. ■

D.3. The null-monotone case. We begin our analysis proper with our result for null-monotone
games, which we restate below for convenience.
Theorem 1 (Null-monotone games). Suppose that (S-FTRL) is run with a smooth mirror map 𝑄
in a null-monotone game G. Suppose further that the game admits an interior equilibrium 𝑥∗, and
consider the hitting times 𝜏−𝜀 := inf{𝑡 > 0 : 𝐹𝑡 ≤ 𝐹0 − 𝜀} and 𝜏+𝜀 := inf{𝑡 > 0 : 𝐹𝑡 ≥ 𝐹0 + 𝜀}. If
𝜎2

min > 0 and 𝜀 > 0 is small enough, then

𝔼𝑥0 [𝜏−𝜀 ] = ∞ and 𝔼𝑥0 [𝜏+𝜀 ] ≤ 2𝜀
/ (
𝜅 𝜎2

min
)

(15)

for some constant 𝜅 ≡ 𝜅𝜀 > 0; in addition, 𝑋 (𝑡) does not admit a limiting distribution in this case.

Proof. We start with the decreasing case, where we argue by contradiction. Specifically, let 𝑥∗ be an
equilibrium of G, and assume that 𝔼𝑥0 [𝜏−𝜀 ] < ∞. Then, by applying Dynkin’s formula to the energy
function 𝐸 (𝑦) at 𝜏−𝜀 for 𝑝 ← 𝑥∗ (cf. Propositions C.1 and D.2), we readily get

𝔼𝑥0 [𝐸 (𝑌(𝜏−𝜀 ))] = 𝐸 (𝑦0) + 𝔼𝑥0

[∫ 𝜏−𝜀

0

(
⟨𝑣(𝑋 (𝑠)), 𝑋 (𝑠) − 𝑥∗⟩ + 1

2 tr[Σ(𝑋 (𝑠)) Jac𝑄(𝑌(𝑠))]
)
𝑑𝑠

]
= 𝐹0 +

1
2
𝔼𝑥0

[∫ 𝜏−𝜀

0
tr[Σ(𝑋 (𝑠)) Jac𝑄(𝑌(𝑠))] 𝑑𝑠

]
# by null monotonicity

≥ 𝐹0 (D.17)

where the last line follows from the fact that Σ and Jac𝑄 are both positive-semidefinite. However,
since 𝔼𝑥0 [𝐸 (𝑌(𝜏−𝜀 ))] = 𝐹0 − 𝜀 by the definition of 𝜏−𝜀 , we get 𝐹0 − 𝜀 ≥ 𝐹0, a contradiction which
establishes our claim.

Since 𝜎min > 0, we further conclude that 𝑌(𝑡) is uniformly elliptic. Thus, for any compact set
K ⊆ {𝑦 ∈ Y : 𝐹 (𝑥∗, 𝑦) ≤ 𝐹0 − 𝜀}, the hitting time 𝜏K = inf{𝑡 > 0 : 𝑌(𝑡) ∈ K} will be infinite on
average (because 𝔼𝑥0 [𝜏K] ≥ 𝔼𝑥0 [𝜏−𝜀 ] = ∞), so, by Theorem C.1, 𝑌(𝑡) cannot be positive recurrent.
In turn, this implies that 𝑌(𝑡) does not admit an invariant measure on Y , which proves our claim.

Finally, for the second part of (15), applying Dynkin’s formula to the energy function 𝐸 (𝑦) for
𝑝 ← 𝑥∗ at the truncated hitting times 𝜏+𝜀 ∧ 𝑡, 𝑡 > 0, we get:

𝔼𝑥0 [𝐸 (𝑌(𝜏+𝜀 ) ∧ 𝑡)] = 𝐸 (𝑦0) + 𝔼𝑥0

[∫ 𝜏+𝜀∧𝑡

0

(
⟨𝑣(𝑋 (𝑠)), 𝑋 (𝑠) − 𝑥∗⟩ + 1

2 tr[Σ(𝑋 (𝑠)) Jac𝑄(𝑌(𝑠))]
)
𝑑𝑠

]
= 𝐹0 +

1
2
𝔼𝑥0

[∫ 𝜏+𝜀∧𝑡

0
tr[Σ(𝑋 (𝑠)) Jac𝑄(𝑌(𝑠))] 𝑑𝑠

]
# by null monotonicity

≥ 𝐹0 +
𝜎2

min
2

𝔼𝑥0

[∫ 𝜏+𝜀∧𝑡

0
tr[Jac𝑄(𝑌(𝑠))] 𝑑𝑠

]
(D.18)
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where the last line follows from the estimate

tr[Σ Jac𝑄] = tr[(Jac𝑄)1/2Σ(Jac𝑄)1/2]
= (1, . . . , 1) · (Jac𝑄)1/2Σ(Jac𝑄)1/2 · (1, . . . , 1)⊤

≥ 𝜎2
min (1, . . . , 1) · (Jac𝑄)1/2 · (Jac𝑄)1/2 · (1, . . . , 1)⊤

= 𝜎2
min tr[Jac𝑄] . (D.19)

By the assumptions of the theorem (smooth 𝑄 and interior initialization), it follows that the (necessar-
ily compact) set D𝜀 :={𝑥 = 𝑄(𝑦) : 𝐹 (𝑥∗, 𝑦) ≤ 𝐹0 + 𝜀} is contained in the relative interior riX of X .
In turn, this implies that 𝜅 ≡ 𝜅𝜀 :=min{tr[Jac𝑄(𝑦)] : 𝐹 (𝑥∗, 𝑦) ≤ 𝐹0 + 𝜀} > 0, so (D.18) becomes

𝐹0 + 𝜀 ≥ 𝐹0 +
1
2
𝜅𝜎2

min 𝔼𝑥0 [𝜏+𝜀 ∧ 𝑡] (D.20)

and hence
𝔼𝑥0 [𝜏+𝜀 ∧ 𝑡] ≤

2𝜀
𝜅𝜎2

min
for all 𝑡 ≥ 0. (D.21)

This shows that 𝔼𝑥0 [𝜏+𝜀 ∧ 𝑡] is uniformly bounded, so the upper bound in (15) follows by letting
𝑡 →∞ (which implies 𝜏+𝜀 ∧𝑡 → 𝜏+𝜀 pointwise), and invoking the dominated convergence theorem. ■

D.4. The strongly monotone case. We now turn to our main result for strongly monotone games.
Our proof strategy draws on methods related to the analysis of (S-FTRL) in the context of convex
minimization, as explored by [47], and incorporating ideas that can be traced back to [28].

For convenience, we begin by restating Theorem 2.
Theorem 2 (Strongly monotone games). Suppose that (S-FTRL) is run in an 𝛼-strongly monotone
game G, and consider the hitting time

𝜏𝑟 := inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)} (16)

where 𝔹𝑟 (𝑥∗) = {𝑥 : ∥𝑥 − 𝑥∗∥ ≤ 𝑟} is a ball of radius 𝑟 centered on the (necessarily unique)
equilibrium 𝑥∗ of G. Then:

𝔼𝑥0 [𝜏𝑟 ] ≤ (𝐹0/𝛼)
/
(𝑟2 − 𝑟2

𝜎) for all 𝑟 > 𝑟𝜎 , (17)

where 𝑟𝜎 :=𝜎max/
√

2𝐾𝛼. If, in addition, 𝜎min > 0 and 𝑥∗ is interior, 𝑋 (𝑡) admits an invariant
distribution concentrated in a ball of radius O(𝜎max) around 𝑥∗, and we have

lim𝑡→∞ 𝜇𝑡 (𝔹𝑟 (𝑥∗)) ≥ 1 − 𝑟2
𝜎/𝑟2 for all 𝑟 > 𝑟𝜎 . (18)

Proof. Our proof proceeds along the following basic steps:

Step 1. Deriving an estimate for the mean hitting time 𝔼𝑥0 [𝜏𝑟 ].
Step 2. Descending to a restricted process 𝑌(𝑡) where any redundant degrees of freedom in 𝑌(𝑡) have

been “modded out”.

Step 3. Showing that the restricted process is positive recurrent.

Step 4. Estimating the resulting invariant distribution and pushing the result forward to 𝑋 (𝑡).
In what follows, we go through the steps outlined above, one at a time.

Step 1: Estimating the hitting time. We begin with the hitting time estimate (17). To that end,
setting 𝑝 ← 𝑥∗ in Proposition D.2, we get

𝐸 (𝑌(𝜏)) − 𝐸 (𝑦0) =
∫ 𝜏

0
⟨𝑣(𝑋 (𝑠)), 𝑋 (𝑠) − 𝑥∗⟩ 𝑑𝑠 + 1

2𝐾

∫ 𝜏

0
tr[Σ(𝑋 (𝑠))] 𝑑𝑠

+
∫ 𝜏

0
(𝑋 (𝑠) − 𝑥∗)⊤𝜎(𝑋 (𝑠)) 𝑑𝑊 (𝑠)

≤ −𝛼
∫ 𝜏

0
∥𝑋 (𝑠) − 𝑥∗∥2 𝑑𝑠 +

𝜎2
max

2𝐾
𝜏 + 𝑀(𝜏) . (D.22)

25



where we set

𝑀(𝑡) =
∫ 𝑡

0
(𝑋 (𝑠) − 𝑥∗)⊤𝜎(𝑋 (𝑠)) 𝑑𝑊 (𝑠) . (D.23)

Thus, by a quick rearrangement, we obtain

𝛼

∫ 𝜏

0
∥𝑋 (𝑠) − 𝑥∗∥2 𝑑𝑠 ≤ 𝐸 (𝑦0) − 𝐸 (𝑌(𝜏)) +

𝜎2
max𝜏

2𝐾
+ 𝑀(𝜏) (D.24)

and hence, with 𝐸 ≥ 0: ∫ 𝜏

0
∥𝑋 (𝑠) − 𝑥∗∥2 𝑑𝑠 ≤ 𝐹0

𝛼
+
𝜎2

max𝜏

2𝛼𝐾
+ 𝑀(𝜏)

𝛼
. (D.25)

Thus, applying the above to the truncated hitting time 𝜏 ← 𝜏𝑟 ∧ 𝑡 ≡ min{𝜏𝑟 , 𝑡}, 𝑡 > 0, we get

𝑟2 𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] ≤ 𝔼𝑥0

[∫ 𝜏𝑟∧𝑡

0
∥𝑋 (𝑠) − 𝑥∗∥2 𝑑𝑠

]
# b/c ∥𝑋 (𝑠) − 𝑥∗∥ ≥ 𝑟 for 𝑠 ≤ 𝜏𝑟 ∧ 𝑡

≤ 𝐹0
𝛼
+ 𝑟2

𝜎 𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] +
1
𝛼
𝔼𝑥0 [𝑀(𝜏𝑟 ∧ 𝑡)] . (D.26)

Since 𝜏𝑟 ∧ 𝑡 ≤ 𝑡 is uniformly bounded, we will have 𝔼𝑥0 [𝑀(𝜏𝑟 ∧ 𝑡)] = 𝔼[𝑀(0)] = 0 by the optional
sampling theorem for continuous-time martingales [31, Theorem 3.22]. Thus, a simple rearrangement
gives

𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] ≤
𝐹0/𝛼
𝑟2 − 𝑟2

𝜎

for all 𝑡 ≥ 0. (D.27)

This shows that 𝔼𝑥0 [𝜏𝑟 ∧ 𝑡] is uniformly bounded, so the bound (17) follows by letting 𝑡 →∞ (which
implies 𝜏𝑟 ∧ 𝑡 → 𝜏𝑟 pointwise), and invoking the dominated convergence theorem.

Step 2: Descending to the restricted process. We now proceed to examine the recurrence
properties of 𝑋 (𝑡). To that end, note first that the assumption 𝜎min > 0 directly implies that (S-FTRL)
is uniformly elliptic in the sense discussed in Appendix C. As such, consider the set

D𝑟 :=𝑄−1 (𝔹𝑟 (𝑥∗)) = {𝑦 ∈ Y : ∥𝑄(𝑦) − 𝑥∗∥ ≤ 𝑟} . (D.28)

and note that
𝜏𝑟 = inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)} = inf{𝑡 > 0 : 𝑌(𝑡) ∈ D𝑟 } (D.29)

so 𝑌(𝑡) is positive recurrent relative to D𝑟 . Thus, if D𝑟 is compact, Theorem C.1 immediately shows
that 𝑌(𝑡) is positive recurrent, and hence admits an invariant measure 𝜈 on Y . In general however,
D𝑟 need not be compact, so we cannot conclude that 𝑌(𝑡) is recurrent from the fact that it hits D𝑟 in
finite time on average.

To circumvent this difficulty, we will consider a “restricted” process which is positive recurrent,
while retaining all information present in 𝑌(𝑡). The main idea here will be to “collapse” the fibers
of 𝑄, that is, those directions in Y which map to the same point in X under 𝑄: since the dynamics
(S-FTRL) factor through 𝑋 (𝑡) = 𝑄(𝑌(𝑡)), these directions carry no relevant information, so they can
be effectively discarded.

To carry all this out, let Ṽ denote the “tangent hull” of X in V , viz.

Ṽ := aff (X − X ) = {𝑧 ∈ V : 𝑥 + 𝑡𝑧 ∈ X for all sufficiently small 𝑡 > 0 and all 𝑥 ∈ riX } . (D.30)

In words, Ṽ is the smallest subspace of V which contains X when the latter is translated to the origin
so, by construction, X is full-dimensional when viewed as a subset of Ṽ .7 In this sense, Ṽ contains
all the “essential” directions of motion of the problem.

Dually to the above, we also consider the corresponding dual space Ỹ ≡ Ṽ∗ of Ṽ; this is not a
subspace of Y , but there exists a canonical surjection Π : Y↠ Ỹ defined by restricting the action of
𝑦 ∈ Y to Ṽ , that is,

⟨Π(𝑦), 𝑧⟩ = ⟨𝑦, 𝑧⟩ for all 𝑧 ∈ Ṽ . (D.31)
The kernel of Π is precisely the annihilator Ann(Ṽ) of Ṽ , i.e.,

kerΠ = Ann(Ṽ) ≡ {𝑤 ∈ Y : ⟨𝑤, 𝑧⟩ = 0 for all 𝑧 ∈ Ṽ} (D.32)

7Specifically, unless X is a singleton, it has nonempty topological interior when viewed as a subset of Ṽ .

26



so, by the first isomorphism theorem, we get a canonical identification (V/Ṽ)∗ � kerΠ.

The main reason for descending from Y to Ỹ is the following: in the original space Y , we have
𝑄(𝑦 + 𝑤) = 𝑄(𝑦) whenever 𝑤 annihilates Ṽ , cf. Proposition B.1. As a result, the inverse image of
any compact subset of X under 𝑄 will always contain a copy of Ann(Ṽ), so it can never be compact
itself. By contrast, by “modding out” Ann(Ṽ) and descending to the restricted space Ỹ , this is no
longer the case.

To move forward, consider the restricted mirror map 𝑄̃ : Ỹ → X given by

𝑄̃(𝑦̃) = 𝑄(𝑦) whenever Π(𝑦) = 𝑦̃. (D.33)

By the last item of Proposition B.1 we have 𝑄(𝑦) = 𝑄(𝑦 + 𝑤) whenever 𝑤 ∈ Ann(Ṽ); this means
that the choice of representative in (D.33) does not matter, so 𝑄̃ is well-defined. Accordingly, letting

𝑌(𝑡) = Π(𝑌(𝑡)) (D.34)

and applying Π to (S-FTRL) yields the “restricted” dynamics

𝑑𝑌(𝑡) = 𝑑 (Π · 𝑌(𝑡)) = Π · 𝑣(𝑋 (𝑡)) 𝑑𝑡 + Π · 𝜎(𝑋 (𝑡)) · 𝑑𝑊 (𝑡) (D.35)

where 𝑋 (𝑡) = 𝑄(𝑌(𝑡)) = 𝑄̃(𝑌(𝑡)) and, in a slight abuse of notation, we are overloading the symbol
Π to denote both the linear map Π : Y → Ỹ and its representation as a matrix. These dynamics
represent a time-homogeneous SDE in terms of 𝑌 , and they will be our main object of study in the
rest of our proof.

Step 3: Positive recurrence of the restricted process. With all this in hand, positive recurrence
for the restricted process 𝑌(𝑡) boils down to the following: a) verifying that the infinitesimal generator
of 𝑌 is uniformly elliptic; and b) showing that the mean time required for 𝑌(𝑡) to reach some compact
set of Ỹ is finite.

We begin by establishing uniform ellipticity. In view of (D.35), the principal symbol (C.13) of the
infinitesimal generator of 𝑌(𝑡) is

𝐴 = (Π · 𝜎) · (Π · 𝜎)⊤ = Π𝜎𝜎⊤Π⊤ = ΠΣΠ⊤ . (D.36)

Since Σ ≽ 𝜎2
min𝐼, we readily get

𝐴 ≽ 𝜎2
minΠΠ⊤ ≽ 𝜎2

min𝜋
2
min𝐼 (D.37)

with 𝜎min > 0 (by assumption) and 𝜋min :=𝜆min (ΠΠ⊤) > 0 (because Π is surjective, so it has full
rank). This shows that the principal symbol ΠΣΠ⊤ of the generator of𝑌 is uniformly positive-definite,
so 𝑌 is itself uniformly elliptic.

For the second component of our proof of positive recurrence, recall that 𝑥∗ ∈ riX , so there exists
some sufficiently small 𝑟 > 0 such that the (compact convex) set

K𝑟 :=𝔹𝑟 ∩ X = {𝑥 ∈ X : ∥𝑥 − 𝑥∗∥ ≤ 𝑟} (D.38)

lies in its entirety within riX . We then claim that the inverse image

D̃𝑟 := 𝑄̃−1 (K𝑟 ) = {𝑦̃ ∈ Ỹ : ∥𝑄̃(𝑦̃) − 𝑥∗∥ ≤ 𝑟} (D.39)

of K𝑟 under the restricted mirror map 𝑄̃ is compact. To see this, note first that D̃𝑟 = 𝜕ℎ(K𝑟 ) by
Proposition B.1.8 Thus, given that K𝑟 is a convex body in Ṽ that is entirely contained in the (relative)
interior of the prox-domain Xℎ of ℎ (because riX ⊆ dom 𝜕ℎ ≡ Xℎ), it follows that 𝜕ℎ(K𝑟 ) is itself
compact by the upper hemicontinuity of 𝜕ℎ [24, Remark 6.2.3].

To conclude, note that

inf{𝑡 > 0 : 𝑌(𝑡) ∈ D̃𝑟 } = inf{𝑡 > 0 : ∥𝑄̃(𝑌(𝑡)) − 𝑥∗∥ ≤ 𝑟}
= inf{𝑡 > 0 : ∥𝑄(𝑌(𝑡)) − 𝑥∗∥ ≤ 𝑟}
= inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)}
= 𝜏𝑟 (D.40)

so it follows from (17) that 𝑌(𝑡) hits D̃𝑟 in finite time on average. Since 𝑌(𝑡) is uniformly elliptic,
Theorem C.1 shows that it is positive recurrent, as claimed.

8Strictly speaking, we are viewing here 𝜕ℎ as taking values in Ỹ instead of Y; this is a simple matter of
identifying ℎ : V → ℝ with its canonical restriction to Ṽ ⊆ V .
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Step 4: Estimating the long-run occupation measure. Since the restricted process 𝑌(𝑡) is a
positive recurrent Itô diffusion, standard results show that it admits an invariant distribution 𝜈̃ on Ỹ
which satisfies the law of large numbers

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑓 (𝑌(𝑠)) 𝑑𝑠 =

∫
Ỹ
𝑓 𝑑𝜈̃ (D.41)

for every 𝜈̃-integrable test function 𝑓 on Ỹ . Thus, letting 𝜈 = 𝑄̃∗ 𝜈̃ ≡ 𝜈̃◦𝑄̃−1 denote the corresponding
push-forward measure on X , we get

lim
𝑡→∞

𝜇𝑡 (𝔹𝑟 ) = lim
𝑡→∞

1
𝑡

∫ 𝑡

0
1{𝑋 (𝑠) ∈ 𝔹𝑟 } 𝑑𝑠

= lim
𝑡→∞

1
𝑡

∫ 𝑡

0
1{𝑄̃(𝑌(𝑠)) ∈ 𝔹𝑟 } 𝑑𝑠

= lim
𝑡→∞

1
𝑡

∫ 𝑡

0
1{𝑌(𝑠) ∈ D̃𝑟 } 𝑑𝑠

=

∫
Ỹ
1{𝑦̃ ∈ D̃𝑟 } 𝑑𝜈̃(𝑦̃)

= 𝜈̃(D̃𝑟 ) . (D.42)

In a similar manner, we also get

1 − 𝜈̃(D̃𝑟 ) = lim
𝑡→∞

1
𝑡
𝔼

[∫ 𝑡

0
1{𝑋 (𝑠) ∉ 𝔹𝑟 } 𝑑𝑠

]
# b/c lim𝑡→∞ 𝜇𝑡 is deterministic

≤ lim
𝑡→∞

1
𝑡
𝔼

[∫ 𝑡

0

∥𝑋 (𝑠) − 𝑥∗∥2
𝑟2 𝑑𝑠

]
# b/c ∥𝑋 (𝑠)−𝑥

∗ ∥2
𝑟2 ≥ 1 outside 𝔹𝑟

≤ lim
𝑡→∞

1
𝑟2

[
𝐹0
𝛼𝑡
+
𝜎2

max
2𝛼𝐾

]
# by (D.25)

=
𝑟2
𝜎

𝑟2 . (D.43)

Our claim then follows by combining Eqs. (D.42) and (D.43). ■

E Analysis and results in discrete time

In this appendix, we proceed to prove the discrete-time results presented in Section 4.

E.1. The null-monotone case. We begin with our analysis for for null-monotone games. For
convenience, we restate Theorem 3 below:

Theorem 3 (Null-monotone games). Suppose that (FTRL) is run in a null-monotone game G, and let
𝑥∗ be an equilibrium of G. Suppose further that ℎ∗ is strongly convex, and let 𝐹𝑡 = 𝐹 (𝑥∗, 𝑌𝑡 ), where
𝐹 is the induced Fenchel coupling (B.22). Then lim𝑡→∞ 𝔼[𝐹𝑡 ] = ∞.

Proof. By a second-order Taylor expansion with Lagrange remainder, there exists 𝑤𝑡 ∈ [𝑌𝑡 , 𝑌𝑡+1]
such that:

𝐹𝑡+1 = 𝐹𝑡 + 𝛾⟨𝑣̂𝑡 , 𝑋𝑡 − 𝑥∗⟩ +
𝛾2

2
𝑣̂𝑡∇2ℎ∗ (𝑤𝑡 ) 𝑣̂𝑡 . (E.1)

Since G is null-monotone, we have ⟨𝑣(𝑋𝑡 ), 𝑋𝑡 − 𝑥∗⟩ = 0 by assumption, and thus

𝐹𝑡+1 = 𝐹𝑡 + 𝛾⟨𝑈𝑡 , 𝑋𝑡 − 𝑥∗⟩ +
𝛾2

2
𝑣̂𝑡∇2ℎ∗ (𝑤𝑡 ) 𝑣̂𝑡 (E.2)

≥ 𝐹𝑡 + 𝛾⟨𝑈𝑡 , 𝑋𝑡 − 𝑥∗⟩ +
𝑚

2
𝛾2∥ 𝑣̂𝑡 ∥2∗ (E.3)
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where 𝑚 denotes here the strong convexity modulus of ℎ∗. Moving forward, note that
(i ) 𝔼[⟨𝑈𝑡 , 𝑋𝑡−𝑥∗⟩] = 𝔼[⟨𝔼[𝑈𝑡 |F𝑡 ], 𝑋𝑡−𝑥∗⟩] = 0; and (ii ) inf𝑡 𝔼

[
∥ 𝑣̂𝑡 ∥2∗

]
≥ inf 𝔼[∥V(𝑥;𝜔)∥2∗] > 0,

so there exists some 𝑉∗ > 0 such that 𝔼[∥ 𝑣̂𝑡 ∥2∗] ≥ 𝑉2
∗ for all 𝑡. We thus get

𝔼[𝐹𝑡+1] ≥ 𝔼[𝐹𝑡 ] +
𝑚

2
𝛾2 𝔼

[
∥ 𝑣̂𝑡 ∥2∗

]
≥ 𝔼[𝐹𝑡 ] + 𝑚𝛾2𝑉2

∗ /2
≥ 𝐹0 + 𝑚𝛾2𝑉2

∗ 𝑡/2 (E.4)

Our result then follows by taking the limit 𝑡 →∞. ■

E.2. The strongly monotone case. We now turn to our main result for strongly monotone games,
which we restate below for convenience.
Theorem 4 (Strongly monotone games). Suppose that (FTRL) is run in an 𝛼-strongly monotone
game G, and consider the hitting time

𝜏𝑟 := inf{𝑡 > 0 : 𝑋 (𝑡) ∈ 𝔹𝑟 (𝑥∗)} (22)

where 𝔹𝑟 (𝑥∗) = {𝑥 : ∥𝑥 − 𝑥∗∥ ≤ 𝑟} is a ball of radius 𝑟 centered on the (necessarily unique)
equilibrium 𝑥∗ of G. Then, for all 𝑟 > 𝑟𝜎 :=

√︁
𝛾(𝜎2 + 𝛽2)/(𝛼𝐾), we have

𝔼[𝜏𝑟 ] ≤
1

𝛼𝛾(𝑟2 − 𝑟2
𝜎)
×
{
𝐹0 if 𝑋0 ∉ 𝔹𝑟 (𝑥∗),
𝐹0 + 𝛼𝛾𝑟2 if 𝑋0 ∈ 𝔹𝑟 (𝑥∗),

(23)

where 𝐹0 = 𝐹 (𝑥∗, 𝑌0). If, in addition, 𝑥∗ is interior, 𝑋𝑡 admits a unique invariant distribution to
which it converges in total variation, and we have

lim
𝑡→∞

1
𝑡
𝔼

[
𝑡∑︁

𝑠=0
1{𝑋𝑡 ∈ 𝔹𝑟 (𝑥∗)}

]
≥ 1 − 𝑟2

𝜎

/
𝑟2 (24)

for all 𝑟 > 𝑟𝜎 such that 𝔹𝑟 (𝑥∗) ⊆ riX .

Proof. The main theme of our proof shadows the continuous-time analysis, but it requires distinct
tools and techniques to address the specific challenges that arise in the discrete-time Markov chain
setting (where, among others, the main tools of stochastic calculus cannot be applied). In a nutshell,
this proceeds along the following sequence of steps. First, we derive an upper bound on the expected
hitting time of the process to a neighborhood of the equilibrium. Subsequently, we reduce the
dynamics to a "reduced space" (formally an affine quotient of the dual space), removing redundant
directions and ensuring the process evolves within a minimal and non-degenerate domain. Within
this reduced space, we show that the induced Markov process satisfies several crucial probabilistic
properties. Specifically, we prove:

• Irreducibility: any open set in the state space can be reached with positive probability.

• Minorization: after entering certain regions of the space, the process mixes sufficiently to allow for
probabilistic regeneration.

• Uniform control of return times: the expected time to revisit a neighborhood of equilibrium remains
bounded regardless of the starting point within that neighborhood.

These properties collectively enable the construction of a regeneration structure, a probabilistic
framework that ensures the process repeatedly returns to a well-behaved region of the state space
with sufficient mixing. In turn, this enables us to establish positive Harris recurrence of the learning
dynamics, a key property which ensures the existence and uniqueness of a stationary invariant
distribution.

To streamline our presentation, we follow a step-by-step approach, as outlined below.

Step 1: Deriving a hitting estimate. Due to measurability issues, we cannot apply Dynkin’s
lemma directly in the discrete-time setting, which makes the proof more involved. Moreover, unlike
in the continuous-time regime, we need to distinguish between different initializations. Specifically,
we consider two cases depending on whether the initial state 𝑋0 lies within the ball 𝔹𝑟 (𝑥∗) or not.
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• Case 1: 𝑋0 ∉ 𝔹𝑟 (𝑥∗).
Letting 𝐹𝑡 := 𝐹 (𝑥∗, 𝑌𝑡 ) and unfolding (B.29b), we readily obtain:

𝐹𝑡 ≤ 𝐹0 + 𝛾
𝑡−1∑︁
𝑠=0
⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾

𝑡−1∑︁
𝑠=0
∥ 𝑣̂𝑠 ∥2∗ (E.5)

and, setting 𝑡 ← 𝜏𝑟 ∧ 𝑡, we get:

𝐹𝜏𝑟∧𝑡 ≤ 𝐹0 + 𝛾
(𝜏𝑟∧𝑡 )−1∑︁

𝑠=0
⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾

(𝜏𝑟∧𝑡 )−1∑︁
𝑠=0

∥ 𝑣̂𝑠 ∥2∗ (E.6)

Thus, taking expectation conditional on the initial state 𝑌0 = 𝑦, we have

𝔼
[
𝐹𝜏𝑟∧𝑡

]
≤ 𝐹0 + 𝛾𝔼

[
(𝜏𝑟∧𝑡 )−1∑︁

𝑠=0
⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩

]
+ 𝛾2

2𝐾
𝔼

[
(𝜏𝑟∧𝑡 )−1∑︁

𝑠=0
∥ 𝑣̂𝑠 ∥2∗

]
≤ 𝐹0 +

𝑡−1∑︁
𝑠=0

𝔼

[(
𝛾⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾
∥ 𝑣̂𝑠 ∥2∗

)
1(𝜏𝑟 ≥ 𝑠 + 1)

]
(E.7)

For notational convenience, we denote each summand above per

𝐷𝑠 :=𝔼

[(
𝛾⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾
∥ 𝑣̂𝑠 ∥2∗

)
1(𝜏𝑟 ≥ 𝑠 + 1)

]
and noting that the random variable 1(𝜏𝑟 ≥ 𝑠 + 1) is F𝑠-measurable, we get

𝐷𝑠 = 𝔼

[
𝔼

[(
𝛾⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾
∥ 𝑣̂𝑠 ∥2∗

)
1(𝜏𝑟 ≥ 𝑠 + 1)

���F𝑠

] ]
= 𝔼

[
1(𝜏𝑟 ≥ 𝑠 + 1) 𝔼

[
𝛾⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾
∥ 𝑣̂𝑠 ∥2∗

���F𝑠

] ]
= 𝔼

[
1(𝜏𝑟 ≥ 𝑠 + 1)

(
𝛾⟨𝑣(𝑋𝑠), 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾
𝔼
[
∥ 𝑣̂𝑠 ∥2∗

��F𝑠

] )]
= 𝔼

[
1(𝜏𝑟 ≥ 𝑠 + 1)

(
−𝛾𝛼∥𝑋𝑠 − 𝑥∗∥2 +

𝛾2

2𝐾
𝔼
[
∥ 𝑣̂𝑠 ∥2∗

��F𝑠

] )]
(E.8)

where we used that 𝔼[𝑈 (𝑋𝑠 , 𝜔𝑠) |F𝑠] = 0. At this point, we note that 𝔼
[
∥ 𝑣̂𝑠 ∥2∗ |F𝑠

]
≤

2𝔼
[
∥𝑣(𝑋𝑠)∥2∗ + ∥𝑈 (𝑋𝑠 , 𝜔𝑠)∥2∗ |F𝑠

]
≤ 2(𝛽2 + 𝜎2), and since 𝑟2

𝜎 ≡ 𝛾(𝛽2 + 𝜎2)/(𝛼𝐾), we get

𝐷𝑠 ≤ 𝔼

[(
−𝛾𝛼∥𝑋𝑠 − 𝑥∗∥2 + 𝛼𝛾𝑟2

𝜎

)
1(𝜏𝑟 ≥ 𝑠 + 1)

]
≤ 𝔼

[(
−𝛾𝛼𝑟2 + 𝛼𝛾𝑟2

𝜎

)
1(𝜏𝑟 ≥ 𝑠 + 1)

]
(E.9)

where in the last step we used that ∥𝑋𝑠 − 𝑥∗∥ ≥ 𝑟2 on {𝜏𝑟 ≥ 𝑠+ 1}. Thus, plugging the above bound
into (E.7), we obtain

𝔼
[
𝐹𝜏𝑟∧𝑡

]
≤ 𝐹0 +

𝑡−1∑︁
𝑠=0

𝐷𝑠 ≤ 𝐹0 +
𝑡−1∑︁
𝑠=0

𝔼

[(
−𝛾𝛼𝑟2 + 𝛼𝛾𝑟2

𝜎

)
1(𝜏𝑟 ≥ 𝑠 + 1)

]
= 𝐹0 − 𝛼𝛾(𝑟2 − 𝑟2

𝜎) 𝔼
[
(𝜏𝑟∧𝑡 )−1∑︁

𝑠=0
1

]
= 𝐹0 − 𝛼𝛾(𝑟2 − 𝑟2

𝜎) 𝔼[(𝜏𝑟 ∧ 𝑡)] (E.10)
As 𝐹 is nonnegative, we readily obtain that

𝛼𝛾(𝑟2 − 𝑟2
𝜎) 𝔼[(𝜏𝑟 ∧ 𝑡)] ≤ 𝐹0 (E.11)

and, since 𝑟𝜎 < 𝑟, we get:

𝔼[(𝜏𝑟 ∧ 𝑡)] ≤
1

𝛼𝛾(𝑟2 − 𝑟2
𝜎)
𝐹0 (E.12)

Finally, taking 𝑡 →∞, and invoking the monotone convergence theorem [19], we get

𝔼[𝜏𝑟 ] ≤
1

𝛼𝛾(𝑟2 − 𝑟2
𝜎)
𝐹0 (E.13)
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• Case 2: 𝑋0 ∈ 𝔹𝑟 (𝑥∗). In this case, we have:

𝔼[𝜏𝑟 ] = 𝔼[1(𝑄(𝑌1) ∈ 𝔹𝑟 (𝑥∗)) + 1(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗))𝜏𝑟 ]
= ℙ(𝑄(𝑌1) ∈ 𝔹𝑟 (𝑥∗)) + 𝔼

[
1(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗)) (1 + 𝔼𝑌1 [𝜏𝑟 ])

]
= ℙ(𝑄(𝑌1) ∈ 𝔹𝑟 (𝑥∗)) + ℙ(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗)) + 𝔼

[
1(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗)) 𝔼𝑌1 [𝜏𝑟 ]

]
= 1 + 𝔼

[
1(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗)) 𝔼𝑌1 [𝜏𝑟 ]

]
≤ 1 + 𝔼

[
1(𝑄(𝑌1) ∉ 𝔹𝑟 (𝑥∗))

(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1

𝐹 (𝑥∗, 𝑌1)
]

≤ 1 +
(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1

𝔼[𝐹 (𝑥∗, 𝑌1)]

≤ 1 +
(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1

𝔼

[
𝐹0 + 𝛾⟨𝑣̂0, 𝑋0 − 𝑥∗⟩ +

𝛾2

2𝐾
∥ 𝑣̂0∥2∗

]
≤ 1 +

(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1 (

𝐹0 + 𝛾⟨𝑣(𝑋0), 𝑋0 − 𝑥∗⟩ + 𝛼𝛾𝑟2
𝜎

)
≤ 1 +

(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1 (

𝐹0 − 𝛾𝛼∥𝑋0 − 𝑥∗∥2 + 𝛼𝛾𝑟2
𝜎

)
≤ 1 +

(
𝛼𝛾(𝑟2 − 𝑟2

𝜎)
)−1 (

𝐹0 + 𝛼𝛾𝑟2
𝜎

)
=

𝐹0 + 𝛼𝛾𝑟2

𝛼𝛾(𝑟2 − 𝑟2
𝜎)

(E.14)

Thus, collectively, we get:

𝔼[𝜏𝑟 ] ≤
1

𝛼𝛾(𝑟2 − 𝑟2
𝜎)
×
{
𝐹0 if 𝑋0 ∉ 𝔹𝑟 (𝑥∗),
𝐹0 + 𝛼𝛾𝑟2 if 𝑋0 ∈ 𝔹𝑟 (𝑥∗),

(E.15)

Step 2: Descending to the restricted process. As in the continuous-time case, establishing
positive recurrence requires analyzing a “restricted” version of the process. To that end, we follow
the same construction as in Step 2 of Theorem 2, and we define the canonical surjection Π : Y↠ Ỹ
by restricting the action of 𝑦 ∈ Y to Ṽ , that is,

⟨Π(𝑦), 𝑧⟩ = ⟨𝑦, 𝑧⟩ for all 𝑧 ∈ Ṽ . (E.16)

whose kernel of Π is precisely the annihilator Ann(Ṽ) of Ṽ , i.e.,

kerΠ = Ann(Ṽ) = {𝑦 ∈ Y : ⟨𝑦, 𝑧⟩ = 0 for all 𝑧 ∈ Ṽ} (E.17)

In addition, we consider the restricted mirror map 𝑄̃ : Ỹ → X given by

𝑄̃(𝑦̃) = 𝑄(𝑦) whenever Π(𝑦) = 𝑦̃. (E.18)

Accordingly, letting
𝑌𝑡 = Π(𝑌𝑡 ) (E.19)

and applying Π to (FTRL) yields the “restricted” process

𝑌𝑡+1 = Π · 𝑌𝑡+1 = Π · 𝑌𝑡 + 𝛾(Π · 𝑣(𝑋𝑡 ) + Π ·𝑈𝑡 ) = 𝑌𝑡 + 𝛾(𝑣̃(𝑋𝑡 ) + 𝑈̃𝑡 ) (E.20)

where 𝑋𝑡 = 𝑄(𝑌𝑡 ) = 𝑄̃(𝑌𝑡 ) and, in a slight abuse of notation, we are overloading the symbol Π to
denote both the linear map Π : Y → Ỹ and its representation as a matrix. Finally, writing 𝑌 as

𝑌𝑡+1 = 𝑌𝑡 + 𝛾𝑣̃
(
𝑄̃(𝑌𝑡 )

)
+ 𝛾U

(
𝑄̃(𝑌𝑡 ), 𝜔𝑡

)
(E.21)

we conclude that it is a time-homogeneous Markov process, and we denote its kernel by 𝑞, where for
any 𝑦̃ ∈ Ỹ and Borel set A ⊆ Ỹ , we have 𝑞(𝑦̃,A) = ℙ

(
𝑌𝑡+1 ∈ A

�� 𝑌𝑡 = 𝑦̃) .
31



Step 3: Recurrence of the restricted process. To establish the recurrence of the restricted process,
we first need to understand the effect of Π on the distribution of U(𝑥). As stated in the assumptions
in Section 4, the probability distribution 𝜈𝑥 of U(𝑥) decomposes as 𝜈𝑥 = 𝜈𝑐𝑥 + 𝜈⊥𝑥 . Noting the
push-forward measure is linear, we readily obtain that Π∗𝜈𝑥 = Π∗𝜈𝑐𝑥 + Π∗𝜈⊥𝑥 , where Π∗𝜈𝑥 denotes
the push-forward measure A ↦→ (𝜈𝑥 ◦Π−1) (A). For notational convenience, we denote Ŷ ≡ Ann(Ṽ)
and 𝑝(𝑥, 𝑦) ≡ 𝑝𝑥 (𝑦). Then, each 𝑦 ∈ Y can be decomposed as 𝑦 = 𝑦̃ + 𝑦̂, and since Π has full
column-rank, the measure Π∗𝜈𝑐𝑥 has density with respect to the Lebesgue measure 𝜆Ỹ on Ỹ , given by

𝑝(𝑥, 𝑦̃) =
∫
Ŷ
𝑝(𝑥, 𝑦̃, 𝑦̂)𝑑𝜆Ŷ (𝑦̂) (E.22)

where 𝜆Ŷ is the Lebesgue measure on Ŷ . Importantly, the density 𝑝 satisfies the following properties,
which will be crucial for establishing the recurrence of the process. We formalize these in the
proposition below, whose proof is deferred until after the theorem.

Proposition E.1. Let the function 𝑝 as defined in (E.22). Then:

(i) For any compact set K ⊆ X and every 𝑦̃ ∈ Ỹ , it holds inf𝑥∈K 𝑝(𝑥, 𝑦̃) > 0.

(ii) The function 𝑝 is (jointly) lower semi-continuous.

Lebesgue irreducibility. We now show that the restricted process 𝑌𝑡 is Lebesgue irreducible; that
is, starting from any point in its domain, the process has a positive probability of reaching any open
set with nonzero Lebesgue measure. This property is crucial for establishing recurrence, as it ensures
that the process does not avoid regions of the space indefinitely.

For this, let a Borel measurable set A ⊆ Ỹ with 𝜆Ỹ (A) > 0. We will show that 𝑞(𝑦̃,A) > 0 for all
𝑦̃ ∈ Ỹ , which implies that A can be reached from any state 𝑦̃ in one step with positive probability.

𝑞(𝑦̃,A) = ℙ
(
𝑌𝑡+1 ∈ A

�� 𝑌𝑡 = 𝑦̃)
= ℙ

(
𝑦̃ + 𝛾𝑣̃(𝑄̃(𝑦̃)) + 𝛾Ũ(𝑄̃(𝑦̃), 𝜔) ∈ A

)
= ℙ

(
Ũ(𝑄̃(𝑦̃), 𝜔) ∈

{
𝛾−1A − 𝛾−1𝑦̃ − 𝑣̃(𝑄̃(𝑦̃))

})
= ℙ

(
Ũ(𝑄̃(𝑦̃), 𝜔) ∈ A𝑦̃

)
≥
∫
A𝑦̃

𝑝(𝑄̃(𝑦̃), 𝑧)𝑑𝜆Ỹ (𝑧) (E.23)

where A𝑦̃ ≡ 𝛾−1A − 𝛾−1𝑦̃ − 𝑣̃(𝑄̃(𝑦̃)) with 𝜆Ỹ (A𝑦̃) = 𝛾−𝑑𝜆Ỹ (A) > 0. Finally, since 𝑝(𝑄̃(𝑦̃), ·)
strictly positive, we conclude that 𝑞(𝑦̃,A) > 0, which shows that 𝑌𝑡 induced by (E.20) is Lebesgue-
irreducible.

Harris recurrence. Our next step is to show that 𝑌𝑡 is Harris recurrent. This means that the process
returns to every set of positive Lebesgue measure infinitely often with probability one. Establishing
Harris recurrence is a key step toward proving ergodicity, as it ensures that the process does not drift
away or get trapped. For this, we will show that D̃𝑟 = {𝑦̃ ∈ Ỹ : ∥𝑄(𝑦̃) − 𝑥∗∥ ≤ 𝑟} is a recurrent set
from which we can go “everywhere” with positive probability. Importantly, the set D̃𝑟 is compact as
shown in Step 3 of Theorem 2.

The first part to prove Harris recurrence is immediate from Step 1 of our proof; namely, since
𝔼𝑦̃ [𝜏𝑟 ] < ∞ for any initial condition 𝑦̃ ∈ Ỹ , we readily get that ℙ𝑦̃ (𝜏𝑟 < ∞) = 1.

For the second part, we will prove the so-called minorization property; that is, there exists a nontrivial
measure 𝜇 and a constant 𝛼 > 0 such that

𝑞(𝑦̃,A) ≥ 𝛼𝜇(A) for all 𝑦̃ ∈ D̃𝑟 and Borel sets A ⊆ Ỹ . (E.24)

This condition implies that, from any point in D̃𝑟 the process has a uniformly lower-bounded
probability of reaching any set A in one step according to the reference measure 𝜇.
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To establish the minorization condition (E.24), we define for notational convenience the function
𝑓 : Ỹ × Ỹ → Xℎ × Ỹ as

𝑓 (𝑦̃, 𝑧) =
(
𝑄̃(𝑦̃), 𝛾−1 (𝑧 − 𝑦̃) − 𝑣̃(𝑄̃(𝑦̃))

)
(E.25)

which is continuous as a composition of continuous functions. With this definition in hand, we
perform the change of variables in (E.23), and we have:

𝑞(𝑦̃,A) ≥ 𝛾−𝑑
∫
A
𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧)

≥ 𝛾−𝑑
∫
A

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) (E.26)

To finally construct the measure 𝜇, we need to ensure that

0 <
∫
Ỹ

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) < ∞ (E.27)

To this end, we state the following proposition, whose proof is deferred until after the theorem to
maintain the flow.

Proposition E.2. The density 𝑝 satisfies:

0 <
∫
Ỹ

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) < ∞ (E.28)

With Proposition E.1 in hand, we define the measure 𝜇 as

𝜇(A) :=

∫
A inf 𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧)∫
Ỹ inf 𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧)
for all Borel A ⊆ Ỹ . (E.29)

Therefore, (E.26) becomes:

𝑞(𝑦̃,A) ≥ 𝛾−𝑑
∫
A

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ = 𝛾−𝑑
∫
Ỹ

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) · 𝜇(A) (E.30)

Thus, setting 𝛼 ≡ 𝛾−𝑑
∫
Ỹ inf 𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧), we conclude the minorization condition (E.24).

Therefore, the set D̃𝑟 is recurrent and 𝜇(D̃𝑟 ) > 0 (since 𝜆Ỹ (D̃𝑟 ) > 0), and thus by [17, Proposi-
tion 11.2.1] the Markov process 𝑌𝑡 admits an invariant measure. In addition, based on the equivalence
(D.40) the expected return time 𝔼[𝜏𝑟 ] to D̃𝑟 is uniformly bounded for all initial conditions 𝑦̃ on
D̃𝑟 , due to the continuity of the Fenchel coupling 𝐹. Therefore, invoking [55, Theorem 13.0.1],
we conclude that the process 𝑌𝑡 admits a unique invariant probability measure 𝜈̃, and the law of 𝑌𝑡
converges to 𝜈̃ in total variation for every initial condition 𝑦̃ ∈ Ỹ .

Step 4: Estimating the long-run occupation measure. Finally, for the last part, letting
𝐹𝑡 := 𝐹 (𝑥∗, 𝑌𝑡 ) and unfolding (B.29b), we obtain:

𝐹𝑡 ≤ 𝐹0 + 𝛾
𝑡−1∑︁
𝑠=0
⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾

𝑡−1∑︁
𝑠=0
∥ 𝑣̂𝑠 ∥2∗ (E.31)

Taking expectations in both sides, we readily get

0 ≤ 𝔼[𝐹𝑡 ] ≤ 𝔼

[
𝐹0 + 𝛾

𝑡−1∑︁
𝑠=0
⟨𝑣̂𝑠 , 𝑋𝑠 − 𝑥∗⟩ +

𝛾2

2𝐾

𝑡−1∑︁
𝑠=0
∥ 𝑣̂𝑠 ∥2∗

]
≤ 𝐹0 − 𝛼𝛾𝔼

[
𝑡−1∑︁
𝑠=0
∥𝑋𝑠 − 𝑥∗∥2

]
+ 𝑡𝛼𝛾𝑟2

𝜎 (E.32)

Therefore, by rearranging terms and dividing both sides by 𝑡, we have:

1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0
∥𝑋𝑠 − 𝑥∗∥2

]
≤ 1
𝛼𝛾𝑡

𝐹0 + 𝑟2
𝜎 (E.33)
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Moreover, we have:

1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0

1{𝑋𝑠 ∉ 𝔹𝑟 (𝑥∗)}
]
≤ 1
𝑟2𝑡

𝔼

[
𝑡−1∑︁
𝑠=0
∥𝑋𝑠 − 𝑥∗∥2

]
≤ 1
𝛼𝛾𝑡𝑟2 𝐹0 +

𝑟2
𝜎

𝑟2 (E.34)

Now, note that {𝑋𝑠 ∉ 𝔹𝑟 (𝑥∗)} ≡ {𝑌𝑡 ∉ D̃𝑟 } by construction, and thus

1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0

1{𝑋𝑠 ∉ 𝔹𝑟 (𝑥∗)}
]
=

1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0

1{𝑌𝑡 ∉ D̃𝑟 }
]

(E.35)

Taking 𝑡 →∞, and invoking Birkhoff’s individual ergodic theorem [23, Theorem 2.3.4], we readily
get that the mean occupation measure A ↦→ 𝑡−1 𝔼

[∑𝑡−1
𝑠=0 1{𝑌𝑡 ∈ A}

]
converges strongly to the

invariant measure 𝜈̃, and therefore

lim
𝑡→∞

1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0

1{𝑋𝑠 ∉ 𝔹𝑟 (𝑥∗)}
]
= lim

𝑡→∞
1
𝑡
𝔼

[
𝑡−1∑︁
𝑠=0

1{𝑌𝑡 ∉ D̃𝑟 }
]
= 1 − 𝜈̃(D̃𝑟 ) (E.36)

and, using (E.34), we have:

𝜈̃(D̃𝑟 ) ≥ 1 − 𝑟
2
𝜎

𝑟2 (E.37)

and our proof is complete. ■

To keep the presentation self-contained, we restate and prove Proposition E.1 and Proposition E.2
below.

Proposition E.1. Let the function 𝑝 as defined in (E.22). Then:

(i) For any compact set K ⊆ X and every 𝑦̃ ∈ Ỹ , it holds inf𝑥∈K 𝑝(𝑥, 𝑦̃) > 0.

(ii) The function 𝑝 is (jointly) lower semi-continuous.

Proof. (i) For the first part, let 𝑦̃ ∈ Ỹ . Then

inf
𝑥∈K

𝑝(𝑥, 𝑦̃) = inf
𝑥∈K

∫
Ŷ
𝑝(𝑥, 𝑦̃, 𝑦̂)𝑑𝜆Ŷ (𝑦̂) ≥

∫
Ŷ

inf
𝑥∈K

𝑝(𝑥, 𝑦̃, 𝑦̂)𝑑𝜆Ŷ (𝑦̂) > 0 (E.38)

(ii) For the second part, let (𝑥, 𝑦̃) ∈ X × Ỹ , and let a sequence {(𝑥𝑡 , 𝑦̃𝑡 )}𝑡∈ℕ with lim𝑡→∞ (𝑥𝑡 , 𝑦̃𝑡 ) =
(𝑥, 𝑦̃). Since 𝑝 is jointly continuous, applying Fatou’s lemma [19], we get

𝑝(𝑥, 𝑦̃) =
∫
Ŷ
𝑝(𝑥, 𝑦̃, 𝑦̂)𝑑𝜆Ŷ (𝑦̂) =

∫
Ŷ

lim inf
𝑡→∞

𝑝(𝑥𝑡 , 𝑦̃𝑡 , 𝑦̂)𝑑𝜆Ŷ (𝑦̂)

≤ lim inf
𝑡→∞

∫
Ŷ
𝑝(𝑥𝑡 , 𝑦̃𝑡 , 𝑦̂)𝑑𝜆Ŷ (𝑦̂)

= lim inf
𝑡→∞

𝑝(𝑥𝑡 , 𝑦̃𝑡 ) (E.39)

i.e.,
𝑝(𝑥, 𝑦̃) ≤ lim inf

𝑡→∞
𝑝(𝑥𝑡 , 𝑦̃𝑡 ) (E.40)

and the result follows. ■

Proposition E.2. The density 𝑝 satisfies:

0 <
∫
Ỹ

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) < ∞ (E.28)

Proof. The upper bound is trivial since 𝑝 is a probability density and∫
Ỹ

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) ≤
∫
Ỹ
𝑝( 𝑓 (𝑦̃, 𝑧))𝑑𝜆Ỹ (𝑧) ≤ 1 (E.41)
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(a) 𝛾 = 0.1, 𝜎 = 0.5 (b) 𝛾 = 0.1, 𝜎 = 1

(c) 𝛾 = 0.5, 𝜎 = 0.5 (d) 𝛾 = 0.5, 𝜎 = 1

Figure 2: Visualization of the long-run occupancy measure for the min-max game with loss-gain function
𝑓 (𝑥1, 𝑥2). Each plot shows the empirical density of the final iterates of 105 runs of (FTRL) for 102 steps, starting
from uniformly random initial conditions. The surface plot encodes density via both height and color. Each row
corresponds to a different step-size 𝛾 ∈ {0.1, 0.5}, while the columns vary the noise level 𝜎 ∈ {0.5, 1}.

For the lower bound, we will show that

inf
𝑦̃∈D̃𝑟

𝑝( 𝑓 (𝑦̃, 𝑧)) > 0 for all 𝑧 ∈ Ỹ . (E.42)

Suppose not, i.e., there exists 𝑧0 ∈ Ỹ such that inf 𝑦̃∈D̃𝑟
𝑝( 𝑓 (𝑦̃, 𝑧0)) = 0. Since D̃𝑟 is compact and

𝑝 ◦ 𝑓 is lower semi-continuous, the infimum over D̃𝑟 is realized, meaning that there exists 𝑦̃0 ∈ D̃𝑟

such that 𝑝( 𝑓 (𝑦̃0, 𝑧0)) = 0, or, equivalently,

𝑝

(
𝑄̃(𝑦̃0), 𝛾−1 (𝑧0 − 𝑦̃0) − 𝑣̃(𝑄̃(𝑦̃0))

)
= 0 (E.43)

This contradicts Proposition E.1 for K← K𝑟 . Finally, since we integrating over a set with positive
measure, our result follows. ■

F Further numerical results and details

In this section, we present some additional numerical simulations to illustrate and validate our
theoretical findings. To this end, we consider two simple yet representative examples: (i ) a strongly
monotone two-player min-max game on the unit square; and (ii) a finite zero-sum game (as an
example of a null-monotone game).

Strongly monotone games. We consider the strongly monotone two-player min-max game defined
by 𝑓 : [0, 1] × [0, 1] → ℝ with

𝑓 (𝑥1, 𝑥2) = −(𝑥1 − 0.5)2 + 0.5𝑥1𝑥2 + 2(𝑥2 − 0.5)2 (F.1)
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and entropic regularization. To be more precise, the payoff functions of the two players are given by
𝑢1 (𝑥1, 𝑥2) = 𝑓 (𝑥1, 𝑥2) = −𝑢2 (𝑥1, 𝑥2), and 𝑥∗ = (20/33, 14/33) is the unique Nash equilibrium point.

Fig. 2 demonstrates the behavior of (FTRL) under varying step sizes and noise levels for the min-max
game defined by the function 𝑓 (𝑥1, 𝑥2). Specifically, we consider step-sizes 𝛾 ∈ {0.1, 0.5}, and
stochastic feedback of the form 𝑣̂𝑡 = 𝑣(𝑋𝑡 ) + 𝜎𝜔𝑡 , where 𝜔 ∼ 𝑁 (0, 𝐼2) for 𝜎 ∈ {0.5, 1}. For each
(𝛾, 𝜎) configuration, we perform 105 independent trials, each running for 102 steps. The initial state
𝑌0 for each trial was drawn uniformly at random from [0, 1]2. Each surface represents the empirical
density of the final (FTRL) iterates, while the color overlay visualizes their distribution across the
105 independent trials. Warmer (red) regions indicate higher concentration of final iterates, whereas
cooler (blue) regions correspond to lower probability of ending in those regions, as indicated by
the colorbar on the side. We observe that smaller step sizes and lower noise levels lead to a tighter
concentration of the final iterates around the Nash equilibrium. In contrast, increasing either the
step size or the noise variance results in a more dispersed distribution. This behavior aligns with
both intuition and our theoretical findings: higher noise introduces greater stochastic variability,
while larger step sizes amplify this effect by inducing more aggressive updates that are prone to
overshooting, ultimately increasing the spread of the iterates.

To further explore the behavior of (FTRL) under different noise levels and step sizes, we conduct an
additional set of experiments summarized in Figs. 3 and 4. These figures illustrate the distance from
𝑥∗ of the final iterate and the hitting time in a neighborhood of 𝑥∗ with varying radii. Specifically,
we consider step sizes 𝛾 ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and stochastic feedback of the form
𝑣̂𝑡 = 𝑣(𝑋𝑡 ) + 𝜎𝜔𝑡 for noise levels 𝜎 ∈ {0.01, 0.05, 0.1, 0.5, 1}. For each (𝛾, 𝜎) configuration,
we perform 100 independent runs, each consisting of 10,000 iterations. The initial state 𝑌0 in each
run is drawn uniformly at random from [0, 1]2. The first plot reports the average final distance
of the iterates from the equilibrium, averaged across the 100 runs, while the subsequent plots
show the hitting time required for the iterates to enter a neighborhood of the equilibrium of radius
𝑟 ∈ {0.005, 0.01, 0.05, 0.1}.
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Figure 3: Average final distance from equilibrium for different values of the step-size 𝛾 and the noise level 𝜎.
Each point represents the mean over 100 independent runs of length 10,000, with shaded regions indicating one
standard deviation.

Null-monotone games. Fig. 5 shows the empirical distribution of the final iterates under the
(FTRL) dynamics in the classic matching pennies game with entropic regularization, played over the
probability simplex with payoff matrix

𝑃 =

[
(+1,−1) (−1,+1)
(−1,+1) (+1,−1)

]
.

The unique Nash equilibrium of the game is the mixed strategy (0.5, 0.5) for both players. As before,
we consider stochastic feedback of the form 𝑣̂𝑡 = 𝑣(𝑋𝑡 ) +𝜎𝜔𝑡 , where 𝜔 ∼ 𝑁 (0, 𝐼2) for 𝛾 ∈ {0.1, 0.2}
and 𝜎 ∈ {1, 2}. For each (𝛾, 𝜎) configuration, we perform 105 independent trials, each running for
102 steps. Each surface plot corresponds to a different combination of step-size and noise variance,
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(a) 𝑟 = 0.005
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(b) 𝑟 = 0.01
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(c) 𝑟 = 0.05
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(d) 𝑟 = 0.1

Figure 4: Average hitting time (in iterations) to a neighborhood of the equilibrium 𝑥∗ with radius 𝑟 ∈
{0.005, 0.01, 0.05, 0.1}, computed over 100 runs for each (𝛾, 𝜎) pair.

(a) 𝛾 = 0.1, 𝜎 = 1 (b) 𝛾 = 0.1, 𝜎 = 2

(c) 𝛾 = 0.2, 𝜎 = 1 (d) 𝛾 = 0.2, 𝜎 = 2

Figure 5: Visualization of the long-run occupancy measure for the bilinear game with entropic regularization.
Each plot shows the empirical density of the final iterates of 105 runs of (FTRL) for 102 steps, starting from
uniformly random initial conditions. The surface plot encodes density via both height and color. Each row
corresponds to a different step-size 𝛾 ∈ {0.1, 0.2}, while the columns vary the noise level 𝜎 ∈ {1, 2}.
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with the empirical density of the final iterates represented through both height and color over the
simplex domain. We see that across all configurations, the iterates tend to concentrate near the corners
of the simplex, reflecting the instability of the interior equilibrium in the presence of noise. This
consistent shift toward extreme points highlights the system’s inherent tendency to escape the central
equilibrium under stochastic perturbations.
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
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these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.
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on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.
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example, a facial recognition algorithm may perform poorly when image resolution is low or
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• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear
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reproduce that algorithm.
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to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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ticular applications, let alone deployments. However, if there is a direct path to any negative
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disinformation. On the other hand, it is not needed to point out that a generic algorithm for
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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