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Abstract

Predicting changes in binding free energy (AAGQG) is essential for understanding
protein-protein interactions, which are critical in drug design and protein engineer-
ing. However, existing methods often rely on pre-trained knowledge and heuristic
features, limiting their ability to accurately model complex mutation effects, partic-
ularly higher-order and many-body interactions. To address these challenges, we
propose H3-DDG, a Hypergraph-driven Hierarchical network to capture Higher-
order many-body interactions across multiple scales. By introducing a hierarchical
communication mechanism, H3-DDG effectively models both local and global
mutational effects. Experimental results demonstrate state-of-the-art performance
on multiple benchmarks. On the SKEMPI v2 dataset, H3-DDG achieves a Pearson
correlation of 0.75, improving multi-point mutations prediction by 12.10%. On the
challenging BindingGYM dataset, it outperforms Prompt-DDG and BA-DDG by
62.61% and 34.26%, respectively. Ablation and efficiency analyses demonstrate its
robustness and scalability, while a case study on SARS-CoV-2 antibodies highlights
its practical value in improving binding affinity for therapeutic design.

1 Introduction

Protein-protein interactions (PPIs) [19} 9l [12}|32] are fundamental to numerous biological processes,
driving key cellular functions such as signal transduction [21]], immune response [35} 22], and
metabolic regulation [40]]. A precise understanding of how mutations alter binding free energy
(AAG) in PPIs is critical for a wide range of applications, including drug design [2} [7, 20} [31]],
protein engineering [J5]], and elucidating the molecular basis of disease [33].

Binding free energy quantifies the thermodynamic stability of protein complexes and is inherently
governed by the physical interactions between amino acids. These interactions span multiple spatial
and structural scales, from pairwise atomic forces—such as hydrogen bonding and van der Waals
interactions—to higher-order many-body effects, including hydrogen bond networks and 7= — 7
stacking interactions. Accurately modeling these intricate interactions is essential for predicting the
functional and structural consequences of mutations [[11}[13]. This becomes particularly challenging
in multi-point mutation scenarios, where complex interdependencies between mutation sites often
emerge, further complicating the prediction task.

Accurately predicting AAG remains a critical yet challenging task, as existing computational methods
face inherent limitations. These methods can be categorized into structure-based approaches and
inverse folding-based models. Structure-based approaches leverage well-designed training tasks,
such as protein inverse folding [39]], side-chain modeling [26} 23} [28]], masked modeling [37]], and
data augmentation [38]], to extract protein representations from structural data. However, they often

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



fall short in effectively transferring the learned structural knowledge to AAG prediction. This
shortcoming arises from their limited capacity to explicitly model higher-order and many-body
interactions, which are crucial for capturing the physicochemical impacts of mutations.

On the other hand, inverse folding-based models, such as ProteinMPNN-DDG [10] and BA-DDG [18]],
predict AAG by estimating likelihood differences between native and mutant sequences relative
to stability. While these models perform well for single-point mutations, they rely on indirect
proxies, such as Boltzmann-Alignment, to approximate binding free energy. This reliance limits their
effectiveness in multi-point mutation scenarios, which involve intricate interdependencies among
mutation sites and require a deeper understanding of protein energetics and many-body interaction
dynamics. These limitations underscore the need for an approach capable of capturing higher-order
interactions and adapting to the complexity of multi-point mutation scenarios.

In this work, we introduce H3-DDG, a Hypergraph-driven Hierarchical network to capture Higher-
order many-body interactions across multiple scales for AAG predictions. By leveraging a many-
body attention communication mechanism, H3-DDG effectively models higher-order and many-body
interactions across multiple scales, enabling precise predictions of binding free energy changes,
particularly in challenging multi-point mutation contexts.

Experimental results demonstrate state-of-the-art performance across multiple benchmarks. On the
SKEMPI v2 dataset [[17], H3-DDG achieves a Pearson correlation of 0.75, improving multi-point
mutations prediction by 12.10%. On the challenging BindingGYM dataset [24], it outperforms
Prompt-DDG and BA-DDG by 62.61% and 34.26%, respectively. Notably, in ablation studies, the
many-body attention mechanism proves to be critical, contributing a 5.4% improvement in prediction
accuracy when incorporated. Additionally, the hypergraph-driven hierarchical design enables the
model to effectively capture long-range dependencies, which are essential for accurately modeling
complex mutation scenarios. A case study on SARS-CoV-2 antibodies further highlights H3-DDG’s
ability to predict binding affinity changes with high precision, demonstrating its practical utility
in real-world applications. These results underscore the capability of H3-DDG to handle intricate
mutational landscapes and its potential for broad applicability in protein engineering and drug design.
The key contributions of this work are as follows:

* We introduce a hierarchical communication mechanism to model local and global interactions,
capturing higher-order effects like hydrogen bond networks and m — 7 stacking.

* We propose a many-body attention network to explicitly model higher-order and many-body
interactions, enabling robust predictions in complex mutational scenarios.

* H3-DDG achieves state-of-the-art performance on multiple benchmark datasets, outperforming
BA-DDG by 12.10% in multi-point mutation prediction on the SKEMPI v2 dataset and by 34.26%
on the BindingGYM dataset.

2 Related Work

Efforts to predict the change in binding free energy (AAG) have resulted in a variety of computational
approaches, broadly categorized into two main types: (1) methods leveraging structure-based training
tasks and (2) methods utilizing inverse folding models for AAG prediction. While these approaches
have shown promise, they also highlight significant limitations, particularly in capturing higher-order
interactions and complex multi-point mutation effects [30} 32].

The first category focuses on designing training tasks that utilize structural information to enhance
the modeling of protein energetics. These include techniques such as protein inverse folding [39]],
side-chain modeling [26} 23 28], and masked modeling [37]]. These approaches attempt to extract
meaningful representations of protein structures by optimizing for tasks aligned with physical princi-
ples of molecular interactions. However, their reliance on pre-trained knowledge limits their ability
to explicitly model higher-order and many-body interactions, which are critical for understanding
the thermodynamic effects of mutations. This gap restricts their utility in directly predicting AAG,
particularly in complex mutation scenarios.

The second category focuses on adapting inverse folding models to predict AAG [25]]. Models such
as ProteinMPNN-DDG [10] and BA-DDG [[18] leverage the ability of inverse folding models to assess
the likelihood of native and mutant amino acids within a structural context. These methods predict
AAG by estimating the differences in likelihood scores between native and mutant sequences with
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Figure 1: (a) Overall framework of H3-DDG. (b) Many-body attention mechanisms across hierarchical
levels and their attention patterns. The first layer constructs a full-residue graph and applies 2-body
message passing; the second layer performs spatial pooling to form a mutation-centered hypergraph
and applies 3-body attention between hyperedges; the third layer extracts fine-grained subgraphs
around mutation sites and applies localized 4-body attention within each mutation subgraph. (c)
Detailed computational flow of the 4-body attention module within the mutation subgraph.

their relative stability. However, likelihood-based scoring serves as an indirect proxy for binding free
energy changes and often fails to capture explicit physical interactions critical to AAG prediction.
Moreover, their performance degrades significantly in multi-point mutation scenarios, where the
interdependencies between mutations require a nuanced understanding of higher-order effects.

To address these challenges, we introduces a hierarchical communication mechanism and a many-
body attention network to explicitly model local and global interactions across multiple scales. These
innovations capture higher-order and many-body effects, such as hydrogen bond networks and m — 7
stacking, while explicitly modeling mutation interdependencies in multi-point mutation scenarios.

3 Methodology

In this section, we introduce H3-DDG, a Hypergraph-driven, Hierarchical, and Higher-order interac-
tion network designed to predict binding free energy changes (AAG) in protein-protein interactions
(PPIs). The overall workflow is illustrated in Figure [T}

3.1 Preliminaries and Notations

We represent a protein graph as G = (V, E'), where each node ¢ € V represents a residue with feature
vector h;, and each edge (i, j) € E encodes interactions via feature vector e;;.

Building on ProteinMPNN-DDG [10]] and BA-DDG [[18]], which link AAG prediction with inverse
folding, we also fine-tune a pretrained inverse folding model (ProteinMPNN [6]) to tackle this
task. H3-DDG extends the capabilities of the inverse folding model by introducing hierarchical
graph construction and many-body higher-order attention, enabling it to effectively capture complex
dependencies across multiple mutation sites and improve protein representation learning.

To predict binding free energy AG, we compute amino acid probabilities and use negative log-
likelihoods as a surrogate. For a wild-type (wt) complex and its mutant (mut) counterpart, the binding



free energy change is defined as:

AAG = AGpy — AGyy. 1)

3.2 Hierarchical Graph Construction for Multi-Scale Modeling

Residue-Level Graph.  As described in Section each residue ¢ is represented by a feature
vector h;, and each edge (i, j) encodes spatial or chemical interactions via feature vector e;j.

Following the approch of ProteinMPNN [6]], residues are represented using key atoms: N, Ca, C, O,
and Cf, To construct the amino acid-level graph. Edges are formed by identifying the top-k nearest
neighbors based on Ca—Ca distances. Each edge (4, j) incorporates geometric features using radial
basis functions (RBFs) [4] over 25 atom pair distances (e.g., N-N, C-C). For a given distance d;;,
the RBF is defined as:

dij — . \°
RBFEf)exp<(J’““>>, k=1,... K, )

g

where iy, are K predefined centers and o is the bandwidth.

These RBF;; features are concatenated with relative positional encodings PE;;, which include
sequence offsets and chain identities. The final edge features e;; are computed as:

e;; = LayerNorm (W, - [PE;; || RBF,;]), 3)

where W, is the learnable parameters and |- || - | denotes concatenation. This graph effectively
captures residue-level spatial and chemical interactions while preserving sequence context.

Mutation-Centered Hypergraph. Directly applying higher-order attention on amino acid-level
graphs is computationally expensive, with complexity scaling as O(N?) or O(N*), as demonstrated
in [16}30]. To address this challenge, we construct a mutation-centered hypergraph that reduces
computational complexity while preserving critical local and global interactions.

We construct the hypergraph by clustering residues into hyperedges that capture higher-order spatial
dependencies. Clustering is initialized at mutation sites to prioritize biologically salient regions, then
expanded by iteratively adding residues with maximal Euclidean distance from existing centroids.
Each residue is assigned to its nearest centroid based on Ca coordinates. Hyperedge features h(¢) are
computed via mean-pooling over constituent residue embeddings h, yielding a compact representation
that preserves structural topology and improves computational efficiency.

This mutation-centered hypergraph construction ensures that the influence of mutation sites is retained
during graph compression and facilitates the efficient modeling of higher-order interactions. For
further implementation details, refer to Appendix [A.T}

Fine-Grained Mutation Subgraph. To capture the local effects of mutations, we extract fine-
grained subgraphs centered on each mutation site. These subgraphs include all residues with Car atoms
within an 8A radius of the mutation centroid in 3D space, preserving key structural and biochemical
contexts. Node and edge features in these subgraphs, denoted as h("™) and e(™), respectively, enable
localized analysis of conformational changes and energetic impacts, providing a focused view of
mutation-induced effects on binding affinity.

3.3 Many-Body Attention Network

In this section, we describe the many-body attention mechanisms applied at different hierarchical
levels of the graph. These include pairwise (2-body) message passing over the residue-level graph,
triplet (3-body) attention between hyperedges in the mutation-centered hypergraph, and quadruplet
(4-body) attention within fine-grained mutation subgraphs, as illustrated in Figure [T(b).

2-body Message Passing in Residue-level Graph. We utilize a message passing mechanism
to jointly update node features h; and edge features e;; in the residue-level graph (Section .
Node-wise messages Ah; are computed by projecting concatenated node and edge features through



a multi-layer perceptron (MLP):

Ahi= > Wiz ¢ Wiz - ¢ (W - [h; | e;])), €
JEN (i)
where [-|| -] denotes vector concatenation, ¢ is the GELU activation, and W1, W2, W,,3 are

learnable projection matrices. The node features h; are updated via a residual edge with layer
normalization and a position-wise feed-forward network (FFN):

h; + LayerNorm (h; + Dropout(Ah;)), 5)
h; < LayerNorm (h; + Dropout(FFN(h;))) . 6)

Edge features e;; are updated using the updated node features through a similar MLP-based mecha-
nism:

e;j < LayerNorm (e;; + Dropout (W, 3 - ¢ (Wy,5 - ¢ (W, - [hi [l e])))) - @)

This mechanism enables the model to integrate residue-level spatial and chemical interactions
efficiently across the residue-level graph.

3-body Attention Mechanism for Hyperedge Interactions. Building on the global structural
context learned from 2-body message passing in the full-residue graph, we implement a 3-body
attention mechanism to capture higher-order interactions between hyperedges in the mutation-centered

hypergraph (Section . Here, each hyperedge is represented by its feature vector h(®), capturing
the residue cluster-level information.

To model pairwise relationships between hyperedges, we first construct a pairwise interaction tensor
fi(je) € RNVXNXD 'where N is the number of hyperedges and D is the feature dimension. Here, i and

7 index hyperedges in the hypergraph. Each element fi(je) is computed as:

£ = o) ® p(n), ®)
where ¢ is a non-linear activation function (e.g., GELU) and ® denotes the outer product.

An asymmetric attention mechanism is employed by linearly projecting fi(je) through learnable weight

matrices and biases to obtain the query vector q;; = W, fi(je) + by, key vector kj, = Wy, f;;) + by,

and value vector v;;, = W, f;Z) + b,. In addition, the mechanism introduces a bias term b;; and a

gating vector g, via separate linear projections for adaptive modulation. The triplet attention scores
a;;1, are then computed using a gated softmax function:

qi; - kjk
Qijl = Softmax (j\fdj + bzk) . U(gik‘)y ©)]
where Softmax ensures that the attention weights are normalized over hyperedge neighbors, and
o(g:r) applies a sigmoid activation to adaptively modulate the attention.

Each hyperedge aggregates attention-weighted messages from its spatial neighbors, and the aggre-
gated features are fused with the corresponding full-residue node feature h,.(;) via residual addition,
followed by layer normalization:

h, ;) < LayerNorm | h,.; + Dropout Z Z Qijk - Vik . (10)
JEN() k

Here, r () denotes the mapping from hyperedge index i to the corresponding residue index in the
residue-level graph.

4-body Attention Mechanism around Mutation Sites. To capture higher-order interactions in
the mutation environment, we extend the 3-body attention mechanism to 4-body attention on the
Fine-Grained Mutation Subgraph (Section , where h("™ and e(™) denote the node and edge
features of the mutation subgraph. This subgraph focuses on residues within an 8A radius of the
mutation site, enabling the model to learn localized interactions among residue quadruples. The



extension increases computational complexity by only a constant factor, preserving scalability while
capturing more complex interactions. The full computational process is illustrated in Figure [I[c).

Specifically, we construct two interaction tensors to encode localized multi-residue interactions as
inputs to the 4-body attention mechanism:

I =om™y @ em{™), 15 = omi™) @ glefr). (10
Here, ¢ is a non-linear activation function (e.g., GELU), and ® denotes the outer product. The tensors
fi(]m) € RVXNXD apd fj(,:}) € RVXEXD regpectively encode node-node and node-edge interactions,

where N and E are the number of residues and edges on the mutation subgraph, and D is the feature
dimension. Indices i, j, k, [ refer to nodes within the mutation subgraph.

Inspired by cross-attention, the tensors fi(jm) and f j(;r;) are projected into query, key, and value vectors:

qi; = Wy - fi(Jm)> Kjr, = Wy, - f}Z}), vk = Wiy - f](,’ﬁ) (12)

biki ZWb'fi(;:T;)7 ikl :Wg'fi(]:;l)a (13)
where W, W, W,,, W;, and W, are learnable projection matrices.
The quadruplet attention scores a;;%; are computed via a gated softmax function:
dij - Kjri
Vd
Each node in the mutation subgraph aggregates attention-weighted messages from its spatial neigh-

bors, and the aggregated features are fused with the original node features via a residual connection,
followed by dropout and layer normalization:

Qijkl = Softmax ( —+ blkl) . U(gikl)' (14)

hgm) <+ LayerNorm hgm) -+ Dropout( Z Zaijkl “Vik) | - (15)
JEN (i) kil

This 4-body attention mechanism enables the model to encode complex, localized interaction motifs
around mutation sites, thereby improving its ability to predict binding free energy changes with
structural and biophysical fidelity.

3.4 Prediction Module and Learning Objective

Following the multi-scale representation learning with many-body attention in Section [3.3] we obtain
a residue-level representation h € RV*?4. Let s = {s1,...,sy} be the amino acid sequence.
Inspired by autoregressive models like ProteinMPNN, we model P(s; | s<;,h) to compute the
negative log-likelihoods &y, and £y for wild-type and mutant sequences. As in RDE-Network [26]
and BA-DDG [18]], single-chain contributions are subtracted to isolate binding effects, yielding
energy-like scores:

ADGiprea = Al — MGy = (£ — £moromer) — (£3m — gnewmr) - (16)
We minimize the mean squared error between AAG req and AAGy,e over n training samples:
1 n
£MSE = g Z (AAGpred - AAthrue)2 . (17)
i=1

4 Experiments

4.1 Experimental Settings

Datasets. We used SKEMPI v2 [17], a benchmark with 7,085 mutations across 348 protein
complexes, to evaluate AAG prediction. Following prior work [26] [37], we split the data into
three non-overlapping folds by complex to avoid data leakage. Additionally, we evaluated on
BindingGYM [24], the largest dataset for protein-protein interactions, with 508,962 curated entries
and a high proportion of multi-point mutations. We used the hardest inter-assay split, focusing on the
fold with the most multi-point mutations for testing (details in Appendix [A.2)).



Table 1: Mean results of 3-fold cross-validation on SKEMPI v2 under single-, multi-, and all-point
mutations. Bold and underline indicate the best and second-best results.

Method Mutations | Overall Per-Structure
\ Pearson Spear.tf RMSE| MAE| AUROC?T \ Pearson? Spear.T
all 0.3113 03468 1.6173 1.1311 0.6562 0.3284  0.2988
Rosetta single 0.3250 0.3670 1.1830 0.9870 0.6740 0.3510 0.4180
multiple 0.1990  0.2300 2.6580 2.0240  0.6210 0.1910  0.0830
all 0.3120  0.4071 1.9080 1.3089 0.6582 0.3789  0.3693
FoldX single 0.3150 03610 1.6510 1.1460  0.6570 0.3820  0.3600
multiple 0.2560 0.4180 2.6080 1.9260  0.7040 0.3330  0.3400
all 0.6447 0.5584 1.5799 1.1123 0.7454 0.4448 0.4010
RDE-Network single 0.6421 0.5271 13333  0.9392  0.7367 0.4687  0.4333
multiple 0.6288 0.5900 2.0980 1.5747 0.7749 0.4233 0.3926
all 0.6609  0.5560 1.5350 1.0930  0.7440 0.4220  0.3970
DiffAffinity  single 0.6720  0.5230 1.2880 0.9230  0.7330 0.4290  0.4090
multiple 0.6500 0.6020 2.0510 1.5400  0.7840 0.4140  0.3870
all 0.6772  0.5910 1.5207 1.0770  0.7568 0.4712  0.4257
Prompt-DDG  single 0.6596  0.5450 1.3072 0.9191 0.7355 0.4736  0.4392
multiple 0.6780  0.6433 1.9831 1.4837 0.8187 0.4448  0.3961
all 0.6720  0.5730 1.5160 1.0890  0.7600 0.4640  0.4310
ProMIM single 0.6680 0.5340 1.2790 0.9240  0.7380 0.4660  0.4390
multiple 0.6660 0.6140 1.9630 1.4910  0.8250 0.4580  0.4250
all 0.7118  0.6346 1.4516 1.0151 0.7726 0.5453  0.5134
BA-DDG single 0.7321 0.6157 1.1848  0.8409 0.7662 0.5606  0.5192
multiple 0.6650 0.6293 2.0151 1.4944  0.7875 0.4924  0.4959
all 0.7501  0.6604 1.3665 0.9612  0.7920 0.5686  0.5281
H3-DDG single 0.7471  0.6374 1.1560 0.8080  0.7803 0.5750  0.5295
multiple 0.7341  0.6913 1.8320 1.3880  0.8309 0.5520  0.5323

ABA-DDG multiple | +10.39% +9.85% +9.08% +7.12% +551% | +12.10% +7.34%

Baselines. We compared H3-DDG against unsupervised and supervised methods. Unsupervised
approaches include energy-based models (e.g., Rosetta [1]], FoldX [8]]), evolutionary sequence models
(e.g., ESM-1v [27]], Tranception [29])), and structure-guided pretrained models (e.g., ESM-IF [135],
MIF-Alogits [39]). Supervised methods include end-to-end architectures (e.g., DDGPred [34])) and
pretraining-finetuning frameworks (e.g., MIF-Network [39], RDE-Network [26]], DiffAffinity [23l],
Prompt-DDG [37]], ProMIM [28]], Surface-VQMAE [36], MSM-Mut [14], BA-DDG [[18])).

Metrics. We use five metrics: Pearson, Spearman, RMSE, MAE, and AUROC. For SKEMPI,
in addition to the global metrics, we also report per-structure metrics. For BindingGYM, metrics
are reported per-DMS (deep mutational scanning). Detailed metric definitions and calculations are

provided in Appendix

Implementation details. The hyperparameters and hardware details are provided in Appendix
The code is available at https://github. com/biomed-AI/H3-DDG.

4.2 Results on SKEMPI v2 Dataset

As shown in Table[I} H3-DDG outperforms existing baseline approaches across all evaluation metrics
in the all-, single-, and multi-point mutation scenarios. Notably, in practical applications where affinity
modulation through multi-point amino acid mutations is particularly critical, H3-DDG demonstrates
significant advantages in the multi-mutation prediction task: achieving a Spearman correlation
coefficient of 0.7341, which is 10.39% higher than the second-best method; at the per-structure level,
this metric reaches 0.5520, surpassing the second-best approach by 12.10%. Additional comparisons
with more baseline methods are provided in Appendix [B.2] Table[6]
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Figure 2: Distribution of per-structure Pearson and Spearman correlation coefficients for multi-point
mutations, evaluated across five representative methods.

Table 2: Performance comparison under <3, >3 and all-point mutations on BindingGYM, where
bold and underline denotes the best and second-best results under each setting.

Method Mutations | Per-DMS
\ Pearsont Spearman? AUROC{t RMSE|
ALL 0.0998 0.2050 0.5341 3.4974
ProteinMPNN <3 0.1137 0.2439 0.5404 3.2328
>3 0.0734 0.1614 0.5930 5.5921
ALL 0.1320 0.1217 0.5658 1.2419
BA-Cycle <3 0.1385 0.1386 0.5620 1.0925
>3 0.0830 0.1955 0.6190 2.5822
ALL 0.1880 0.1818 0.5198 1.5216
Prompt-DDG <3 0.2160 0.2179 0.5273 1.3499
>3 0.1841 0.2008 0.6070 3.5747
ALL 0.2277 0.2142 0.5310 1.1182
BA-DDG <3 0.2553 0.2471 0.5395 0.9716
>3 0.2037 0.2259 0.6307 2.5191
ALL 0.3057 0.2725 0.5703 1.1294
H3-DDG <3 0.3322 0.3031 0.5745 1.0758
>3 0.2472 0.2755 0.6734 2.4976
Aga-DDG >3 | +21.35%  +21.96% +6.77%  +0.85%

These results are enabled by our introduction of a hierarchical communication mechanism combined
with a many-body attention network. This proposed framework effectively models both local and
global interactions, capturing higher-order effects such as m — 7 stacking and explicitly addressing
complex synergistic and many-body interactions in mutational scenarios. As further illustrated in
Figure 2] the per-structure distributions of Pearson and Spearman correlation coefficients across five
representative methods show that H3-DDG achieves significantly higher correlation values, with
distributions concentrated in high-correlation regions, highlighting its robustness compared to other
approaches.

4.3 Results on BindingGYM Dataset

To validate the robustness of H3-DDG, we evaluate it on the larger and more challenging BindingGYM
dataset, demonstrating its scalability and generalizability. As shown in Table[2] H3-DDG outperforms
all baseline methods across all metrics, achieving the highest Pearson correlation (0.3057), which
surpasses the second-best method (BA-DDG) by 34.26%. Particularly in the >3 mutation scenario,
it also achieves the best Spearman correlation (0.2755), exceeding the second-best method by
21.96%. Additionally, H3-DDG achieves the best AUROC across all mutations and demonstrates
competitive RMSE. These results highlight H3-DDG’s robustness, scalability, and effectiveness
for accurately predicting protein-protein binding in complex mutational landscapes, especially in
multi-point mutation scenarios.



While H3-DDG’s RMSE under single-point mutations is slightly higher than the baseline methods
(e.g., BA-DDQG), this can be attributed to the BindingGYM dataset spanning different DMS experi-
ments, where the absolute AAG values vary significantly across experiments. However, we focus
more on the ranking and correlation within each DMS experiment, making the Pearson and Spearman
metrics more critical for evaluation.

4.4 Ablation Study

Ablation Study on Pooling Types. Table 3: Ablation study of pooling and many-body attention
As shown in Table 3] H3-DDG out- mechanisms under multi-point mutations on SKEMPI v2.

performs other graph pooling meth-
ods like DiffPool [41] and MinCut- ~ Pooling  Attn. Around| Overall

Pool [3]], which rely on predicted as- Type Mut. Sites |Pearson? Spear.t RMSE| MAE|
signment matrices and fail to prede-

. . BA-DDG 0.6650 0.6293 2.0151 1.4944
fine mutation sites as central nodes.
By explicitly designating mutation DiffPool - | 0.6959 0.6558 1.9375 1.4843
sites as cluster centers, H3-DDG effec- i cyepool — | 07004 0.6589 19256 1.4693

tively captures long-range dependen-
cies, enabling superior performance - | 07040 0.6676 19161 14528
in modeling many-body interactions. ~ H3-DDG  3-body Attn. | 0.7144 0.6732 1.8880 1.4127

4-body Attn. | 0.7341 0.6913 1.8320 1.3880

Ablation Study on Attention Mech-
anisms. Table|9]also demonstrates
the importance of many-body attention in AAG prediction. While 3-body attention improves perfor-
mance by modeling local interactions around mutation sites, extending to 4-body attention further
enhances accuracy by capturing more complex dependencies. These findings highlight many-body
attention as a key factor in H3-DDG’s strong performance and efficient modeling. Our model strikes
a balance between efficiency and performance, influenced by two main factors: the number of
hyperedges in the hypergraph and the number of edges in the 4-body attention. Notably, our method
achieves a Pearson correlation of 0.7341, surpassing BA-DDG’s 0.6650, with a relatively small
efficiency trade-off. Additional details are provided in Appendix [B.4andB.5]

4.5 SARS-CoV-2 Antibody Optimization

Predicting AAG is essential for identifying affinity-enhancing mutations. We target five SARS-CoV-
2 neutralizing mutations [34] within the heavy-chain CDRs (26 residues, 494 single-point variants).
Models are fine-tuned on SKEMPI v2.0 to rank mutations by predicted AAG, with lower values
indicating stronger binding. Table 4] benchmarks performance against top baselines, highlighting
mutations ranked in the top 10%. Only our model achieves an average rank below 10%, demonstrating
strong generalization and practical utility in antibody design.

Table 4: Rankings of the five favorable mutations on the human antibody against SARS-CoV-2 by
various AAG prediction methods.

Method | TH31W AH53F NHS57L RH103M LHI104F | Average

MIF-Network | 24.49%  4.05% 6.48 % 80.36% 36.23% 30.32%
RDE-Network | 1.62% 2.02%  20.65% 61.54% 5.47% 18.26%

DiffAffinity 7.28% 3.64%  18.82% 81.78% 10.93% 24.49%
Prompt-DDG 2.02% 6.88%  3.24% 34.81% 6.48 % 10.69%
MSM-Mut 6.48% 10.12%  16.19% 19.23% 20.04% 14.41%
BA-DDG 5.26% 15.58%  2.22% 40.28% 7.69 % 14.21%
H3-DDG | 3.44% 7.48% 2.02% 32.79% 2.63% | 9.67%

5 Conclusion

In this work, we introduce H3-DDG, a novel framework that leverages hierarchical communication
mechanisms and many-body attention to tackle the challenges of protein-protein binding prediction.
By explicitly modeling higher-order interactions and designating mutation sites as cluster centers,



H3-DDG captures complex dependencies and synergistic effects, particularly excelling in multi-point
mutation scenarios. Evaluations on SKEMPI v2 and BindingGYM show that H3-DDG outperforms
state-of-the-art methods across most metrics, demonstrating robust performance and scalability.
While H3-DDG shows promise for protein design and affinity prediction, its performance on large
datasets and diverse mutations needs further study. Integrating it with experimental workflows will
be key to validating real-world applicability. Future work will tackle these challenges to expand its
1mmpact.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm that the main claim in the abstract and introduction accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of the work in the conclusion section.
Specifically, we note that H3-DDG requires further evaluation on large-scale datasets and
highly diverse mutation scenarios. Additionally, integration with experimental workflows
is needed to validate its real-world applicability. These challenges are acknowledged as
directions for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include complex theoretical results, and therefore, there
are no assumptions or proofs to provide.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training details and datasets are provided in the paper and supplementary
material, and we also plan to open-source our model.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the source code in the supplementary material and will
open-source our data and code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in Section 4.1 and Ap-
pendix[A.4]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have shown the complete distribution of our results in Fig. 2] and Fig. 3}
highlighting our robustness compared to other approaches.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Ap-
pendix[A.4.2]and B.5]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it in the introduction section. These results underscore the
capability of H3-DDG to handle intricate mutational landscapes and its potential for broad
applicability in protein engineering and drug design.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the assets are properly cited in the paper.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17



13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new model to capture higher-order many-body interactions
across multiple scales for AAG predictions, and we have provided the details of the model
in this paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper dose not involve LLMSs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Details

A.1 Graph Pooling Method of H3-DDG

To enable scalable learning on biomolecular graphs, H3-DDG employs a deterministic graph pooling
strategy that compresses node representations while preserving spatial and functional context. Given
residue-wise features h and their Car coordinates x € RYV*3, we form a reduced set of hyper-nodes
via Farthest Point Sampling (FPS) with mutation-aware initialization. Specifically, mutation sites
are first selected as initial cluster centroids ¢, and additional centroids are iteratively sampled to
maximize coverage under Euclidean distance.

Each residue is then assigned to the nearest cluster centroid based on the Euclidean distance between
its Ca coordinates and the centroids. Feature aggregation is performed within each cluster by
computing the mean of the features of all residues assigned to that cluster:

he = — 3 hy, (18)

|Sk| 1€Sk

where Sy is the set of residues assigned to cluster k. This produces a set of K cluster-level represen-
tations {h; }< |, with K dynamically determined as K = |L/R|, where L is the number of valid
residues and R is a predefined reduction ratio.

Anchored to mutation sites and guided by spatial diversity, our pooling method preserves locality and
biological relevance. It is non-parametric and efficient, suitable for large or variable-length proteins.

A.2 Details of the Inter-Assay Split in BindingGYM

To evaluate generalization to unseen protein-protein interactions, we adopt the inter-assay split
strategy from the BindingGYM dataset, following the approach of [24]]. In this setting, assays are first
clustered into five groups based on the sequences of their mutated proteins. Data from one cluster is
held out for testing, while the remaining four are used for training. This split evaluates the models’
ability to generalize to new assays, which holds significant practical significance.

We evaluate performance under three levels of mutational depth: ALL (all mutants), <3 (mutants
with fewer than 3 mutations), and >3 (mutants with 3 or more mutations).

A.3 Details of metric definitions and calculations

For the SKEMPI v2 dataset, we use seven quantitative metrics, including five standard global criteria:
Pearson and Spearman correlation coefficients, root mean square error (RMSE), mean absolute error
(MAE), and area under the ROC curve (AUROC). To calculate AUROC, mutations are classified
based on the sign of AUROC, mutations are classified based on the sign of AAG. In practice,
correlations within individual protein complexes are often more relevant. To this end, following
RDE-Network [26], we group mutations by protein structure, exclude groups with fewer than 10
mutations, and compute correlations separately for each structure. For the BindingGYM dataset,
we use per-DMS (deep mutational scanning) metrics, including Pearson, Spearman, AUROC, and
RMSE.

A.4 Training Details

A.4.1 Hyper-parameters

We used the Adam optimizer with a learning rate of 4e-4 and a batch size of 1, 2, depending on
GPU memory and graph size. The model was trained for 20,000 iterations with 4 attention heads
and a hidden dimension of 128. The number of hyperedges was selected from L/10, L/6, L/4, and
the number of edges in the 4-body attention module from 1N, 2N, 3N, where L and N denote the
numbers of residues and nodes, respectively. The pre-trained ProteinMPNN module used its default
3-layer configuration.

A4.2 Hardware
Experiments were run on dual Xeon Gold 6248R CPUs and an RTX 4090 GPU under Ubuntu 22.04.
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B Additional Results

B.1 H3-DDG Performance on Predicted Complex Structures

To evaluate robustness, we used AlphaFold 3 (AF3) to predict the complex structures for SKEMPI
v2 and applied H3-DDG for prediction. While AF3 achieves high-quality structure prediction, its
accuracy may still be lower than experimental structures. Importantly, H3-DDG showed only a slight
decrease in performance on AF3-predicted structures, with a drop of 5.4% in Pearson correlation,
demonstrating strong robustness and practical applicability.

B.2 Extended Baseline Comparisons on SKEMPI v2

Table[6]reports extended baseline results on SKEMPI v2, including additional methods to complement
the main text comparisons. These include energy function-based, sequence-based, and unsupervised
approaches, providing a broader context for evaluating performance across diverse methodological
categories.

B.3 Ablation Results under Different Mutation Depths

Table |/| presents the full ablation results of different pooling strategies and many-body attention
mechanisms across mutation types, including single-point, multi-point, and all-point mutations on
SKEMPI v2. The results demonstrate that our proposed H3-DDG consistently outperforms baseline
pooling methods (e.g., DiffPool [41] and MinCutPool [3]]) under all mutation settings. Furthermore,
incorporating 4-body attention around mutation sites yields the best performance across all metrics,
validating the effectiveness of higher-order attention in capturing complex interaction patterns.

B.4 Ablation study on Edge Count in 4-body Attention

We investigate the impact of varying the number of edges in the 4-body attention mechanism
around mutation sites on AAG prediction. The number of edges in the 4-body attention is directly
proportional to the computational complexity. As shown in Table[8] where N denotes the number of
nodes involved in the 4-body attention computation, selecting 2 - N edges yields a computational
complexity of 2 - |A/]3. The results indicate that increasing the number of edges leads to only
a constant-factor increase in computational cost, yet yields sustained improvements in predictive
performance. For example, the Pearson correlation, which was already high at 0.7352, further
increases to 0.7501. These findings highlight that adding more edges in the many-body attention
mechanism near mutation sites significantly enhances the model’s capacity to capture complex many-
body interactions, while maintaining manageable computational overhead, thereby driving further
gains in prediction accuracy.

B.5 Efficiency Analysis

Our model balances efficiency and performance. As shown in Table[9] increasing hyperedges from
L/10 to L/4 steadily improves Pearson correlation, reaching a peak of 0.7501 with L /4 hyperedges
and 3N 4-body edges. This setting maintains acceptable efficiency (4.34 it/s), only slightly slower
than BA-DDG (6.25 it/s, Pearson: 0.7118). Similarly, increasing 4-body edges from 1.5N to 3NV
yields incremental gains, indicating denser subgraph modeling enhances accuracy at manageable
cost. Additionally, as shown in Table[I0] larger cutoff radii improve performance by capturing richer
structural context, but gains diminish beyond 8 A while cost rises. Thus, 8 A is chosen as the optimal
cutoff, offering the best accuracy-efficiency trade-off.

Table 5: H3-DDG Performance on Experimental and AF3-Predicted Structures.

Structure | Pearsonf RMSE| AUROC?

AlphaFold3 0.7117 1.4518 0.7755
Experimental 0.7501 1.3665 0.7920
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Table 6: Mean results of 3-fold cross-validation on SKEMPI v2 under single-, multi-, and all-point
mutations. Bold and underline indicate the best and second-best results.

Method Mutations | Overall Per-Structure
| Pearson? Spear.f RMSE| MAE| AUROCY | Pearson! Spear.}
all 0.3113  0.3468 1.6173 1.1311 0.6562 0.3284  0.2988
Rosetta single 0.3250 0.3670 1.1830 0.9870 0.6740 0.3510 0.4180
multiple 0.1990  0.2300 2.6580 2.0240  0.6210 0.1910  0.0830
all 0.3120 0.4071 1.9080 1.3089  0.6582 0.3789  0.3693
FoldX single 0.3150 0.3610 1.6510 1.1460  0.6570 0.3820  0.3600
multiple 0.2560  0.4180 2.6080 1.9260  0.7040 0.3330  0.3400
all 0.6580 0.4687 1.4998 1.0821 0.6992 0.3750 0.3407
DDGPred  single 0.6515 04390 1.3285 0.9618  0.6858 03711  0.3427
multiple 0.5938 0.5150 2.1813  1.6699 0.7590 0.3912 0.3896
all 0.6373 0.4882 1.6198 1.1761 0.7172 0.3873 0.3587
End-to-End  single 0.6605  0.4594 13148 0.9569  0.7019 0.3818  0.3426
multiple 0.5858 0.4942  2.1971 1.7087 0.7532 0.4178 0.4034
all 0.6447  0.5584 1.5799 1.1123  0.7454 0.4448  0.4010
RDE-Network single 0.6421  0.5271 1.3333  0.9392  0.7367 0.4687  0.4333
multiple 0.6288  0.5900 2.0980 1.5747  0.7749 04233  0.3926
all 0.6609  0.5560 1.5350 1.0930  0.7440 0.4220  0.3970
DiffAffinity  single 0.6720  0.5230 1.2880 0.9230  0.7330 0.4290  0.4090
multiple 0.6500  0.6020 2.0510 1.5400  0.7840 04140  0.3870
all 0.6772  0.5910 1.5207 1.0770  0.7568 04712  0.4257
Prompt-DDG = single 0.6596  0.5450 1.3072 0.9191 0.7355 04736  0.4392
multiple 0.6780  0.6433 1.9831 1.4837  0.8187 0.4448  0.3961
all 0.6720 0.5730 1.5160 1.0890 0.7600 0.4640 0.4310
ProMIM single 0.6680  0.5340 1.2790 0.9240  0.7380 0.4660  0.4390
multiple 0.6660  0.6140 1.9630 1.4910  0.8250 0.4580  0.4250
all 0.7118 0.6346 14516 1.0151 0.7726 0.5453  0.5134
BA-DDG single 0.7321  0.6157 1.1848 0.8409  0.7662 0.5606  0.5192
multiple 0.6650  0.6293 2.0151 1.4944  0.7875 0.4924  0.4959
all 0.7501  0.6604 1.3665 0.9612  0.7920 0.5686  0.5281
H3-DDG single 0.7471  0.6374 1.1560 0.8080  0.7803 0.5750  0.5295
multiple 0.7341  0.6913 1.8320 1.3880  0.8309 0.5520  0.5323
all +5.38% +4.07% +5.86% +5.31% +2.51% +4.27%  +2.86%
ABA-DDG single +2.05% +3.52% +2.43% +391% +1.84% +2.57% +1.98%
multiple +10.39% +49.85% +9.09% +7.12% +5.51% | +12.10% +7.34%

B.6 Scatter Plot of Prediction Results

In Figure 3] we present scatter plots comparing experimental and predicted AAG values for the three
methods under multi-point mutation scenarios.

RDE-Linear Prompt-DDG H3-DDG

Pearson = 0.4583 e Pearson = 0.6780 o Pearson = 0.7341
o Spearman = 0.4247 Spearman = 0.6433 = Spearman = 0.6913

.i;s-.i'?' A
A

Tog™or™
0025500

Predicted DDG
|
L

10 10 10 10

5 0 5 5 0 5 5 0 5
Experimental DDG Experimental DDG Experimental DDG

Figure 3: Comparison of predicted and experimental AAG across methods.
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Table 7: Ablation study of pooling types and many-body attention mechanisms across mutation types
on SKEMPI v2.

Pooling  Attn. Between Attn. Around . \ Overall
Type Hyperedges Mutation Sites Mutations

| Pearson? Spear.t RMSE| MAE|
all 0.7261  0.6407 1.4209 1.0079
DiffPool 3-body Attn. - single 0.7344  0.6256 1.1804 0.8336
multiple 0.6959  0.6558 1.9375 1.4843
all 0.7275 0.6456 1.4178 1.0027
MinCutPool 3-body Attn. - single 0.7324  0.6333 1.1841 0.8342
multiple 0.7004  0.6589 1.9256 1.4693
all 0.7317 0.6485 1.4085 0.9923
H3-DDG  3-body Attn. - single 0.7383 0.6273 1.1728 0.8242
multiple 0.7040 0.6676 1.9161 1.4528
all 0.7352  0.6509 1.4007 0.9805
H3-DDG  3-body Attn.  3-body Attn. single 0.7355 0.6326 1.1782 0.8243
multiple 0.7144 0.6732 1.8880 1.4127
all 0.7501 0.6604 1.3665 0.9612
H3-DDG  3-body Attn.  4-body Attn. single 0.7471 0.6374 1.1560 0.8080
multiple 0.7341 0.6913 1.8320 1.3880

Table 8: Ablation on the number of edges near mutations within 4-body attention on SKEMPI v2.

. I Overall Per-Structure
Complexity Mutations

\ Pearsont Spear.t RMSE| MAE| AUROCTt \ Pearsont Spear.t
all 0.7352  0.6509 1.4007 0.9805 0.7895 0.5663  0.5227
O(N?)  single 0.7355 0.6326 1.1782 0.8243  0.7851 0.5758  0.5246
multiple 0.7144  0.6732 1.8880 1.4127 0.8098 0.5372  0.5156
all 0.7461 0.6570 1.3760 0.9719 0.7941 0.5660  0.5231
O2-|N?) single 0.7455 0.6365 1.1591 0.8128 0.7850 0.5790  0.5341
multiple 0.7279 0.6815 1.8500 1.4079 0.8262 0.5449  0.5310
ol 0.7501 0.6604 1.3665 0.9612 0.7920 0.5686  0.5281
O(3-|N|?) single 0.7471 0.6374 1.1560 0.8080 0.7803 0.5750  0.5295
multiple 0.7341 0.6913 1.8320 1.3880 0.8309 0.5520  0.5323

Table 9: Impact of hypergraph and subgraph configurations on efficiency and performance. L is the
residue count, and L/ k denotes the number of hyperedges (floor division). 3N means the 4-body
attention has three times as many edges as nodes.

Number of Number of Edges Training Speed Training Time

Method Hyperedges in 4-body Attn. Pearsonf (iterations/sec) (mins/epoch)
BA-DDG - - | 0.7118 6.25 5.94
L/10 0.7418 5.11 7.27
L/6 3N 0.7482 4.68 7.93
H3-DDG L/4 0.7501 4.34 8.55
1.5N 0.7420 4.40 8.44
L/4 2N 0.7461 4.38 8.48
3N 0.7501 4.34 8.55

Table 10: Impact of Cutoff Radius on Model Performance and Efficiency.

Cutoff of Mut. Training Speed
Subgraph(A) ‘ Pearson?  MAE/| (iterations/sec)
5 0.7378 0.9834 4.52
8 0.7501 0.9612 4.32
12 0.7511 0.9602 4.03
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