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MGM-Omni
An open-source Omni Chatbot

Understand speech
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Figure 1: MGM-Omni is an advanced Omni LLM for omnimodal understanding, long-form under-
standing, long-form speech generation and zero-shot voice clone. It can comprehend audio inputs
exceeding 60 minutes and produce consistent, high-quality speech outputs longer than 10 minutes.

ABSTRACT

We present MGM-Omni, a unified Omni LLM for omni-modal understanding and
expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate
speech synthesis, MGM-Omni adopts a “brain–mouth” design with a dual-track,
token-based architecture that cleanly decouples multimodal reasoning from real-
time speech generation. This design enables efficient cross-modal interaction and
low-latency, streaming speech generation. For understanding, a unified training
strategy coupled with a dual audio encoder design enables long-form audio per-
ception across diverse acoustic conditions. For generation, a chunk-based parallel
decoding scheme narrows the text–speech token-rate gap, accelerating inference
and supporting streaming zero-shot voice cloning with stable timbre over extended
durations. Compared to concurrent work, MGM-Omni achieves these capabil-
ities with markedly data-efficient training. Extensive experiments demonstrate
that MGM-Omni outperforms existing open source models in preserving timbre
identity across extended sequences, producing natural and context-aware speech,
and achieving superior long-form audio and omnimodal understanding. MGM-
Omni establishes an efficient, end-to-end paradigm for omnimodal understanding
and controllable, personalized long-horizon speech generation.

1 INTRODUCTION

The evolution of large language models (LLMs) from purely text-based systems (OpenAI, 2023a;
Touvron et al., 2023) to multimodal frameworks has marked a significant paradigm shift in arti-
ficial intelligence. Vision language models (VLMs) such as LLaVA, GPT-4V, and Gemini (Liu
et al., 2023b; OpenAI, 2023b; Team et al., 2023) have demonstrated remarkable capabilities in
understanding and processing visual information, effectively bridging the gap between vision and
language. Audio serves as a bridge between humans and AI. However, integration of audio, particu-
larly understanding and generating long-form and expressive audio, remains a significant challenge
in multimodal systems. Most existing approaches are vision-centric, treating audio as a secondary
input modality and relying on separate, cascaded text-to-speech (TTS) systems for generation (Van
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Den Oord et al., 2016; Anastassiou et al., 2024; Du et al., 2024). These methods exhibit critical
shortcomings, including limited capability to process and understand extended audio sequences,
high latency in audio synthesis, and degraded vocal timbre consistency over long durations.

Model VU AU LAU SG LSG VC

CosyVoice2 (Du et al., 2024) ✓ ✓
Higgs-Audio-v2 (Boson AI, 2025) ✓ ✓ ✓
Qwen2.5-VL (Bai et al., 2025) ✓
Qwen2.5-Omni (Xu et al., 2025) ✓ ✓ ✓
Lyra (Zhong et al., 2024) ✓ ✓ ✓ ✓
MGM-Omni ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Function comparison. VU, AU, LAU, SG, LSG, and VC denote
visual understanding, audio understanding, long audio understanding, speech
generation, long speech generation, and zero-shot voice cloning.

The integration of audio
in multimodal systems is
hindered by the dispar-
ity between audio and text
modalities. Audio token
sequences are significantly
more extensive and operate
at a finer temporal resolu-
tion compared to their cor-
responding text token se-
quences (Van Den Oord
et al., 2016; Shen et al.,
2018). This disparity creates three challenges. First, existing systems lack robust long-form audio
understanding, struggling to maintain contextual coherence and semantic accuracy across extended
audio inputs. Second, in generation, a one-to-many alignment problem complicates mapping seman-
tic words or units to long acoustic sequences, leading to misaligned prosody and unnatural pacing
in long-form speech. Third, the autoregressive generation process is prone to error accumulation,
where minor inaccuracies cascade, degrading timbre consistency and audio quality. Despite recent
progress (Huang et al., 2025; Xu et al., 2025; Team, 2025; Boson AI, 2025), these systems do not
address the intertwined issues of long-form audio understanding, alignment, and generation.

To address these limitations, we introduce MGM-Omni, an Omni LLM that unifies vision, language,
and audio in an end-to-end framework for seamless, low-latency multimodal understanding and gen-
eration. MGM-Omni adopts a dual-track architecture, separating multimodal reasoning (MLLM,
the brain) from speech synthesis (SpeechLM, the mouth), enabling efficient cross-modal process-
ing and real-time audio generation. For audio understanding, we employ a dual-encoder design
that fuses acoustic and semantic features, with unified training enabling unified inference across
short and long audio. For speech generation, we introduce Chunk-Based Parallel Decoding, which
mitigates the token-rate gap between text and speech by segmenting text and predicting multiple
speech tokens in parallel. This improves multimodal alignment, reduces long-sequence error accu-
mulation and boosts inference speed by up to 3×. Trained on approximately 400k hours of audio,
MGM-Omni supports zero-shot voice cloning from any personalized reference voice. Furthermore,
we propose Long-TTS-Eval, a benchmark that systematically assesses long-form speech generation
capability. Consequently, MGM-Omni delivers zero-shot voice cloning and expressive, personal-
ized long-horizon speech, maintaining timbre consistency and robust text–speech alignment across
extended contexts. Our main contributions are threefold:

• We propose MGM-Omni, an Omni LLM featuring a novel dual-track design that unifies omni-
modal understanding and expressive speech generation, moving beyond cascaded systems.

• We introduce a Chunk-Based Parallel Decoding mechanism that mitigates the token-rate mis-
match between text and speech, enabling efficient, high-fidelity, and context-aware long-form
audio synthesis with customized voice.

• Through extensive experiments, we demonstrate that MGM-Omni significantly outperforms ex-
isting methods in long audio understanding, and achieves leading performance in zero-shot voice
cloning and natural, context-aware long-form speech generation.

2 RELATED WORK

Multi-modal Large Language Models. The advent of large language models (LLMs) (OpenAI,
2023a; Touvron et al., 2023) has revolutionized natural language processing, paving the way for mul-
timodal extensions that integrate diverse data modalities such as text, image, video and audio (Bai
et al., 2025; Xu et al., 2025; Li et al., 2024b;c; Liu et al., 2023b; 2025a). Early multimodal models
centered on vision–language alignment via contrastive learning. CLIP (Radford et al., 2021) demon-
strated the efficacy of zero-shot image classification through joint embedding spaces. Building on
this foundation, vision language models (VLMs) like Flamingo, LLaVA and MiniGPT-4 (Alayrac
et al., 2022; Liu et al., 2023b; Zhu et al., 2023) adapted frozen visual encoders (e.g., CLIP-ViT) to
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Figure 2: The overview of MGM-Omni. MGM-Omni decouples omni-modal understanding and
speech generation into an MLLM and a SpeechLM. The MLLM processes text, images, video, and
audio to produce text, while the SpeechLM generates speech from the MLLM’s output in real time.

instruction-tuned LLMs to enable general-purpose multimodal understanding. Subsequent works
such as Mini-Gemini (Li et al., 2024c), the LLaVA series (Liu et al., 2023a; Li et al., 2024a),
and the Qwen-VL series (Wang et al., 2024; Bai et al., 2025) further advance VLMs with high-
resolution image comprehension, video understanding and visual grounding. Despite this progress,
most MLLMs remain vision-centric, with limited support for audio modalities. Recent efforts (Fu
et al., 2024; Zhong et al., 2024; Xu et al., 2025) start to incorporate audio into MLLMs, but still
struggle with understanding and generation of long-form audio, and cannot control the timbre of
generated speech. MGM-Omni address these limitations with a dual-track, token-based architec-
ture that natively fuses language and audio, enabling omni-modal understanding and expressive,
controllable long-form audio generation.

Speech Generation. In recent years, driven by the emergence of large language models (LLMs)
and large-scale speech-text pre-training, zero-shot text-to-speech generation (TTS) has advanced
markedly (Anastassiou et al., 2024; Du et al., 2024; Boson AI, 2025). CosyVoice2 (Du et al., 2024)
builds a TTS system with chunk-aware flow matching and LLMs, enabling streaming multilingual
speech synthesis with zero-shot voice cloning. Qwen2.5-Omni (Xu et al., 2025) incorporates this
design with a thinker–talker pipeline for end-to-end perception and generation across text, images,
audio, and video. However, these systems still struggle with long-form speech generation. More
recent efforts such as MOSS-TTSD (Team, 2025) and Higgs-Audio-v2 (Boson AI, 2025) support
expressive bilingual dialogue generation with personalized voice, yet challenges remain in maintain-
ing timbre consistency over long sequences, ensuring real-time cross-modal fidelity, and achieving
low latency. MGM-Omni addresses this issue via a chunk-based parallel decoding approach, en-
abling expressive long-form speech generation with consistent timbre and low latency.

3 MGM-OMNI

MGM-Omni is capable of processing text, images, video and speech, and can generate both textual
and spoken outputs. To support high-quality, long-form speech synthesis without compromising the
efficiency and effectiveness of omnimodal understanding and text generation, MGM-Omni decou-
ples multimodal understanding and speech generation into two components: MLLM, serving as the
“brain” for multimodal understanding and text generation, and SpeechLM, serving as the “mouth”
for real-time speech generation. For input in different modalities, we employ modality-specific en-
coders to extract features, which are subsequently passed to the MLLM. The MLLM generates text
tokens and passes them to SpeechLM, which produces speech tokens in real-time via a Chunk-
Based Parallel Decoding strategy. These speech tokens are further converted into Mel-spectrograms
through a flow-matching model (Lipman et al., 2022), and the final audio is synthesized using a
vocoder. The overall framework is illustrated in Figure 2.
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Figure 3: The overview of SpeechLM in MGM-Omni. Conditioned on MLLM-generated text and
the reference audio clip, SpeechLM generate speech with Chunk-based Parallel Decoding.

3.1 OMNI UNDERSTANDING

MGM-Omni is built upon Qwen2.5-VL (Bai et al., 2025), a state-of-the-art open-source Vision-
Language Model (VLM) that supports image and video understanding with a native-resolution
ViT (Dehghani et al., 2023). Based on Qwen2.5-VL, MGM-Omni attempts to extend towards Omni-
Understanding, especially by incorporating audio understanding capabilities.

Dual Audio Encoder. MGM-Omni adopts a dual audio encoder design to capture both acoustic
and semantic audio features. The primary encoder, Qwen2-Audio (Chu et al., 2024), is an audio
encoder continually trained on Whisper-large-v3 (Radford et al., 2022) for enhanced general sound
perception. To strengthen semantic understanding, especially for Chinese speech, we incorporate
Belle-Whisper-large-v3 (BELLEGroup, 2023), another Whisper-based encoder specialized in Chi-
nese speech recognition. This dual encoder setup yields two complementary representations: the
main audio feature Xmain and the auxiliary audio feature Xaux.

Information Mining. To effectively integrate these complementary features, we design an audio
information mining approach inspired by Mini-Gemini (Li et al., 2024c). Specifically, Xmain serves
as the query Q ∈ RN×C , while Xaux provides the key-value pair: K ∈ RN×C and V ∈ RN×C ,
allowing the model to retrieve semantically relevant cues from Xaux under the guidance of Xmain.
Formally, information mining can be defined as:

TA = MLP(Q+ Softmax(ϕ(Q)× ϕ(K)⊤)× ϕ(V )), (1)

where ϕ denotes a projection layer and MLP represents a multi-layer perceptron. This approach
enhances the audio representation by making it both acoustically and semantically aware, yielding
enhanced audio tokens TA for subsequent LLM processing.

Training Strategy. Following Lyra (Zhong et al., 2024), we build a two-stage training pipeline to
integrate audio understanding capabilities. In the first stage, we conduct audio-to-text pre-training to
align the audio encoder to LLM. In the second stage, we perform unified omni-modal training. The
first stage primarily uses audio transcription data, while the second stage comprises audio transcrip-
tion, audio QA, audio-instruct VQA, and text instruction tuning data. This training strategy enables
omni-cognition and robust cross-modal reasoning.

Omni Length Understanding. MGM-Omni aims to support both long and short sequence input.
However, training with sequences of diverse lengths is inefficient: large batch sizes cause long
sequence samples to run out of memory, while small sizes waste memory on short sequence samples.
To address this issue, we propose a unified training pipeline. First, we group audio of similar lengths
into the same batch. Second, we dynamically adjust the batch size, smaller for long-context inputs
and larger for short-context inputs. This strategy significantly improves training efficiency.
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Figure 4: Decoding comparison. Chunk-based decoding narrows the gap between text and corre-
sponding speech, enabling long-form speech generation.

3.2 OMNI GENERATION

MGM-Omni can generate both long-form text and speech. The textual output is autoregressively
produced by the Omni-MLLM. The generated text, together with the personalize reference audio,
is subsequently served as the conditioning for SpeechLM to synthesize speech via a Chunk-based
Parallel Decoding method. The overall speech generation pipeline is depicted in Figure 3.

Speech Generation. SpeechLM takes text tokens from Omni-MLLM as input and generates
speech tokens in an autoregressive manner. It is initialized from the Qwen3 (Yang et al., 2025a)
language model, with an additional TTS-Adapter appended to its output. TTS-Adapter consists of
six randomly initialized Qwen3 blocks, designed to transform text representations into speech rep-
resentations. The speech tokens produced by SpeechLM are then converted into Mel-spectrograms
through a Flow-Matching model, and finally synthesized into audio via HiFi-GAN (Kong et al.,
2020) vocoder. We used the flow-matching model from CosyVoice2 (Du et al., 2024), which sup-
ports chunk-aware streaming decoding.

Speech Tokenizer. We employ the CosyVoice2 finite scalar quantization (FSQ) speech tokenizer
to obtain discrete speech representations for speech generation. The tokenizer operates at a rate of
25 Hz, meaning that 25 tokens represent one second of audio. In comparison, humans typically
express only two or three words per second. This discrepancy highlights that for a given utterance,
the number of speech tokens is substantially larger than the number of text tokens. This leads to the
following two issues:

• As the length of the speech increases, the gap between text and speech tokens widens, weakening
their correlation and degrading the quality of long-form generation.

• The much higher number of speech tokens compared to text tokens slows inference and harms
streaming efficiency.

To address these two challenges, we propose a Chunk-Based Parallel Decoding for efficient long-
form speech generation.

Chunk-based Decoding. To improve text–speech alignment in long-form speech generation, we
introduce Chunk-based Decoding for speech token generation. As shown in Figure 4, the input text
is divided into smaller chunks that are sequentially processed by SpeechLM, with each chunk pro-
ducing a corresponding speech segment. During decoding, we adopt a token delay strategy: speech
token generation within a chunk is initiated only after the first four text tokens, which are replaced by
padding tokens in the speech sequence. This design ensures that every speech token is aligned with
its corresponding text token while avoiding early mis-synchronization. By reducing the alignment
distance between modalities, Chunk-based Decoding enhances cross-modal correspondence and im-
proves the robustness of long-form speech synthesis. In contrast to naive segmentation methods, our
approach preserves both the previously generated text and speech as context, thereby maintaining
global fluency and coherence in the final output. Notably, Chunk-based Decoding is highly com-
patible with our dual-track “brain–mouth” design, preserving omnimodal understanding and text
generation speed while improving speech synthesis quality.

Parallel Decoding. To improve efficiency, we introduce a parallel decoding strategy for efficient
speech token generation. Specifically, we extend the vocabulary so that SpeechLM can decode both
modalities in a single step. Let Vtext denote the text vocabulary, Vspeech denote the speech tokenizer

5
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vocabulary, and k denote the parallel size. The extended vocabulary size is thus defined as:

|V | = |Vtext|+ k|Vspeech|. (2)

For speech tokenization, the input for each decoding step t consists of one text token xt and k speech
tokens {s1t , s2t , . . . , skt }. We use f(·) to denote the embedding function, and the hidden features hin

t
for LLM input can be averaged as:

hin
t =

1

k + 1

(
f(xt) +

k∑
i=1

f(sit)

)
. (3)

For speech detokenization, we employ a TTS-Adapter to project the LLM output hidden state hout
t

into the speech representation space, after which the lm_head predicts the next set of speech tokens:

{ŝ1t+1, . . . , ŝ
k
t+1} = lm_head

(
TTS-Adapter(hout

t )
)
. (4)

While parallel decoding is commonly used with RVQ speech tokenizers (Xie & Wu, 2024a; Team,
2025), it is rarely applied to FSQ speech tokenizers. We found that using parallel decoding with FSQ
speech tokenizers not only maintains speech synthesis performance but also significantly improves
efficiency. Additionally, it further shortens the distance between text and speech tokens, enhancing
their correlation.

3.3 OMNI VOICE

MGM-Omni is capable of generating long-form speech in any personalized voice. To enable this
capability, we carefully designed both the data pipeline and the training strategy.

Training Data. To enable zero-shot voice cloning, we collected a large-scale dataset, including
around 300k hours of raw speech data and approximately 100k hours of TTS-synthesized speech
in Chinese and English. The raw speech portion of our corpus incorporates diverse open-source
datasets, including Emilia Dataset (He et al., 2024), Libri-heavy (Kang et al., 2024), Common
Voice (Ardila et al., 2019), and Aishell series (Bu et al., 2017; Du et al., 2018; Shi et al., 2020). We
constructed a dataset for TTS synthesis by sampling Chinese conversations from Belle-10M (BEL-
LEGroup, 2023) and English conversations from Lamini-Instruct (Wu et al., 2023). We uniformly
sampled 900k Chinese and 700k English conversations based on length. As these datasets are
somewhat outdated, we enhanced the text quality by regenerating all responses using Qwen2.5-
72B (Yang et al., 2025b). Subsequently, we synthesized audio from these refined conversations
using megatts3 (Jiang et al., 2025). For each sample, we randomly select a reference voice from the
provided set of pre-processed reference audio.

Pre-training. The SpeechLM consists of a pre-trained Qwen3 (Yang et al., 2025a) LLM paired
with a randomly initialized TTS-Adapter. The model is trained to generate speech from given text
and reference audio through a next speech token prediction objective. The goal of the pre-training
stage is to align the speech and text modalities. At this stage, the parameters of the pre-trained
Qwen3 LLM remain frozen, while only the TTS-Adapter is updated. Both raw and synthesized
speech data are leveraged in pre-training to ensure robustness across diverse speaker timbres.

Post-training. The post-training phase aims to enhance SpeechLM’s capacity for fluent and accu-
rate speech generation. During this phase, the parameters of both the LLM and the TTS-Adapter are
jointly optimized with different learning rates. The TTS-Adapter is trained at a rate five times higher
than that of the LLM. The training corpus is primarily composed of high-fidelity TTS-synthesised
speech, supplemented with a smaller portion of raw speech data.

4 EXPERIMENTS

4.1 MAIN PROPERTIES

In this section, we present a comprehensive evaluation covering audio understanding, omni-modality
understanding, and speech generation, to demonstrate the main properties of MGM-Omni, with
particular emphasis on its capacity for long audio understanding and long audio generation and
zero-shot voice cloning.
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Model LibriSpeech Test CommonVoice AISHELL
clean WER ↓ other WER ↓ EN WER ↓ ZH CER ↓ CER ↓

Audio LLMs
Whisper-large-v3 (Radford et al., 2022) 1.8 3.6 9.3 12.8
Qwen2-Audio (Chu et al., 2024) 1.3 3.4 8.6 5.2
Omni LLMs
Mini-Omni2 (Xie & Wu, 2024b) 4.7 9.4
Lyra (Zhong et al., 2024) 2.0 4.0
VITA-1.5 (Fu et al., 2024) 3.4 7.5 2.2
Ola (Liu et al., 2025b) 1.9 4.3
Qwen2.5-Omni (Xu et al., 2025) 1.6 3.5 7.6 5.2
MGM-Omni-7B 1.7 3.6 8.8 4.5 1.9
MGM-Omni-32B 1.5 3.2 8.0 4.0 1.8

Table 2: Omni-comparison on ASR benchmarks. We use Common-Voice, LibriSpeech and
AISHELL to evaluate the ASR capability on Chinese and English.

Model Speech ↑ Sound ↑ Music ↑ Mix ↑ Average ↑

Audio LLMs

SpeechGPT (Zhang et al., 2023) 1.6 1.0 1.0 4.1 1.9
SALMONN (Tang et al., 2023) 6.2 6.3 6.0 6.1 6.1
Qwen2-Audio (Chu et al., 2024) 7.2 7.0 6.8 6.8 6.9

Omni LLMs

LLaMA-Omni (Fang et al., 2024) 5.2 5.3 4.3 4.0 4.7
Mini-Omni2 (Xie & Wu, 2024a) 3.6 3.5 2.6 3.1 3.2
IXC2.5-OmniLive (Zhang et al., 2024) 1.6 1.8 1.7 1.6 1.7
VITA-1.5 (Fu et al., 2024) 4.8 5.5 4.9 2.9 4.5
Qwen2.5-Omni (Xu et al., 2025) 6.8 5.7 4.8 5.4 5.7
Ola (Liu et al., 2025b) 7.3 6.4 5.9 6.0 6.4

MGM-Omni-7B 7.3 6.5 6.3 6.1 6.5
MGM-Omni-32B 7.1 6.5 6.2 6.2 6.5

Table 3: Omni-comparison on Audio QA benchmarks. We use AIR-Bench for audio QA evalua-
tion. The scores are evaluated by gpt-4-0125-preview.

4.1.1 AUDIO UNDERSTANDING

Short Audio Understanding. We compare the audio understanding ability (audio → text) of
MGM-Omni against leading Audio and Omni LLMs on two primary tasks: automatic speech recog-
nition (ASR) and general audio QA. First, we evaluate the ASR ability on LibriSpeech (Panayotov
et al., 2015), CommonVoice (Ardila et al., 2019) and AISHELL (Bu et al., 2017). As shown in
Table 2, MGM-Omni delivers competitive or superior performance for both English and Chinese
ASR. In particular, with dual audio encoder, MGM-Omni achieves 4.0 CER on CommonVoice (ZH)
and 1.8 CER on AISHELL, surpassing leading audio and Omni LLMs. For general audio under-
standing, we evaluate audio QA on AIR-Bench (Yang et al., 2024), a comprehensive benchmark
covering speech, sound, and music inputs. As summarized in Table 3, MGM-Omni outperforms all
open source Omni LLMs, including Qwen2.5-Omni (Xu et al., 2025).

Long Audio Understanding. Unlike many open-source Audio and Omni LLMs, MGM-Omni is
capable of processing audio inputs exceeding one hour in length. To evaluate its ability on long-
form audio understanding, we conducted a needle-in-the-haystack test. As illustrated in Figure 5,
MGM-Omni successfully handles audio inputs of up to 4,500 seconds, significantly outperforming
Qwen2.5-Omni (Xu et al., 2025). The success rate is averaged over five diverse long-form audio.
Moreover, we provide quantitative comparison in Figure 7 in the appendix.

4.1.2 OMNI-MODALITY UNDERSTANDING

MGM-Omni processes text, image, video, and audio inputs. Following Lyra (Zhong et al., 2024),
we further evaluate its omni-modal understanding (multimodality → text) by comparing MGM-
Omni against other omni-modal LLMs on several speech-instructed VQA benchmarks. As shown
in Table 4, MGM-Omni shows a strong ability to follow speech instructions.
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Figure 5: Omni-comparison for Long-form Audio. We adopt a needle-in-the-haystack evaluation
and report the average success rate across five materials.

Model TextVQA-Speech ↑ DocVQA-Speech ↑ ChartVQA-Speech ↑ AI2D-Speech ↑
Intern-Omni-9B (OpenGVLab, 2024) 69.1 80.0 56.1 54.0
Lyra-9B (Zhong et al., 2024) 80.0 85.5 61.0 63.1

MGM-Omni-7B 81.7 87.4 69.3 70.4
MGM-Omni-32B 78.2 88.4 72.1 71.3

Table 4: Omni-comparison on vision-speech benchmarks. We convert the textual questions in
multiple VQA benchmarks into synthesized speech to evaluate the multimodal understanding ability.

4.1.3 SPEECH GENERATION

MGM-Omni supports long-form synthesis (exceeding 10 minutes) with customizable voices. Here,
we assess the speech generation capabilities (text → speech) in both short- and long-form setting.

Short Speech Generation. We evaluated MGM-Omni against state-of-the-art zero-shot TTS sys-
tems and Omni LLMs to assess the speech generation capabilities. As shown in Table 5a, MGM
achieves lower error rates and higher speaker similarity than open-source TTS models and Omni
LLMs on seed-tts-eval (Anastassiou et al., 2024), demonstrating strong text-to-speech performance
and robust zero-shot voice cloning.

Long Speech Generation. Unlike many open-source Omni LLMs and TTS systems, MGM-Omni
can generate over 10 minutes of speech in any personalized voice. Quantitative examples are shown
in Figure 8 in the appendix. For benchmark evaluation, most existing benchmarks only evaluate
short clips, typically ranging from a few seconds to a few dozen seconds, leaving a gap in assessing
long-form performance. Moreover, existing TTS benchmarks focus on normal text generation and
do not cover more complex text, such as formulas, URLs, or classical Chinese poetry. To address
this, we introduce Long-TTS-Eval, a benchmark specifically designed to evaluate long-form text-
to-speech generation systematically. We leave more detailed information about the benchmark to
Section A.2 in the appendix.

We compare MGM-Omni against two categories of open-source TTS systems: (1) Native long TTS
models, represented by MOSS-TTSD-v0.5 (Team, 2025) and Higgs-Audio-v2 (Boson AI, 2025).
(2) Non-native models that extend via chunking, represented by CosyVoice2 (Du et al., 2024). We
report WER for English TTS, CER for Chinese TTS, and RTF for inference efficiency. As shown
in Table 5b, MGM-Omni achieves lower error rates across most speech generation scenarios, along
with the lowest RTF. It is worth noting that, MGM-Omni’s two-stage training relies on less than
400k hours of audio, substantially fewer than the 1M or even 10M hours used in concurrent works.
This result demonstrates the efficiency, effectiveness, robustness and data efficiency of our model.

4.2 ABLATION STUDY

Audio Encoder. We ablate different audio encoder designs and evaluate on CommonVoice
ASR (Ardila et al., 2019). As shown in Table 6a, incorporating both the Qwen2-Audio encoder (Chu
et al., 2024) and the Belle-Whisper-large-v3 encoder (BELLEGroup, 2023) with information mining
yields the best performance in audio understanding. Note that, compared with the final model, we
do not use the long audio QA data here.
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Model Size EN WER ↓ EN SIM ↑ ZH CER ↓ ZH SIM ↑

CosyVoice2 (Du et al., 2024) 0.5B 2.57 0.652 1.45 0.748
Qwen2.5-Omni-3B (Xu et al., 2025) 0.5B 2.51 0.635 1.58 0.744
Qwen2.5-Omni-7B (Xu et al., 2025) 2B 2.33 0.641 1.42 0.754
Higgs-Audio-v2 (Boson AI, 2025) 6B 2.44 0.677 1.66 0.743

MGM-Omni-TTS-0.6B 0.6B 2.48 0.670 1.42 0.750
MGM-Omni-TTS-2B 2B 2.28 0.684 1.28 0.755
MGM-Omni-TTS-4B 4B 2.22 0.686 1.18 0.758

(a) Zero-shot short TTS comparison of error rate and speaker similarity in Seed-TTS-Eval. For Qwen2.5-Omni,
size indicates the talker module size.

Model Size RTF ↓ EN WER ↓ ZH CER ↓ EN-hard WER ↓ ZH-hard CER ↓

CosyVoice2 (chunk) (Du et al., 2024) 0.5B 0.34 14.80 5.27 42.48 32.76
MOSS-TTSD-v0.5 (Team, 2025) 2B 0.23 8.69 6.82 62.61 62.97
Higgs-Audio-v2 (Boson AI, 2025) 6B 0.33 27.09 31.39 98.61 98.85

MGM-Omni-TTS-2B 2B 0.19 4.98 5.58 26.26 23.58

(b) Long-form TTS comparison of error rate and inference speed in our Long-TTS-Eval.

Table 5: Omni-comparison TTS benchmarks. We evaluate short-form and long-form TTS using
Seed-TTS-Eval (top) and Long-TTS-Eval (bottom).

Audio Encoder EN WER ↓ ZH CER ↓

Qwen2-Audio 13.0 3.9
Belle-Whisper 21.7 5.0
Info Mining 9.1 3.5

(a) Audio Encoder

Parallel RTF EN WER ↓ ZH CER ↓

1 0.57 1.86 1.15
2 0.32 2.02 1.23
4 0.19 2.28 1.28

(b) Parallel Decoding

Chunking EN WER ↓ ZH CER ↓

31.84 8.97

✓ 4.98 5.64

(c) Chunk-Based Decoding

Table 6: Ablation study. We conduct ablation studies on the audio encoder, parallel decoding, and
chunk-based decoding.

Chunk-based Decoding. We evaluate long-form speech generation on our Long-TTS-Eval to as-
sess the impact of chunk-based decoding. As shown in Table 6c, removing chunk-based decoding
leads to a substantially higher error rate, exceeding that of concurrent works. Given that concurrent
methods typically use millions to tens of millions of hours of audio, we attribute MGM-Omni’s data
efficiency primarily to its use of chunk-based decoding.

Parallel Decoding. We ablate the impact of parallel decoding by comparing both TTS perfor-
mance and inference speed. TTS performance is measured on Seed-TTS-Eval (Anastassiou et al.,
2024), while inference speed is assessed using 16 Chinese and 16 English samples drawn from
Long-TTS-Eval. We report the real-time factor (RTF) on a single H800 GPU to compare the infer-
ence speed. As shown in Table 6b, increasing the parallel size slightly raises the audio error rate but
substantially accelerates inference by 3×. To balance quality and speed, we set the parallel size to
4. We anticipate that incorporating more advanced Multi-Token Prediction (MTP) techniques (Liu
et al., 2024) will further improve audio quality at larger parallel sizes.

5 CONCLUSION

We present MGM-Omni, a unified Omni LLM that supports long-form omnimodal understanding
and robust long-duration speech generation with personalized voices. Its dual-track architecture
separates multimodal reasoning (MLLM) from real-time speech synthesis (SpeechLM), enabling
efficient cross-modal interaction within an end-to-end framework. For understanding, it employs
a dual audio encoder that fuses acoustic and semantic cues, yielding robust long-form audio per-
ception. For generation, we introduce Chunk-Based Parallel Decoding to bridge the token-rate gap
between text and speech, enabling efficient, low-latency synthesis, while conditioning SpeechLM
on reference audio to support zero-shot voice cloning with consistent timbre. Experiments show
that MGM-Omni surpasses leading open source Omni LLMs in timbre consistency, context-aware
speech, long audio comprehension, and omni-modal reasoning.
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A APPENDIX

A.1 DATA FORMAT

The data format for MLLM and SpeechLM with the same instruction is illustrated in Figure 6.
SpeechLM use chunk-based decoding to generate long-form speech.

<|im_start|>assistant
The capital of France is Paris. ... is one of the most populous cities in Europe. Paris is known 
for its rich history, ... forits fashion, cuisine, and nightlife. Overall,Paris is a vibrant and 
dynamic city ... each year from around the world.
<|im_end|>

<|im_start|>user
Introduce the capital of France.
<|im_end|>

The Data Format of MLLM in MGM-Omni

<|im_start|>assistant
<|audio_start|>
The capital of France is Paris. ... is one of the most populous cities in 
Europe.<|end_of_text|> ... <|end_of_text|><|audio_sep|>

Paris is known for its rich history, ... forits fashion, cuisine, and nightlife. <|end_of_text|> ... 
<|end_of_text|> <|audio_sep|>

Overall,Paris is a vibrant and dynamic city ... each year from around the world. 
<|end_of_text|> ...<|end_of_text|>
<|audio_end|> 
<|im_end|>

Chunk 1

Chunk 2

Chunk 3

<|im_start|>user
Respond with the tone of the reference audio clip.<|audio_start|> [Transcript of the refer-ence 
audio] <|audio_end|>
Introduce the capital of France.
<|im_end|>

The Data Format of SpeechLM in MGM-Omni

Figure 6: The data format of MLLM (top) and SpeechLM (button) in MGM-Omni.

A.2 LONG-TTS-EVAL BENCHMARK

In this section, we provide a detailed introduction to the data composition and evaluation protocol
of the Long-TTS-Eval benchmark we constructed.

A.2.1 DATA COMPOSITION

Long-TTS-Eval focuses on assessing TTS systems’ capabilities in long-form speech generation and
complex case handling.

For long TTS evaluation, we collected six types of text: literature, news, knowledge, speeches,
reviews, and academic papers, comprising 341 Chinese samples and 353 English samples. The data
were sourced from news outlets, Wikipedia, YouTube video transcripts, and arXiv papers. We use
the Qwen3 tokenizer (Yang et al., 2025a) to calculate the token length. As illustrated in Tabel 7,
the maximum length is 1899 tokens in Chinese and 3277 tokens in English, and the average length
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Category Samples (ZH) Avg Length (ZH) Max Length (ZH) Samples (EN) Avg Length (EN) Max Length (EN)

Literature 41 998.8 1644 56 985.5 1344
News 60 585.4 1159 60 915.4 1781

Knowledge 60 764.0 1279 59 1130.7 3245
Talk 60 619.8 1885 59 952.4 2745

Comment 60 513.8 1537 59 844.6 2096
Paper 60 753.5 1899 60 1281.2 3277

Total 341 689.6 1899 353 1019.0 3277

Table 7: The composition and average length of our Long-TTS-Eval benchmark.

Category Samples (ZH) Avg Length (ZH) Max Length (ZH) Samples (EN) Avg Length (EN) Max Length (EN)

URLs 57 96.8 180 45 102.5 166
Emails 45 63.6 97 44 85.5 136
Phone 30 92.0 160 30 117.2 199

Number 33 83.7 159 30 94.0 136
Math 100 606.8 955 100 605.8 1009

Total 265 281.4 955 260 293.9 1009

Table 8: The composition and average length of the hard set in our Long-TTS-Eval benchmark.

is 689.57 tokens in Chinese and 1019.0 tokens in English. As a single-point timing estimate, 1899
Chinese tokens correspond to about 10 minutes of speech (assuming 200 characters per minute and 1
token per character), and 3277 English tokens correspond to about 12 minutes (assuming 215 words
per minute and 1.3–1.5 tokens per word).

For complex case handling, we collected five types of text: web URLs, emails, math formulas,
phone numbers, and large numbers, comprising 265 Chinese samples and 260 English samples.
The detailed information is illustrated in Tabel 8. Mathematical formulas were sourced from the
reasoning process and solution from S1 Long-CoT Instruct dataset Muennighoff et al. (2025), while
the other categories were generated by Gemini 2.5 Pro (Comanici et al., 2025).

A.2.2 EVALUATION PIPELINE

We follow Seed-TTS-Eval (Anastassiou et al., 2024) to build our evaluation pipeline. We use
Whisper-large-v3 (Radford et al., 2022) and Paraformer-zh (Gao et al., 2023) as the automatic
speech recognition (ASR) engines for English and Chinese, respectively. Since both models ac-
cept only short audio, we segment each generated waveform into 28-second chunks, transcribe each
chunk independently, and then concatenate the transcripts to obtain the final transcription. We then
compute word error rate (WER) for English and character error rate (CER) for Chinese.

A.2.3 EVALUATION WITH NORMALIZED TEXT

Conventional TTS benchmarks often transcribe generated speech with an ASR model and then com-
pare the transcript to the ground-truth text to calculate the error rate. This approach has a key flaw:
for expressions with multiple valid readings, ASR outputs can legitimately differ from the written
form. For example, “5%” spoken by TTS may be transcribed as “five percent.” It differs from the
ground truth, but it is still correct.

To address this issue, for each sample with ground-turth G, we prompt GPT-5 (OpenAI, 2025) to
generate a normalized ground-turth N that reflects a natural spoken version. We then synthesize
speech, obtain the ASR transcript T , and compute two word error rates, between T and G, and
between T and N . The final per-sample error is the smaller of the two:

WERsample = min(WER(T,G),WER(T,N)) (5)

This method lowers the risk of falsely flagging correct TTS, thereby enhancing the reliability of the
reported error rates.
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A.3 QUANTITATIVE RESULTS

A.3.1 LONG AUDIO UNDERSTANDING

To verify MGM-Omni’s effectiveness in long audio understanding, we conducted a more in-depth
evaluation. We illustrate the quantitative result in Figure 7. For long audio summarization, MGM-
Omni provides more complete and detailed responses compared with Qwen2.5-Omni (Xu et al.,
2025). For fine-grained understanding, MGM-Omni accurately extracts information from long audio
inputs, while Qwen2.5-Omni refuses to respond.

A.3.2 LONG SPEECH GENERATION

We compare MGM-Omni with concurrent long TTS systems, MOSS-TTSD-v0.5 (Team, 2025) and
Higgs-Audio-v2 (Boson AI, 2025) to evaluate the long-form speech generation capability. Specif-
ically, we evaluate two challenging pieces: the renowned Chinese long prose poem “Preface to the
Pavilion of Prince Teng” (Tengwang Ge Xu) and Tagore’s famous poem “Stray Birds” excerpt “Life
is as ephemeral as summer flowers” featuring mixed Chinese–English code switching. As depicted
in Figure 8, MGM-Omni produces accurate speech with appropriate pausing, while competing meth-
ods exhibit pronounced errors in the latter portions of the audio, including audible noise.

A.4 USE OF LLMS

In this paper, we use large language models (LLMs) to correct grammatical errors and polish our
paper writing.
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Figure 7: MGM-Omni is capable of understanding long-form audio.
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Figure 8: MGM-Omni is capable of correctly generating long-form speech.

18


	Introduction
	Related Work
	MGM-Omni
	Omni Understanding
	Omni Generation
	Omni Voice

	Experiments
	Main Properties
	Audio Understanding
	Omni-Modality Understanding
	Speech Generation

	Ablation Study

	Conclusion
	Appendix
	Data Format
	Long-TTS-Eval Benchmark
	Data Composition
	Evaluation Pipeline
	Evaluation with Normalized Text

	Quantitative Results
	Long Audio Understanding
	Long Speech Generation

	Use of LLMs


