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ABSTRACT

Transformers have rapidly become the backbone of modern machine learning,
with attention mechanisms, most often implemented with a softmax activation, at
their core. The softmax function is typically motivated by its ability to produce
a row-wise probability distribution over the attention matrix, yielding sparse pat-
terns that align with the intuition of attending to different input tokens. In this
paper, we uncover an additional and previously overlooked role of softmax: it im-
plicitly regularizes the Frobenius norm of the attention matrix, which contributes
to stabilizing training. This observation prompts a fundamental question: are the
inductive biases imposed by softmax: positivity, normalization, and sparsity, truly
necessary for effective transformer training? To answer this, we explore alterna-
tive activations, focusing on polynomial functions that preserve the regularization
effect while introducing fundamentally different inductive biases. Through theo-
retical analysis, we show that specific polynomial activations can serve as viable
substitutes for softmax, supporting stable training and strong performance despite
abandoning its conventional properties. Extensive experiments across a range of
transformer architectures and applications validate our findings, providing new
insights into the design of attention mechanisms.

1 INTRODUCTION

Transformer architectures (Vaswani et al., 2017) have become the foundation of state-of-the-art
models across natural language processing (NLP) (Vaswani et al., 2017; Devlin et al., 2018; Zhuang
et al., 2021; Zhen et al., 2022), computer vision (Dosovitskiy et al., 2020; Carion et al., 2020;
Liu et al., 2021; Touvron et al., 2021), and robotics (Fu et al., 2024; Maiti et al., 2023; Salzmann
et al., 2020). At the core of these models lies the softmax attention block, which assigns relative
importance to tokens and enables transformers to capture long-range dependencies more effectively
than recurrent or convolutional architectures, particularly at scale.

Softmax self-attention is appealing because it satisfies three widely discussed properties: (1) non-
negativity of attention weights, (2) row-wise normalization that ensures weights sum to one (and
thus admit a probabilistic interpretation), and (3) sparsity, which promotes focus on a small set of
relevant tokens. These properties are often considered fundamental to effective attention (Bahdanau
et al., 2014; Zhen et al., 2022), though the evidence for this view is largely empirical rather than
theoretical. Despite recent explorations of alternative activations (Shen et al., 2023; Fang et al., 2022;
Correia et al., 2019), softmax has remained dominant because of its strong empirical performance
and interpretability.

In this paper, we revisit these assumptions and ask:

Do attention mechanisms in transformers truly require non-negativity, normalization, and sparsity
to perform well?

We present a new perspective suggesting that softmax’s effectiveness arises not solely from these
canonical properties, but also from its implicit regularization of the Frobenius norm of the atten-
tion matrix during training. Building on this insight, we show that simple polynomial activations,
although they do not satisfy non-negativity, normalization, or sparsity, can induce a similar form of
regularization and achieve competitive or even superior performance across multiple tasks. Rather
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than challenging the value of softmax, our results highlight that different inductive biases can also
support strong performance, expanding the design space of attention mechanisms beyond the con-
ventional probabilistic view.

Our contributions are as follows:

1. We provide a theoretical analysis showing that softmax implicitly regularizes the Frobenius
norm of the attention matrix, offering an explanation for its effectiveness that goes beyond
non-negativity, normalization, and sparsity.

2. We propose polynomial activations as alternatives to softmax, demonstrating that they
can induce similar regularization effects without adhering to the standard constraints, and
achieve competitive performance across tasks such as image classification, object detection,
instance segmentation, long range sequence modeling and language modeling.

By revisiting foundational assumptions, our work deepens the understanding of attention mecha-
nisms and opens new directions for designing effective alternatives to softmax.

2 RELATED WORK

Attention activations. A variety of alternative activations for attention mechanisms have been ex-
plored in recent literature. Shen et al. (2023) showed that ReLU activations outperform softmax
in long-sequence tasks, such as document translation. Of particular relevance to our work, Worts-
man et al. (2023) demonstrated that scaling ReLU by the inverse of sequence length can surpass
softmax in certain vision applications, emphasizing the importance of correct activation scaling. In
this paper, we show that softmax inherently applies such a scale through its normalization, and we
derive theoretical principles that motivate polynomial activations with scalings proportional to the
square root of the sequence length. Other studies have proposed alternatives with varying moti-
vations. Banerjee et al. (2020) used Taylor series approximations of softmax, achieving superior
performance in image classification. Wang et al. (2021) introduced periodic activations to improve
gradient flow in attention layers. Koohpayegani & Pirsiavash (2024) showed that l1 normalization
applied to linear attention mechanisms can yield on par performance to softmax’s on three distinct
vision transformers. Distinct from these works, our approach establishes a clear theoretical link
between the Frobenius norm of the attention matrix and the input sequence length. Leveraging this
insight, we design polynomial activations that break three canonical properties of softmax—non-
negativity, row normalization, and sparsity—while still achieving competitive performance.

Attention mechanisms. Numerous strategies have been proposed to improve the efficiency and
scalability of transformers by reducing computational overhead and rethinking attention mecha-
nisms. The Data-Efficient Image Transformer (DeiT) (Touvron et al., 2021) leverages distillation
tokens to achieve competitive performance without relying on large datasets. The Cross-Covariance
Image Transformer (XCiT) (Ali et al., 2021) introduces cross-covariance attention, enabling effi-
cient spatial interactions with reduced complexity. The Swin Transformer (Liu et al., 2021) employs
a hierarchical architecture with shifted window-based self-attention to enhance scalability for vision
tasks. The Nyströmformer (Xiong et al., 2021) approximates full self-attention using the Nyström
method, reducing its complexity from quadratic to near-linear. Similarly, the MLP-Mixer (Tolstikhin
et al., 2021) replaces self-attention entirely with multi-layer perceptrons for spatial and channel mix-
ing. In this work, we demonstrate that polynomial-based attention activations can be incorporated
into standard architectures and achieve softmax-level performance, offering competitive alternatives
even without the conventional constraints of non-negativity, normalization, and sparsity.

3 PRELIMINARIES AND NOTATION

In this section we outline the definition of a transformer via the transformer block and set the no-
tation of various mathematical quantities we will be using in future sections. For more details on
transformers the reader can consult Vaswani et al. (2017); Dosovitskiy et al. (2020).
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Transformer architectures comprise of transformer blocks, defined as follows. A transformer block
is a mapping T : RN×D → RN×D defined as

T(x) = F(A(x) + x) (1)

where F is a feedforward MLP with a residual connection and A is an attention head.

The attention head A is defined as follows: It comprises of three learnable matrices, a query (q), key
(k) and value (v) defined by: q = QX , k = KX , v = V X for an input sequence X ∈ RN×D with
Q, K ∈ RD×d and V ∈ RD×M . The attention head A(X) is then defined by

A(X) = ϕ(S(q, k))v (2)

where S is a similarity transformation and ϕ is an activation function. The most common used S
is the dot-product: S(q, v) = qkT , known as self-attention, and will be the one we focus on in this
paper. The most common activation function ϕ that is used by authors is softmax. This leads to the
most common form of the attention head given by

A(X) = softmax

(
qkT√
d

)
v

= softmax

(
XQKTXT

√
d

)
XV.

(3)

The function softmax is the matrix softmax map that applies the usual softmax function row-wise:

softmax

(x11 · · · x1n

...
...

...
xn1 · · · xnn

)
=


ex11∑n

j=1 ex1j · · · ex1n∑n
j=1 ex1j

...
...

...
exn1∑n

j=1 exnj · · · exnn∑n
j=1 exnj

 (4)

The factor 1√
d

, as explained in Vaswani et al. (2017), is a scaling to prevent the gradients of softmax
from being too small. For the theoretical analysis in this paper we will only use the dot-product
similarity qkT and call the N × N matrix softmax(qkT ) the softmax self-attention matrix. In
the experiments, section 6, we will empirically validate our theoretical framework on more general
softmax attention blocks used in state of the art transformers such as DeiT (Touvron et al., 2021),
Swin Transformer (Liu et al., 2021) and XciT (Xiong et al., 2021).

For general transformer architectures, multiple heads Ai for 1 ≤ i ≤ n are used. Each attention
head is defined by equation 3 and then all outputs of each attention head are concatenated together
before going into the feedforward layer.

We will need notation for the derivative of the matrix softmax map defined by equation 4. Given
a matrix A ∈ RN×N we can differentiate the matrix map softmax at A and obtain the gradient
linear map ∇softmax(A) : RN×N → RN×N that is defined by the formula

∇softmax(A) := Jsoftmax(A)T (5)

where Jsoftmax(A) is the Jacobian of softmax at A.

Given a matrix A ∈ Rn×m, we denote its Frobenius norm by ||A||F . Additionally, we use the
notation E to represent the expectation of a random variable, where the specific random variable
being considered will be clear from the context.

4 THEORETICAL ANALYSIS

4.1 IMPLICIT REGULARIZATION OF SOFTMAX

This section presents a theoretical result showing that the softmax activation imposes control over
the Frobenius norm of the self-attention matrix in a way that grows sub-linearly with the input se-
quence’s token length. Additionally, we demonstrate that the gradient of the softmax with respect to
the self-attention matrix also exhibits a similar degree of regularity. While previous work has ana-
lyzed the regularity of softmax self-attention through the lens of the Lipschitz constant (Kim et al.,
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2021; Castin et al., 2023), our theorem offers a novel perspective by directly linking the Frobenius
norm regularity to the token length. This provides insights into how self-attention activations should
scale with token length to maintain stability during training, especially with gradient descent-based
algorithms.
Theorem 4.1. Let softmax : RN×N → RN×N be the matrix softmax map defined by equation 4
and let ∇softmax(A) : RN×N → RN×N denote the gradient of softmax at A ∈ RN×N . We
then have the following bounds on the Frobenius norms

||softmax(A)||F ≤
√
N (6)

||∇softmax(A)||F ≤ 2
√
N. (7)

The key implication of theorem 4.1 is that during the training of a transformer with softmax self-
attention, the Frobenius norm of each softmax self-attention matrix remains bounded by a value that
grows as O(

√
N). This ensures that backpropagation through the weights of the self-attention matrix

does not lead to excessively large gradients. The proof hinges on the fact that the row normalization
inherent in softmax effectively controls the Frobenius norm. For a detailed proof see section A.1.1.

4.2 POLYNOMIAL ACTIVATIONS FOR ATTENTION

In section 4.1, we demonstrated that softmax implicitly regularizes the Frobenius norm of the self-
attention matrix. Building on this, we now show that by scaling specific polynomial activations, a
similar regularization effect on the Frobenius norm can be achieved in expectation, closely replicat-
ing the impact of softmax.
Theorem 4.2. Let X ∈ RN×D and Q, K ∈ RD×d be i.i.d random variables distributed according
to X ∼ N (0, σx) and Q, K ∼ N (0, σt). We have the following expectations of the Frobenius
norms of powers of the N ×N matrix (XQKTXT )p for p ≥ 1

E
∣∣∣∣∣∣∣∣(XQKTXT

√
d

)p∣∣∣∣∣∣∣∣
F

≤ O(N) (8)

By scaling such an activation by 1√
N

we can obtain a O(
√
N) bound.

Corollary 4.1. Assume the same conditions as in theorem 4.2. Then

E
∣∣∣∣∣∣∣∣ 1√

N

(
XQKTXT

√
d

)p∣∣∣∣∣∣∣∣
F

≤ O(
√
N). (9)

Corollary 4.1 establishes that activations of the form ϕ(x) := 1√
N
xp provide a level of regulariza-

tion, in expectation, similar to that of softmax when applied to the self-attention matrix. The proof
of theorem 4.2 can be found in appendix A.1.2. The next property we want to prove is one sim-
ilar to the gradient bound obtained in theorem 4.1. Since the self-attention matrix has parameters
given by the queries Q and keys K (Vaswani et al., 2017), this implies that during the training of a
transformer the Q and K matrices are the only aspects of the self-attention matrix that get updated.
Therefore, we compute a derivative bound with respect to the Q and K derivatives.
Theorem 4.3. Let X ∈ RN×D and Q, K ∈ RD×d be i.i.d random variables distributed according
to X ∼ N (0, σx) and Q, K ∼ N (0, σt). Then the expectation of the of the derivative of the matrix
(XQKTXT )p√

d
w.r.t the Q parameter matrix for p ≥ 1 is given by

E
∣∣∣∣∣∣∣∣ ∂

∂Q

(
(XQKTXT )p√

d

)∣∣∣∣∣∣∣∣ ≤ O(N) (10)

Corollary 4.2. Assume the same condition as in theorem 4.3. Then

E
∣∣∣∣∣∣∣∣ 1√

N

∂

∂Q

(
(XQKTXT )p√

d

)∣∣∣∣∣∣∣∣ ≤ O(
√
N). (11)

An analogous estimate holds for derivatives with respect to the K matrix. The proof of theorem 4.3
can be found in appendix A.1.2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

10−3 10−2 10−1 100 101 102 103

Scale

0

10

20

30

40

50

A
cc

u
ra

cy
 (

%
)

N = 256

N = 64

N = 16

N = 8

Figure 1: Training ViT-Tiny with the activation ϕ(x) = x3 with different sequence lengths and
different scales. As the sequence length gets larger, the k scale (x-axis) needed to obtain good
accuracy when using 1

kx
3 as an activation increases validating the theory from section 4.2.

Remark 4.1. corollary 4.1 and corollary 4.2 suggest that polynomial activations of the form ϕ(x) =
1√
N
xp, with p > 0, can achieve performance comparable to softmax when applied to self-attention

matrices. We point out that both corollaries rested on the assumption that X , Q and K are i.i.d
random variables. In general, this is only true at initialization when training a transformer, see
Albert et al. (2025). Although this is a limitation in the theory the experiments in section 6 show
that this insight can be used effectively to develop new attention blocks that perform comparable to
softmax yet violate the three conditions of positivity, normalized rows summing to 1 and sparsity
showing that attention blocks do not need to be modeled as a probability distribution.

5 TESTING THE THEORY

In this section we test the theory developed in section 4.2 on small vision transformers. We will
consider the activation ϕ(x) = 1

kx
3, where k > 0 is a fixed scale, as this activation clearly violates

the three key conditions of softmax based attention; positivity, normalization and sparsity. We found
that polynomials 1

kx
p for p > 3 did not perform well during training as they witnessed a gradient

vanishing problem due to the fact that the function xp for p large have very small values around 0.

The first experiment we conducted was to test how the Top-1% accuracy changes for a ViT-Tiny
vision transformer (Steiner et al., 2021), trained on the Tiny-Imagenet dataset (Stanford University
CS231n Course, 2015), as we change the sequence length N of the input and the scale predicted in
corollaries 4.1 and 4.2 when using the activation 1

kx
3. The standard ViT-Tiny model comprises

12 transformer layers, each equipped with 3 attention heads, with each head having dimension
64. We considered four different input sequence lengths N of sizes 256, 64, 16 and 8. For each
such sequence length, we ran a ViT-Tiny architecture with the activation 1

kx
3 where k ranged from

roughly 10−3 to 103. According to the theory developed in section 4, the Frobenius norm of 1√
N
x3

scales according to O(
√
N). Thus the best accuracy should occur when k = O(

√
N) and should

degrade for other values due to training instability. fig. 1 shows the results of the experiment, we note
that the x− axis plots the values of k. We see that as the sequence length increases the factor of k
needs to increase so that the activation 1

kx
3 performs well on the ViT-Tiny architecture as predicted

by the theory developed in corollaries corollary 4.1 and 4.2.

In a second experiment we decided to compare the performance of the original ViT-Tiny architecture,
that uses an input sequence length of 256, with a softmax activation and a polynomial activation on
the Tiny-ImageNet dataset. In corollary 4.1 and corollary 4.2 it was pointed out that the scaling of
the polynomial is important to keep the Frobenius norm of the polynomial attention matrix from
becoming too large. The results of those corollaries suggested that a scale to use is 1√

N
, N being

the sequence length, which in this case is 1√
256

= 1
16 . We therefore decided to to compare the three

activations softmax, x3 and 1
16x

3. Each was trained for 200 epochs using the AdamW optimizer. To
begin with we computed the Frobenius norm of the attention matrix throughout training averaged
over all the heads in layers 2, 7 and 12 of the ViT-Tiny architecture when trained on the Tiny-
ImageNet dataset. fig. 2 plots the results. We see from the figure that the Frobenius norm of of
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the x3 archicture is much larger than softmax but scaling it by 1
16 brings it down to softmax levels.

Similarly, fig. 3 shows the Jacobian’s Frobenius norm, where scaling also brings the norms closer to
softmax, ensuring more stable gradients. Further plots for other layers are in section A.2.3. table 1
presents the final Top-1% accuracy achieved by each activation function. Notably, x3

16 delivers the
best performance. In contrast, the unscaled x3 activation yields significantly lower Top-1% accuracy,
underscoring the importance of incorporating an appropriate scaling factor.
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Figure 2: Frobenius norm of the self-attention matrix with three different activations in layer 2, 7
and 12 of the ViT-Tiny architecture during training.
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Figure 3: Frobenius norm of the jacobian of the self-attention matrix with three different activations
in layer 2, 7 and 12 of the ViT-Tiny architecture during training.

Table 1: Comparison of Top-1% accuracy on Tiny-ImageNet between softmax and polynomial ac-
tivations.

softmax x3

16 x3

Top-1% accuracy 50.26 50.5 45.3

6 EXPERIMENTS

In this section, we evaluate a simple polynomial activation as an alternative to the standard soft-
max across a range of transformer applications commonly studied in the literature. The goal is to
empirically challenge the conventional softmax properties, positivity, row-normalization, and spar-
sity—and examine whether these conditions are truly necessary for good transformer performance.

Building on the theoretical foundations from section 4, we focus on the cubic polynomial x3 as a test
case. Notably, x3 introduces both positive and negative values, does not normalize rows to sum to 1,
and generally produces dense attention matrices—violating all three traditional softmax conditions.

We consider two scaling strategies for x3:

1. Fixed scale: Following section 4, we scale x3 by the inverse square root of the sequence
length (which is fixed throughout training), as theory suggests this maintains optimization
stability.

2. Learned scale: Recognizing that the assumption of i.i.d. normal-distributed Q, K, V ,
used in section 4, holds primarily at initialization, we also explore a learnable scale. This
learnable scale is initialized as above but optimized during training.
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Our experiments are not designed to achieve state-of-the-art results. Instead, they aim to question the
softmax paradigm and show that alternative activations, even those violating softmax’s traditional
properties, can still lead to effective transformer models.

6.1 IMAGE CLASSIFICATION

We conducted an image classification task using various vision transformer architectures from the
literature on the ImageNet-1k dataset. For this task, the standard sequence length employed by the
vision transformers on the ImageNet-1k dataset is 196.

We trained all models on the ImageNet-1k dataset from scratch and report Top-1 accuracy on the
validation set. We examined our approach along with the following four transformer architectures
to show its generalization, ViT-B (Dosovitskiy et al., 2020), DeiT (Touvron et al., 2021), Swin
Transformer (Liu et al., 2021), XCiT (Ali et al., 2021). Each transformer was trained following the
approach in each paper. The results are shown in table 2. As can be seen from the table the x3

activation with a learned scale performed the best and the one with a fixed scale performed compa-
rable to softmax. On the other hand x3 (with no scale) underperformed on all ViTs showing how
important the theory on scaling as developed in section 4 is. For a discussion on other polynomials
and linear attention see section A.2.4.

Table 2: Comparisons of pretraining models with different activation functions on ImageNet-1k. We
report top-1 classification accuracy (%).

Models
ViT-B DeiT-B Swin-B XciT-M

softmax 80.3 81.5 83.5 82.7

x3 + fixed scale 80.2 81.4 83.6 82.8

x3 + learned scale 80.3 81.6 83.6 82.9

x3 78.1 78.5 79.9 79.5

Visualizing attention heads: Softmax attention traditionally satisfies three key properties: posi-
tivity, row normalization, and sparsity. In contrast, the polynomial activation x3 (with or without
positive scaling) takes positive values for x > 0 and negative values for x < 0, thus violating these
softmax constraints. To better understand how this affects attention patterns, we analyzed the self-
attention matrices of ViT-B models trained with the x3 + learned scale activation and compared them
to those using softmax. We visualized heatmaps of the attention matrices after convergence, focus-
ing on two representative layers and heads, and averaged over a fixed batch of 128 samples. fig. 4
shows results for layer 2, head 8, where the x3 + learned scale activation produces attention scores
with both positive and negative values, unlike softmax. Similarly, fig. 5 illustrates distinct patterns
for layer 12, head 6, highlighting how the two activations differ in learned attention distributions.

Interpretability. Even with these differences, the x3 + learned scale activation still learns mean-
ingful attention patterns. For instance, in fig. 4 (left), we observe 14 bands about the diagonal,
indicating that the head has learned to attend to patches in the same image row as the query patch,
sufficient for effective image classification. This suggests that the sign of attention values (positive
or negative) is not inherently critical for attention allocation. Further, fig. 5 (left) reveals vertical
lines, showing attention that depends solely on key positions, independent of the query position.
Smaller key indices receive higher attention weights, focusing model capacity where it matters most
for classification tasks. These findings demonstrate that, despite deviating from softmax proper-
ties, the x3 + learned scale activation enables the model to discover effective attention patterns. We
noticed similar attention patterns for the x3 + fixed scale activation.

6.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

In this section, we evaluate transfer learning by fine-tuning an ImageNet-pretrained XCiT-S12 on
COCO 2017 (Lin et al., 2014) for object detection and segmentation. We integrate XCiT as the
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Polynomial: Layer 2, Head 8 Softmax: Layer 2, Head 8

Figure 4: Heat maps of the self-attention matrix in layer 2, head 8, of a ViT base architecture,
comparing x3 + learned (left) and softmax (right) activations after training. The stark difference in
self-attention patterns between the two activations is evident, showing distinct distributions across
input tokens.

Softmax: Layer 12, Head 6Polynomial: Layer 12, Head 6

Figure 5: Heat maps of the self-attention matrix in layer 12, head 6, of a ViT base architecture,
comparing x3 + learned scale (left) and softmax (right) activations after training. The contrast in
self-attention patterns between the two activations is clearly visible.

backbone in Mask R-CNN (He et al., 2017) with an FPN, adapting its columnar design by extracting
multi-scale features. Models were trained with softmax, x3 + fixed scale, and x3 + learned scale
(initialized at 1/14). Without scaling, x3 failed to converge, consistent with our theory in section 4.2.
Results in table 3 show that x3 + learned scale outperforms softmax, while x3 + fixed scale remains
comparable.

Table 3: COCO object detection and instance segmentation performance on the mini-val set. All
backbones are pretrained on ImageNet-1k, and use Mask R-CNN model. AP b: Average Preci-
sion for bounding box predictions, AP b

50/75: Average Precision at an IoU threshold of 0.50/0.75
for bounding box predictions, APm: Average Precision for mask predictions, APm

50/75: Average
Precision at an IoU threshold of 0.50/0.75 for mask predictions.

AP b AP b
50 AP b

75 APm APm
50 APm

75

softmax 44.9 66.1 48.9 40.1 63.1 42.8

x3 + fixed scale 44.8 66.3 49.1 40.2 63.1 43.0

x3 + learned scale 45.1 66.5 49.4 40.4 63.2 43.1

8
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6.3 NYSTRÖMFORMER ON LRA BENCHMARK

Modeling long sequences is essential for transformers, as tasks such as text understanding require
capturing dependencies across hundreds or thousands of tokens. The Nyströmformer (Xiong et al.,
2021) addresses this by approximating self-attention with the Nyström method, achieving near-
linear complexity while retaining long-range modeling power. To evaluate our approach, we trained
models on five datasets from the Long Range Arena (LRA) suite (Tay et al., 2020): ListOps, Text
Classification, Retrieval, Image Classification, and Pathfinder.

On each dataset we compared softmax, x3, and x3 with a learned scale. For the scaled variant,
initialization followed the sequence length of the original Nyströmformer (i.e., 1/

√
L for sequence

length L). We adopted the training protocol of Xiong et al. (2021). Results are reported in ta-
ble 4, showing that x3 + learned scale consistently outperforms softmax, x3 + fixed scale performs
comparably, and unscaled x3 underperforms across all tasks.

Table 4: Comparisons of Nyströmformer models with different activation functions on the LRA
benchmark. We report the accuracy (%).

ListOps Text Retrieval Image Pathfinder

softmax 37.1 63.8 79.8 39.9 72.9

x3 + fixed scale 37.2 63.7 80.0 39.9 72.9

x3 + learned scale 37.5 63.9 81.1 40.1 73.1

x3 32.3 62.0 78.5 38.1 67.9

6.4 LANGUAGE MODELING

In section A.2.5, we evaluate polynomial activations in the language modeling setting and show that,
when appropriately scaled, a cubic polynomial can achieve performance comparable to softmax.

7 LIMITATIONS

While our work introduces polynomial activations as alternatives to softmax, limitations remain.
First, our theoretical framework is developed specifically for dot-product self-attention and may not
directly extend to other attention variants, such as additive attention or kernelized approximations.
Exploring these extensions could yield further insights. Second, although our experiments cover
multiple architectures and tasks, they are restricted to models of up to 100 million parameters due to
resource constraints. Assessing the scalability of polynomial activations in large-scale transformers
with billions of parameters is an important direction for future work.

8 CONCLUSION

This work questioned whether transformer activations for attention must produce sparse probability
distributions. We introduced a theoretical framework analyzing the Frobenius norm of the self-
attention matrix, which suggests key scaling properties for activations in attention mechanisms. We
proved that specific polynomial activations, which behave very differently from softmax, satisfy
these properties. Through extensive experiments across a variety of transformer applications, we
demonstrated that these alternative activations not only compete with but can outperform softmax,
offering a new perspective on attention mechanisms in transformers. 1

1Digital writing assistance tools were used for grammar and formatting. No large language models were
involved in the research itself, and all scientific contributions are original work by the authors.
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A APPENDIX

ETHICS STATEMENT

All experiments in this study were conducted on publicly available benchmark datasets. No human
subjects, personal information, or sensitive data were used. The methods introduced are intended
purely for fundamental research in machine learning.

REPRODUCIBILITY STATEMENT

We have taken care to ensure the reproducibility of all results presented in this paper. Where external
code was used, explicit references are provided, and all experimental settings, including hardware
details, are documented in the appendix. In addition, full proofs of all theoretical results are included
in the appendix to enable independent verification.

USE OF LLMS

We used digital writing assistance tools for grammar and formatting. No large language models
were involved in conducting the research, and all scientific contributions are the original work of the
authors.

A.1 THEORETICAL ANALYSIS

A.1.1 PROOFS FOR THEOREMS IN SECTION 4.1

In this section we give the proof of theorem 4.1.

Proof of theorem 4.1. We will start by proving the first inequality in theorem 4.1. Given a matrix
A = (aij) ∈ RN×N we have that

softmax

(a11 · · · a1n
...

...
...

an1 · · · ann

)
=


ea11∑n

j=1 ea1j · · · ea1n∑n
j=1 ea1j

...
...

...
ean1∑n

j=1 eanj · · · eann∑n
j=1 eanj .

 (12)

By definition of the Frobenius norm we then see that

||softmax(A)||2F =

(
1∑n

j=1 e
a1j

)2

(e2a11 + · · · e2a11) + · · · (13)

+

(
1∑n

j=1 e
aNj

)2

(e2aN1 + · · · e2aNN ) (14)

≤
[(

1∑n
j=1 e

a1j

)
(ea11 + · · · ea11)

]2
+ · · · (15)

+

[(
1∑n

j=1 e
aNj

)
(eaN1 + · · · eaNN )

]2
(16)

= 1 + · · ·+ 1 (17)
= N (18)

where the second inequality uses the fact that for non-negative numbers a and b we always have that
a2 + b2 ≤ (a+ b)2.

It then immediately follows that ||softmax(A)||F ≤
√
N and this proves the first inequality in the

statement of theorem 4.1.
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We move on to prove the second inequality in the statement of theorem 4.1. For this, let us write
each entry of the matrix on the right of equation 12 as follows:

Fkl =
eakl∑N
j=1 e

akj

. (19)

By applying the chain rule we then have the following derivative formulas
∂

∂xij
Fij = Fij − F 2

ij (20)

∂

∂xik
Fij = −FijFik for any k ̸= j (21)

∂

∂xkl
Fij = 0 for any k ̸= i and l ̸= j. (22)

We can then express the gradient as

∇softmax(A) =



∇F11

...
∇F1N

∇F21

...

...
∇FNN


(23)

where
∇Fij =

[
−FijF

2
i1 −FijFi2 · · · Fij − F 2

ij · · · FijFiN .
]

(24)
From these computations we see that

||∇softmax(A)||2F = ||∇F11||2F + · · ·+ ||∇FNN ||2F . (25)
We will proceed by bounding each collection ||∇Fi1||2F + · · ·+ ||∇F1N ||2F separately then add up
all the bounds. We have

||∇Fi1||2F + · · ·+ ||∇F1N ||2F = |Fi1 − F 2
i1|2 + |Fi1Fi2|2 + · · ·+ |Fi1FiN |2 (26)

+ |Fi2Fi1|2 + |Fi2 − F 2
i2|2 + · · ·+ |Fi2FiN |2 (27)

+ · · · · · · · · · · · ·+ (28)

+ |FiNFi1|2 + |FiNFi2|2 + · · ·+ |FiN − F 2
iN |2 (29)

≤ (Fi1)
2(|1− Fi1|+ |Fi2|+ · · ·+ |FiN |)2 (30)

(Fi2)
2(|Fi1|+ |1− Fi2|+ · · ·+ |FiN |)2 (31)

+ · · · · · · · · · · · ·+ (32)

+ (FiN )2(|Fi1|+ |Fi2|+ · · ·+ |1− FiN |)2. (33)

We then observe that since Fi1+· · ·+FiN = 1 we have that 1−Fij = 2(Fi1+· · ·+F̂ij+· · ·+FiN )

where F̂ij means we don’t include Fij in the sum. This means we get the bound

||∇Fi1||2F + · · ·+ ||∇F1N ||2F ≤ 4F 2
i1(F̂i1 + Fi2 + · · ·+ FiN ) (34)

+ · · · · · · · · · · · ·+ (35)

+ 4F 2
iN (Fi1 + Fi2 + · · ·+ F̂iN ) (36)

≤ 4(F 2
i1 + · · ·F 2

iN ) (37)
= 4. (38)

Putting all the bounds together for each of the terms N terms ||∇Fi1||2F + · · ·+ ||∇F1N ||2F we get

||∇softmax(A)||2F ≤ 4N (39)
and this implies

||∇softmax(A)||F ≤ 2
√
N. (40)

This finishes the proof of theorem 4.1.
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A.1.2 PROOFS FOR THEOREMS SECTION 4.2

In this section we will give the proof of theorems 4.2 and 4.3.

Proof of theorem 4.2. We will split the matrix product XQKTXT and think of it as the product of
two matrices. Suppose A ∈ RN×D ∼ N (0, σ2

1), B ∈ RD×N ∼ N (0, σ2
2) and C = AB. Each

element in the matrix C can be written as a product of a row of A with a column of B. Since
expectation is linear, we need to compute the expectation of each of these elements. We do the case
of the entry c11 which is the entry in C in the first row and first column. For the p = 1 case we can
then compute

E(c211) = E((
D∑
i=1

a1ibi1)
2)

= E(
D∑
i=1

a21ib
2
i1 +

D∑
i=1

D∑
j=1,j ̸=i

a1ibi1a1jbj1)

=

D∑
i=1

E(a21i)E(b2i1) +
D∑
i=1

D∑
j=1,j ̸=i

E(a1i)E(bi1)E(a1j)E(bj1)

= Dσ2
1σ

2
2 + 0.

(41)

The Frobenius norm of the matrix C is just the sum of these values for all N2 elements and this
proves the p = 1 case.

For the case that p > 1 we proceed in a similar way. The key observation is that odd powers, in
the matrix expansion, will have expectaion 0, so we need only consider the even powers. Therefore,
suppose C = (AB)p. We will compute the expectation of the first entry c11 ∈ C:

E(c211) = E((
D∑
i=1

a1ibi1)
2p)

= E(
D∑
i=1

a2p1i b
2p
i1 +

D∑
i=1

D∑
j=1,j ̸=i

a2p−2
1i b2p−2

i1 a21jb
2
j1 + · · · ).

(42)

Note that the first term only has a count of D and the second term has a count of D(D − 1). Thus,
we only need to consider the O(Dp) term where all the components have a power of 2. The count
is similar to choosing p items from D,

E(c211) ≈ E(
∑

{i1,...,ip}∈{1,...,D}

p∏
k=1

a21,ikb
2
ik,1

)

=

(
D
p

)
2p!

2p
σ2p
1 σ2p

2

=
D!

(D − p)!

2p!

p!2p
σ2p
1 σ2p

2

=
D!

(D − p)!

2p!

2p!!
σ2p
1 σ2p

2

=
D!

(D − p)!
(2p− 1)!!σ2p

1 σ2p
2 .

(43)

D!
(D−p)! can always be bounded above by Dp, so the expectation can be upper bounded by Dp(2p−
1)!!σ2p

1 σ2p
2 and thus we get a quantity of the form O(N).
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Proof of theorem 4.3. We will do the p = 1 case first. We proceed similar to the proof of Theorem
4.2.

E(∥
∂XQKTXT

∂Q
∥2F ) =

N∑
i=1

N∑
j=1

E(|
∂xT

i QKTxj

∂Q
|2F ) (44)

=

N∑
i=1

N∑
j=1

E(∥xix
T
j K∥2F ) (45)

=

N∑
i=1

N∑
j=1

E(
D∑

k=1

d∑
l=1

(xik

D∑
m=1

xjmkml)
2) (46)

=

N∑
i=1

N∑
j=1

E(
D∑

k=1

d∑
l=1

x2
ik(

D∑
m=1

xjmkml)
2) (47)

=

N∑
i=1

N∑
j=1

E(
D∑

k=1

d∑
l=1

x2
ik(

D∑
m=1

x2
jmk2ml +

D∑
m=1

D∑
n=1,n̸=m

xjmkmlxjnknl))

(48)

=

N∑
i=1

N∑
j=1

D∑
k=1

d∑
l=1

(

D∑
m=1

E(x2
ikx

2
jmk2ml) (49)

+

D∑
m=1

D∑
n=1,n̸=m

E(x2
ikxjmkmlxjnknl)) (50)

=

N∑
i=1

N∑
j=1

D∑
k=1

d∑
l=1

(

D∑
m=1

E(x2
ikx

2
jmk2ml) + 0) (51)

=

N∑
i=1

N∑
j=1

D∑
k=1

d∑
l=1

D∑
m=1

E(x2
ikx

2
jmk2ml) (52)

=

N∑
i=1

D∑
k=1

d∑
l=1

E(x2
ikx

2
ikk

2
kl) (53)

+

N∑
i=1

N∑
j=1,j ̸=i

D∑
k=1

d∑
l=1

D∑
m=1,m̸=k

E(x2
ikx

2
jmk2ml) (54)

= NDd3σ4
xσ

2
w +N(N − 1)D(D − 1)dσ4

xσ
2
w (55)

≈ N2D2dσ4
xσ

2
w. (56)

When p > 1 we can proceed in a similar way.

E(∥
∂(XQKTXT )p

∂Q
∥2F ) =

N∑
i=1

N∑
j=1

E(∥
(∂xT

i QKTxj)
p

∂Q
∥2F ) (57)

=

N∑
i=1

N∑
j=1

E(∥p(xT
i QKTxj)

p−1 ∂x
T
i QKTxj

∂Q
∥2F ) (58)

=

N∑
i=1

N∑
j=1

E(∥p(xT
i QKTxj)

p−1xix
T
j K∥2F ) (59)

=

N∑
i=1

N∑
j=1

E(p2(xT
i QKTxj)

2p−2
D∑

k=1

d∑
l=1

(xik

D∑
m=1

xjmkml)
2). (60)
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We know that

(xT
i QKTxj)

2p−2 = (

d∑
l=1

((

D∑
k=1

xikqkl) · (
D∑

m=1

xjmkml)))
2p−2 (61)

= (

d∑
l=1

D∑
k=1

D∑
m=1

xikqklxjmkml)
2p−2 (62)

= (

D∑
k=1

D∑
m=1

xikxjm

d∑
l=1

qklkml)
2p−2 (63)

= (

D∑
k=1

D∑
m=1

xikxjmakm)2p−2, (64)

where akm =
∑d

l=1 qklkml. Let zij =
∑D

k=1

∑D
m=1 xikxjmakm Thus we have

E(∥
∂(XQKTXT )p

∂Q
∥2F ) = p2

N∑
i=1

N∑
j=1

E(z2p−2
ij

D∑
k=1

d∑
l=1

(xik

D∑
m=1

xjmkml)
2) (65)

=

N∑
i=1

N∑
j=1

D∑
k=1

d∑
l=1

(

D∑
m=1

E(z2p−2
ij x2

ikx
2
jmk2ml) (66)

+

D∑
m=1

D∑
n=1,n̸=m

E(z2p−2
ij x2

ikxjmkmlxjnknl)) (67)

=

N∑
i=1

N∑
j=1

D∑
k=1

d∑
l=1

(

D∑
m=1

E(z2p−2
ij x2

ikx
2
jmk2ml) (68)

+

D∑
m=1

D∑
n=1,n̸=m

E(z2p−3
ij x2

ikx
2
jmk2mlx

2
jnk

2
nl)) (69)

≈ N2Dd(D(D2p−2dp−1(2p− 3)!!σ4p
x σ4p−2

w ) + 0 (70)

= N2D2pdp(2p− 3)!!σ4p
x σ4p−2

w (71)

showing that we can bound the gradient by a quantity of the form O(N) and the proof is complete.

A.2 EXPERIMENTS

A.2.1 HARDWARE

The vision transformer experiments in section 6.1, the object detection and instance segmentation
experiments in section 6.2 and the Nyströmformer experiments from section 6.3 were all carried out
on Nvidia A100 GPUs.

A.2.2 EXPERIMENTAL HYPERPARAMETERS

Vision transformers in section 6.1. In section 6.1 we tested four different vision transformers,
ViT-B (Dosovitskiy et al., 2020), DeiT-B (Touvron et al., 2021), Swin-B (Liu et al., 2021) and
XCiT-M (Ali et al., 2021), with the activations softmax, x3 + fixed scaling, x3 + learned scaling and
x3. The training strategy follow the exact strategy used in each of the original papers, we used the
Timm libraries to train our models (Wightman, 2019).

A.2.3 FROBENIUS NORM COMPUTATIONS

In section 5 we showed plots of the Frobenius norm of the self-attention matrix and for the Jacobian
of the self-attention matrix for softmax, 1

14x
3, and x3. This was done for a ViT-Tiny architecture on
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the Tiny-ImageNet dataset. fig. 6 shows the plots of the Frobenius norm of the self-attention matrix
for the ViT-Tiny architecture, during training, for all layers averaged over the heads within each
layer. fig. 7 shows the Frobenius norm of the Jacobian of the self-attention matrix during training
for each layer, averaged over the total number of heads within each layer.
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Figure 6: Frobenius norm of self-attention matrix for softmax, 1
16x

3 and x3 on ViT-Tiny during
training on the Tiny-ImageNet dataset (zoom in for better viewing).

A.2.4 DISCUSSION ON LINEAR ACTIVATED ATTENTION AND OTHER POLYNOMIALS ON VITS

In the experiments section 6 we showed our insights using the polynomial x3 as this was a non-linear
polynomial that did not satisfy the key properties that softmax did. In this section we will compare
softmax with other polynomials that we also found to perform well.

The results for ViTs is shown in table 5. As we can see from that table each polynomial does far
better when scaled using the theory from section 4. We note that when we tried to train polynomial
higher than order 6 they did not train well. On inspecting the weights we found that several were
very close to zero leading to a gradient vanishing problem. We hypothesize that this is because the
transformers were randomly initialized with weights about zero. Thus taking such a weight and
applying a polynomial of the form xk with k ≥ 6 would make those weights orders of magnitude
smaller, making it difficult to train after some point.

A.2.5 LANGUAGE MODELING

We compare softmax with cubic activations under different scaling strategies to test whether the
core softmax properties are necessary for strong performance on language modeling tasks. We
pretrained a GPT-2 on WikiText-103 then evaluated on PTB, and PG-19, the naı̈ve x3 activation
performs poorly, but both fixed- and learned-scaled variants achieve perplexities close to or better
than softmax as shown table 6, table 7 and table 8. This suggests that appropriate scaling, rather
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Figure 7: Frobenius norm of the Jacobian of the self-attention matrix for softmax, 1
16x

3 and x3 on
ViT-Tiny during training on the Tiny-ImageNet dataset (zoom in for better viewing).

than strict adherence to softmax’s probabilistic form, is sufficient to retain competitive performance
in language modeling.
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Table 5: Comparisons of pretraining models with different activation functions on ImageNet-1k. We
report top-1 classification accuracy (%).

Models
ViT-B DeiT-B Swin-B XciT-M

softmax 80.3 81.5 83.5 82.7

x + fixed scale 78.4 79.4 80.6 80.2

x + learned scale 78.7 79.5 80.7 80.4

x 74.1 77.9 78.3 78.1

x2 + fixed scale 80.1 81.5 83.4 82.5

x2 + learned scale 80.3 81.6 83.5 82.7

x2 77.8 78.2 79.8 79.4

x4 + fixed scale 80.3 81.5 83.7 82.7

x4 + learned scale 80.3 81.6 83.7 82.8

x4 77.9 78.6 79.9 79.6

x5 + fixed scale 80.3 81.4 83.4 82.5

x5 + learned scale 80.3 81.5 83.4 82.6

x5 77.7 78.0 79.4 79.5

Table 6: Perplexity of GPT-2 models pretrained on WikiText-103.

Model Perplexity

softmax 45.2
x3 49.8
x3 + fixed scale 45.4
x3 + learned scale 45.0

Table 7: Perplexity of GPT-2 models evaluated on PTB.

Model Perplexity

softmax 50.4
x3 55.7
x3 + fixed scale 50.3
x3 + learned scale 50.1

Table 8: Perplexity of GPT-2 models evaluated on PG-19.

Model Perplexity

softmax 55.1
x3 59.8
x3 + fixed scale 55.1
x3 + learned scale 54.9
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