
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEWTON-PINET: A FAST PHYSICS-INFORMED NEU-
RAL NETWORK WITH NEWTON LINEARIZATION FOR
META-LEARNING NONLINEAR PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific machine learning has opened new avenues for solving parameterized
partial differential equations (PDEs), enabling models to learn a family of PDEs
and generalize to unseen instances. In this context, data-driven operator learn-
ing methods typically require large training data, while physics-informed neural
networks (PINNs) trained with PDE-based loss functions suffer from challeng-
ing optimization landscapes and limited generalization, especially for nonlinear
PDEs. To resolve these issues, we develop Newton-PINet, a physics-informed
network enhanced by Newton linearization, offering an effective meta-learning
framework for nonlinear PDEs. It (i) introduces a physics-informed multilayer
network with skip connections from early hidden layers to the output, where the
final-layer weights are computed using least-squares method; (ii) adopts a two-
stage learning strategy that first leverages gradient-based training to learn robust
representations from the available training tasks, and then performs gradient-free
fine-tuning on the output layer for fast task-specific generalization; and (iii) in-
corporates a Newton linearization method to speed up the least-squares iteration
for nonlinear PDE problems. Newton-PINet achieves relative errors three orders
of magnitude lower than recent neural solver baselines on a challenging nonlinear
reaction-diffusion benchmark, even while using 16× fewer training tasks and an
order of magnitude less training time (under 2 minutes against the several hours
these baselines required). This work advances the meta-learning of PINNs toward
data-efficient, fast, and generalizable physics solvers.

1 INTRODUCTION AND RELATED WORKS

Solving partial differential equations (PDEs) is fundamental across diverse fields, including fluid
dynamics, climate modeling, materials science, and biophysics (Karniadakis et al., 2021). Tradi-
tional numerical solvers for PDEs often incur prohibitive computational costs, particularly when
repeated evaluations are required in applications such as design optimization, uncertainty quantifi-
cation, real-time control, and modeling of complex physical systems. In recent years, scientific
machine learning has emerged as a powerful paradigm, leveraging advances in deep neural net-
works to deliver fast and accurate approximations of PDE solutions, thereby enabling high-fidelity
simulations and real-time predictive capabilities that were previously unattainable (Cai et al., 2021a;
Cuomo et al., 2022). Recent advances in deep learning for PDEs can be broadly categorized into:
data-driven operator learning, physics-informed deep learning, and meta-learning physics-informed
neural networks (PINNs).

Data-driven operator learning: Data-driven operator learning focuses on training neural net-
works to directly map input functions, such as PDE parameters or initial conditions, to their
corresponding PDE solutions. Well-known examples of this approach include DeepONet (Lu
et al., 2021), Derivative-enhanced-DeepONet (Qiu et al., 2024), Transformer-DeepONet (Wei et al.,
2025b), Fourier neural operators (FNO) (Li et al., 2020), Factorized-FNO (Tran et al., 2023), and
Decomposed-FNO (Li & Ye, 2025). Once trained, these models can generalize to new parame-
ter settings (e.g., new initial conditions), enabling fast prediction of complex dynamical behaviors.
However, they lack explicit physics constraints and interpretability, and their generalization depends
on adequacy of labeled training data, which are often expensive to obtain (Li et al., 2024). For ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ample, Transformer-DeepONet typically requires at least 1,000 different PDE solutions for adequate
performance (Wei et al., 2025b).

Physics-informed deep learning: An alternative paradigm, physics-informed deep learning, incor-
porates governing PDEs and boundary conditions into the training loss function (Cai et al., 2021b;
Wong et al., 2022; Wei et al., 2025a). By penalizing violation of physical laws, these models can
be trained effectively even in data-sparse regimes, often requiring only initial or boundary condi-
tions. Representative approaches include physics-informed variants of operator learning, such as
physics-informed DeepONet (Wang et al., 2021) and physics-informed neural operators (PINO)
(Li et al., 2024). Another prominent method is PINN (Raissi et al., 2019), which learn mapping
from spatiotemporal coordinates to PDE solution for a given system. While these methods alleviate
the need for large labeled datasets, their reliance on physics-informed objectives often results in
prohibitively long training times, due to highly nonconvex loss landscapes caused by the stiff PDE
constraints (Krishnapriyan et al., 2021; Chiu et al., 2022; Wang et al., 2023), especially for nonlin-
ear PDEs. For example, training physics-informed DeepONet on a family of Burgers’ equations can
take more than 9 hours (Wang et al., 2021), while PINNs may require over 24 hours to solve a single
Kuramoto-Sivashinsky equation (Wang et al., 2025).

Meta-learning PINNs: Adapting PINNs to a new PDE or parameter configuration generally ne-
cessitates re-training, further amplifying computational costs. To address this limitation, transfer
learning strategies have been developed to accelerate convergence by reusing knowledge from pre-
viously solved problems (Wong et al., 2021; Wang et al., 2022). Parameterized physics-informed
neural networks (P2INNs) extend this paradigm by incorporating problem parameters as additional
network inputs, enabling a single model to handle a family of related PDE instances without la-
beled data while maintaining solution fidelity through physics constraints (Cho et al., 2024). Nev-
ertheless, P2INNs still suffer from the optimization challenges of physics-based loss functions, and
their adaptation to new tasks remains heavily reliant on gradient-based fine-tuning which is often
slow to converge, especially for nonlinear PDEs, and hence, computationally expensive. Similarly,
meta-learning approaches aim to identify parameter initializations or update strategies that enable
fast adaptation to unseen PDEs with few-shot fine-tuning (Penwarden et al., 2023; Wong et al.,
2025). Examples include MAML-inspired methods that learn parameter priors for fine-tuning (Liu
et al., 2022). Other efforts employ latent-code representations or meta-optimizers to adaptively
tailor updates for different tasks (Huang et al., 2022; Cho et al., 2023). To overcome the limita-
tions of gradient-based adaptation, Baldwinian-PINN was proposed as a completely gradient-free
meta-learning approach (Wong et al., 2023). It uses neuroevolution to evolve the initial layers of
a generalizable model and then fine-tunes the final layer using a least-squares method. The model
adopts a single-layer neural network structure, which is highly efficient for solving linear PDEs.
However, for a broader class of nonlinear PDEs, the network’s ability to represent nonlinearities
is limited. It applies a Picard (lagging-of-coefficients) method (Pletcher et al., 2012) to iteratively
refine the solution, but this approach suffers from slow convergence of nonlinear PDE solutions due
to its linear convergence speed (Sheu & Lin, 2005; Chiu et al., 2008).

In summary, existing deep learning approaches for solving nonlinear PDEs remain constrained by
substantial data requirements and/or slow, optimization-heavy adaptation. This leads to the ques-
tion: Is it possible to develop a physics-informed model for meta-learning nonlinear PDEs that can
alleviate the reliance on training data, while enabling fast generalization to new tasks via physics-
consistent fine-tuning?

For this reason, we propose a novel meta-learning PINN framework, termed Newton-PINet. The
main contributions are as follows:

(1) Enhanced Tikhonov regularization PINN: We introduce a physics-informed multilayer net-
work with skip connections from early hidden layers to the output, where the final-layer weights are
computed using least-squares approach (Tikhonov regularization). This skip-connected Tikhonov
regularization PINN architecture improves the model’s nonlinear representation capabilities.

(2) Efficient meta-learning PINN framework: We employ a two-stage learning strategy, where the
first stage uses a gradient-based method to meta-learn the nonlinear hidden layers’ network weights
and essential hyperparameters for task-specific adaptation in an unsupervised or few-shot manner.
At inference (test time), task-specific adaptation is confined to the output layer, which can be rapidly
updated in a gradient-free manner using Tikhonov regularization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(3) Newton linearization: We integrate Newton linearization into the Tikhonov-regularized PINN
and demonstrate, through a mathematical derivation, its equivalence to the classical Newton method,
thereby preserving its characteristic quadratic convergence. The Newton linearization accelerates
nonlinear least-squares convergence, providing a more efficient alternative to the traditional Picard
approach during both meta-learning and inference. We therefore refer to the proposed physics-
informed network with Newton linearization as Newton-PINet.

Newton-PINet significantly reduces the computational cost of learning while ensuring high effi-
ciency and adaptability for generalization to new tasks.

2 PRELIMINARIES

For simplicity, consider a nonlinear PDE with spatial variable x, time t, and solution u defined on
Ω× [0, T]:

PDE: Nθ[u(x, t)] = q(x, t) x ∈ Ω, t ∈ [0, T], (1a)
IC: u(x, t = 0) = u0(x) x ∈ Ω, (1b)

BC: B[u(x, t)] = g(x, t) x ∈ ∂Ω, t ∈ [0, T]. (1c)

where the general differential operator Nθ can include both linear and nonlinear combinations of
the temporal and spatial derivatives and PDE parameters θ, q(x, t) is the source term, u0(x) is the
initial condition (IC), and g(x, t) is the boundary condition (BC).

Single PDE problem: Standard PINNs aim to solve a single PDE instance (a single task) defined
by specific PDE parameters, IC, and BC. PINNs are trained by minimizing the discrepancy between
Eq. (1) and the model’s prediction.

Towards generalizable PINNs: There is growing interest in models capable of generalizing across
a set of tasks belonging to some underlying task-distribution p(T), e.g., a family of PDEs spanning
different PDE parameters, ICs, and BCs. For meta-learning PINNs, the goal is to learn network
initializations using training tasks sampled from p(T) that enable fast, accurate, and physics-aware
predictions on unseen scenarios, i.e., any new task from the distribution Ti ∼ p(T) through fine-
tuning (Wong et al., 2025).

3 METHODOLOGY

Skip-connected Tikhonov regularization PINN: As opposed to a standard PINN (Raissi et al.,
2019), we introduce skip connections from all hidden layers to the output layer, with the output-
layer weights computed using Tikhonov regularization (Golub et al., 1999). The skip-connected
neural architecture improves expressivity, ensuring stable and accurate least-squares computation by
increasing the output-layer width through stacking additional hidden layers, while still maintaining
a moderate number of nodes per layer. As shown in Fig. 1, we employ the neural networks with
L+1 layers, where the input is x = (x, t) (layer 0) and the output is u (layer L). Each hidden layer
l = 1, . . . , L − 1 contains the same number of neurons (Nn). Sinusoidal feature embeddings are
applied at the first layer (Wong et al., 2022), and all hidden layers use sin(·) activation functions. The
pre-final output f is constructed as the concatenation of all hidden activations (skip connections).
All trainable network parameters up to the pre-final layer are denoted w̃. The output u can be
computed by u(x) = f(x; w̃)T w, where w is the output-layer weights. See Appendix A.1 for a
detailed description of the skip-connected model architecture.

The objective of task-specific learning is to determine the best set of w such that u(x) = f(x; w̃)Tw
satisfies the PDE, IC, and BC, for a task Ti ∼ p(T). This leads to a physics-constrained least-squares
problem (Tikhonov regularization): argminw ∥Aw − b∥22 + λreg w

Tw. Here Aw is obtained by
substituting the model’s output into the left-hand side of Eq. (1) at a given set of collocation points, b
denotes the corresponding right-hand side of Eq. (1), and λreg is the Tikhonov regularization param-
eter whose proper setting improves the conditioning of the problem. The system has a closed-form
solution, either w = (λregI+ATA)−1ATb for over-determined system or AT (λregI+AAT)−1b
for under-determined one, enabling fast, gradient-free updates. Appendix A.2 provides the physics-
based least-squares formulation with implementation details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Newton-PINet model framework.

Note that Tikhonov regularization serves as a linear solver, which can obtain the solution in a single
step for linear PDEs (Wong et al., 2023). For nonlinear PDEs, the nonlinear terms must be linearized
so that the system can be cast into a linear form. An initial guess is then required, followed by a few
nonlinear iterations (a process that can also be interpreted as gradient-free fine-tuning) to update
w toward the optimal solution.

Figure 1 illustrates the proposed Newton-PINet model framework, which consists of two stages: (i)
meta-learning on training tasks and (ii) gradient-free fine-tuning on new tasks.

Meta-learning on training tasks: The meta-learning objective is to optimize the network weights
w̃, importance hyperparameter λpde of PDE loss relative to IC/BC, and the regularization parameter
λreg, collectively denoted Θ, to learn task-agnostic representations spanning a family of PDEs and
enable fast generalization to unseen tasks requiring only Tikhonov regularization update. In our
framework, the outer loop of meta-learning updates the learnable parameters via gradient descent,
while task-specific adaptation in the inner loop, or generalization, is performed through gradient-free
Tikhonov regularization applied to the output layer weights. The meta-learning objective (outer-loop
loss) can be either the physics-based least-squares error lLSE(w

∗) = ∥Aw∗−b∥22, or the data-driven
mean squared error lMSE(w

∗) = 1
n

∑
s(u

label
s −f(x; w̃)Tw∗)2 given labeled data {ulabel

s }ns=1 where
n is the total number of collocation points (PDE residual, IC, and BC). Here, Tikhonov regular-
ization is used to compute the optimal task-specific output-layer weights w∗, enabling the model
to specialize to any realization of the task. lLSE-based learning is termed unsupervised learning.
lMSE-based learning is termed hybrid learning, since it couples physics-based Tikhonov updates in
the inner loop with data-driven minimization in the outer loop. See Algorithm 1 for the pseudo-code
and Appendix A.3 for a detailed mathematical description.

Gradient-free fine-tuning to new tasks: After meta-learning, Θ is fixed. For a new task Ti ∼
p(T) with different PDE parameters or IC/BC, Tikhonov regularization is used to compute the
task-specific weights w, enabling fast gradient-free adaptation to the new PDE instance. Since
this update is independent of gradient-based backpropagation optimizers such as stochastic gradient
descent (SGD), the resulting adaptation is extremely fast while remaining physics-compliant. See
Algorithm 2 in Appendix A.4 for the pseudo-code.

Newton linearization: Note that the Tikhonov regularization applies to linear PDEs, where a
linear matrix system can be constructed and solved in a single step. For nonlinear PDEs, the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

nonlinear terms must first be linearized so that the system can be cast into a linear form. The
previous approaches typically relied on Picard method (lagging-of-coefficients), which linearizes
the nonlinear terms using the solution from the previous iteration and then performs least-squares
solves for multiple nonlinear iterations. Although simple, it is only linearly convergent (Den-
nis Jr & Schnabel, 1996). To address this limitation, we use the Newton linearization approach
to approximate the nonlinear term by Taylor expansion around the current iterate. For a function
F of one state variable u, this gives F (uk+1) = F (uk) + dF

du

∣∣k (uk+1 − uk) + H.O.T, where
k is the nonlinear iteration step, and “H.O.T” denotes the higher-order truncated terms of Taylor
expansion. For a function of two variables u and v, the expansion becomes F (uk+1, vk+1) =

F (uk, vk) + ∂F
∂u

∣∣k (uk+1 − uk) + ∂F
∂v

∣∣k (vk+1 − vk) + H.O.T. Based on this principle, the non-
linear terms commonly arising in PDEs can be expressed in a Newton-linearized form amenable to
Tikhonov regularization. A detailed mathematical derivation is provided in Appendix A.5, and we
demonstrate in Appendix B that the Newton linearization used in the Tikhonov-regularized PINN
is essentially equivalent to the classical Newton method, thereby retaining the same quadratic con-
vergence guarantees (Sheu & Lin, 2004; 2005; Chiu et al., 2008). Table 1 summarizes several
representative nonlinear terms derived by our work.

Table 1: Newton-linearized expressions of several nonlinear terms derived by our work, where m
denotes the exponent.

Nonlinear term Newton-linearized expression

(um)k+1 m(uk)m−1uk+1 + (1−m)(uk)m

(umux)
k+1 m(uk)m−1uk

xu
k+1 + (uk)muk+1

x −m(uk)muk
x

[sinh(u)]k+1 cosh(uk)uk+1 + sinh(uk)− cosh(uk)uk

[exp(u)]k+1 exp(uk)uk+1 + exp(uk)− exp(uk)uk

[u ln(u)]k+1 (ln(uk) + 1)uk+1 + uk ln(uk)− (ln(uk) + 1)uk

4 EXPERIMENT RESULTS

We compare the performance of the proposed Newton-PINet (via Newton linearization), PINet
(via Picard linearization), vanilla deep neural network (DNN), and recent baseline models (e.g.,
DeepONet, FNO, PINO), on several representative classes of nonlinear PDEs.

We consider the following representative classes of nonlinear PDEs: (i) Nonlinear convection-type
PDEs: ∂u

∂t + βum∂u
∂x − γ ∂2u

∂x2 + δ ∂3u
∂x3 + σ ∂4u

∂x4 = 0, where u(x, t) is the state variable, β, γ, δ, σ are
PDE parameters, and m denotes the nonlinearity order. We test three 1D time-dependent problems:
Burgers, generalized Korteweg-de Vries (KdV), and Kuramoto-Sivashinsky (K-S) equations. In ad-
dition, we consider a 2D lid-driven cavity (LDC) flow governed by the Navier-Stokes equations.
These problems span nonlinear convection, high-order dispersion/dissipation, and viscous flow with
pressure-velocity coupling, providing canonical benchmarks for assessing generalization across dif-
ferent nonlinearities and dimensions. (ii) Nonlinear forcing-type PDEs: ∂u

∂t +α∇u−γ∆u+R(u) =
q, where R(u) denotes a nonlinear reaction operator, which may take polynomial, hyperbolic, expo-
nential, or logarithmic forms, and q represents an external source term. We consider four 1D time-
dependent problems: convection-diffusion-reaction (CDR), Klein-Gordon (K-G), hyperbolic heat,
and logarithmic heat equations, as well as two 2D problems: Helmholtz and parametric diffusion-
reaction equations. These equations represent systems where diffusion and wave propagation in-
teract with nonlinear reaction or source terms, making them central to the modeling of chemical
kinetics, heat transfer, quantum fields, and complex reaction-diffusion phenomena in physics and
engineering. See Appendix C.1 for detailed problem descriptions, and Appendix C.2 for data gen-
eration, error metrics, and computational setup. In Appendix C.3, we provide a summary of meta-
learning configurations (Table 4) and model performance (Table 5) across all the PDE problems.

Note that, unless otherwise specified, the meta-learning outer-loop loss function for the Newton-
PINet is lMSE (hybrid learning). We also adopt a temporal domain decomposition strategy within
our meta-learning framework to leverage temporal causality as a means of improving accuracy for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

complex time-dependent PDEs (Wang et al., 2022). Each time block is trained to model only short-
term dynamics; however, iterative composition across blocks during inference ensures seamless
integration over the full temporal horizon.

4.1 LEARNING TO SOLVE PDES WITH NONLINEAR CONVECTION TERM

Burgers’ problems: ∂u
∂t + u∂u

∂x − γ ∂2u
∂x2 = 0. We first fix the initial condition as u(x, 0) =

− sin(πx), and vary the viscosity parameter γ in the range [0.001, 0.05] with an increment of 0.001
to generate 50 tasks. Among them, 16 are randomly selected for training, and the remaining 34
are used as test tasks. Under each condition, we keep the number of nonlinear iterations (N) for
inner-loop fine-tuning in meta-learning stage consistent with those in generalization stage. We then
compare Newton-PINet and PINet across different conditions, with the number of nonlinear itera-
tions (N) ranging from 2 to 12. As shown in Fig. 2 (a) and (b), with an increase of N, PINet shows
improved convergence during training, but test task errors remain consistently high. In contrast,
Newton-PINet achieves significantly faster convergence during meta-learning and achieves low er-
rors on test tasks (lowest error at N = 6). We also record the meta-learning and inference time of
both models. As shown in Fig. 2 (c), although Newton-PINet involves additional computations due
to Newton linearization, its meta-learning and inference time remain almost unaffected. These re-
sults demonstrate that Newton linearization significantly improves the convergence of meta-learning,
which also enhances generalization accuracy on test tasks.

In addition to the lMSE meta-learning loss, we evaluate alternative losses: the least-squares error
(lLSE) and the combined loss (lLSE+MSE). As shown in Fig. 2 (e), Newton-PINet achieves the highest
test accuracy when trained with lMSE. Since the Tikhonov regularization (inner loop) already en-
forces the PDE constraints, introducing an additional LSE term in the outer-loop loss can lead to
conflict between the two objectives. Our experience shows that the MSE-only meta-objective often
provides better generalization in Newton-PINet. In addition, the regularization parameter (λreg) is
not manually tuned but meta-learned in this study. Appendix D.1 provides ablation results demon-
strating that the meta-learned value is robust across diverse test tasks.

Figure 2: Burgers’ problem. (a) Meta-learning convergence of Newton-PINet vs. PINet under
different nonlinear iterations (N) (lines and shaded areas: the median convergence path and in-
terquartile ranges of 5 runs). (b,c) Test task MSE and runtime aggregated from 5 runs. (d) Error
distribution boxplot across all test tasks for Newton-PINet (N=6). (e) Test errors under different
meta-learning losses.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model comparison under varying initial conditions: We evaluate the model on four additional
settings with γ ∈ {0.1, 0.01, 0.001, 0.0001}, where, for each γ, the initial conditions are sampled
from a Gaussian random fieldN (0, 625(−∆+ 25I)−4) to generate 50 training and 1000 test tasks.
Experiments are conducted independently for each γ. We compare (i) unsupervised Newton-PINet
(1 time block) and (ii) hybrid Newton-PINet (4 time blocks) against popular neural operator base-
lines in terms of training time and test error. The unsupervised operator considered is Physics-Only
DeepONet (PO-DeepONet) (Wang et al., 2021). The supervised operators include DeepONet (Lu
et al., 2021), Transformer-DeepONet with Trunk net enhanced by Fourier coefficients (T-DeepONet-
TF) (Wei et al., 2025b), and FNO (Li et al., 2020), while the hybrid operator is PINO (a physics-
informed FNO) (Li et al., 2024). Note that PINO uses a training loss that combines both data-driven
and PDE-based physics losses. The results are summarized in Table 2. Compared to PO-DeepONet,
unsupervised Newton-PINet reduces training time from 9.25h to 291s while improving test accuracy
across all γ experiments (in a data-absent scenario). Compared to supervised and hybrid neural oper-
ators, including the state-of-the-art T-DeepONet-TF and PINO, Newton-PINet consistently achieves
superior test accuracy under γ = 0.1, 0.01, 0.0001, with significantly reduced training cost (10x less
time). Our model consistently achieves higher accuracy while requiring the least training time,
whether fully unsupervised (without data) or with a few labeled samples.

Table 2: Model comparison on the 1D Burgers’ problem. The initial conditions for generating all
the training and test data are drawn from GRF ∼ N (0, 625(−∆ + 25I)−4). Our Newton-PINet
results are computed on a Tesla V100 GPU. The lowest errors are highlighted in bold. “–” denotes
results not reported in the references.

Model
No. training

tasks
No. test

tasks
Test relative L2 error (training time)

γ = 0.1 γ = 0.01 γ = 0.001 γ = 0.0001

Unsupervised

PO-DeepONet
(Wang et al., 2021)

1000 1000 – 1.38e-2 2.16e-1 2.48e-1
(9.25h) – –

Newton-PINet
(Ours)

50 1000 1.33e-3 3.51e-3 1.37e-1 2.01e-1
(291s) (291s) (291s) (291s)

Supervised

DeepONet
(Wei et al., 2025b)

1000 500 – 1.17e-2 2.30e-1 2.88e-1
(2800s) (2620s) (2660s)

T-DeepONet-TF
(Wei et al., 2025b)

1000 500 – 2.08e-3 9.81e-3 1.18e-1
(3041s) (2569s) (3466s)

FNO (Li et al., 2020) 1000 200 1.39e-2 – – –

Hybrid

PINO
(Li et al., 2024)

1000 200 – 3.80e-3 – –(1200s)

Newton-PINet
(Ours)

50 1000 1.13e-3 5.46e-4 4.66e-2 9.15e-2
(133s) (133s) (133s) (133s)

Generalized KdV, K-S, and LDC problems: We further evaluate Newton-PINet on more com-
plex nonlinear PDEs, including the generalized KdV equations with higher-order nonlinear terms
u∂u

∂x , u2 ∂u
∂x , u3 ∂u

∂x , the K-S equations with nonlinear term u∂u
∂x , and the LDC problem governed

by the Navier-Stokes equations. These PDEs pose highly challenging benchmarks for PINNs. The
state-of-the-art PirateNets+SOAP (Wang et al., 2025) requires over 24 hours of training to solve a
single K-S problem and must be retrained for each new problem. In contrast, our Newton-PINet
completes the meta-learning stage in under half an hour, while single-task adaptation takes less than
one second, demonstrating a clear advantage in computational efficiency. The results (summarized
in Appendix C.3 Tables 4 and 5) show that Newton-PINet achieves test errors of MSE = 1.94×10−3

on the generalized KdV, MSE = 3.45 × 10−2 on the K-S, and MSE = 1.67 × 10−4 on the LDC
problem, outperforming PINet and DNN under the same configuration. Figures 6, 7, 8 show the
prediction results of these problems. This demonstrates that our Newton linearization can improve
the model performance across a variety of nonlinear convective PDEs. However, the initial guess
(uguess) in the nonlinear iterations can affect convergence. We conduct empirical ablations in Ap-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

pendix D.2 to unveil a few strategies to mitigate the sensitivity to initialization. Setting uguess at
all time steps equal to the initial field (ut=0) can help provide high accuracy for time-dependent
problems, while a temporal block decomposition strategy may be employed for increasingly more
complex nonlinear time-dependent systems.

4.2 LEARNING TO SOLVE PDES WITH NONLINEAR FORCING TERM

Convection-diffusion-reaction (CDR) problem: ∂u
∂t + α∂u

∂x − γ ∂2u
∂x2 − ρ1u+ ρ2u

2 + ρ3u
3 = 0.

We generate 40 training and 160 test tasks by varying PDE parameters and initial conditions: α = 1,
γ ∈ {0.005, 0.01, 0.05}, ρ1, ρ2 ∈ {0, 1, 3, 5}, ρ3 = 5, and u(x, t = 0) =

∑J
j=1 Aj sin (ljx+ ϕj),

where J = 5, Aj ∈ [0.1, 0.5], lj ∈ {1, 2, 3, 4}, and ϕj ∈ [−π, π]. We adopt a 4-time-block
decomposition during meta-training and inference to improve accuracy. Figure 3 (a) and (b) show
the meta-learning process and test results. It can be seen that PINet converges well during meta-
learning, and its test error decreases as nonlinear iteration (N) increases. In contrast, Newton-PINet
converges much faster and achieves lower test error. As shown in Fig. 3 (c) and (d), for a comparable
error level, Newton-PINet (N = 4) requires less than half the meta-training and fine-tuning time
of PINet (N = 12). These results indicate that Newton linearization can substantially accelerate
nonlinear iterations without significantly introducing additional time cost in either meta-learning or
inference. More prediction results under various test conditions are provided in Appendix Fig. 9.
Note that different time-blocking strategies can affect model inference performance, as discussed in
Appendix D.3. As shown in Fig. 3, the predictions exhibit drift at temporal block boundaries. We
can mitigate this drift by increasing the initial condition weight, as detailed in Appendix D.4.

Figure 3: Convection-diffusion-reaction (CDR) problem. (a) Meta-learning convergence of
Newton-PINet vs. PINet under different nonlinear iterations (N) (lines and shaded areas: the median
convergence path and interquartile ranges of 5 runs). (b,c) Test task MSE and runtime aggregated
from 5 runs. In (b), the two circled regions correspond to Newton-PINet (N=4) and PINet (N=12),
respectively. (d) Error distribution boxplot across all test tasks for different models; the prediction
fields correspond to Newton-PINet (N=4).

Additional nonlinear forcing-type PDEs: We evaluate Newton-PINet on several other challeng-
ing nonlinear forcing-type PDEs: Klein-Gordon, hyperbolic/logarithmic heat, Helmholtz, and para-
metric diffusion-reaction equations. The results show that Newton-PINet outperforms the DNN and
PINet baselines on nearly all problems (except for the Klein-Gordon problem). Notably, for prob-
lems with hyperbolic or logarithmic nonlinearities, the Picard approach used by PINet often fails
to converge or leads to unstable training, whereas Newton-PINet remains stable and accurate. Ad-
ditional results for these problems are provided in Appendix C.3, Table 5, and Fig. 10. We further
demonstrate the model’s applicability to a wide range of boundary condition types in Appendix D.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Reduced dependence on training tasks:
We evaluate data efficiency by varying the
number of training tasks between 5 and 100
and testing generalization on 100 unseen
tasks for the CDR problem. Comparisons
are made between Newton-PINet (N = 4),
PINet (N = 4), and PINet (N = 12).
As shown in Fig. 4, Newton-PINet achieves
lower test errors across nearly all training
sizes, and demonstrates superior generaliza-
tion in the extreme few-shot regime (e.g.,
5–20 training tasks). In contrast, PINet de-
grades significantly with limited data; in-
creasing N improves accuracy but requires
higher computational cost while still under-
performing Newton-PINet in the few-shot
regime.

Figure 4: Reduced dependence on training tasks for
Newton-PINet with strong generalization.

Model comparison on the nonlinear reaction-diffusion benchmark problem: We further eval-
uate our method on a widely studied 1D nonlinear reaction-diffusion problem ∂u

∂t − γ ∂2u
∂x2 − ρu(1−

u) = 0 (Krishnapriyan et al., 2021). The benchmark configuration and baseline model results are
all taken from (Boudec et al., 2024). The benchmark uses a fixed Gaussian initial condition, with
PDE parameters sampled over γ ∈ [1, 5] and ρ ∈ [−5, 5]. The baseline models are grouped into
two categories: (i) unsupervised, including instance-wise PINNs trained with L-BFGS (PINNs+L-
BFGS) or Adam+L-BFGS (PINNs-multi-opt), parametric PINNs (PPINNs) (Boudec et al., 2024)
and P2INNs (Cho et al., 2024) that incorporate PDE parameters as inputs, and Physics-Only Deep-
ONet (PO-DeepONet) (Wang et al., 2021); and (ii) hybrid, which combine supervised and physics-
informed approaches, such as PI-DeepONet (Goswami et al., 2023), PINO (Li et al., 2024), and
the physics-informed neural solver (PI-neural-solver) (Boudec et al., 2024). These baselines were
trained with 800 tasks and tested on 200 unseen tasks. In contrast, our hybrid Newton-PINet
achieves state-of-the-art performance using only 50 training tasks, i.e., 16× fewer tasks, and is
tested on 200 unseen tasks using a 4-time-block decomposition. As shown in Table 3, Newton-PINet
reaches a test MSE roughly three orders of magnitude lower than the best-performing baseline (PI-
neural-solver) while requiring only 119 seconds of total meta-training wall-clock time, compared
with several hours for the baselines. These results highlight the high data efficiency and compu-
tational efficiency of Newton-PINet. Model prediction results are provided in Appendix Fig. 11.

Table 3: Model comparison on the 1D nonlinear reaction-diffusion problem. Baseline results are
from Boudec et al. (2024) (computed on NVIDIA RTX A6000 GPU), while our Newton-PINet
results are computed on a Tesla V100 GPU. Time is reported in hours (h), minutes (m), and seconds
(s). Best and second-best are bold and underlined, respectively.

Model No. training
/ test tasks

Test relative
MSE

Training
time

Inference
time

Unsupervised

PINNs+L-BFGS

800 / 200

6.13e-1 – 369s
PINNs-multi-opt 7.57e-1 – 16.5s
PPINNs 3.94e-1 4h15m 0.291s
P2INNs 5.69e-1 11h 0.676s
PO-DeepONet 4.10e-1 3h30m 0.438s

Hybrid

PI-DeepONet
800 / 200

7.90e-2 3h30m 0.443s
PINO 4.21e-4 1h10m 0.519s
PI-neural-solver 2.91e-4 4h30m 0.284s
Newton-PINet (Ours) 50 / 200 1.71e-7 119s 0.084s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Comparison with other meta-learning PINN methods: We further compare the performance of
Newton-PINet with state-of-the-art gradient-based meta-learning PINNs (Penwarden et al., 2023)
and gradient-free Baldwinian-PINN (Wong et al., 2023). Detailed results are provided in Ap-
pendix C.4 and Table 6. On a 2D parametric diffusion-reaction problem, Newton-PINet achieves
approximately a 179× improvement in generalization accuracy while requiring 7000× less fine-
tuning time compared with gradient-based meta-learning PINNs. Moreover, relative to Baldwinian-
PINN, Newton-PINet reduces test MSE by 2∼5 orders of magnitude across benchmark problems
and shortens the task-specific fine-tuning time by roughly one order of magnitude. These results
highlight Newton-PINet’s superior generalization performance and computational speed.

Ablation study on model architecture: In Appendix D.6, we demonstrate that Newton-PINet
benefits significantly from skip connections, which enhance robustness to depth, width, and mesh
resolution, thereby reducing the need for extensive hyperparameter tuning.

Practical scaling discussion of Newton-PINet: In Appendix E, we discuss Newton-PINet’s scal-
ability and potential future directions. Briefly, since the features are generated by a neural represen-
tation, each row of A is dense rather than sparse in the numerical sense. The computational cost
primarily depends on the expressiveness of pre-final layer features. By meta-learning a compact yet
informative representation, the least-squares solve remains efficient even for large collocation sets.

5 CONCLUSION

Newton-PINet demonstrates robust performance in meta-learning nonlinear PDEs. Our model’s
strengths can be summarized as follows. (1) Computational efficiency: task adaptation in both
meta-learning and inference is performed via least-squares updates of only the output layer. This
gradient-free fine-tuning is faster than typical methods such as SGD, requiring just one step for linear
PDEs and a few iterations for nonlinear PDEs. The quadratic convergence of Newton linearization
further accelerates nonlinear solves. (2) Data efficiency: because the least-squares fine-tuning for
new-task generalization is physics-informed, the meta-learning stage of our model requires very
few labeled training samples and can converge in only a few epochs. (3) Accuracy: Tikhonov
regularization stabilizes the least-squares solve, reducing ill-conditioning and improving general-
ization accuracy. Altogether, Newton-PINet achieves high generalization accuracy while requiring
an order of magnitude fewer training tasks than state-of-the-art baselines. Task-specific inference
on new tasks is also orders of magnitude faster compared to gradient-based meta-learning PINNs.
These advantages make Newton-PINet a practical and scalable framework for learning large families
of nonlinear PDEs in few-shot and real-time scenarios. We expect the Newton-PINet to facilitate
downstream applications where repeated evaluations are essential, including design optimization,
uncertainty quantification, and real-time control of complex physical systems.

ETHICS STATEMENT

This work relies on the data generated from mathematical PDE benchmarks and does not involve
human subjects, personal information, or potentially sensitive content. No privacy, security, fairness,
or legal concerns are associated with the study.

REPRODUCIBILITY STATEMENT

We include complete implementation details in the appendix, including model architectures, training
hyperparameters, and computational requirements. The full codebase necessary to reproduce our
experiments, including data preprocessing scripts, model definitions, meta-learning pipelines, and
evaluation procedures, will be released publicly upon publication.

REFERENCES

Lise Le Boudec, Emmanuel De Bézenac, Louis Serrano, Ramon Daniel Regueiro-Espino, Yuan Yin,
and Patrick Gallinari. Learning a neural solver for parametric pde to enhance physics-informed
methods. arXiv preprint arXiv:2410.06820, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021a.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801,
2021b.

Pao-Hsiung Chiu and Hee Joo Poh. Development of an improved divergence-free-condition com-
pensated coupled framework to solve flow problems with time-varying geometries. International
Journal for Numerical Methods in Fluids, 93(1):44–70, 2021.

Pao-Hsiung Chiu, Tony WH Sheu, and Reui-Kuo Lin. An effective explicit pressure gradient scheme
implemented in the two-level non-staggered grids for incompressible navier–stokes equations.
Journal of Computational Physics, 227(8):4018–4037, 2008.

Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn:
A fast physics-informed neural network based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and Engineering, 395:114909, 2022.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
low-rank physics-informed neural networks. Advances in Neural Information Processing Systems,
36:11219–11231, 2023.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong
Park. Parameterized physics-informed neural networks for parameterized pdes. arXiv preprint
arXiv:2408.09446, 2024.

Steven M Cox and Paul C Matthews. Exponential time differencing for stiff systems. Journal of
Computational Physics, 176(2):430–455, 2002.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. SIAM, 1996.

Suchuan Dong and Zongwei Li. Local extreme learning machines and domain decomposition for
solving linear and nonlinear partial differential equations. Computer Methods in Applied Mechan-
ics and Engineering, 387:114129, 2021.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. Tikhonov regularization and total
least squares. SIAM journal on matrix analysis and applications, 21(1):185–194, 1999.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operator networks. In Machine learning in modeling and simulation: methods and appli-
cations, pp. 219–254. Springer, 2023.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Shi Ji, Zidong Wang, Kang Yang, Yang Li, Min
Wang, Haotian Chu, Fan Yu, et al. Meta-auto-decoder for solving parametric partial differential
equations. Advances in Neural Information Processing Systems, 35:23426–23438, 2022.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural infor-
mation processing systems, 34:26548–26560, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kangjie Li and Wenjing Ye. D-fno: A decomposed fourier neural operator for large-scale parametric
partial differential equations. Computer Methods in Applied Mechanics and Engineering, 436:
117732, 2025.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/IMS Journal of Data Science, 1(3):1–27, 2024.

Xu Liu, Xiaoya Zhang, Wei Peng, Weien Zhou, and Wen Yao. A novel meta-learning initializa-
tion method for physics-informed neural networks. Neural Computing and Applications, 34(17):
14511–14534, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Michael Penwarden, Shandian Zhe, Akil Narayan, and Robert M Kirby. A metalearning approach
for physics-informed neural networks (pinns): Application to parameterized pdes. Journal of
Computational Physics, 477:111912, 2023.

Richard H Pletcher, John C Tannehill, and Dale Anderson. Computational fluid mechanics and heat
transfer. CRC press, 2012.

Yuan Qiu, Nolan Bridges, and Peng Chen. Derivative-enhanced deep operator network. Advances
in Neural Information Processing Systems, 37:20945–20981, 2024.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Tony WH Sheu and RK Lin. Newton linearization of the incompressible navier–stokes equations.
International Journal for Numerical Methods in Fluids, 44(3):297–312, 2004.

Tony WH Sheu and RK Lin. On a high-order newton linearization method for solving the incom-
pressible navier–stokes equations. International journal for numerical methods in engineering,
62(11):1559–1578, 2005.

Alasdair Tran, Alexander Patrick Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier
neural operators. In ICLR. OpenReview.net, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in
physics-informed neural networks: A second-order optimization perspective. arXiv preprint
arXiv:2502.00604, 2025.

Chang Wei, Yuchen Fan, Jian Cheng Wong, Chin Chun Ooi, Heyang Wang, and Pao-Hsiung Chiu.
Ffv-pinn: A fast physics-informed neural network with simplified finite volume discretization
and residual correction. Computer Methods in Applied Mechanics and Engineering, 444:118139,
2025a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhi-Feng Wei, Wenqian Chen, and Panos Stinis. Efficient transformer-inspired variants of physics-
informed deep operator networks. arXiv preprint arXiv:2509.01679, 2025b.

Jian Cheng Wong, Abhishek Gupta, and Yew-Soon Ong. Can transfer neuroevolution tractably solve
your differential equations? IEEE Computational Intelligence Magazine, 16(2):14–30, 2021.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985–1000, 2022.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, Pao-Hsiung Chiu, Joshua Shao Zheng Low,
My Ha Dao, and Yew-Soon Ong. The baldwin effect in advancing generalizability of physics-
informed neural networks. arXiv e-prints, pp. arXiv–2312, 2023.

Jian Cheng Wong, Abhishek Gupta, Chin Chun Ooi, Pao-Hsiung Chiu, Jiao Liu, and Yew-Soon
Ong. Evolutionary optimization of physics-informed neural networks: Survey and prospects.
arXiv preprint arXiv:2501.06572, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

In this Appendix, we provide comprehensive supplementary materials to facilitate a deeper under-
standing of our study. Appendix A presents a detailed description of the Newton-PINet model,
including the meta-learning and gradient-free fine-tuning framework, and the Newton linearization
method. Appendix B mathematically shows the quadratic convergence of the Newton linearization.
Appendix C describes the data generation, computational configurations, and additional experimen-
tal results. Appendix D reports some ablation studies. Appendix E discusses the practical scaling of
Newton-PINet. Appendix F states the use of large language models (LLMs) in this study.

A NEWTON-PINET MODEL

This study presents a skip-connected Tikhonov regularization PINN model for meta-learning non-
linear PDEs, enhanced with Newton linearization, to enable efficient few-shot learning and fast
generalization, hereafter referred to as Newton-PINet.

A.1 SKIP-CONNECTED PINN ARCHITECTURE

Building upon the conventional feed-forward MLP architecture of PINNs, we introduce skip con-
nections from all hidden layers to the output layer, with the output-layer weights computed using
Tikhonov regularization.

The skip-connected neural architecture enables us to provide better expressivity to ensure stable and
accurate least-squares computation by increasing the width of the output layer through the stacking
of additional hidden layers, even while maintaining a moderate number of nodes per layer. In addi-
tion, the concatenation mechanism can be interpreted as expanding a richer basis space: each added
hidden layer introduces new nonlinear features, analogous to incorporating higher-order terms in
a polynomial or Chebyshev-type basis, leading to a more expressive representation with reduced
truncation effects. A complementary viewpoint is that skip connections also help stabilize optimiza-
tion—much like in ResNets—by mitigating vanishing-gradient issues in deeper architectures.

This architecture resembles extreme learning machines (ELMs) in its stacked structure (Dong &
Li, 2021). However, in traditional ELMs, hidden-layer weights are randomly initialized, which
makes training deeper architectures increasingly difficult and can compromise the accuracy of the
solution. In contrast, our framework employs a meta-learning strategy to update the hidden-layer
weights instead of relying on random initialization. As a result, the network depth can be increased
appropriately to improve nonlinear representation capacity while maintaining stable and accurate
generalization.

We employ the Tikhonov-regularized PINN with L + 1 layers, where the input is x ∈ RDin (layer
0) and the output is u ∈ RDo (layer L). Here, Din and Do denote the dimensionality of the input
and output variables, respectively. Each hidden layer l = 1, . . . , L− 1 contains the same number of
neurons (Nn). Sinusoidal feature embeddings are applied at the first layer (Wong et al., 2022), and all
hidden layers use sin(·) activation functions. Skip connections from all hidden layers to the output
layer are employed to allow each hidden layer to contribute nonlinearly to the final representation
without additional weights in the concatenation.

The transformation and activation in the first hidden layer are defined as

z1j =

Din∑
d=1

W 1
j,dxd + b1j , f1

j (x) = sin(2πz1j), j = 1, . . . , Nn, (2)

where j and d denote neurons in the current and previous layers respectively, W 1 ∈ RNn×Din ,
and b1 ∈ RNn . We incorporate Sinusoidal feature embeddings in the first layer to enhance the
representation of high-frequency components.

For subsequent hidden layers l = 2, . . . , L− 1, we have

zlj =

Nn∑
d=1

W l
j,df

l−1
d + blj , f l

j(x) = sin(zlj), j = 1, . . . , Nn, (3)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where W l ∈ RNn×Nn and bl ∈ RNn .

All trainable network parameters up to the pre-final layer are denoted as w̃ = [W l, bl], l =
1, . . . , L− 1.

The pre-final output is constructed as the concatenation of all hidden activations (skip connections):

f(x; w̃)T =
[
f1
1 , . . . , f

1
Nn

, f2
1 , . . . , f

2
Nn

, . . . , fL−1
1 , . . . , fL−1

Nn

]
, (4)

which is then connected to the output layer with Do dimension, so that f(x; w̃)T ∈ RDo×Nn(L−1).
Then, we need to flatten it, resulting in f(x; w̃)T ∈ R1×DoNn(L−1).

The output u can be computed by

u(x) =
∑
j

wjfj = f(x; w̃)Tw, (5)

where wT = [. . . wj . . .] ∈ R1×DoNn(L−1) denotes the output-layer weights.

A.2 PHYSICS-BASED LEAST-SQUARES FORMULATION

The objective of task-specific learning is to determine the best set of w such that u(x) = f(x; w̃)Tw
satisfies the PDE, IC, and BC, for a task (Ti):

PDE: Nθ[u(x, t)] = q(x, t) x ∈ Ω, t ∈ [0, T], (6a)
IC: u(x, t = 0) = u0(x) x ∈ Ω, (6b)

BC: B[u(x, t)] = g(x, t) x ∈ ∂Ω, t ∈ [0, T], (6c)

whereNθ, q, u0, g denote the differential operator with PDE parameters θ, the source term, IC, and
BC, respectively.

This leads to a physics-based least-squares formulation. Let x = (x, t). Given collocation points
for PDE residual: (xpde

n , tpden), n = 1, . . . , npde; points at the initial time: (xic
n , 0), n = 1, . . . , nic;

and points on the boundary: (xbc
n , tbcn), n = 1, . . . , nbc, together with the loss importance hyperpa-

rameter λpde, the following system is obtained:

· · · λpde · Nθ[fj(x
pde
1 , tpde1 ; w̃)] · · ·

...
· · · λpde · Nθ[fj(x

pde
npde

, tpdenpde
; w̃)] · · ·

· · · f i
j(x

ic
1 , 0; w̃) · · ·

...
· · · fj(x

ic
nic

, 0; w̃) · · ·
· · · B[fj(xbc

1 , tbc1 ; w̃)] · · ·
...

· · · B[fj(xbc
nbc

, tbcnbc
; w̃)] · · ·



 ...
wj
...

 =



q(xpde
1 , tpde1)

...
q(xpde

npde
, tpdenpde

)

u0(x
ic
1)...

u0(x
ic
nic

)

g(xbc
1 , tbc1)

...
g(xbc

nbc
, tbcnbc

)


, (7)

which can be compactly written as
Aw = b.

Here Aw represents the left-hand side of Eq. (6) at a given set of collocation points, b denotes the
corresponding right-hand side of Eq. (6).

Therefore, using the PDE, IC, and BC, the physics-informed matrix A and vector b can be as-
sembled. Concretely, the pre-final representation f is obtained via forward propagation, and its
derivatives with respect to (x, t) in Nθ are computed through automatic differentiation (AD).

For a single task, i.e., a single PDE instance, the number of rows in A and b equals the total number
of collocation points, including those for the PDE residual, IC, and BC. The number of columns in
A corresponds to the product of the pre-final feature dimension Nn(L−1) and the output dimension
Do. This results in A ∈ R(npde+nic+nbc)×DoNn(L−1) and b ∈ R(npde+nic+nbc)×1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The final output weights w are obtained via Tikhonov regularization:

argmin
w
∥Aw − b∥22 + λreg w

Tw. (8)

where λreg ≥ 0 denotes the regularization parameter. Compared with ordinary least squares (OLS),
which minimizes only the residual norm ∥Aw − b∥22, Tikhonov regularization introduces an ad-
ditional penalty term λreg w

Tw. This term suppresses large weights, stabilizes the solution, and
improves the conditioning of the problem.

Note that for linear PDE, the closed-form Tikhonov-regularized solution of Eq. (7) can be obtained
in a single step:

w =

{
(λregI+ATA)−1ATb, if Eq. (7) is over-determined,

AT (λregI+AAT)−1b, if Eq. (7) is under-determined.
(9)

For nonlinear PDEs, the nonlinear terms must first be linearized so that the system can be cast in the
form of Eq. (7). For example, in the Burgers equation: ut + uux − γuxx = 0, we can compute

u = fTw, ut =
∂u

∂t
= fT

t w, ux =
∂u

∂x
= fT

x w, uxx =
∂2u

∂x2
= fT

xxw,

where the pre-final representation f and its derivatives can be obtained via forward propagation and
AD. However, the nonlinear term uux cannot be directly expressed as a combination of f (or fx)
and w, which motivates the need for linearization. Under Newton linearization, the nonlinear term
can be approximated as

(uux)
k+1 ≈ uk+1uk

x + ukuk+1
x − ukuk

x,
where k and k + 1 denote the current and next nonlinear iteration step, respectively. Given initial
guesses for u and ux (e.g., setting u and ux at all time steps equal to the initial field), the corre-
sponding entries in A and b are updated as:

Nθ

[
fk+1
j (xpde

n ; w̃)
]
=

∂fk+1
j (xpde

n ; w̃)

∂t
+ uk(xpde

n)
∂fk+1

j (xpde
n ; w̃)

∂x

+ fk+1
j (xpde

n ; w̃)
∂uk(xpde

n)

∂x
−

∂2fk+1
j (xpde

n ; w̃)

∂x2
, (10)

q(xpde
n) = uk(xpde

n)
∂uk(xpde

n)

∂x
. (11)

This leads to an iterative nonlinear solve, where Eq. (9) is repeatedly solved to update w toward the
optimal solution.

How to make Tikhonov solver tractable? The task adaptation is formulated as a Tikhonov-
regularized least-squares problem, whose tractability mainly depends on the size of A, the Tikhonov
regularization parameter (λreg), the PDE-loss importance hyperparameter (λpde), and the choice of
the initial field during nonlinear iterations.

(1) The matrix A is constructed from the network features at each sampling point of the PDE resid-
uals/ICs/BCs, which are generated by a multilayer neural representation with skip connections. The
distribution of these features directly determines the conditioning of the solve. In addition, when the
system requires a large number of sampling points, the number of rows in A increases, making it
more difficult to solve. Since the Tikhonov update only involves ATA ∈ RDoNn(L−1)×DoNn(L−1),
the computational cost mainly depends on the network feature dimension. Thus, the practical scal-
ing for large collocation sets may derive more from the fact that one can still control the cost
of the solve through meta-learning a better (yet minimal) set of pre-final layer features.

(2) To avoid laborious hyperparameter tuning, both λreg and λpde are meta-learned jointly with the
network parameters.

(3) For nonlinear problems, an inappropriate initial field may slow convergence. Therefore, we use
the initial condition as uguess (setting uguess at all time steps equal to the initial field) for time-
dependent problems and employ temporal domain decomposition for more complex dynamics, en-
suring that each block starts closer to the true solution, which improves the stability of the least-
squares updates.

The specific discussion on the scalability of the model is provided in Appendix E.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 META-LEARNING PINN ON TRAINING TASKS

The trainable hyperparameters during meta-learning include network weights (w̃), PDE loss impor-
tance hyperparameter (λpde), and regularization parameter (λreg), collectively denoted as Θ. These
components are crucial for achieving optimal performance in task-specific physics-informed learn-
ing.

The meta-learning objective is to optimize Θ to learn task-agnostic representations spanning a fam-
ily of PDEs and enable fast generalization to unseen tasks requiring only Tikhonov regularization
update. In our framework, the outer loop of meta-learning updates the learnable parameters via
gradient descent, while task-specific adaptation in the inner loop, or generalization, is performed
through gradient-free Tikhonov regularization applied to the output layer weights. See Algorithm 1
for the pseudo-code workflow.

We consider a distribution over tasks p(T) that we want our model to be able to adapt to. The
meta-objective (loss) may consist solely of physics-based least-squares error (lLSE, unsupervised),
data-driven mean squared error (lMSE, few-shot training), or a combination of both:

min
Θ

ETi∼p(T)Ew̃∼pθ(w̃)

[
lLSE(w

∗) + lMSE(w
∗)
]
. (12)

Here, Tikhonov regularization is used to obtain the optimal output-layer weights w∗ that allow the
model to specialize to any realization of task Ti ∼ p(T) for the given network’s w̃ ∼ pθ(w̃).

lLSE and lMSE are
lLSE(w

∗) = (Aw∗ − b)T (Aw∗ − b), (13)

lMSE(w
∗) =

1

n

n∑
s=1

(ulabel
s −

∑
j

w∗
j fj(xs, ts; w̃))2, (14)

given labeled data {ulabel
s }ns=1 (n denotes the total number of collocation points including PDE

residual, IC, and BC constraints for a task).

Algorithm 1 Meta-learning on training tasks
Require: Initialize Θ = (w̃, λpde, λreg); task distribution p(T)
Require: Newton-linearized expressions for nonlinear terms
Require: C: constructor of least-squares system (A,b) (see Eq. (7))

1: while not done do
2: Sample training tasks {Ti} ∼ p(T)
3: for each task Ti do
4: Initialize u(1)

5: for k = 1 to N do ▷ Nonlinear iterations with N steps
6: (A,b) = C(Ti,Θ, uk)

7: w =

{
(λregI+ATA)−1ATb, if tall
AT (λregI+AAT)−1b, if wide

8: u(k+1) = fTw
9: end for

10: Compute loss lTi (see Eq. (13) and (14))
11: end for
12: Θ← Θ− η∇Θ

∑
i lTi

13: end while

We refer to lLSE-based learning as unsupervised learning, and to lMSE-based learning as hybrid
learning (a combination of physics-based Tikhonov updates and data-driven loss). Unless other-
wise stated, for meta-learning loss (outer-loop), our model does not consider the combined loss
formulation lLSE + lMSE, as in some cases the combined objective exhibits poorer generalization
performance compared with using lMSE alone.

In practice, we observe that for simple nonlinear PDEs (e.g., Burgers’ equation), training with lLSE
alone already leads to strong generalization. However, for more complex PDEs, incorporating a
small amount of labeled data through the lMSE term becomes essential for both stability and accuracy.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Gradient-free fine-tuning on new tasks

Require: Freeze Θ = (w̃, λpde, λreg)
1: for each test task Ti do
2: Initialize u(1)

3: for k = 1 to N do
4: (A,b) = C(Ti,Θ, uk)

5: w =

{
(λregI+ATA)−1ATb, if tall
AT (λregI+AAT)−1b, if wide

6: u(k+1) = fTw
7: end for
8: Store solution uTi

= u(N+1)

9: end for
10: return all task solution {uTi}

A.4 GRADIENT-FREE FINE-TUNING TO NEW TASKS

After meta-learning, the network weights (w̃), the PDE-loss importance hyperparameter (λpde),
and the regularization parameter (λreg) are fixed. For a new task with different PDE parameters
or IC/BC conditions, Tikhonov regularization is used to compute the output-layer weights (w),
enabling fast gradient-free adaptation to the new PDE instance. See Algorithm 2 for the pseudo-
code workflow. Since this update is independent of gradient-based backpropagation optimizers such
as stochastic gradient descent (SGD), the resulting adaptation is extremely fast while remaining
physics-compliant.

A.5 LINEARIZATION FOR NONLINEAR PDES

It should be noted that the Tikhonov regularization is directly applicable to linear PDEs, where
a linear matrix system can be constructed and solved in a single step. For nonlinear PDEs, the
nonlinear terms must first be linearized so that the system can be cast into a linear form. The
previous approaches typically relied on Picard method (lagging-of-coefficients), which linearizes
the nonlinear terms using the solution from the previous iteration and then performs least-squares
solves for multiple nonlinear iterations.

Picard iterations. Take the Burgers’ equation as an example: ut + uux − γuxx = 0. The Picard
method approximately linearizes the nonlinear term as: (uux)

k+1 = ukuk+1
x , where k and k+1 de-

note the current and next iteration steps, respectively. An initial guess for u is provided, e.g., setting
u at all time steps equal to the initial field. Under this formulation, the entries of the least-squares
matrix A and vector b in Eq. (7) corresponding to the (k + 1)-th iteration, n-th PDE collocation
point, and the j-th output-layer neuron are given by:

Nθ

[
fk+1
j (xpde

n ; w̃)
]
=

∂fk+1
j (xpde

n ; w̃)

∂t
+ uk(xpde

n)
∂fk+1

j (xpde
n ; w̃)

∂x

−
∂2fk+1

j (xpde
n ; w̃)

∂x2
(15)

q(xpde
n) = 0, (16)

where fj denotes the pre-final output of the neural network. Note that uk here is the known solution,
either the initial guess or the solution at the k-th iteration.

The final output weights wT = [. . . , wj , . . .] are obtained via Tikhonov regularization-based non-
linear iterations. At each iteration, the solution is updated by u(x) =

∑
j wjfj , which then serves

as the new guess for the next iteration. This procedure is repeated until w satisfies a prescribed
convergence criterion or the maximum number of iterations is reached.

Newton linearization iterations. The Picard approach suffers from slow convergence of nonlin-
ear PDE solutions due to its linear convergence speed. To overcome these limitations, we use the
Newton linearization approach.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Let F (uk+1) denote the nonlinear term as a function of the state variable u. In Newton linearization,
a first-order Taylor expansion is performed around the current iterate uk, yielding

F (uk+1) = F (uk) + dF
du

∣∣k (uk+1 − uk) + H.O.T, (17)

where ‘H.O.T” denotes the higher-order truncated terms.

According to Eq. (17), we can derive a general expression for the nonlinear terms um with m
denoting the exponent that commonly appear in PDEs, as follows:

(um)k+1 ≈ (um)k +m(um−1)k(uk+1 − uk)

= m(uk)m−1uk+1 + (1−m)(uk)m (18)

The corresponding expressions for m = 2 and m = 3 are as follows:

(u2)k+1 ≈ 2uk+1uk − ukuk (19)

(u3)k+1 ≈ 3uk+1ukuk − 2ukukuk (20)

For nonlinear terms involving multiple state variables, i.e., F (uk+1, vk+1), the corresponding Taylor
expansion is given by:

F (uk+1, vk+1) = F (uk, vk) + ∂F
∂u

∣∣k (uk+1 − uk) + ∂F
∂v

∣∣k (vk+1 − vk) + H.O.T (21)

Based on Eq. (21), the general Newton linearization form for nonlinear convective terms of arbitrary
order can be expressed as:

(umux)
k+1 ≈ (um)kuk

x + uk
x

[
(um)k+1 − (um)k)

]
+ (um)k(uk+1

x − uk
x)

= (um)k+1uk
x + (um)kuk+1

x − (um)kuk
x

=
[
m(uk)m−1uk+1 + (1−m)(uk)m

]
uk
x + (uk)muk+1

x − (uk)muk
x

= m(uk)m−1uk
xu

k+1 + (1−m)(uk)muk
x + (uk)muk+1

x − (uk)muk
x

= m(uk)m−1uk
xu

k+1 + (uk)m uk+1
x −m(uk)muk

x (22)

Accordingly, the corresponding expressions for the nonlinear convective terms with m = 1, m = 2,
and m = 3 are given by:

(uux)
k+1 ≈ uk+1uk

x + ukuk+1
x − ukuk

x (23)

(u2ux)
k+1 ≈ 2ukuk

xu
k+1 + (uk)2 uk+1

x − 2(uk)2uk
x (24)

(u3ux)
k+1 ≈ 3(uk)2uk

xu
k+1 + (uk)3 uk+1

x − 3(uk)3uk
x (25)

Therefore, the nonlinear term in the Burgers’ equation under Newton linearization can be expressed
as (uux)

k+1 ≈ uk+1uk
x + ukuk+1

x − ukuk
x, where the underlined terms originate from higher-order

corrections that refine the classical Picard linearization: (uux)
k+1 = ukuk+1

x . Given initial guesses
for u and ux (e.g., setting u and ux at all time steps equal to the initial field), the corresponding
entries in A and b are updated as:

Nθ

[
fk+1
j (xpde

n ; w̃)
]
=

∂fk+1
j (xpde

n ; w̃)

∂t
+ uk(xpde

n)
∂fk+1

j (xpde
n ; w̃)

∂x

+ fk+1
j (xpde

n ; w̃)
∂uk(xpde

n)

∂x
−

∂2fk+1
j (xpde

n ; w̃)

∂x2
(26)

q(xpde
n) = uk(xpde

n)
∂uk(xpde

n)

∂x
. (27)

The Newton linearization method substantially accelerates the convergence of Tikhonov
regularization-based nonlinear iterations due to its quadratic convergence property (see Appendix B

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

for a proof). Consequently, it reduces the time complexity of meta-learning and enhances the speed
of fine-tuning and generalization on new tasks.

Similarly, the Newton-linearized expressions for other nonlinear terms, such as hyperbolic, expo-
nential, and logarithmic forms, are given as follows:

[sinh(u)]k+1 ≈ sinh(uk) + cosh(uk)(uk+1 − uk)

= cosh(uk)uk+1 + sinh(uk)− cosh(uk)uk (28)

[cosh(u)]k+1 ≈ cosh(uk) + sinh(uk)(uk+1 − uk)

= sinh(uk)uk+1 + cosh(uk)− sinh(uk)uk (29)

[tanh(u)]k+1 ≈ tanh(uk) +
(
1− tanh2(uk)

)
(uk+1 − uk)

=
(
1− tanh2(uk)

)
uk+1 + tanh(uk)

−
(
1− tanh2(uk)

)
uk (30)

[exp(u)]k+1 ≈ exp(uk) + exp(uk)(uk+1 − uk)

= exp(uk)uk+1 + exp(uk)− exp(uk)uk (31)

[u ln(u)]k+1 ≈ uk ln(uk) + (ln(uk) + 1)(uk+1 − uk)

= (ln(uk) + 1)uk+1 + uk ln(uk)− (ln(uk) + 1)uk (32)

B CONVERGENCE ANALYSIS OF THE NEWTON LINEARIZATION

Newton linearization has long been employed in numerical PDE solvers (Sheu & Lin, 2004; 2005;
Chiu et al., 2008) (e.g., to linearize the convective term in the Navier-Stokes equations), and it is
well known to achieve quadratic convergence, in contrast to the linear convergence of Picard itera-
tion (Dennis Jr & Schnabel, 1996). Our contribution is that we innovatively integrate the Newton
linearization into the Tikhonov-regularized PINN, which significantly enhances the performance for
meta-learning nonlinear PDEs. This appendix provides a theoretical analysis showing that the New-
ton linearization used in the Tikhonov-regularized PINN is essentially equivalent to the classical
Newton method, and therefore achieves the quadratic convergence guarantees.

B.1 NONLINEAR SYSTEM FORMULATION

The output u and its spatial derivative ux at the n-th collocation point in the Tikhonov-regularized
PINN are given by

u(xn) =
∑
j

fj(xn)wj , ux(xn) =
∑
j

fx,j(xn)wj ⇒ u = Φw, ux = Φxw, (33)

where the pre-final features {fj} are generated by hidden-layer transformations followed by smooth
activation functions, and are thus inherently bounded and continuously differentiable. Here, wT =
[. . . , wj , . . .] denotes the output-layer weights, Φnj = fj(xn), and (Φx)nj = fx,j(xn).

To provide a simple illustration, we consider a nonlinear equation F = uux defined on the domain
x ∈ [0, 1], subject to the boundary conditions u(0) = 0 and u(1) = 1. The PDE residuals evaluated
at the collocation points {xn} are then given by:

rn(w) = u(xn)ux(xn) = (Φw)n (Φxw)n. (34)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The residuals corresponding to the boundary conditions are

r0(w) = u(0)− 0 = Φ(0, :)w, r1(w) = u(1)− 1 = Φ(1, :)w − 1. (35)

We consider the nonlinear system of equations in a general form: A(w)w = b.

By stacking all the residuals, we obtain the unified nonlinear system:

F (w) = A(w)w − b

=

[
u⊙ ux

Φ(0, :)w
Φ(1, :)w − 1

]
=

[
(Φw)⊙ (Φxw)

Φ(0, :)w
Φ(1, :)w − 1

]
= 0,

(36)

where ⊙ denotes the elementwise product.

B.2 CLASSICAL NEWTON METHOD

For the nonlinear system F (w) = 0, the Newton method applies a first-order Taylor expansion
around the current iterate wk (Dennis Jr & Schnabel, 1996):

F (wk+1) ≈ F (wk) + JF (w
k) (wk+1 −wk) = 0. (37)

Solving for the update ∆w = wk+1 −wk leads to the following linear system:

JF (w
k) (wk+1 −wk) = −F (wk), (38)

which can be equivalently reformulated as:

JF (w
k)wk+1 = JF (w

k)wk − F (wk). (39)

B.3 OUR NEWTON-PINET: NEWTON LINEARIZATION USED IN TIKHONOV-REGULARIZED
PINN

In our model, the nonlinear terms are first linearized such that the resulting system can be written in
the linear form of Eq. (7), which leads to an iterative nonlinear procedure to update w toward the
optimal solution. After linearization, each nonlinear iteration requires solving a linear least-squares
system of the form:

A(wk)wk+1 = bk. (40)
Using the Newton expansion for uux, as shown in Eq. (23), the linearization of (uux)

k+1 can be
written as:

(uux)
k+1 ≈ uk+1uk

x + ukuk+1
x − ukuk

x, (41)
where k and k + 1 denote the current and next iteration step, respectively. We define uk = Φwk,
uk
x = Φxw

k. Then we have

(uux)
k+1 = (Φw)(k+1) ⊙ (Φxw)(k+1)

≈ (Φxw
k)⊙ (Φw(k+1)) + (Φwk)⊙ (Φxw

(k+1))− (Φwk)⊙ (Φxw
k).

(42)

Through matrix manipulations, we obtain

(Φxw
k)⊙ (Φw(k+1)) = diag(Φxw

k) (Φw(k+1)) =
(
diag(Φxw

k)Φ
)
w(k+1),

(Φwk)⊙ (Φxw
(k+1)) = diag(Φwk) (Φxw

(k+1)) =
(
diag(Φwk)Φx

)
w(k+1). (43)

Consequently, in the system A(wk)wk+1 = bk, the matrix and right-hand side are given by

A(wk) =

(diag(Φxw
k)Φ

)
+
(
diag(Φwk)Φx

)
Φ(0, :)
Φ(1, :)

 ,

bk =

(Φwk)⊙ (Φxw
k)

0
1

 . (44)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

It can be verified that our A(wk) and bk correspond exactly to the classical Newton method:

JF (w
k)wk+1 = JF (w

k)wk − F (wk),

i.e.,
A(wk) = JF (w

k), (45)

bk = JF (w
k)wk − F (wk)

=

(Φwk)⊙ (Φxw
k) + (Φwk)⊙ (Φxw

k)− (Φwk)⊙ (Φxw
k)

0
1


=

(Φwk)⊙ (Φxw
k)

0
1

 .

(46)

Therefore, the Newton linearization employed in the Tikhonov-regularized PINN retains the same
quadratic convergence guarantees as the classical Newton method.

B.4 PINET: PICHARD LINEARIZATION USED IN TIKHONOV-REGULARIZED PINN

As a baseline model, we employ Picard linearization in the PINet framework. For the Picard lin-
earization, also referred to as the “lagging-of-coefficients” approach, one factor in the nonlinear
term uux is kept from the previous iteration k. Specifically, the linearization of (uux)

k+1 is given
by (uux)

k+1 ≈ uk uk+1
x , which can be written in matrix form as

(uux)
k+1 ≈ (Φw)k ⊙ (Φxw)(k+1)

=
(
diag(Φwk)Φx

)
w(k+1).

(47)

Consequently, in the linear system A(wk)wk+1 = bk, the corresponding matrix and right-hand
side are

A(wk) =

(diag(Φwk)Φx

)
Φ(0, :)
Φ(1, :)

 , bk =

[
0
0
1

]
. (48)

Since the Picard method only updates one factor at each iteration while keeping the other fixed, the
convergence rate is generally linear rather than quadratic.

C PROBLEM DESCRIPTION AND EXPERIMENTAL RESULTS

C.1 DESCRIPTION OF NONLINEAR PDE PROBLEMS

(i) Nonlinear convection-type PDEs

Burgers’ equation (1D + time)

∂u

∂t
+ u

∂u

∂x
− γ

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 1].

a) Varying PDE parameter:

The temporal and spatial resolutions are set to 51× 129 with periodic boundary conditions. We fix
the initial condition as u(x, 0) = − sin(πx), and vary the viscosity parameter γ within the range
[0.001, 0.05] with an increment of 0.001 to generate 50 tasks; 16 of them are randomly selected as
training tasks, while the remaining 34 are used for testing. The model architecture consists of 4

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

hidden layers with 128 neurons per layer. Time block decomposition is not employed (a single time
block), and the step of the fine-tuning (nonlinear) iterations is set to 6.

b) Varying initial condition:

The temporal and spatial resolutions are set to 101 × 101 with periodic boundary conditions. Four
distinct viscosity values γ ∈ {0.1, 0.01, 0.001, 0.0001} are considered. For each γ, the initial con-
ditions are sampled from a Gaussian random field N (0, 625(−∆+ 25I)−4), consistent with Wang
et al. (2021). We generate 50 training tasks and 1000 test tasks for each viscosity, and experiments
are conducted independently for each γ. The model architecture consists of 4 hidden layers with
128 neurons per layer, and the nonlinear iteration step is set to 4. We evaluate two model variants:
unsupervised Newton-PINet (1 time block) and hybrid Newton-PINet (4 time blocks).

Generalized Korteweg-de Vries (KdV) equation (1D + time)

∂u

∂t
+ β1u

∂u

∂x
+ β2u

2 ∂u

∂x
+ β3u

3 ∂u

∂x
+ δ

∂3u

∂x3
= 0, x ∈ [−1, 1], t ∈ [0, 1]

The temporal and spatial resolutions are set to 101 × 257 with periodic boundary conditions. We
consider three different forms of nonlinear convection terms, corresponding to three combinations
of (β1, β2, β3). For each combination, 15 tasks are randomly generated by varying δ, leading to a
total of 45 tasks. Specifically:

KdV: (β1, β2, β3) = (1, 0, 0), δ ∈ [0.0322, 0.122],

M -KdV: (β1, β2, β3) = (0, 1, 0), δ ∈ [0.022, 0.062],

G-KdV: (β1, β2, β3) = (0, 0, 1), δ ∈ [0.082, 0.152].

Among them, 10 tasks are randomly chosen for training and the remaining 35 tasks for testing.
The model architecture consists of 4 hidden layers with 256 neurons per layer. 6 time blocks are
employed, and the nonlinear iteration step is set to 6.

Kuramoto-Sivashinsky (K-S) equation (1D + time)

∂u

∂t
+ βu

∂u

∂x
− γ

∂2u

∂x2
+ σ

∂4u

∂x4
= 0, x ∈ [0, 2π], t ∈ [0, 1]

The simulated data have a temporal and spatial resolution of 251 × 509, which is downsampled
to 63 × 129 for training and evaluation. Periodic boundary conditions are imposed. The fixed
coefficients are set as β = 100/16 and γ = 100/162. The parameter σ varies within the range
[200/164, 300/164], along with varying initial conditions:

u(x, 0) =

J∑
j=1

Aj sin

(
2πljx

L
+ ϕj

)
,

where J = 5, L = 1, Aj ∈ [−0.8, 0.8], lj ∈ {0, 1, 2, 3, 4}, and ϕj ∈ [−π, π]. In total, 150 tasks are
generated, of which 100 are used for training and 50 for testing. The model architecture consists of
4 hidden layers with 256 neurons per layer. 15 time blocks are employed, and the nonlinear iteration
step is set to 4.

Lid-driven cavity (LDC) equations (2D)

The 2D steady incompressible Navier-Stokes equations in LDC problem are given by
∂u
∂x + ∂v

∂y = 0,

u∂u
∂x + v ∂u

∂y + ∂p
∂x −

1
Re

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0,

u ∂v
∂x + v ∂v

∂y + ∂p
∂y −

1
Re

(
∂2v
∂x2 + ∂2v

∂y2

)
= 0,

where (x, y) ∈ [0, 1]2 and Re is the Reynolds number.

The simulated data are generated on a 200× 200 grid and then downsampled to 51× 51 for training
and testing. The boundary conditions are

top lid: u = 1, v = 0; other walls: u = v = 0.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The Re ranges from 1 to 1000 (specifically 1, 5, 10, 25, 50, 80, 100, ..., 1000 with a step of 50 from
100 to 1000), yielding 25 flow conditions. We use Re = 1, 50, 200, 400, 600, 800 as the training set
and the remaining cases as the test set. The model consists of 4 hidden layers with 128 neurons per
layer. With three output variables (u, v, p), the resulting weight dimension of the output layer (i.e.,
the number of columns in matrix A) is 128× 4× 3 = 1536. The nonlinear iteration step is set to 8.

(ii) Nonlinear forcing-type PDEs

Convection-diffusion-reaction (CDR) equation (1D + time)

∂u

∂t
+ α

∂u

∂x
− γ

∂2u

∂x2
− ρ1u+ ρ2u

2 + ρ3u
3 = 0, x ∈ [0, 1], t ∈ [0, 1].

The simulated data have a temporal and spatial resolution of 201× 257, which are downsampled to
101 × 129 for training and evaluation. Periodic boundary conditions are imposed. The parameters
are set as α = 1, γ ∈ {0.005, 0.01, 0.05}, ρ1, ρ2 ∈ {0, 1, 3, 5}, and ρ3 = 5. The initial conditions
are generated from

u(x, 0) =

J∑
j=1

Aj sin(ljx+ ϕj),

where J = 5, Aj ∈ [0.1, 0.5], lj ∈ {1, 2, 3, 4}, and ϕj ∈ [−π, π].
In total, 200 tasks are generated, with 40 used for training and 160 for testing. The model architec-
ture consists of 4 hidden layers with 128 neurons per layer. 4 time blocks are employed, and the
nonlinear iteration step is set to 4.

Klein-Gordon equation (1D + time)

∂2u

∂t2
− γ

∂2u

∂x2
+ u3 = q, x ∈ [0, 1], t ∈ [0, 1]

ICs: u(x, 0) = 0,
∂u

∂t
(x, 0) = 0,

where the solution is defined as u(x, t) = k1x cos(k2πt) + k3(xt)
3, which is used to derive the

corresponding Dirichlet BCs, and source term q. The spatio-temporal grid resolution is set to 32×32
for meta-learning, while a finer grid of 128 × 128 is used for testing. The parameters vary within
γ, k1, k3 ∈ [0.5, 3] and k2 ∈ [1, 7]. A total of 80 tasks are generated, with 16 used for meta-learning
and 64 for testing. The model network consists of 4 hidden layers with 128 neurons per layer. 1
time block is employed, and the nonlinear iteration step is set to 4.

Hyperbolic heat equation (1D + time)

∂u

∂t
− γ

∂2u

∂x2
+ k1 sinh(u) + k2 cosh(u) + k3 tanh(u) = q, x ∈ [−1, 1], t ∈ [0, 1],

where the solution is defined as u(x, t, k1, k2, k3) = sin(k1k2πx) cos(k3πx) e
−πt2 , which is used to

derive the corresponding ICs, Dirichlet BCs, and source term q. The spatio-temporal grid resolution
is set to 32×32 for meta-learning, while a finer grid of 128×128 is used for testing. The parameters
vary within γ ∈ [0.2, 3] and k1, k2, k3 ∈ [0.2, 2.5]. A total of 80 tasks are generated, with 16 used
for training and 64 for testing. The model network consists of 2 hidden layers with 450 neurons per
layer. 1 time block is employed, and the nonlinear iteration step is set to 4.

Logarithmic heat equation (1D + time)

∂u

∂t
− γ

∂2u

∂x2
+ k1u log(k2u) + k3e

k4u = q, x ∈ [−1, 1], t ∈ [0, 1],

where the solution is defined as u(x, t, k2, k4) =
(
sin(k2πx)+1.5

)
e−k4πx

2

e−πt2 , which is used to
derive the corresponding ICs, Dirichlet BCs, and source term q. The spatio-temporal grid resolution
is set to 32× 32 for meta-learning, while a finer grid of 128× 128 for testing. The parameters vary
within γ, k1, k3 ∈ [0.5, 5] and k2, k4 ∈ [0.5, 2]. A total of 80 tasks are generated, with 16 used for
meta-learning and 64 for testing. The model network consists of 2 hidden layers with 450 neurons
per layer. 1 time block is employed, and the nonlinear iteration step is set to 4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Helmholtz equation (2D)

∂2u

∂x2
+

∂2u

∂y2
− 100u+ 10 cosh(u) = q, x, y ∈ [0, 1.5],

where the solution is defined as u(x, y) = 4 cos(α1πx
2) cos(α2πy

2), which is used to derive the
corresponding Dirichlet BCs, and source term q. The spatial grid resolution is set to 32 × 32 for
meta-learning, while a finer grid of 128 × 128 is used for testing. The parameters vary within
α1, α2 ∈ [1, 3]. A total of 80 tasks are generated, with 20 used for meta-learning and 60 for testing.
The model network consists of 2 hidden layers with 450 neurons per layer. The nonlinear iteration
step is set to 4.

Parametric diffusion-reaction equation (2D)

∂2u

∂x2
+

∂2u

∂y2
+ u(1− u2) = q, x, y ∈ [−1, 1],

where the solution is defined as u(x, y, a1, a2, w1, w2, w3, w4) = a1 tanh(w1x) tanh(w2y) +
a2 sin(w3x) sin(w4y) is used to derive the corresponding Dirichlet BCs and source term q. The
spatial grid resolution is set to 32 × 32 for meta-learning, while a finer grid of 128 × 128 is used
for testing. The parameters vary within a1, a2 ∈ [0.1, 1] and w1, w2, w3, w4 ∈ [1, 5]. 17 tasks are
generated for meta-learning and 100 for testing. The model network consists of 2 hidden layers with
450 neurons per layer. The nonlinear iteration step is set to 4.

C.2 DATA GENERATION, ERROR METRICS, AND COMPUTATIONAL SETUP

Datasets for Burgers, generalized KdV, K-S, and CDR problems are generated using the Chebfun
package (Driscoll et al., 2014) with spectral Fourier discretization and a fourth-order exponential
time-differencing Runge-Kutta scheme (ETDRK4) (Cox & Matthews, 2002). Datasets for LDC
problem are generated using a computational fluid dynamics (CFD) method (Chiu & Poh, 2021).
For the remaining benchmark problems, analytical solutions are available.

We evaluate the generalization accuracy of the models using both mean squared error (MSE) and
relative L2 error. In addition, for the 1D nonlinear diffusion-reaction problem, we adopt the relative
MSE metric, consistent with the baseline study (Boudec et al., 2024) for comparison (see Table 3
and Fig. 11).

MSE =
1

n

n∑
s=1

(
ulabel
s − us

)2
, (49)

Relative L2 =

∥∥ulabel − u
∥∥
2

∥ulabel∥2
, (50)

Relative MSE =

∑n
s=1

(
ulabel
s − us

)2∑n
s=1

(
ulabel
s

)2 , (51)

where ulabel and u denote the ground-truth and predicted solutions for a given PDE instance, and n
is the total number of collocation points, including those for the PDE residual, IC/BC constraints.

In this study, all models are implemented in the JAX framework (Bradbury et al., 2018). For the
KdV, K-S, CDR, and LDC problems, model training is parallelized across four Tesla V100 GPUs;
all other models are trained on a single Tesla V100 GPU. Inference for all models is performed on a
single Tesla V100 GPU.

C.3 SUMMARY OF MODEL PERFORMANCE ON NONLINEAR PDE PROBLEMS

Table 4 summarizes the meta-learning parameter configurations on nonlinear PDEs considered in
this study, and Table 5 summarizes the model performance on each problem. For each problem,
besides the Newton-PINet model proposed in this study, two additional baseline models were tested:
one that uses the Picard method, referred to as PINet, and a purely data-driven DNN baseline which
incorporates PDE parameters as inputs. The reported meta-learning and fine-tuning time correspond
to the Newton-PINet model. Note that this table does not include comparisons with other benchmark

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

models on problems such as the Burgers’ equation with varying initial conditions; the detailed results
can be found in Table 2, Table 3, and Table 6.

As shown, Newton-PINet achieves superior test accuracy across nearly all nonlinear PDEs com-
pared to DNN and PINet, except for the Klein-Gordon equation where PINet exhibits slightly better
accuracy. Notably, for hyperbolic and logarithmic heat problems, the Picard approach employed
by PINet fails to converge (leading to NaN values during meta-learning), whereas Newton-PINet
remains stable and achieves accurate generalization.

Table 4: Summary of meta-learning parameter configurations on nonlinear PDEs in this study. For
time-dependent PDEs, the mesh size is reported as t × x, whereas for time-independent PDEs it is
reported as x× y. “Mesh size” and “No. A rows” refer to settings in the meta-learning stage unless
otherwise marked with “(test)”, which denotes the inference stage. “Dim.” denotes the dimension,
and “No.” stands for “number of”. “–” indicates that the time-blocking strategy is not applicable for
time-independent problems.

Problem Mesh size
(test)

Dim. npde + nic + nbc;
No. A rows (test)

Dim. w;
No. A columns

No. train/
test tasks

Nonlinear
iteration

No.
time blocks

Burgers’
(1D + time) 51×129 6810 512 16/34 6 1

Generalized KdV
(1D + time) 101×257 4402 1024 10/35 6 6

Kuramoto-Sivashinsky
(1D + time) 63×129 649 1024 100/50 4 15

Convection-diffusion-
reaction (1D + time) 101×129 3404 512 40/160 4 4

Klein-Gordon
(1D + time)

32×32
(128×128) 1148 (16892) 512 16/64 4 1

Hyperbolic heat
(1D + time)

32×32
(128×128) 1148 (16892) 900 16/64 4 1

Logarithmic heat
(1D + time)

32×32
(128×128) 1148 (16892) 900 16/64 4 1

Helmholtz
(2D)

32×32
(128×128) 1148 (16892) 900 20/60 4 –

Parametric diffusion
-reaction (2D)

32×32
(128×128) 1148 (16892) 900 17/100 4 –

Lid-driven cavity
(2D) 51×51 7595 1536 6/19 8 –

Prediction results of generalized KdV, K-S, and LDC problems: Due to the coexistence of
nonlinear convection terms and high-order dispersion operators, solving the generalized KdV and
K-S equations is particularly challenging for PINN-based models. To mitigate these difficulties, we
adopt a larger number of temporal domain partitions to stabilize training and improve convergence
(6 time blocks for the generalized KdV and 15 time blocks for the K-S equations). As shown in
Table 5 and Fig. 5, Newton-PINet achieves test errors of MSE = 1.94 × 10−3 on the generalized
KdV, MSE = 3.45×10−2 on the K-S, and MSE = 1.67×10−4 on the LDC problem, outperforming
PINet and DNN under the same configuration. Figures 6, 7, 8 show the prediction results of the
Newton-PINet model on test tasks for the generalized KdV, K-S, and LDC problems, respectively.

Prediction results of nonlinear forcing-type PDEs: Figures 9 and 10 show the prediction results
of Newton-PINet on some test cases for the convection-diffusion-reaction (CDR) problem and other
nonlinear forcing-type PDEs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: Summary of model performance on nonlinear PDEs in this study. “NaN” indicates numer-
ical overflow during computation.

Problem Meta-learning
epoch

Meta-learning
time cost

Inference time
per test task

Test MSE of models

DNN PINet Newton-PINet

Burgers’ 1000 286s 0.035s 1.06e-4 1.10e-4 1.79e-6

Generalized KdV 1000 453s 0.359s 3.74e-2 1.49e-2 1.94e-3

Kuramoto-Sivashinsky 3000 1014s 0.552s 5.03e-1 106 3.45e-2

Convection-diffusion-
reaction 1000 203s 0.099s 5.27e-1 4.65e-3 4.32e-5

Klein-Gordon 1000 105s 0.065s 1.04 1.88e-7 2.36e-7

Hyperbolic heat 2000 393s 0.069s 1.06e-1 NaN 1.50e-6

Logarithmic heat 2000 395s 0.067s 2.99e-1 NaN 2.16e-6

Helmholtz 2000 344s 0.067s 5.98 NaN 1.33e-3

Parametric
diffusion-reaction 2000 342s 0.047s 3.43e-1 1.18e-8 1.60e-10

Lid-driven cavity 1000 290s 0.40s 1.42e-1 1.92e-4 1.67e-4

Figure 5: MSE distributions across all test tasks for different models on the generalized KdV and
K-S problems.

C.4 COMPARISON WITH BASELINE META-LEARNING PINNS ON NONLINEAR BENCHMARK
PROBLEMS

We compare Newton-PINet with the baseline models from the recent study (Boudec et al., 2024) on
a 1D nonlinear reaction-diffusion problem. The prediction results of Newton-PINet are shown in
Fig. 11, and the detailed comparisons are reported in Table 3 of the main text.

We further compare the performance of Newton-PINet with state-of-the-art gradient-based meta-
learning PINNs (Penwarden et al., 2023) and Baldwinian-PINNs (Wong et al., 2025). For a fair
comparison, we train an unsupervised Newton-PINet with a meta-learning loss of LSE and a hybrid
Newton-PINet with a meta-learning loss of MSE, considering a single time-block setting. Table 6
summarizes the generalization performance and computational cost of Newton-PINet relative to
these meta-learned PINN models. Compared to unsupervised gradient-based meta-PINNs, the un-
supervised Newton-PINet consistently achieves lower test errors and shorter inference times. For
instance, on the 2D parametric diffusion-reaction problem, Newton-PINet exhibits approximately
a 179× improvement in generalization accuracy while requiring 7000× less computational time.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 6: Prediction results of Newton-PINet for the generalized KdV problem.

Against gradient-free Baldwinian-PINN, which employs Picard to handle PDE nonlinear terms,
Newton-PINet which employs the Newton linearization method, reduces test MSE by 2∼5 orders
of magnitude across the benchmark problems and shortens single-task fine-tuning time by roughly
one order of magnitude.

We also note that, in some cases, the unsupervised Newton-PINet achieves slightly higher accu-
racy than the hybrid Newton-PINet. This occurs for relatively simple nonlinear PDEs, where us-
ing an LSE-based meta-learning loss facilitates better convergence and generalization than MSE.
Conversely, for more complex nonlinear PDEs, such as the KdV and K-S equations, adopting an
MSE-based meta-learning loss leads to much better performance.

D ABLATION STUDIES

D.1 ROBUSTNESS OF THE META-LEARNED TIKHONOV REGULARIZATION PARAMETER

In our method, the Tikhonov regularization parameter (λreg) is not manually tuned but meta-learned,
enabling the model to identify a stable and task-agnostic regularization level across all training tasks.
Once learned, λreg remains fixed during test-time adaptation.

To evaluate its stability, using the Burgers’ problem as an example, we additionally perform per-task
optimization by initializing λreg from the meta-learned value and further updating it for each test
task with 300 epochs of gradient-based updates. As shown in Table 7, the meta-learned λreg remains
close to the per-task optimized values across a wide range of test tasks, and their generalization

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 7: Prediction results of Newton-PINet for the K-S problem.

performance differs only marginally. This indicates that the meta-learned hyperparameter exhibits
strong stability and low sensitivity during test-time adaptation.

D.2 EFFECT OF INITIAL GUESS IN NONLINEAR ITERATIONS

We conduct empirical ablations to evaluate how the initial field guess (uguess) in nonlinear iterations
influences model accuracy. Let’s quantify the distance between uguess and the ground truth solution
(ulabel) using the ℓ2 norm (∥uguess − ulabel∥2). To assess sensitivity to initialization, we test several
representative choices for uguess: setting uguess at all time steps equal to the initial field (ut=0), all
zeros field, all ones field, and normal random field.

As shown in Table 8, for the time-dependent Burgers’ problem, using the ulabel as uguess leads to
the lowest error, representing the convergence limit of our method. The ut=0 strategy keeps uguess

close to the ulabel (lowest non-zero distance) and achieves the best accuracy among the evaluated
initialization choices. As shown in the Fig. 12, the converged error starting from ut=0 is comparable
to that obtained when using ulabel as the initial guess. For the more chaotic K-S system, attempting
to solve a single time-block with the initialization of u0 proved very challenging. This is because
a simple initial condition can evolve into highly complex structures over time, causing this uguess

to deviate from ulabel. To address this, we employed a 15-block temporal decomposition strat-
egy. The block-wise inference generally makes the uguess for each sub-block closer to the ulabel,
thereby improving the convergence of the least-squares solve. As Table 8 shows, the test errors
under different initial guesses are comparable. This indicates that the temporal block decomposition
mitigates the sensitivity of the least-squares solution to the choice of uguess. We further tested the
time-independent lid-driven cavity (LDC) problem and found that zero initialization achieves the
lowest test error.

Our experiments show that for the strongly nonlinear/chaotic K-S equations, even a relatively small
initialization distance (10–20) can lead to significantly worse convergence, whereas tasks like the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 8: Prediction result of Newton-PINet for the 2D lid-driven cavity problem. Velocity magni-
tude is computed as V =

√
u2 + v2.

Figure 9: Prediction results of Newton-PINet for the CDR problem.

Burgers’ equation and LDC problems are much less sensitive. Crucially, our empirical observations
unveil a few strategies to mitigate this sensitivity to initialization. Setting uguess at all time steps
equal to the initial field (ut=0) can help provide high accuracy for time-dependent problems, while a
temporal block decomposition strategy may be employed for increasingly more complex nonlinear
time-dependent systems like the K-S problem.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 10: Prediction results of Newton-PINet for the other 5 nonlinear PDE problems.

Figure 11: Prediction results of Newton-PINet for the 1D nonlinear reaction-diffusion benchmark
problem.

D.3 EFFECT OF TIME-BLOCKING STRATEGIES

We evaluate the effect of different numbers of time blocks on the average test error taking the
convection-diffusion-reaction (CDR) problem as an example. As shown in Table 9, without tem-
poral decomposition (i.e., using a single time block), the model achieves fast inference but suffers
from large errors. This is because the initial guess in the nonlinear iteration may deviate significantly
from the true solution, causing poor least-squares accuracy. To address this issue, we apply a tem-
poral domain decomposition strategy: starting from the known initial condition, the final prediction

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Model comparison on nonlinear benchmark problems. Baselines are reported from Pen-
warden et al. (2023); Wong et al. (2025). “–” denotes results not reported in the references.

Meta-learning PINNs

Nonlinear benchmark problems (number of test tasks)

Heat
(64)

Allen-Cahn
(32)

Diffusion
-reaction (64)

6D diffusion
-reaction (100)

U
ns

up
er

vi
se

d

Random Error1 0.0052 0.015 0.011 0.0022
Time2 156 496 1073 612

MAML Error1 0.0045 – – –
Time2 188 – – –

Center Error1 0.0045 0.012 0.0095 0.0018
Time2 96 201 426 494

Multitask Error1 0.0048 0.012 0.009 0.0017
Time2 49 120 243 431

LMC Error1 0.0049 0.011 0.0091 0.0015
Time2 59 120 302 428

RBF Error1 0.0044 0.012 0.0081 0.0017
Time2 35 68 280 375

Polynomial Error1 0.0046 0.012 0.0085 0.0018
Time2 38 44 249 496

Newton-PINet
(Ours)

Rel. L2 4.0e-6 4.2e-7 1.4e-4 9.5e-6
Time3 0.06 0.044 0.047 0.049

H
yb

ri
d Baldwinian-PINN

Rel. L2 6.0e-4 9.5e-4 1.3e-4 1.9e-4
MSE 1.3e-7 2.0e-7 1.2e-8 1.6e-8
Time3 0.87 1.19 0.58 0.6

Newton-PINet
(Ours)

Rel. L2 7.3e-6 3.7e-6 1.4e-4 1.3e-5
MSE 1.7e-11 2.5e-12 6.8e-10 1.6e-10
Time3 0.062 0.044 0.047 0.047

1 Relative L2 errors obtained after 500 iterations of fine-tuning using ADAM followed by L-
BFGS, as described in Penwarden et al. (2023).

2 Only the L-BFGS optimization time (s) is reported in Penwarden et al. (2023).
3 Mean inference time per test task (s), on a Tesla V100 GPU.

Table 7: Sensitivity of the meta-learned λreg to task adaptation in test inference. For meta-learning,
λreg is learned during meta-training and kept fixed during testing. For Per-task optimization, λreg

is initialized from the meta-learned model parameters and then optimized for each test task through
gradient-based updates.

Method
γ (test tasks of Burgers’ problem)

0.001 0.003 0.004 0.006 . . . 0.047

Meta-learning
λreg 7.57e-4
MSE 3.30e-5 2.07e-6 1.44e-6 4.59e-7 . . . 7.54e-8

Per-task
optimization

λreg 2.07e-5 4.34e-4 4.81e-4 3.26e-4 . . . 9.79e-5
MSE 3.21e-5 2.01e-6 1.44e-6 4.69e-7 . . . 7.07e-8

of each block serves as the initial guess for the next. This ensures that each block starts more closely
to the true dynamics, enabling reliable long-horizon prediction. As shown in the table, increasing
the number of blocks can substantially reduce error, though at the cost of longer inference time. For
this problem, a 4-block configuration is adopted to balance the accuracy and efficiency.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Effect of different initial guesses for the nonlinear iterations on test errors.

Problem Metrics
Initial guess for the nonlinear iteration (uguess)

Ground truth All ut=0 (ours) All zeros All ones Normal random

Burgers’
Distance 0 26.4 45.9 93.2 93.6
MSE 1.24e-6 1.24e-6 1.24e-6 1.11e-04 4.84e-3
Relative L2 1.04e-3 1.04e-3 1.04e-3 9.61e-03 4.96e-2

K-S
Distance 0 3.3 13.3 23.9 24.4
MSE 2.84e-2 2.83e-2 2.91e-2 2.91e-2 3.08e-2
Relative L2 1.76e-1 1.76e-1 1.79e-1 1.79e-1 1.86e-1

LDC
Distance 0 – 10.5 51.7 51.3
MSE 1.58e-4 – 1.67e-4 1.76e-3 1.86e-4
Relative L2 5.54e-2 – 5.61e-2 1.32e-1 5.69e-2

Figure 12: Convergence comparison of single-task generalization starting from the true field versus
u0 as initial guesses.

D.4 EFFECT OF INITIAL CONDITION WEIGHT ON DRIFT AT TEMPORAL BLOCK BOUNDARIES

As can be seen in Fig. 3, the CDR prediction results exhibit noticeable drift at temporal block bound-
aries. Upon investigation, the drift at boundaries is actually due to an under-weighted enforcement
of the initial condition (IC) relative to the PDE and boundary condition (BC) in Tikhonov regular-
ization during the meta-learning and test time. After the ablation study, as shown in Table 10, we
found that increasing the IC weight (λic) from 1 to 2 can reduce the test error. Figure 13 illustrates
that this IC weight adjustment can effectively mitigate the drift at block boundaries.

Figure 13: Mitigation of drift at block boundaries via adjustment of the initial condition (IC) weight
in the Tikhonov regularization (4-time-block for CDR inference).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 9: Ablation study for different time-blocking strategies.

Metrics
Number of blocks

1 2 4 6 10 15 20

Test MSE 3.56e-3 4.46e-3 9.57e-6 2.93e-6 9.07e-7 1.05e-6 5.78e-7
Test relative L2 2.23e-1 3.96e-2 3.56e-3 1.80e-3 1.13e-3 1.12e-3 1.08e-3
Inference time
per task (s)

3.74e-2 6.82e-2 1.01e-1 4.04e-1 6.77e-1 1.26 1.66

Table 10: Effect of initial condition (IC) weight in the Tikhonov regularization on test errors.

Errors
Weight parameter for initial condition (λic)

1 1.5 2 5 10

Test MSE 9.57e-6 6.56e-6 5.75e-6 5.77e-6 6.46e-6
Test relative L2 3.56e-3 2.89e-3 2.67e-3 2.67e-3 2.80e-3

D.5 MODEL PERFORMANCE UNDER OTHER TYPES OF BOUNDARY CONDITIONS

As shown in Table 11, we test the model performance for Dirichlet, Neumann, and mixed BCs on the
hyperbolic heat and the Klein-Gordon problems. As shown in Table 12, we also evaluate the model
for discontinuous BCs on the 2D lid-driven cavity Navier-Stokes problem, where the velocity field
exhibits corner discontinuities at the moving lid. These experiments demonstrate that the proposed
framework is both theoretically and practically applicable to a broad range of BC types, beyond
periodic and Dirichlet settings.

Table 11: Model performance under different boundary conditions.

Problem
Dirichlet Neumann Mixed

Time1 MSE Rel. L2 Time1 MSE Rel. L2 Time1 MSE Rel. L2

Heat 0.067 1.69e-6 1.76e-3 0.071 1.80e-5 5.84e-3 0.086 5.35e-5 1.04e-2
Klein-Gordon 0.064 2.36e-7 3.86e-4 0.084 2.34e-6 1.16e-3 0.082 4.05e-6 1.13e-3

1. Inference time per test task (s)

D.6 ABLATION STUDIES ON MODEL ARCHITECTURE

Newton-PINet employs a skip-connected multi-layer architecture with Tikhonov regularization, Si-
nusoidal feature embeddings at the input, and sin(·) activations in all hidden layers. In this section,
we perform ablation studies to examine the impact of these design choices and other hyperparame-
ters. All test errors in the following tables are aggregated from 5 individual runs.

Effect of network depth: We first study the impact of network depth using the Burgers’ and CDR
problems, with and without skip connections (Table 13). For comparison, Sinusoidal feature embed-
dings are always included at the input, and all hidden layers adopt sin(·) activations. The number of
neurons per layer is set to 512, 256, 170, and 128 for depths of 1∼4, respectively, so that the last-
layer width remains around 512 when skip connections are included. The results show that shallow
networks (1 layer) fail to achieve satisfactory accuracy in both problems. Increasing depth without
skip connections often deteriorates generalization. In contrast, with skip connections, the model
consistently maintains high accuracy across all depths, confirming the stabilizing effect of skip con-
nections and their robustness to depth variations. This property greatly simplifies hyperparameter
tuning compared to standard PINNs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 12: Model performance for 2D lid-driven cavity (LDC) under discontinuous boundary condi-
tions.

Problem Inference time per test task (s) Test MSE Test Relative L2

2D LDC 0.40 2.30e-4 6.04e-2

Table 13: Test relative L2 errors of model with (w/) and without (w/o) skip connections under
different network depths.

Problem
Skip
connections

Network depth

1 layer 2 layers 3 layers 4 layers

Burgers’
w/o

1.04e-2 3.75e-4 4.77e-5 5.02e-5
±1.22e-2 ±1.50e-3 ±1.20e-4 ±1.05e-4

w/
1.04e-2 1.43e-5 1.93e-6 1.79e-6
±1.22e-2 ±7.21e-5 ±9.24e-6 ±7.98e-6

CDR
w/o

4.70e-3 7.51e-5 6.80e-4 2.12e-3
±1.62e-3 ±7.46e-5 ±7.30e-4 ±1.97e-3

w/
4.70e-3 5.43e-5 5.64e-5 4.32e-5
±1.62e-3 ±4.58e-5 ±5.88e-5 ±4.18e-5

Effect of network width: Next, we fix the depth to 4 layers and compare the effect of different
per-layer widths, with and without skip connections (Table 14). Across both Burgers’ and CDR
problems, incorporating skip connections consistently improves accuracy under almost all width
settings. An exception occurs for the case where all hidden layers have 256 neurons, where skip con-
nections slightly degrade performance—likely due to the substantially increased final-layer width,
which makes the Tikhonov regularization computation numerically more challenging. Overall, skip
connections improve robustness to width variations.

Table 14: Test relative L2 errors with (w/) and without (w/o) skip connections under different net-
work widths (from top to bottom, corresponding to layer 1∼4).

Problem
Skip
connections

Number of nodes in each layer

256
256
256
256

128
128
128
128

64
64
64
64

32
32
32
32

16
16
16
16

16
32
64

128

128
64
32
16

Burgers’
w/o

9.13e-6 5.02e-5 1.01e-3 1.24e-3 1.77e-3 4.87e-4 1.14e-3
±1.87e-5 ±1.05e-4 ±2.06e-3 ±2.12e-3 ±2.38e-3 ±8.03e-4 ±1.95e-3

w/
2.19e-6 1.79e-6 4.12e-6 8.14e-5 2.03e-3 3.17e-4 5.41e-6
±7.43e-6 ±7.98e-6 ±1.44e-5 ±1.11e-4 ±2.78e-3 ±5.66e-4 ±1.66e-5

CDR
w/o

3.88e-4 2.12e-3 4.80e-3 5.98e-2 1.05e-1 1.34e-3 1.24e-1
±3.44e-4 ±1.97e-3 ±3.79e-3 ±8.14e-2 ±6.29e-2 ±8.42e-4 ±7.24e-2

w/
1.10e-3 4.32e-5 2.25e-4 7.73e-4 6.48e-3 2.02e-4 4.55e-4
±2.20e-3 ±4.18e-5 ±2.14e-4 ±4.77e-4 ±8.32e-3 ±1.82e-4 ±3.47e-4

Effect of mesh resolution: We then examine performance under different mesh resolutions, with
consistent resolutions applied during meta-training and testing (Table 15). With skip connections,
the model exhibits stronger adaptability to resolution changes, particularly in the CDR problem.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Notably, different resolutions alter the size of the matrices, which can influence numerical stability.
Nevertheless, skip connections help preserve accuracy under these settings.

Table 15: Test relative L2 errors with (w/) and without (w/o) skip connections under different mesh
resolutions

Problem
Skip
connections

Mesh resolution (t, x)

11×29 13×33 17×43 26×65 51×129

Burgers’
w/o

4.17e-5 7.19e-6 2.23e-5 1.27e-5 5.02e-5
±4.57e-5 ±1.52e-5 ±2.30e-5 ±1.74e-5 ±1.05e-4

w/
2.57e-4 5.54e-6 2.80e-5 1.49e-6 1.79e-6
±7.24e-4 ±1.62e-5 ±4.61e-6 ±7.00e-6 ±7.98e-6

CDR

11×29 21×49 41×69 71×99 101×129

w/o
6.34e-2 3.08e-3 2.26e-3 1.51e-3 2.12e-3
±9.09e-2 ±2.42e-3 ±1.78e-3 ±1.16e-3 ±1.97e-3

w/
3.72e-2 3.27e-3 4.03e-5 3.36e-5 4.32e-5
±3.85e-2 ±4.55e-3 ±1.44e-5 ±3.13e-5 ±4.18e-5

Effect of activation functions and Sinusoidal embeddings: We further compare activation func-
tions under varying depths, with skip connections included (Table 16). For tanh(·) and Gaussian
activations, Sinusoidal embeddings are not used, while for sin(·) activations they are applied at the
input. The combination of Sinusoidal embeddings with sin(·) consistently outperforms other activa-
tions across different depths, highlighting the effectiveness of this design choice for nonlinear PDE
learning.

Table 16: Test relative L2 errors of models with different activation functions under varying network
depths

Problem
Activation
function

Network depth

1 layer 2 layers 3 layers 4 layers

Burgers’

tanh 1.07e-2 1.30e-4 6.39e-4 7.13e-5
±1.30e-2 ±2.42e-4 ±2.54e-3 ±1.60e-4

Gaussian 1.14e-2 4.64e-3 8.27e-6 3.28e-6
±1.31e-2 ±8.95e-3 ±3.06e-5 ±1.26e-5

sin 1.04e-2 1.43e-5 1.93e-6 1.79e-6
±1.22e-2 ±7.21e-5 ±9.24e-6 ±7.98e-6

CDR

tanh 3.94e-2 1.84e-3 6.09e-3 4.16e-2
±1.33e-2 ±2.18e-3 ±1.16e-2 ±8.27e-2

Gaussian 3.60e-2 5.62e-3 6.62e-4 2.57e-4
±2.11e-2 ±5.25e-3 ±7.16e-4 ±2.01e-4

sin 4.70e-3 5.43e-5 5.64e-5 4.32e-5
±1.62e-3 ±4.58e-5 ±5.88e-5 ±4.18e-5

Effect of weight initialization and learning rate: During meta-learning, we update the hidden-
layer weights (w̃) and other learning parameters via gradient descent. Here, we investigate the
impact of weight initialization schemes and learning rate (η) settings on the model generalization
(Table 17). Results indicate that He initialization together with a smaller initial learning rate leads to
the most stable and accurate generalization performance, whereas larger learning rates often cause
unstable training or accuracy degradation.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 17: Test relative L2 errors under different weight initialization methods and initial learning
rates

Problem
Weight
initialization

Initial learning rate

0.0005 0.005 0.05

Burgers’
Xavier 7.57e-5 2.83e-6 2.09e-3

±1.62e-4 ±9.33e-6 ±5.54e-3

He 1.57e-5 1.79e-6 2.69e-3
±7.89e-5 ±7.98e-6 ±4.93e-3

CDR
Xavier 2.62e-2 5.79e-4 1.11e-3

±2.17e-2 ±4.69e-4 ±2.20e-3

He 2.78e-4 4.32e-5 1.68e-2
±3.27e-4 ±4.18e-5 ±3.20e-2

In summary: Newton-PINet benefits significantly from skip connections, which enhance robust-
ness to depth, width, and mesh resolution, thereby reducing the need for extensive hyperparameter
tuning. Sinusoidal feature embeddings with sin(·) activations further boost accuracy across depths,
and careful initialization and learning rate selection improve stability. Collectively, these results ex-
plain why Newton-PINet maintains reliable generalization across diverse nonlinear PDE problems.

E PRACTICAL SCALING DISCUSSION OF NEWTON-PINET

Effectiveness of Tikhonov regularization: The scalability of the Tikhonov solution is determined
by the matrix A. Its rows grow with the total number of PDE, IC, and BC residual samples. Its
column size is determined by the product of the pre-final feature dimension and the output dimension
(Do). The pre-final feature dimension equals the total number of neurons in the L− 1 hidden layers
(each of width Nn) due to the skip connections. This results in A ∈ R(npde+nic+nbc)×DoNn(L−1).

For 2D/3D or multi-physics systems (e.g., Navier-Stokes), the increase in the number of PDE equa-
tions requires more residual sampling points, while a higher output dimensionality enlarges the
number of columns, making A larger and more challenging to solve, particularly during Newton
iterations for nonlinear problems.

Our strategy is to moderately control the pre-final feature dimension, for example, by decreasing the
number of neurons in each layer, thereby reducing the number of columns of A and ensuring that
the least-squares problem remains reasonably overdetermined. Since the Tikhonov update (λregI+

ATA)w = ATb involves only ATA ∈ RDoNn(L−1)×DoNn(L−1), its computational cost depends
primarily on the feature dimension, as opposed to the potentially very large number of residual
samples in high-dimensional or multiphysics domains. This keeps the Tikhonov solver tractable
as long as the feature dimension is properly controlled. In our experiments, the Newton-PINet
achieves high accuracy without requiring a large pre-final feature dimension (i.e., no. features ≪
no. collocation points).

Time-blocking strategy: In addition to the matrix size, the scalability of our model for nonlin-
ear problems also depends on the quality of the initial guess for the iterative updates. Similar to
the theoretical behavior of the Newton method, if the initial guess deviates too far from the true
solution, more Newton iterations are required to achieve reasonable convergence. This challenge
becomes particularly severe for time-dependent chaotic systems, such as the Kuramoto-Sivashinsky
(K-S) equation, where even simple initial conditions can quickly evolve into highly complex spa-
tiotemporal patterns. Consequently, it is difficult to obtain an initial guess close to the solution. We
can adopt the temporal domain decomposition strategy: starting from the known initial condition,
the final prediction of a previous block is used as the initial guess for the next block. This ensures
that each block starts more closely to the true dynamics, improving the stability and accuracy of
the least-squares updates without using large Newton iterations, and enabling reliable long-horizon
prediction.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Low-rank strategy: We would like to clarify that although the task adaptation step is formulated
as a least-squares problem, the matrix A in our method is not sparse in the traditional numerical
PDE solver sense. Because the features are generated by a multilayer neural representation with skip
connections, each row of A contains dense network features rather than the typical discretization-
induced sparsity and structure. As a consequence, the rank and conditioning of our least-squares sys-
tem is determined jointly by (i) the density and distribution of collocation points, (ii) the Tikhonov
parameter, and more importantly (iii) the quantity and expressiveness of hidden-layer weights that
shape the feature space. In this instance, the practical scaling for large collocation sets may
derive more from the fact that one can still control the cost of the solve through meta-learning
a better (yet minimal) set of pre-final layer features.

For this reason, low-rank or iterative solvers designed for large sparse PDE matrices (e.g., LU de-
composition or Krylov solvers) may not offer clear advantages in our setting. We experimented
with SVD-based solvers, LU, and Cholesky factorizations; none achieved better accuracy-stability
trade-offs than the Tikhonov formulation used in our method.

Nonetheless, a more comprehensive investigation of scalable iterative schemes tailored to dense
neural-feature matrices is an interesting direction for future work.

F USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as an auxiliary tool for writ-
ing support. Specifically, the LLM assisted in refining some English expressions and improving the
formatting of tables. The research ideas, literature review, methodological development, code im-
plementation, figures, and experimental results were entirely conceived and executed by the authors
without the involvement of LLMs.

38

	Introduction and related works
	Preliminaries
	Methodology
	Experiment results
	Learning to solve PDEs with nonlinear convection term
	Learning to solve PDEs with nonlinear forcing term

	Conclusion
	Newton-PINet model
	Skip-connected PINN architecture
	Physics-based least-squares formulation
	Meta-learning PINN on training tasks
	Gradient-free fine-tuning to new tasks
	Linearization for nonlinear PDEs

	Convergence analysis of the Newton linearization
	Nonlinear system formulation
	Classical Newton method
	Our Newton-PINet: Newton linearization used in Tikhonov-regularized PINN
	PINet: Pichard linearization used in Tikhonov-regularized PINN

	Problem description and experimental results
	Description of nonlinear PDE problems
	Data generation, error metrics, and computational setup
	Summary of model performance on nonlinear PDE problems
	Comparison with baseline meta-learning PINNs on nonlinear benchmark problems

	Ablation studies
	Robustness of the meta-learned Tikhonov regularization parameter
	Effect of initial guess in nonlinear iterations
	Effect of time-blocking strategies
	Effect of initial condition weight on drift at temporal block boundaries
	Model performance under other types of boundary conditions
	Ablation studies on model architecture

	Practical scaling discussion of Newton-PINet
	Use of Large Language Models (LLMs)

