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Abstract
The research study of detecting multiple in-
tents and filling slots is becoming more popular
because of its relevance to complicated real-
world situations. Recent advanced approaches,
which are joint models based on graphs, might
still face two potential issues: (i) the uncer-
tainty introduced by constructing graphs based
on preliminary intents and slots, which may
transfer intent-slot correlation information to
incorrect label node destinations, and (ii) di-
rect incorporation of multiple intent labels for
each token w.r.t. token-level intent voting might
potentially lead to incorrect slot predictions,
thereby hurting the overall performance. To
address these two issues, we propose a joint
model named MISCA. Our MISCA introduces
an intent-slot co-attention mechanism and an
underlying layer of label attention mechanism.
These mechanisms enable MISCA to effec-
tively capture correlations between intents and
slot labels, eliminating the need for graph con-
struction. They also facilitate the transfer of
correlation information in both directions: from
intents to slots and from slots to intents, through
multiple levels of label-specific representations,
without relying on token-level intent informa-
tion. Experimental results show that MISCA
outperforms previous models, achieving new
state-of-the-art overall accuracy performances
on two benchmark datasets MixATIS and MixS-
NIPS. This highlights the effectiveness of our
attention mechanisms.

1 Introduction

Spoken language understanding (SLU) is a funda-
mental component in various applications, ranging
from virtual assistants to chatbots and intelligent
systems. In general, SLU involves two tasks: intent
detection to classify the intent of user utterances,
and slot filling to extract useful semantic concepts
(Tur and De Mori, 2011). A common approach to
tackling these tasks is through sequence classifica-
tion for intent detection and sequence labeling for

slot filling. Recent research on this topic, recogniz-
ing the high correlation between intents and slots,
shows that a joint model can improve overall per-
formance by leveraging the inherent dependencies
between the two tasks (Louvan and Magnini, 2020;
Zhang et al., 2019a; Weld et al., 2022). A number
of joint models have been proposed to exploit the
correlations between single-intent detection and
slot filling tasks, primarily by incorporating atten-
tion mechanisms (Goo et al., 2018; Li et al., 2018;
E et al., 2019; Qin et al., 2019; Zhang et al., 2019b;
Chen et al., 2019; Dao et al., 2021).

However, in real-world scenarios, users may of-
ten express utterances with multiple intents, as il-
lustrated in Figure 1. This poses a challenge for
single-intent systems, potentially resulting in poor
performance. Recognizing this challenge, Kim
et al. (2017) is the first to explore the detection
of multiple intents in a SLU system, followed by
Gangadharaiah and Narayanaswamy (2019) who
first propose a joint framework for multiple intent
detection and slot filling. Qin et al. (2020) and Qin
et al. (2021) have further explored the utilization of
graph attention network (Veličković et al., 2018) to
explicitly model the interaction between predicted
intents and slot mentions. Recent state-of-the-art
models Co-guiding (Xing and Tsang, 2022a) and
Rela-Net (Xing and Tsang, 2022b) further incor-
porate the guidance from slot information to aid in
intent prediction, and design heterogeneous graphs
to facilitate more effective interactions between
intents and slots.

We find that two potential issues might still per-
sist within these existing multi-intent models: (1)
The lack of “gold” graphs that accurately capture
the underlying relationships and dependencies be-
tween intent and slot labels in an utterance. Previ-
ous graph-based methods construct a graph for each
utterance by predicting preliminary intents and
slots (Qin et al., 2021; Xing and Tsang, 2022a,b).
However, utilizing such graphs to update represen-
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Figure 1: An example of utterance with multiple intents and slots.

tations of intents and slots might introduce uncer-
tainty as intent-slot correlation information could
be transferred to incorrect label node destinations.
(2) The direct incorporation of multiple intent la-
bels for each word token to facilitate token-level
intent voting (Qin et al., 2021; Xing and Tsang,
2022a,b). To be more specific, due to the absence
of token-level gold intent labels, the models are
trained to predict multiple intent labels for each
word token in the utterance. Utterance-level intents
depend on these token-level intents and require at
least half of all tokens to support an intent. In
Figure 1, for instance, a minimum of 12 tokens
is needed to support the “atis_ground_fare” intent,
while only 8 tokens (enclosed by the left rectangle)
support it. Note that each token within the utterance
context is associated with a specific intent. Thus,
incorporating irrelevant intent representations from
each token might potentially lead to incorrect slot
predictions, thereby hurting the overall accuracy.

To overcome the above issues, in this paper, we
propose a new joint model with an intent-slot co-
attention mechanism, which we name MISCA, for
multi-intent detection and slot filling. Equivalently,
our novel co-attention mechanism serves as an ef-
fective replacement for the graph-based interac-
tion module employed in previous works, eliminat-
ing the need for explicit graph construction. By
enabling seamless intent-to-slot and slot-to-intent
information transfer, our co-attention mechanism
facilitates the exchange of relevant information be-
tween intents and slots. This novel mechanism
not only simplifies the model architecture, but also
maintains the crucial interactions between intent
and slot representations, thereby enhancing the
overall performance.

In addition, MISCA also presents a label atten-
tion mechanism as an underlying layer for the co-
attention mechanism. This label attention mecha-
nism operates independently of token-level intent
information and is designed specifically to enhance
the extraction of slot label- and intent label-specific
representations. By capturing the characteristics
of each intent/slot label, the label attention mech-
anism helps MISCA obtain a deep understanding

and fine-grained information about the semantic
nuances associated with different intent and slot
labels. This, in turn, ultimately helps improve the
overall results of intent detection and slot filling.

Our contributions are summarized as follows: (I)
We introduce a novel joint model called MISCA
for multiple intent detection and slot filling tasks,
which incorporates label attention and intent-slot
co-attention mechanisms.1 (II) MISCA effectively
captures correlations between intents and slot la-
bels and facilitates the transfer of correlation infor-
mation in both the intent-to-slot and slot-to-intent
directions through multiple levels of label-specific
representations. (III) Experimental results show
that our MISCA outperforms previous strong base-
lines, achieving new state-of-the-art overall accura-
cies on two benchmark datasets.

2 Problem Definition and Related Work

Given an input utterance consisting of n word to-
kens w1, w2, ..., wn, the multiple intent detection
task is a multi-label classification problem that pre-
dicts multiple intents of the input utterance. Mean-
while, the slot filling task can be viewed as a
sequence labeling problem that predicts a slot label
for each token of the input utterance.

Kim et al. (2017) show the significance of the
multiple intents setting in SLU. Gangadharaiah and
Narayanaswamy (2019) then introduce a joint ap-
proach for multiple intent detection and slot filling,
which models relationships between slots and in-
tents via a slot-gated mechanism. However, this
slot-gated mechanism represents multiple intents
using only one feature vector, and thus incorporat-
ing this feature vector to guide slot filling could
lead to incorrect slot predictions.

To generate fine-grained intents information for
slot label prediction, Qin et al. (2020) introduce
an adaptive interaction framework based on graph
attention networks. However, the autoregressive
nature of the framework restricts its ability to use
bidirectional information for slot filling. To over-
come this limitation, Qin et al. (2021) proposes a

1Our MISCA implementation is publicly available at:
https://github.com/VinAIResearch/MISCA.

https://github.com/VinAIResearch/MISCA
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Figure 2: Illustration of the architecture of our joint model MISCA.

global-locally graph interaction network that incor-
porates both a global graph to model interactions
between intents and slots, and a local graph to cap-
ture relationships among slots.

More recently, Xing and Tsang (2022a) propose
two heterogeneous graphs, namely slot-to-intent
and intent-to-slot, to establish mutual guidance be-
tween the two tasks based on preliminarily pre-
dicted intent and slot labels. Meanwhile, Xing and
Tsang (2022b) propose a heterogeneous label graph
that incorporates statistical dependencies and hier-
archies among labels to generate label embeddings.
They leverage both the label embeddings and the
hidden states from a label-aware inter-dependent
decoding mechanism to construct decoding pro-
cesses between the two tasks. See a discussion on
potential issues of these models in the Introduction.
Please find more related work in Section 4.3.

3 Our MISCA model

Figure 2 illustrates the architecture of our MISCA,
which consists of four main components: (i) Task-
shared and task-specific utterance encoders, (ii)
Label attention, (iii) Intent-slot co-attention, and
(iv) Intent and slot decoders.

The encoders component aims to generate intent-
aware and slot-aware task-specific feature vectors
for intent detection and slot filling, respectively.
The label attention component takes these task-
specific vectors as input and outputs label-specific
feature vectors. The intent-slot co-attention com-
ponent utilizes the label-specific vectors and the
slot-aware task-specific vectors to simultaneously
learn correlations between intent detection and slot

filling through multiple intermediate layers. The
output vectors generated by this co-attention com-
ponent are used to construct input vectors for the
intent and slot decoders which predict multiple in-
tents and slot labels, respectively.

3.1 Utterance encoders

Following previous work (Qin et al., 2020, 2021;
Song et al., 2022), we employ a task-shared en-
coder and a task-specific encoder.

Task-shared encoder: Given an input utterance
consisting of n word tokens w1, w2, ..., wn, our
task-shared encoder creates a vector ei to repre-
sent the ith word token wi by concatenating con-
textual word embeddings eBiLSTMword

i and eSA
i , and

character-level word embedding eBiLSTMchar.
wi

:

ei = eBiLSTMword
i ⊕ eSA

i ⊕ eBiLSTMchar.
wi

(1)

Here, we feed a sequence ew1:wn of real-valued
word embeddings ew1 , ew2 ,... ewn into a single bi-
directional LSTM (BiLSTMword) layer (Hochreiter
and Schmidhuber, 1997) and a single self-attention
layer (Vaswani et al., 2017) to produce the con-
textual feature vectors eBiLSTMword

i and eSA
i , respec-

tively. In addition, the character-level word embed-
ding eBiLSTMchar.

wi
is derived by applying another sin-

gle BiLSTM (BiLSTMchar.) to the sequence of real-
valued embedding representations of characters in
each word wi, as done in Lample et al. (2016).

Task-specific encoder: Our task-specific en-
coder passes the sequence of vectors e1:n as input
to two different single BiLSTM layers to produce



task-specific latent vectors eI
i = BiLSTMI(e1:n, i)

and eS
i = BiLSTMS(e1:n, i) ∈ Rde for intent de-

tection and slot filling, respectively. These task-
specific vectors are concatenated to formulate task-
specific matrices EI and ES as follows:

EI = [eI
1, e

I
2, ...e

I
n] ∈ Rde×n (2)

ES = [eS
1, e

S
2, ...e

S
n] ∈ Rde×n (3)

3.2 Label attention
The word tokens in the input utterance might make
different contributions to each of the intent and
slot labels (Xiao et al., 2019; Song et al., 2022),
motivating our extraction of label-specific vec-
tors representing intent and slot labels. In addi-
tion, most previous works show that the slot labels
might share some semantics of hierarchical rela-
tionships (Weld et al., 2022), e.g. “fine-grained” la-
bels toloc.city_name, toloc.state_name and
toloc.country_name can be grouped into a more
“coarse-grained” label type toloc. We thus in-
troduce a hierarchical label attention mechanism,
adapting the attention mechanism from Vu et al.
(2020), to take such slot label hierarchy informa-
tion into extracting the label-specific vectors.

Formally, our label attention mechanism takes
the task-specific matrix (here, EI from Equation 2
and ES from Equation 3) as input and computes a
label-specific attention weight matrix (here, AI ∈
R|LI|×n and AS,k ∈ R|LS,k|×n at the kth hierarchy
level of slot labels) as follows:

AI = softmax
(
BI × tanh(DI ×EI)

)
(4)

AS,k = softmax
(
BS,k × tanh(DS,k ×ES)

)
(5)

where softmax is performed at the row level to
make sure that the summation of weights in each
row is equal to 1; and BI ∈ R|LI|×da , DI ∈ Rda×de ,
BS,k ∈ R|LS,k|×da and DS,k ∈ Rda×de , in which
LI and LS,k are the intent label set and the set of slot
label types at the kth hierarchy level, respectively.
Here, k ∈ {1, 2, ..., ℓ} where ℓ is the number of hi-
erarchy levels of slot labels, and thus LS,ℓ is the set
of “fine-grained” slot label types (i.e. all original
slot labels in the training data).

After that, label-specific representation matri-
ces VI and VS,k are computed by multiplying the
task-specific matrices EI and ES with the attention
weight matrices AI and AS,k, respectively, as:

VI = EI ×
(
AI)⊤ (6)

VS,k = ES ×
(
AS,k)⊤ (7)

Here, the jth columns vI
j from VI ∈ Rde×|LI|

and vS,k
j from VS,k ∈ Rde×|LS,k| are referred to as

vector representations of the input utterance w.r.t.
the jth label in LI and LS,k, respectively.

To capture slot label hierarchy information, at
k ≥ 2, taking vS,k−1

j , we compute the probabil-

ity pS,k−1
j of the jth slot label at the (k − 1)th

hierarchy level given the utterance, using a cor-
responding weight vector wS,k−1

j ∈ Rde and the
sigmoid function. We project the vector pS,k−1 of
label probabilities pS,k−1

j using a projection matrix

ZS,k−1 ∈ Rdp×|LS,k−1|, and then concatenate the
projected vector output with each slot label-specific
vector of the kth hierarchy level:

pS,k−1
j = sigmoid

(
wS,k−1

j · vS,k−1
j

)
(8)

pS,k−1 = [pS,k−1
1 ,pS,k−1

2 , ...,pS,k−1
|LS,k−1|]

⊤ (9)

vS,k
j ← vS,k

j ⊕ ZS,k−1 × pS,k−1 (10)

VS,k = [vS,k
1 ,vS,k

2 , ...,vS,k
|LS,k|] (11)

The slot label-specific matrix VS,k at k ≥ 2
is now updated with more “coarse-grained” label
information from the (k − 1)th hierarchy level.

3.3 Intent-slot co-attention
Given that intents and slots presented in the same
utterance share correlation information (Louvan
and Magnini, 2020; Weld et al., 2022), it is in-
tuitive to consider modeling interactions between
them. For instance, utilizing intent context vec-
tors could enhance slot filling, while slot context
vectors could improve intent prediction. We thus
introduce a novel intent-slot co-attention mecha-
nism that extends the parallel co-attention from Lu
et al. (2016). Our mechanism allows for simultane-
ous attention to intents and slots through multiple
intermediate layers.

Our co-attention mechanism creates a matrix
S ∈ Rds×n whose each column represents a “soft”
slot label embedding for each input word token,
based on its task-specific feature vector:

S = WSsoftmax
(
USES) (12)

where WS ∈ Rds×(2|LS,ℓ|+1),US ∈ R(2|LS,ℓ|+1)×de

and 2|LS,ℓ| + 1 is the number of BIO-based slot
tag labels (including the “O” label) as we formu-
late the slot filling task as a BIO-based sequence
labeling problem. Recall that LS,ℓ is the set of
“fine-grained” slot label types without “B-” and



“I-” prefixes, not including the “O” label. Here,
softmax is performed at the column level.

Our mechanism takes a sequence of ℓ + 2 in-
put feature matrices VI, VS,1, VS,2,..., VS,ℓ, S
(computed as in Equations 6, 7, 11, 12) to perform
intent-slot co-attention.

For notation simplification, the input feature ma-
trices of our mechanism are orderly referred to as
Q1,Q2, ...,Qℓ+2, where Q1 = VI, Q2 = VS,1,...,
Qℓ+1 = VS,ℓ and Qℓ+2 = S; and dt ×mt is the
size of the corresponding matrix Qt whose each
column is referred to as a label-specific vector:
d1 = de ,m1 = |LI|; d2 = de ,m2 = |LS,1|;
d3 = de + dp ,m3 = |LS,2|; ...; dℓ+1 = de +
dp ,mℓ+1 = |LS,ℓ|; dℓ+2 = ds ,mℓ+2 = n.

As each intermediate layer’s matrix Qt has dif-
ferent interactions with the previous layer’s matrix
Qt−1 and the next layer’s matrix Qt+1, we project
Qt into two vector spaces to ensure that all label-
specific column vectors have the same dimension:

−→
Qt =

−→
WtQt ;

←−
Qt =

←−
WtQt (13)

where
−→
Wt and

←−
Wt ∈ Rd×dt are projection weight

matrices; and thus
−→
Qt and

←−
Qt ∈ Rd×mt .

We also compute a bilinear attention between
two matrices Qt−1 and Qt to measure the correla-
tion between their corresponding label types:

Ct = Q⊤
t−1XtQt (14)

where Xt ∈ Rdt−1×dt , and thus Ct ∈ Rmt−1×mt .
Our co-attention mechanism allows the intent-

to-slot and slot-to-intent information transfer by
computing attentive label-specific representation
matrices as follows:

←−
Ht =

{
tanh(

←−
Qt+1C

⊤
t+1 +

←−
Qt) , if t = ℓ+ 1

tanh(
←−
Ht+1C

⊤
t+1 +

←−
Qt) , otherwise

(15)

−→
Ht =

{
tanh(

−→
Qt−1Ct +

−→
Qt) , if t = 2

tanh(
−→
Ht−1Ct +

−→
Qt) , otherwise

(16)

We use
←−
H1 ∈ Rd×|LI| and

−→
Hℓ+2 ∈ Rd×n as

computed following Equations 15 and 16 as the
matrix outputs representing intents and slot men-
tions, respectively.

3.4 Decoders
Multiple intent decoder: We formulate the mul-
tiple intent detection task as a multi-label classi-
fication problem. We concatenate VI (computed

as in Equation 6) and
←−
H1 (computed following

Equation 15) to create an intent label-specific ma-
trix HI ∈ R(de+d)×|LI| where its jth column vector
vI
j ∈ Rde+d is referred to as the final vector repre-

sentation of the input utterance w.r.t. the jth intent
label in LI. Taking vI

j , we compute the probability
pI
j of the jth intent label given the utterance by us-

ing a corresponding weight vector and the sigmoid
function, following Equation 8.

We also follow previous works to incorpo-
rate an auxiliary task of predicting the num-
ber of intents given the input utterance (Chen
et al., 2022b; Cheng et al., 2022; Zhu et al.,
2023). In particular, we compute the num-
ber yINP of intents for the input utterance as:
yINP = argmax

(
softmax

(
WINP(VI)⊤wINP

))
,

where WINP ∈ Rz×|LI| and wINP ∈ Rde are weight
matrix and vector, respectively, and z is the maxi-
mum number of gold intents for an utterance in the
training data. We then select the top yINP highest
probabilities pI

j and consider their corresponding
intent labels as the final intent outputs.

Our intent detection object loss LID is computed
as the sum of the binary cross entropy loss based on
the probabilities pI

j for multiple intent prediction
and the multi-class cross entropy loss for predicting
the number yINP of intents.

Slot decoder: We formulate the slot filling task
as a sequence labeling problem based on the BIO
scheme. We concatenate ES (computed as in Equa-
tion 3) and

−→
Hℓ+2 (computed following Equation

16) to create a slot filling-specific matrix HS ∈
R(de+d)×n where its ith column vector vS

i ∈ Rde+d

is referred to as the final vector representation of
the ith input word w.r.t. slot filling. We project
each vS

i into the R2|LS,ℓ|+1 vector space by using a
project matrix XS ∈ R(2|LS,ℓ|+1)×(de+d) to obtain
output vector hS

i = XSvS
i . We then feed the out-

put vectors hS
i into a linear-chain CRF predictor

(Lafferty et al., 2001) for slot label prediction.
A cross-entropy loss LSF is calculated for slot

filling during training while the Viterbi algorithm
is used for inference.

3.5 Joint training

The final training objective loss L of our model
MISCA is a weighted sum of the intent detection
loss LID and the slot filling loss LSF:

L = λLID + (1− λ)LSF (17)



4 Experimental setup

4.1 Datasets and evaluation metrics

We conduct experiments using the “clean” bench-
marks: MixATIS2 (Hemphill et al., 1990; Qin et al.,
2020) and MixSNIPS3 (Coucke et al., 2018; Qin
et al., 2020). MixATIS contains 13,162, 756 and
828 utterances for training, validation and test,
while MixSNIPS contains 39,776, 2,198, and 2,199
utterances for training, validation and test, respec-
tively. We employ evaluation metrics, including the
intent accuracy for multiple intent detection, the F1
score for slot filling, and the overall accuracy which
represents the percentage of utterances whose both
intents and slots are all correctly predicted (reflect-
ing real-world scenarios). Overall accuracy thus is
referred to as the main metric for comparison.

4.2 Implementation details

The ℓ value is 1 for MixSNIPS because its slot
labels do not share any semantics of hierarchical
relationships. On the other hand, in MixATIS, we
construct a hierarchy with ℓ = 2 levels, which
include “coarse-grained” and “fine-grained” slot
labels. The “coarse-grained” labels, placed at the
first level of the hierarchy, are label type prefixes
that are shared by the “fine-grained” slot labels at
the second level of the hierarchy (illustrated by the
example in the first paragraph in Section 3.2).

In the encoders component, we set the dimen-
sionality of the self-attention layer output to 256
for both datasets. For the BiLSTMword, the di-
mensionality of the LSTM hidden states is fixed
at 64 for MixATIS and 128 for MixSNIPS. Ad-
ditionally, in BiLSTMchar., the LSTM hidden di-
mensionality is set to 32, while in BiLSTMI and
BiLSTMS, it is set to 128 for both datasets (i.e., de
is 128 ∗ 2 = 256). In the label attention and intent-
slot co-attention components, we set the following
dimensional hyperparameters: da = 256, dp = 32,
ds = 128, and d = 128.

To optimize L, we utilize the AdamW opti-
mizer (Loshchilov and Hutter, 2019) and set its
initial learning rate to 1e-3, with a batch size of
32. Following previous work, we randomly ini-
tialize the word embeddings and character em-
beddings in the encoders component. The size
of character vector embeddings is set to 32. We

2https://github.com/LooperXX/AGIF/tree/master/
data/MixATIS_clean

3https://github.com/LooperXX/AGIF/tree/master/
data/MixSNIPS_clean

perform a grid search to select the word embed-
ding size ∈ {64, 128} and the loss mixture weight
λ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

Following previous works (Qin et al., 2020,
2021; Xing and Tsang, 2022a,b), we also exper-
iment with another setting of employing a pre-
trained language model (PLM). Here, we replace
our task-shared encoder with the RoBERTabase
model (Liu et al., 2019). That is, ei from Equation
1 is now computed as ei = RoBERTabase(w1:n, i).
For this setting, we perform a grid search to find the
AdamW initial learning rate ∈ {1e-6, 5e-6, 1e-5}
and the weight λ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} .

For both the original (i.e. without PLM) and
with-PLM settings, we train for 100 epochs and
calculate the overall accuracy on the validation set
after each training epoch. We select the model
checkpoint that achieves the highest overall accu-
racy on the validation set and use it for evaluation
on the test set.

4.3 Baselines

For the first setting without PLM, we compare our
MISCA against the following strong baselines: (1)
AGIF (Qin et al., 2020): an adaptive graph interac-
tive framework that facilitates fine-grained intent
information transfer for slot prediction; (2) GL-
GIN (Qin et al., 2021): a non-autoregressive global-
local graph interaction network; (3) SDJN (Chen
et al., 2022a): a weakly supervised approach that
utilizes multiple instance learning to formulate mul-
tiple intent detection, along with self-distillation
techniques; (4) GISCo (Song et al., 2022): an inte-
gration of global intent-slot co-occurrence across
the entire corpus; (5) SSRAN (Cheng et al., 2022):
a scope-sensitive model that focuses on the intent
scope and utilizes the interaction between the two
intent detection and slot filling tasks; (6) Rela-Net
(Xing and Tsang, 2022b): a model that exploits
label typologies and relations through a heteroge-
neous label graph to represent statistical depen-
dencies and hierarchies in rich relations; and (7)
Co-guiding (Xing and Tsang, 2022a): a two-stage
graph-based framework that enables the two tasks
to guide each other using the predicted labels.

For the second setting with PLM, we compare
MISCA with the PLM-enhanced variant of the
models AGIF, GL-GIN, SSRAN, Rela-Net and Co-
guiding. We also compare MISCA with the fol-
lowing PLM-based models: (1) DGIF (Zhu et al.,
2023), which leverages the semantic information

https://github.com/LooperXX/AGIF/tree/master/data/MixATIS_clean
https://github.com/LooperXX/AGIF/tree/master/data/MixATIS_clean
https://github.com/LooperXX/AGIF/tree/master/data/MixSNIPS_clean
https://github.com/LooperXX/AGIF/tree/master/data/MixSNIPS_clean


Model
MixATIS MixSNIPS

Intent Slot Overall Intent Slot Overall
(Acc.) (F1) (Acc.) (Acc.) (F1) (Acc.)

AGIF (Qin et al., 2020) 74.4 86.7 40.8 95.1 94.2 74.2
GL-GIN (Qin et al., 2021) 76.3 88.3 43.5 95.6 94.9 75.4
SDJN (Chen et al., 2022a) 77.1 88.2 44.6 96.5 94.4 75.7
GISCo (Song et al., 2022) 75.0 88.5 48.2 95.5 95.0 75.9
SSRAN (Cheng et al., 2022) 77.9 89.4 48.9 98.4 95.8 77.5
Rela-Net (Xing and Tsang, 2022b) 78.5 90.1 52.2 97.6 94.7 76.1
Co-guiding (Xing and Tsang, 2022a) 79.1 89.8 51.3 97.7 95.1 77.5
Our MISCA 76.7 90.5 53.0 97.3 95.2 77.9

Table 1: Obtained results without PLM. The best score is in bold, while the second best score is in underline.

of labels; (2) SLIM (Cai et al., 2022), which intro-
duces an explicit map of slots to the corresponding
intent; (3) UGEN (Wu et al., 2022), a Unified Gen-
erative framework that formulates the joint task
as a question-answering problem; and (4) TFMN
(Chen et al., 2022b), a threshold-free intent de-
tection approach without using a threshold. Here,
DGIF, SLIM and TFMN are based on BERT (De-
vlin et al., 2019; Chen et al., 2019), while UGEN
is based on T5 (Raffel et al., 2020).

5 Experimental results

5.1 Main results

Results without PLM: Table 1 reports the ob-
tained results without PLM on the test set, clearly
showing that in general, our MISCA outperforms
the previous strong baselines, achieving the highest
overall accuracies on both datasets.

In general, aligning the correct predictions be-
tween intent and slot labels is challenging, result-
ing in the overall accuracy being much lower than
the intent accuracy and the F1 score for slot fill-
ing. Compared to the baselines, MISCA achieves
better alignment between the two tasks due to our
effective co-attention mechanism, while maintain-
ing competitive intent accuracy and slot filling F1
scores (here, MISCA also achieves the highest and
second highest F1 scores for slot filling on Mix-
ATIS and MixSNIPS, respectively). Compared to
the previous model Rela-Net, our MISCA obtains
a 0.8% and 1.8% absolute improvement in overall
accuracy on MixATIS and MixSNIPS, respectively.
In addition, MISCA also outperforms the previous
model Co-guiding by 1.7% and 0.4% in overall
accuracy on MixATIS and MixSNIPS, respectively.
The consistent improvements on both datasets re-
sult in a substantial gain of 1.1+% in the average

Model MixA MixS
AGIF + RoBERTabase 50.0 80.7
SLIM (Cai et al., 2022) + BERT 47.6 84.0
UGEN (Wu et al., 2022) + T5 55.3 78.8
DGIF (Zhu et al., 2023) + BERT 50.7 84.3
TFMN (Chen et al., 2022b) + BERT 50.2 84.7
GL-GIN + RoBERTabase 53.6 82.6
SSRAN + RoBERTabase 54.4 83.1
Rela-Net + RoBERTabase 58.4 83.8
Co-guiding + RoBERTabase 57.5 85.3
MISCA + RoBERTabase 59.1 86.2

Table 2: The overall accuracy with PLM. “MixA” and
“MixS” denote MixATIS and MixSNIPS, respectively.

overall accuracy across the two datasets, compared
to both Rela-Net and Co-guiding.

We find that MISCA produces a higher improve-
ment in overall accuracy on MixATIS compared
to MixSNIPS. One possible reason is that MISCA
leverages the hierarchical structure of slot labels
in MixATIS, which is not present in MixSNIPS.
For example, semantically similar “fine-grained”
slot labels, e.g. fromloc.city_name, city_name
and toloc.city_name, might cause ambiguity for
some baselines in predicting the correct slot la-
bels. However, these “fine-grained” labels belong
to different “coarse-grained” types in the slot label
hierarchy. Our model could distinguish these “fine-
grained” labels at a certain intent-to-slot informa-
tion transfer layer (from the intent-slot co-attention
in Section 3.3), thus enhancing the performance.

State-of-the-art results with PLM: Following
previous works, we also report the overall accu-
racy with PLM on the test set. Table 2 presents
obtained results comparing our MISCA+RoBERTa
with various strong baselines. We find that the
PLM notably helps improve the performance of



Models
MixATIS MixSNIPS

Intent (Acc.) Slot (F1) Overall (Acc.) Intent (Acc.) Slot (F1) Overall (Acc.)
MISCA 76.7 90.5 53.0 97.3 95.2 77.9

(i) w/o “slot” label attention 75.1 (↓1.6) 89.3 (↓1.2) 49.5 (↓3.5) 96.3 (↓1.0) 94.4 (↓0.8) 73.5 (↓4.4)
(ii) w/o co-attention 75.3 (↓1.4) 86.8 (↓3.7) 44.0 (↓9.0) 95.5 (↓1.8) 94.2 (↓1.0) 72.7 (↓5.2)

Table 3: Ablation results.
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Figure 3: Case study between (a) MISCA and (b) MISCA w/o co-attention. Red color denotes prediction errors.

the baselines as well as our MISCA. For example,
RoBERTa helps produce an 6% accuracy increase
on MixATIS and and an 8% accuracy increase on
MixSNIPS for Rela-Net, Co-guiding and MISCA.
Here, MISCA+RoBERTa also consistently outper-
forms all baselines, producing new state-of-the-art
overall accuracies on both datasets: 59.1% on Mix-
ATIS and 86.2% on MixSNIPS.

5.2 Ablation study

We conduct an ablation study with two ablated
models: (i) w/o “slot” label attention – This is a
variant where we remove all the slot label-specific
representation matrices VS,k. That is, our intent-
slot co-attention component now only takes 2 input
matrices of Q1 = VI and Q2 = S. (ii) w/o co-
attention – This is a variant where we remove the
mechanism component of intent-slot co-attention.
That is, without utilizing

←−
H1 and

−→
Hℓ+2, we only

use ES from the task-specific encoder for the slot
decoder, and employ VI from the label attention
component for the multiple intent decoder (i.e. this
can be regarded as a direct adoption of the prior
multiple-label decoding approach (Vu et al., 2020)).
For each ablated model, we also select the model
checkpoint that obtains the highest overall accuracy
on the validation set to apply to the test.

Table 3 presents results obtained for both ab-
lated model variants. We find that the model per-
forms substantially poorer when it does not use
the slot label-specific matrices in the intent-slot
co-attention mechanism (i.e. w/o “slot” label atten-
tion). In this case, the model only considers corre-
lations between intent labels and input word tokens,
lacking slot label information necessary to capture
intent-slot co-occurrences. We also find that the
largest decrease is observed when the intent-slot

co-attention mechanism is omitted (i.e. w/o co-
attention). Here, the overall accuracy drops 9% on
MixATIS and 5.2% on MixSNIPS. Both findings
strongly indicate the crucial role of the intent-slot
co-attention mechanism in capturing correlations
and transferring intent-to-slot and slot-to-intent in-
formation between intent and slot labels, leading
to notable improvements in the overall accuracy.

Figure 3 showcases a case study to demonstrate
the effectiveness of our co-attention mechanism.
The baseline MISCA w/o co-attention fails to rec-
ognize the slot airline_name for “alaska airlines”
and produces an incorrect intent atis_airline.
However, by implementing the intent-slot co-
attention mechanism, MISCA accurately predicts
both the intent and slot. It leverages information
from the slot toloc.city_name to enhance the
probability of the intent atis_flight, while uti-
lizing intent label-specific vectors to incorporate
information about airline_name. This improve-
ment is achievable due to the effective co-attention
mechanism that simultaneously updates intent and
slot information without relying on preliminary re-
sults from one task to guide the other task.

6 Conclusion

In this paper, we propose a novel joint model
MISCA for multiple intent detection and slot filling
tasks. Our MISCA captures correlations between
intents and slot labels and transfers the correlation
information in both forward and backward direc-
tions through multiple levels of label-specific repre-
sentations. Experimental results on two benchmark
datasets demonstrate the effectiveness of MISCA,
which outperforms previous models in both set-
tings: with and without using a pre-trained lan-
guage model encoder.



Limitations

It should also be emphasized that our intent-slot
co-attention mechanism functions independently
of token-level intent information. This mechanism
generates |LI| vectors for multiple intent detection
(i.e. multi-label classification). In contrast, the
token-level intent decoding strategy bases on to-
ken classification, using n vector representations.
Recall that LI is the intent label set, and n is the
number of input word tokens. Therefore, integrat-
ing the token-level intent decoding strategy into the
intent-slot co-attention mechanism is not feasible.

This work primarily focuses on modeling the
interactions between intents and slots using inter-
mediate attentive layers. We do not specifically em-
phasize leveraging label semantics or the meaning
of labels in natural language. However, although
MISCA consistently outperforms previous models,
its performance may be further enhanced by esti-
mating the semantic similarity between words in
an utterance and in the labels.
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