
Under review as a conference paper at ICLR 2024

GRAPH DECISION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Reinforcement Learning (RL) is a challenging task, whose objective is to
learn policies from static trajectory data without interacting with the environment.
Recently, offline RL has been viewed as a sequence modeling problem, where an
agent generates a sequence of subsequent actions based on a set of static transi-
tion experiences. However, existing approaches that use Transformers to attend to
all tokens plainly may dilute the truly-essential relation priors due to information
overload. In this paper, we propose the Graph Decision Transformer (GDT), a
novel offline RL approach that models the input sequence into a causal graph to
capture potential dependencies between fundamentally different concepts and fa-
cilitate temporal and causal relationship learning. GDT uses a Graph Transformer
to process the graph inputs with relation-enhanced mechanisms, and an optional
Patch Transformer to handle fine-grained spatial information in visual tasks. Our
experiments show that GDT matches or surpasses the performance of state-of-the-
art offline RL methods on image-based Atari and D4RL benchmarks.

1 INTRODUCTION

Reinforcement Learning (RL) is inherently a sequential process where an agent observes a state
from the environment, takes an action, observes the next state, and receives a reward. To model
RL problems, Markov Decision Processes (MDPs) have been widely employed, where an action is
taken solely based on the current state, which is assumed to encapsulate the entire history. Online RL
algorithms (Mnih et al., 2015) use the temporal difference (TD) learning to train agents by interact-
ing with the environment, but this can be prohibitively expensive in real-world settings. Offline RL
(Levine et al., 2020), on the other hand, seeks to overcome this limitation by learning policies from
a pre-collected dataset, without the need to interact with the environment. This approach makes RL
training more practical for real-world scenarios and has therefore garnered significant attention.

Recent advances (Chen et al., 2021; Janner et al., 2021) in offline RL have taken a new perspective
on the problem, departing from conventional methods that concentrate on learning value functions
(Riedmiller, 2005; Kostrikov et al., 2021a) or policy gradients (Precup, 2000; Fujimoto & Gu, 2021).
Instead, the problem is viewed as a generic sequence modeling task, where past experiences con-
sisting of state-action-reward triplets are input to Transformer (Vaswani et al., 2017). The model
generates a sequence of action predictions using a goal-conditioned policy, effectively converting
offline RL to a supervised learning problem. This approach relaxes the MDP assumption by con-
sidering multiple historical steps to predict an action, allowing the model to be capable of handling
long sequences and avoid stability issues associated with bootstrapping (Srivastava et al., 2019; Ku-
mar et al., 2019c). Furthermore, this framework unifies multiple components in offline RL, such
as estimating the behavior policy and predictive dynamics modeling, into a single sequence model,
resulting in superior performance.

However, this approach faces three major issues. Firstly, states and actions represent fundamen-
tally different concepts (Villaflor et al., 2022). While the agent has complete control over its action
sequences, the resulting state transitions are often influenced by external factors. Thus, modeling
states and actions as a single sequence may indiscriminate the effects of the policy and world dy-
namics on the return, which can lead to overly optimistic behavior. Secondly, in RL problems, the
adjacent states, actions, and rewards are typically strongly connected due to their potential causal
relationships. Specifically, the state observed at a given time step is a function of the previous state
and action, and the action taken at that time step influences the subsequent state and reward. Simply
applying Transformer to attend to all tokens without considering the underlying Markovian rela-
tionship can result in an overabundance of information, hindering the learning process in accurately

1



Under review as a conference paper at ICLR 2024

!𝑹𝒕"𝟏

𝒔𝒕"𝟏

𝒂𝒕"𝟏
𝒔𝒕

Multi-Head Attention

Feed Forward

Q K V

Node 
Embedding

Edge 
Embedding

Position
Embedding!𝑹𝒕"𝟏 𝒔𝒕"𝟏 𝒂𝒕"𝟏 𝒔𝒕

Multi-Head Attention

Feed Forward

Q K V

Node Embedding

Position
Embedding

Decision Transformer Layer Graph Decision Transformer Layer

!𝑹𝒕"𝟏

𝒔𝒕"𝟏

𝒂𝒕"𝟏

!𝑹𝒕

𝒔𝒕

𝒂𝒕

𝒔𝒕$𝟏

!𝑹𝒕$𝟏

𝒂𝒕$𝟏

Actions

States

Return-to-go !𝑹𝟎 !𝑹𝟏 !𝑹𝑻

s𝟎 𝒔𝟏 𝒔𝑻

𝒂𝟎 𝒂𝟏 𝒂𝑻

Input Representation

Figure 1: Comparison of GDT and DT. GDT employs additional edge embeddings and node embed-
dings to obtain Q and K, while using only node embeddings to obtain V. The corresponding input
graph is depicted on the right side, the directed edge connecting st−1 to st indicates the influence of
st−1 on st, and similar relationships apply to other directed edges.

capturing essential relation priors and handling long-term sequences of dependencies from scratch.
Finally, tokenizing image states as-a-whole using convolutional neural networks (CNNs) can hinder
the ability of Transformers to gather fine-grained spatial relations. This loss of information can be
especially critical in visual RL tasks that require detailed knowledge of regions-of-interest. There-
fore, it is necessary to find a more effective way to represent states and actions separately while
still preserving their intrinsic relationships, and to incorporate the Markovian property and spatial
relations in the modeling process.

To alleviate such issues, we propose a novel approach, namely Graph Decision Transformer (GDT),
which involves transforming the input sequence into a causal graph structure. The Graph Repre-
sentation explicitly incorporates the potential dependencies between adjacent states, actions, and
rewards, thereby better capturing the Markovian property of the input and differentiating the im-
pact of different tokens. To process the input graph, we utilize the Graph Transformer to effectively
handle long-term dependencies that may be present in non-Markovian environments. To gather fine-
grained spatial information, we incorporate an optional Patch Transformer to encode image-based
states as patches similar to ViT (Dosovitskiy et al., 2020), which helps with action prediction and
reduces the learning burden of the Graph Transformer. Our experimental evaluations conducted in
Atari and D4RL benchmark environments provide empirical evidence to support the advantages of
utilizing a causal graph representation as input to the Graph Transformer in RL tasks. The pro-
posed GDT method achieves state-of-the-art performance in several benchmark environments and
outperforms most existing offline RL methods without incurring additional computational overhead.

In summary, our main contributions are four-fold:
• We propose a novel approach named GDT, that transforms input sequences into graph structures

to better capture potential dependencies between adjacent states, actions, and rewards and differ-
entiate the impact of these different tokens.

• We utilize the Graph Transformer to process the input graph, which can effectively handle long-
term dependencies in the original sequence that may be present in non-Markovian environments.

• We incorporate an optional Patch Transformer to encode image-based states as patches to gather
fine-grained spatial information crucial for visual input environments.

• We extensively evaluate GDT on Atari and D4RL benchmark environments, demonstrating its
superior performance compared to existing offline RL methods.

2 RELATED WORK

Offline RL. Offline RL has recently gained significant attention as an alternative paradigm, where
agents extract return-maximizing policies from fixed, limited datasets composed of trajectory roll-
outs from arbitrary policies (Levine et al., 2020). These datasets, referred to as static datasets, are
formally defined as D = {(st, at, st+1, rt)i}, where i is the index, the actions and states are gen-
erated by the behavior policy (st, at) ∼ dπβ (·), and the next states and rewards are determined by

2



Under review as a conference paper at ICLR 2024

Graph Transformer

𝒂𝒕"𝟏 𝒂𝒕

"𝑹𝒕"𝟏

𝒔𝒕"𝟏

𝒂𝒕"𝟏

"𝑹𝒕

𝒔𝒕

𝒂𝒕

Patch Transformer

Figure 2: The proposed model comprises three main components: the Graph Representation, the
Graph Transformer, and an optional Patch Transformer. When employing the direct output of the
Graph Transformer for action prediction, the resultant model is denoted as GDT, representing the
left half of the depicted figure. Alternatively, if the output of the Graph Transformer undergoes
additional processing by the Patch Transformer, the resulting model is identified as GDT-plus, en-
compassing the entire figure.

the dynamics (st+1, rt) ∼ (T (·|st, at), r(st, at)). Deploying off-policy RL algorithms directly in
the offline setting is hindered by the distributional shift problem, which can result in a significant
performance drop, as demonstrated in prior research (Fujimoto et al., 2019b). To mitigate this issue,
model-free algorithms aim to either constrain the action space of policy (Kumar et al., 2019b; Siegel
et al., 2020) or incorporate pessimism to value function (Kumar et al., 2020; Fujimoto et al., 2019b).
Conversely, model-based algorithms simulate the actual environment to generate more data for pol-
icy training (Kidambi et al., 2020; Yu et al., 2020). In this work, we propose a novel approach that
avoids learning the dynamics model explicitly and directly generates the next action with the help
of the Graph Transformer, enabling better generalization and transfer (Ramesh et al., 2021).

RL to Sequence Modeling. RL has recently garnered considerable interest as a sequence model-
ing task, particularly with the application of Transformer-based decision models (Hu et al., 2022).
The task is to predict a sequence of next actions given a sequence of recent experiences, including
state-action-reward triplets. This approach can be trained in a supervised learning fashion, making
it more amenable to offline RL and imitation learning settings. Several studies (Wang et al., 2022;
Furuta et al., 2021; Zhang et al., 2023; Lee et al., 2022) have explored the use of Transformers
in RL under the sequence modeling pattern. For example, Chen et al. (2021) train a Transformer
as a model-free context-conditioned policy, while Janner et al. (2021) bring out the capability of
the sequence model by predicting states, actions, and rewards and employing beam search. Zheng
et al. (2022) further fine-tune the Transformer by adapting this formulation to online settings. Shang
et al. (2022) explicitly model StAR-representations to introduce a Markovian-like inductive bias
to improve long-term modeling. In this work, we propose a graph sequence modeling approach
to RL, which explicitly introduces the Markovian property to the representations. Our proposed
GDT method outperforms several state-of-the-art non-Transformer offline RL and imitation learn-
ing algorithms on Atari and D4RL benchmarks, demonstrating the advantage of incorporating graph
structures in sequence modeling for RL tasks and the effectiveness of our proposed framework.

RL with Graph. In recent years, the integration of graph neural networks (GNNs) (Cai & Lam,
2020; Yun et al., 2019) with RL has attracted considerable attention for graph-structured environ-
ments (Munikoti et al., 2022). Specifically, GNNs can be combined with RL to address sequential
decision-making problems on graphs. Existing research primarily focuses on using deep RL to im-
prove GNNs for diverse purposes, such as neural architecture search (NAS) (Zhou et al., 2019),
enhancing the interpretability of GNN predictions (Shan et al., 2021), and designing adversarial ex-
amples for GNNs (Dai et al., 2018; Sun et al., 2020). Alternatively, GNNs can be utilized to solve
relational RL problems, such as those involving different agents in a multi-agent deep RL (MADRL)
framework (Shen et al., 2021; Böhmer et al., 2020; Zhang et al., 2021), and different tasks in a multi-
task deep RL (MTDRL) framework (Wang et al., 2018; Huang et al., 2020; Battaglia et al., 2018;
Huang et al., 2022). Despite the growing interest in this field, there is currently a lack of research on

3



Under review as a conference paper at ICLR 2024

utilizing a Markovian dependency graph as input to GNNs for action prediction. Such an approach
has strong potential due to the causal relationships between the constructed graph and its ability to
be employed in various RL environments. This article will explore this approach in detail, offering
a novel contribution to the field. Additionally, we will highlight the advantages of using GDT for
action prediction in comparison to existing state-of-the-art offline RL algorithms.

3 METHODOLOGY

The proposed approach leverages both graph and sequence modeling techniques to create a deep
learning-based model for offline RL tasks. The model consists of three main components: the
Graph Representation, the Graph Transformer, and an optional Patch Transformer, as shown in Fig-
ure 2. Specifically, the Graph Representation is used to represent the input sequence as a graph
with a causal relationship, thereby better capturing the Markovian property of the input and differ-
entiating the impact of different tokens. The Graph Transformer then processes the graph inputs
using the relation-enhanced mechanism, which allows the model to acquire long-term dependen-
cies and model the interactions between different time steps of the graph tokens given reasonable
causal relationships. The optional Patch Transformer is introduced to gather the fine-grained spatial
information in the input, which is particularly important in visual tasks such as the Atari benchmark.

The proposed approach offers several advantages. Firstly, it can effectively acquire the intricate de-
pendencies and interactions between different time steps in the input sequence, making it well-suited
for RL tasks. Secondly, it encodes the sequence as a causal graph, which explicitly incorporates po-
tential dependencies between adjacent tokens, thereby explicitly introducing the Markovian bias
into the learning process and avoiding homogenizing all tokens. Finally, it can accurately gather
fine-grained spatial information and integrate it into action prediction, leading to improved perfor-
mance. In summary, our proposed approach offers a powerful and flexible solution for RL tasks.
In the subsequent sections, we present an in-depth explanation of each component comprising our
proposed approach. This involves elucidating its input and output mechanisms while delving into
the underlying design principles that guide its construction.

3.1 GRAPH REPRESENTATION

Our approach constructs an input graph from trajectory elements, capturing their temporal and causal
relationships. Each trajectory element corresponds to a node in the graph, with edges connecting
them based on dependencies. Specifically, we define the directed graph G = ⟨V, E⟩, where each
node vi ∈ V falls into one of three categories: returns-to-go R̂t =

∑T
t′=t rt′ , states st, and actions

at, as illustrated in Figure 1. Edges, denoted as ei→j ∈ E , are introduced based on the dependencies
between pairs of nodes. For instance, the selection of action at relies on the current state st and
the returns-to-go R̂t. The generation of state st depends on the previous state st−1 and action at−1.
Lastly, the returns-to-go R̂t is jointly determined by the previous returns-to-go R̂t−1, the state st−1,
and the action at−1. The detailed design principles are outlined in Appendix A.

The MDP is a framework where an agent is asked to make a decision based on the current state
st; then, the environment responds to the action made by the agent and transitions the state to the
next state st+1 with a reward rt. We omit the agent and environment entities and represent these
dependencies as directed edges to effectively analyze the causal associations among distinct tokens.
Through this approach, we explicitly embed the Markovian relationship bias into the input represen-
tation and distinguish the effect of distinct tokens, avoiding the overabundance of information that
may prevent the model from accurately capturing essential relation priors.

3.2 GRAPH TRANSFORMER

Our approach employs auto-regressive modeling to predict current action using the Graph Represen-
tation as input to the Graph Transformer. The Graph Transformer plays a central role in extracting
hidden features from the graph. In some scenarios, such as Atari games, past information also plays
a critical role, thus we employ a global attention mechanism, allowing each node vi to observe not
only its directly connected nodes {vj |ej→i = 1} but also all nodes preceding the current moment
{vj |j < i}. In the vanilla multi-head attention, the attention score between the element vi and vj

4



Under review as a conference paper at ICLR 2024

can be formulated as the dot-product between their query vector and key vector, respectively:

sij = f(vi, vj) = viW
T
q Wkvj . (1)

Let us consider the score sij as implicit information pertaining to the edge ej→i (node vj influences
node vi). To enhance the previously calculated implicit attention score sij , we now try to incorporate
available edge information for the specific edge ej→i. It is done by simply adding the node-relation
interactions into the attention calculation, referred to as the relation-enhanced mechanism, as illus-
trated in Figure 1. The equation for computing the attention scores is shown below:

sij = g(vi, vj , ri→j , rj→i)

= (vi + ri→j)W
T
q Wk(vj + rj→i),

(2)

where r∗→∗ is learned through an embedding layer that takes the adjacency matrix as input. We
concurrently take into account both opposing directed edges between two nodes and adjust the query
and key embeddings in accordance with the direction of the specific edge being examined. The
incorporation of relation representation enables the model to take into account the plausible causal
relationships, which relieves the burden on the Graph Transformer of learning potential long-term
dependencies among node vectors at different time steps.

The input to the l-th layer of the Graph Transformer is a token graph. For the sake of clarity and
simplicity, we represent the pruned graph as G, which is utilized to generate the following sequence:

G
l
in = {R̂l−1

0 , sl−1
0 , al−1

0 , . . . , R̂l−1
T , sl−1

T , al−1
T }. (3)

Each token graph is transformed to {glt}Tt=0 by a Graph Transformer layer:

Gl
out = F l

graph(G
l
in) = F l

graph(G
l−1
out ),

glt : = FC(G
l
out[1 + 3t], G

l
out[3t]).

(4)

As shown in Figure 1, the action at is determined by both R̂t and st. Thus, the feature vector glt is
obtained by concatenating the two inputs and fed into a fully connected layer (with indexing starting
from 0). The feature glt extracted from the l-th layer of the Graph Transformer can be directly used
to predict the action ât = ϕ(glt), or be further processed by the subsequent Patch Transformer.

3.3 PATCH TRANSFORMER

We introduce an additional Patch Transformer to assist with action prediction and reduce the learning
burden of the Graph Transformer. The Patch Transformer adopts the conventional Transformer layer
design from Vaswani et al. (2017) and is incorporated to gather fine-grained spatial information that
is crucial for visual input environments. The initial layer of the Patch Transformer takes a collection
of image patches and g0t as inputs:

Y 0
in,t = {zs1t , zs2t , . . . , zsnt , g

0
t }, (5)

where n is the number of image patches, and the feature vector gt is positioned after state patches
{zsit}

n
i=1, which enables gt to attend to all spatial information. We have T groups of such token

representations, which are simultaneously processed by the Patch Transformer:

Y 0
in =

T

∥
t=0

Y 0
in,t,

Y 0
out = F 0

patch(Y
0

in ),

(6)

where ∥ means concatenating the contents of two collections. The subsequent layer of the Patch
Transformer takes the fusion of the previous layer’s output and glt as its input. This is achieved by
adding glt to the position that corresponds to gl−1

t in the output sequence while leaving the other
parts of the output sequence unchanged. The formulation for this operation is as follows:

Y l
in[I] = Y l−1

out [i] =


Y l−1

out [i] + glt, i = n+ t(n+ 1),

t = 0, 1, 2, . . . , T ;

Y l−1
out [i], otherwise.

(7)

The output feature hl
t := Y l

out[n+ t(n+ 1)] extracted from the output of the l-th layer of the Patch
Transformer is fed into a linear head to predict the action, denoted as ât = ϕ(hl

t) when it is the final
layer. Further elaboration on this connection method is provided in Sec. 4.3.

5



Under review as a conference paper at ICLR 2024

Table 1: Results for 1% DQN-replay Atari datasets. We evaluate the performance of GDT on
four Atari games using three different seeds, and report the mean and variance of the results. Best
mean scores are highlighted in bold. The assessment reveals that GDT surpasses conventional RL
algorithms on most tasks and achieves better performance than DT across all games. In contrast,
GDT-plus attains the highest average performance when compared to all baseline algorithms.

Game CQL QR-DQN REM BC DT GDT StAR GDT-plus
Breakout 211.1 17.1 8.9 138.9 ± 61.7 267.5 ± 97.5 393.5 ± 98.8 436.1 ± 40.0 441.7 ± 41.0

Qbert 104.2 0 0 17.3 ± 14.7 15.4 ± 11.4 45.5 ± 14.6 51.2 ± 11.5 51.7 ± 20.8
Pong 111.9 18 0.5 85.2 ± 20.0 106.1 ± 8.1 108.4 ± 4.7 110.8 ± 4.8 111.2 ± 4.6

Seaquest 1.7 0.4 0.7 2.1 ± 0.3 2.5 ± 0.4 2.8 ± 0.1 1.7 ± 0.3 2.7 ± 0.1

Average 107.2 8.9 2.5 60.9 97.9 137.6 150.0 151.8

Table 2: Results for D4RL datasets. The performance of GDT is evaluated using three different
seeds, and the mean and variance are reported. Best mean scores are highlighted in bold. The results
demonstrate that GDT exhibits superior performance compared to conventional RL algorithms and
sequence modeling methods, with GDT-plus achieving the highest performance.

Dataset Env CQL BEAR IQL BCQ BC DT TT Diffuser GDT StAR GDT-plus
M-Expert HalfCheetah 62.4 53.4 86.7 69.6 59.9 86.8 40.8 79.8 92.4 ± 0.1 93.7 ± 0.1 93.2 ± 0.1
M-Expert Hopper 111.0 96.3 91.5 109.1 79.6 107.6 106.0 107.2 110.9 ± 0.1 111.1 ± 0.2 111.1 ± 0.1
M-Expert Walker 98.7 40.1 109.6 67.3 36.6 108.1 91.0 108.4 109.3 ± 0.1 109.0 ± 0.1 107.7 ± 0.1

Medium HalfCheetah 44.4 41.7 47.4 41.5 43.1 42.6 44.0 44.2 42.9 ± 0.1 42.9 ± 0.1 42.9 ± 0.1
Medium Hopper 58.0 52.1 66.3 65.1 63.9 67.6 67.4 58.5 69.5 ± 1.8 59.5 ± 4.2 77.1 ± 2.5
Medium Walker 79.2 59.1 78.3 52.0 77.3 74.0 81.3 79.7 77.8 ± 0.4 73.8 ± 3.5 76.5 ± 0.7

M-Replay HalfCheetah 46.2 38.6 44.2 34.8 4.3 36.6 44.1 42.2 39.9 ± 0.1 36.8 ± 3.3 40.5 ± 0.1
M-Replay Hopper 48.6 33.7 94.7 31.1 27.6 82.7 99.4 96.8 83.3 ± 3.9 29.2 ± 4.3 85.3 ± 25.2
M-Replay Walker 26.7 19.2 73.9 13.7 36.9 66.6 79.4 61.2 74.8 ± 1.9 39.8 ± 5.1 77.5 ± 1.3

Average 63.9 48.2 77.0 53.8 46.4 74.7 72.6 75.3 77.9 66.2 79.1
Human Pen 37.5 -1 71.5 66.9 63.9 79.5 36.4 - 91.7 ± 1.7 77.9 ± 3.4 92.5 ± 5.1
Human Hammer 4.4 0.3 1.4 0.9 1.2 3.1 0.8 - 3.3 ± 0.5 3.7 ± 1.6 5.5 ± 1.0
Human Door 9.9 -0.3 4.3 -0.05 2 14.8 0.1 - 19.5 ± 2.2 1.5 ± 0.5 20.6 ± 3.1
Human Relocate 0.2 -0.3 0.1 -0.04 0.1 0.3 0.0 - 0.7 ± 0.2 0.1 ± 0.1 0.6 ± 0.2

Cloned Pen 39.2 26.5 37.3 50.9 37 75.8 11.4 - 76.5 ± 6.2 33.1 ± 3.1 86.2 ± 6.7
Cloned Hammer 2.1 0.3 2.1 0.4 0.6 3.0 0.5 - 4.9 ± 2.0 0.3 ± 0.1 8.9 ± 2.1
Cloned Door 0.4 -0.1 1.6 0.01 0.0 16.3 -0.1 - 16.2 ± 3.5 0.0 ± 0.1 19.8 ± 2.0
Cloned Relocate -0.1 -0.3 -0.2 -0.3 -0.3 0.2 -0.1 - 0.2 ± 0.1 -0.1 ± 0.1 0.7 ± 0.2

Average 11.7 3.1 14.8 14.8 13.1 24.1 6.1 - 26.6 14.6 29.4
Complete Kitchen 43.8 0 62.5 0.8 65 50.8 - - 46.1 ± 3.1 40.8 ± 3.4 43.8 ± 2.4

Partial Kitchen 49.8 0 46.3 9.3 38 57.9 - - 69.0 ± 11.3 12.3 ± 10.2 73.3 ± 0.7
Average 46.8 0 54.4 5.0 51.5 54.4 - - 57.6 26.6 58.6

3.4 TRAINING PROCEDURE

GDT is a drop-in replacement for DT as the training and inference procedures remain the same.
However, additional graph construction for the input sequence is required for GDT. Specifically, a
graph G = ⟨V, E⟩ is constructed from a minibatch of length K (total 3K tokens: return-to-go, state,
and action) where V represents the node embedding matrix, and E represents the adjacency matrix.
The constructed graph is then input into the Graph Transformer, and attention scores are calculated
using both V and E . The learning objective for discrete environments can be formulated as follows:

E(R̂,s,a)∼T

[
1

T

T∑
t=1

(at−πGDT(s−K:t, R̂−K:t, a−K:t−1))
2

]
. (8)

To end this section, we give several comments on the proposed GDT method. Compared with DT,
which uses a serialized input, GDT represents the input sequence as a graph with a causal rela-
tionship, enabling the Graph Transformer to capture dependencies between fundamentally different
concepts. On the other hand, compared with methods that implicitly learn Markovian patterns (Jan-
ner et al., 2021) or introduce an additional Step Transformer (Shang et al., 2022), GDT directly
incorporates the Markovian relationships in the input. This feature allows the model to handle de-
pendencies between sequences and tokens effectively, leading to improved performance without
additional computational overhead. Additionally, the introduced Patch Transformer can maintain

6



Under review as a conference paper at ICLR 2024

fine-grained spatial information using ViT-like image patches, which is particularly important in
visual tasks and can improve action prediction accuracy in such environments.

4 EXPERIMENT

In this section, we provide a comprehensive evaluation of the proposed GDT model, which is de-
signed to capture the complex relationships among graph-structured data and make effective deci-
sions based on them. Our main objective is to assess the effectiveness of GDT in comparison to two
popular algorithms: offline algorithms based on TD-learning and trajectory optimization algorithms.
TD-learning is a widely adopted algorithm in RL due to its remarkable sampling efficiency and im-
pressive performance on various RL tasks. On the other hand, trajectory optimization algorithms,
represented by DT, have gained increasing attention in recent years due to their ability to learn from
expert demonstrations and achieve performance comparable to TD-learning in various RL tasks.
We conduct a comprehensive evaluation of the performance of the GDT model on a range of tasks.
Specifically, we evaluate the performance of GDT on the widely used Atari benchmark (Bellemare
et al., 2013), which consists of a set of discrete control tasks, as well as on the D4RL benchmark (Fu
et al., 2020), which comprises a variety of continuous control tasks. Note that we refer to the model
as GDT-plus when incorporating the Patch Transformer, and we categorize these methods into three
groups based on the employed approach and the number of parameters to ensure a fair comparison.
The detailed training parameters and MACs for our methods are provided in Appendix B.3.

4.1 ATARI

The Atari benchmark (Bellemare et al., 2013) is a well-recognized and widely-adopted benchmark
for evaluating the performance of RL algorithms. In this study, we choose four games from the Atari
benchmark, namely Breakout, Pong, Qbert, and Seaquest, each of which requires the agent to handle
high-dimensional visual inputs and complex credit assignment. Similar to prior work (Chen et al.,
2021), we construct the offline dataset by sampling 1% of the DQN replay buffer dataset (Agarwal
et al., 2020), which consists of nearly 500k transition steps. To enable fair comparisons, we follow
the normalization protocol proposed in Hafner et al. (2020), where the final scores are normalized
such that a score of 100 represents the expert level performance and a score of 0 represents the
performance of a random policy.

For baseline benchmark, we compare GDT with TD-learning-based algorithms, including CQL (Ku-
mar et al., 2020), QR-DQN (Dabney et al., 2018), and REM (Agarwal et al., 2020), and several tra-
jectory optimization algorithms, including DT (Chen et al., 2021), StARformer (Shang et al., 2022),
and behavior cloning (BC), and report the results from original papers.

Table 1 presents the comparison of our proposed method with these offline baseline methods on
four games. The results show that our method achieves comparable performance to CQL in three
out of four games, while significantly outperforming the other methods in all four games. This
indicates that our approach, which introduces the causal relationships in the input and leverages
the Graph Transformer accordingly, is superior to the other methods. To ensure a fair comparison
with StAR, we further introduce a Patch Transformer to incorporate fine-grained spatial information
and report the results as GDT-plus. The results demonstrate that GDT-plus achieves comparable
or superior performance to StAR on all four Atari games, emphasizing the significance of fine-
grained information on these games. Compared with GDT, the success of the Patch Transformer in
incorporating such information into action prediction is also highlighted.

4.2 D4RL

The D4RL benchmark (Fu et al., 2020) evaluates the performance of RL algorithms in continu-
ous control tasks, particularly in robotic manipulation tasks with challenging control and decision-
making in continuous action spaces. In this study, we focus on three standard locomotion envi-
ronments from OpenAI Gym: HalfCheetah, Hopper, and Walker, utilizing three distinct dataset
configurations (medium, medium-replay, and medium-expert). Additionally, we incorporate four
games from the Adroit MuJoCo models, including Pen, Hammer, Door, and Relocate, using both
human and cloned datasets. We also incorporate FrankaKitchen with complete and partial datasets.
To ensure fair comparisons, we also normalize the scores according to the protocol established in
(Fu et al., 2020), where a score of 100 corresponds to an expert policy.

7



Under review as a conference paper at ICLR 2024

෡𝑹𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒔𝒕

Full

Random None

෡𝑹𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒔𝒕

෡𝑹𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒔𝒕

෡𝑹𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒔𝒕

Causal

Figure 3: Comparison of different graph connection methods. The left panel illustrates four different
graph connection methods: Causal, Full, Random, and None. The right panel shows the relative
performance comparison of these methods.

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒔𝒕

𝒂𝒕

GDT-Reward

GDT-None

෡𝑹𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

෡𝑹𝒕

𝒔𝒕

𝒂𝒕

GDT-RTG

𝒓𝒕−𝟏

𝒔𝒕−𝟏

𝒂𝒕−𝟏

𝒓𝒕

𝒔𝒕

𝒂𝒕

Figure 4: The left panel depicts the input graph structure of the GDT for three reward settings:
return-to-go (RTG), stepwise reward (Reward), and no reward (None). The right panel displays the
performance comparison between GDT and DT.

Graph Transformer

…
Patch Transformer𝒈𝒊𝒍 𝒊#𝟏

𝑻

Replace

×𝑳

Graph Transformer

…
Patch Transformer𝒈𝒊𝒍 𝒊#𝟏

𝑻

Fusion

×𝑳

Graph Transformer

…
Patch Transformer𝒈𝒊𝑳 𝒊#𝟏

𝑻

Stack

×𝑳

×𝑳

𝒉𝒊𝒍#𝟏 𝒊%𝟏
𝑻 𝒉𝒊𝒍#𝟏 𝒊%𝟏

𝑻
𝒉𝒊𝟎 𝒊%𝟏

𝑻

Figure 5: Performance comparison of Patch Transformer with different connection methods. The
left panel illustrates the three connection methods, namely Replace, Fusion, and Stack. The right
panel shows the corresponding performance comparison.

In our baseline, we conduct a comparative analysis of GDT against a set of conventional model-free
methods, such as CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019a), IQL (Kostrikov et al.,
2021b), BCQ (Fujimoto et al., 2019a). Additionally, we include a set of trajectory optimization
methods for comparison, including DT (Chen et al., 2021), TT Janner et al. (2021), Diffuser Janner
et al. (2022), and StARformer (Shang et al., 2022), which represent the current strong baselines. The
performance of IQL, DT, TT, and Diffuser are reported from the original papers, while the results
of CQL, BCQ, and BEAR are reported from Fakoor et al. (2021), and the other methods are run
by us for a fair comparison. This comprehensive evaluation encompasses a variety of techniques
and conducts a thorough examination of the effectiveness of GDT in comparison to state-of-the-art
algorithms. Detailed descriptions of these algorithms are provided in Appendix B.1.

The results presented in Table 2 demonstrate the superior performance of GDT on most of the evalu-
ated tasks, with superior performance to the state-of-the-art TD-learning and trajectory optimization
algorithms in all of these tasks. In the D4RL environment, the input state is represented as a vector
rather than an image, as is the case in the Atari environment. Therefore, when introducing the Patch
Transformer, the fine-grained spatial information is still obtained by embedding the state vector. In
this context, our plug-in module continues to showcase effectiveness, as evidenced by GDT-plus
consistently achieving the highest performance. Conversely, other methods that also utilize image
patches exhibit a negative impact, further underscoring the distinct efficacy of our approach.

4.3 ABLATIONS

In comparison to the DT model, GDT transforms the input sequence into a graph with a causal
relationship and feeds it into the Graph Transformer. Therefore, we initially investigate the impact

8



Under review as a conference paper at ICLR 2024

of the graph structure on the performance of GDT. Additionally, we examine the influence of reward
settings, which have a greater effect on the performance of the DT model. We also explore three
ways to connect the Patch Transformer, which is utilized to capture detailed spatial information.
To provide a comprehensive evaluation, all ablation experiments are conducted on both Atari and
OpenAI Gym (Medium dataset) environments.

Graph Representation Setting. As we transform the input sequence into a graph with causal rela-
tionships, we aim to investigate the impact of the graph structure on the overall performance. Given
that the graph connection method has a complexity of O(n2), we primarily explore four different
connection methods: causal connection, full connection, random connection, and none connec-
tion. The results in Figure 3 demonstrate that the causal connection method outperforms the other
methods in both environments. The full and none connection methods yield similar performances,
while the random connection method is significantly impacted by the environment. Although this
connection method can still achieve better results when historical information is crucial, it can be
counterproductive in environments that are more reliant on causal relationships.

Reward Setting. In this study, we investigate the impact of reward setting on GDT’s performance.
Specifically, we examine the effect of three reward settings, namely return-to-go (RTG), stepwise
reward (Reward), and none reward (None). RTG is a commonly used setting in sequence modeling
methods (Eysenbach et al., 2020; Li et al., 2020; Srivastava et al., 2019), and its experimental results
are greatly influenced by the value of the return-to-go hyper-parameter. Reward refers to the imme-
diate reward generated by the environment after each step, which is commonly used in traditional
TD-learning-based algorithms (Hessel et al., 2018; Schulman et al., 2017; Haarnoja et al., 2018).
The None setting usually corresponds to straightforward behavior cloning.

The results are presented in Figure 4. It should be noted that since GDT takes a graph with a causal
relationship as input, the causal relationship changes correspondingly for each reward setting, as
shown in the left part of the figure. The introduction of reward has improved the performance of
both methods compared to the none reward setting. However, DT is more reliant on return-to-
go than GDT, and there is a large difference in performance between the two reward settings for
DT. Importantly, GDT still outperforms DT with the return-to-go setting under the stepwise reward
setting. This demonstrates that introducing causality in the input can reduce the dependence of
sequence modeling on the return-to-go. Furthermore, under the stepwise reward setting, the graph
input structure of GDT is similar to the dynamic modeling method in model-based algorithms, which
is worth further research to expand and introduce in model-based approaches.

Patch Transformer Connection Method. To capture fine-grained spatial information, we introduce
an optional Patch Transformer to improve action prediction. We denote the output variables of Graph
Transformer as glt and the corresponding input variables in Patch Transformer as hl

t. There are three
possible ways to connect the two: (1) in each layer, glt replaces hl−1

t (GDT-Replace); (2) in each
layer, glt is added to hl−1

t (GDT-Fusion); and (3) the last layer of gLt is used as the initial layer
h0
t (GDT-Stack). The experimental results in Figure 5 demonstrate that in the Atari environment

with high information density, stacking features at the end is the most effective approach for feature
refinement. In contrast, for the Gym environment with less information, feature refinement through
the fusion of different abstraction levels achieves better performance.

5 CONCLUSION

In summary, this paper introduces the Graph Decision Transformer (GDT), an innovative offline RL
methodology that transforms input sequences into causal graphs. This approach effectively captures
potential dependencies between distinct concepts and enhances the learning of temporal and causal
relationships. The empirical results presented demonstrate that GDT either matches or outperforms
existing state-of-the-art offline RL methods across image-based Atari and D4RL benchmark tasks.

Our work highlights the potential of graph-structured inputs in RL, which has been less explored
compared to other deep learning domains. We believe that our proposed GDT approach can inspire
further research in RL, especially in tasks where spatial and temporal dependencies are essential,
such as robotics, autonomous driving, and video games. By further investigating graph-structured
inputs, the potential emerges for the development of more efficient and impactful RL algorithms,
with applicability spanning diverse real-world contexts.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
ICML, 2004.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In ICML, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. JAIR, 2013.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In ICML.
PMLR, 2020.

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. In AAAI, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. NeurIPS, 2021.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In AAAI, 2018.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In ICML, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. Rewriting history with
inverse rl: Hindsight inference for policy improvement. NeurIPS, 2020.

Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola. Contin-
uous doubly constrained batch reinforcement learning. NeurIPS, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
NeurIPS, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019b.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

10



Under review as a conference paper at ICLR 2024

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2018.

Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforcement
learning by transformer: The development trajectory. arXiv preprint arXiv:2212.14164, 2022.

Hanchi Huang, Deheng Ye, Li Shen, and Wei Liu. Curriculum-based asymmetric multi-task rein-
forcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In ICML, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. NeurIPS, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. NeurIPS, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In ICML, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. NeurIPS, 2019a.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. NeurIPS, 2019b.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019c.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. NeurIPS, 2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. NeurIPS, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
NeurIPS, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 2015.

Sai Munikoti, Deepesh Agarwal, Laya Das, Mahantesh Halappanavar, and Balasubramaniam
Natarajan. Challenges and opportunities in deep reinforcement learning with graph neu-
ral networks: A comprehensive review of algorithms and applications. arXiv preprint
arXiv:2206.07922, 2022.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In ICML, 2000.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, 2000.

11



Under review as a conference paper at ICLR 2024

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In ECML, 2005.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning en-
hanced explainer for graph neural networks. NeurIPS, 2021.

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. Starformer: Transformer
with state-action-reward representations for visual reinforcement learning. In ECCV, 2022.

Siqi Shen, Yongquan Fu, Huayou Su, Hengyue Pan, Peng Qiao, Yong Dou, and Cheng Wang.
Graphcomm: A graph neural network based method for multi-agent reinforcement learning. In
ICASSP, 2021.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhu-
ber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Non-target-
specific node injection attacks on graph neural networks: A hierarchical reinforcement learning
approach. In Proc. WWW, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
optimism bias in sequence modeling for reinforcement learning. In ICML, 2022.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. arXiv preprint arXiv:2206.08569, 2022.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In ICLR, 2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. NeurIPS, 2020.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. NeurIPS, 2019.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning. arXiv preprint arXiv:2301.12203, 2023.

Xianjie Zhang, Yu Liu, Xiujuan Xu, Qiong Huang, Hangyu Mao, and Anil Carie. Structural rela-
tional inference actor-critic for multi-agent reinforcement learning. Neurocomputing, 2021.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In ICML, 2022.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks. arXiv preprint arXiv:1909.03184, 2019.

12



Under review as a conference paper at ICLR 2024

Appendices
A DETAILED INPUT GRAPH DESIGN

The concept of ”return-to-go” serves as a guiding factor for the agent’s anticipated cumulative re-
ward, aiming for an ideal R̂T = 0 at the terminal time step. Consequently, it can be construed as
R̂t = R̂t−1− rt−1, where R̂t and st jointly determine the selection of action at (taking into account
the current state and return-to-go to effectively reduce return-to-g to 0). Simultaneously, the current
state st and action at establish the reward rt for the current time step and the state st+1 for the next
time step, following the MDP formulation. This arrangement thereby shapes the expression for the
succeeding time step: R̂t+1 = R̂t − rt.

B EXPERIMENTAL DETAILS

B.1 BASELINE

For the Atari environment, we evaluate GDT against several state-of-the-art non-Transformer offline
RL methods, such as CQLKumar et al. (2020), QR-DQNDabney et al. (2018), and REM Agarwal
et al. (2020), and several imitation learning algorithms, including DT Chen et al. (2021), StARformer
Shang et al. (2022), and straightforward behavior cloning. We report results from the corresponding
papers for CQL, REM, and QR-DQN. For DT, there is a slight discrepancy between Chen et al.
(2021) and Shang et al. (2022); we report raw data provided to us by DT authors. As StARformer
performs well on Atari, we use it as the main comparison object for GDT-plus. In our behavior
cloning setting, the agent lacks access to reward signals and online data from the environment, mak-
ing the problem even more challenging. This differs from traditional imitation learning approaches
that can collect new data and perform Inverse Reinforcement Learning Abbeel & Ng (2004); Ng
et al. (2000). To create this setting, we remove the rewards from the dataset used in offline RL.

In the Gym environment, our evaluation encompasses a comprehensive comparison between GDT
and an array of model-free methods, each contributing to the landscape of offline RL. This array
includes established algorithms such as CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019a),
IQL (Kostrikov et al., 2021b), and BCQ (Fujimoto et al., 2019a). To offer a more comprehensive
evaluation, we extend our scrutiny to encompass a series of sequence modeling methods that span
the trajectory optimization domain. These methods encompass DT (Chen et al., 2021), TT Janner
et al. (2021), Diffuser Janner et al. (2022), and StARformer (Shang et al., 2022), each of which
constitutes a current formidable baseline within the realm of offline RL. For instance, DT and TT
were pioneering algorithms that initially approached RL as a sequence modeling problem, harness-
ing transformers to attend to the input sequence and predict subsequent actions. In contrast, Diffuser
treated RL as a trajectory optimization problem, leveraging a diffusion model to denoise and refine
the generated trajectory for improved performance. By examining a diverse set of approaches, we
strive to provide a thorough assessment of GDT’s performance relative to a broad spectrum of exist-
ing methodologies. The performance of CQL, IQL, BCQ, DT, TT, and Diffuser are reported from
the original papers, while the results of BEAR are reported from the D4RL paper, and the other
methods are run by us for a fair comparison. Note that we re-run the experimental results on Gym
for StARformer based on the official code published by the authors, as the original paper used the
DeepMind Control Suite (DMC) environment with image input instead of vector input like Gym.

B.2 TRAINING RESOURCES

We use one NVIDIA A100 GPU (SXM4) to train each model. Training each model typically takes
8-20 hours. However, since each environment needs to be trained three times with different seeds,
the total training time is usually multiplied by three.

B.3 MODEL PARAMETER

We also conducted a comprehensive comparison of our algorithm’s model size to elucidate the
performance improvements attributed to our graph-based input and specifically designed modules,
rather than merely enhanced parameters. As demonstrated in Table 3, across various D4RL bench-

13



Under review as a conference paper at ICLR 2024

Figure 6: The performance comparison of different input sequence lengths T ∈ [10, 80].

mark environments, GDT showcases a minute increase of only 0.003M parameters. Remarkably,
this minute augmentation in parameters yields significant enhancements across Gym, Adroit, and
Kitchen benchmarks. Conversely, within the context of the Atari environment, a slightly larger
increment of 0.05M parameters results in substantial improvements.

Furthermore, our introduction of an additional Patch Transformer to capture fine-grained spatial
information enhances GDT-plus. Notably, the parameter count of GDT-plus is notably less than
that of the StAR model, while consistently attaining superior performance across D4RL and Atari
environments. This outcome robustly underscores the effectiveness of our proposed approach.

Table 3: Comparison of MACs and Params.
Method MACs Params Gym Adroit Kitchen MACs Params Atari

DT 38.011M 0.020M 74.7 24.1 54.4 18.331G 0.993M 97.9
GDT (ours) 39.977M 0.023M 77.9 26.6 57.6 18.623G 1.045M 137.6

StAR 2.376G 0.872M 66.2 14.6 26.6 133.632G 14.358M 150.0
GDT-plus (ours) 0.324G 0.103M 79.1 29.4 58.6 29.052G 1.145M 151.8

C ADDITIONAL ABLATIONS

We also perform an ablation study on the length of input sequence to examine the Graph Trans-
former’s ability to rely on long sequences. While in a Markovian environment, the state at the
previous moment is often sufficient to determine the current action, the DT experiment (Chen et al.,
2021) reveals that past information is valuable for the sequence modeling method in Atari environ-
ments, where longer sequences tend to yield better results than those of length 1. Subsequently, we
explore the impact of different sequence lengths on performance and compare the results of DT and
GDT, demonstrating the superior ability of GDT to handle long sequence inputs.

Figure 6 presents the impact of sequence length on DT and GDT performance. Our results demon-
strate that the performance of GDT exhibits a continuous improvement trend until a sequence length
of 50, after which it reaches a saturation point. On the other hand, DT experiences a notable decline
in performance with increasing sequence lengths. By incorporating causal relationships in the input,
GDT enables the Graph Transformer to effectively handle the dependencies among long sequences,
leading to improved performance without additional computational overhead.

D HYPER-PARAMETERS

Tables 4 and 5 provide a comprehensive list of hyper-parameters for our proposed GDT and GDT-
plus models applied to Atari and D4RL benchmark environments. To ensure a fair comparison, we
adopt similar hyper-parameter settings to Decision-Transformer Chen et al. (2021), including the

14



Under review as a conference paper at ICLR 2024

number of Transformer layers, multi-head self-attention heads, and embedding dimensions in our
Graph Transformer, as well as learning rate and optimizer configurations.

Table 4: Hyperparameters of GDT and GDT-plus for Atari experiments.

Hyperparameter Value

Layers (Graph Transformer) 6
MSA heads (Graph Transformer) 8
Embedding dimension (Graph Transformer) 128
Batch size 128
Context length K 50 Pong

30 Breakout, Qbert, Seaquest
Return-to-go conditioning 120 Breakout

5000 Qbert
20 Pong
1450 Seaquest

Nonlinearity ReLU, encoder
GeLU, otherwise

Max epochs 10
Dropout 0.1
Learning rate 6 ∗ 10−4

Grad norm clip 1.0
Weight decay 0.1
Warmup tokens 512 ∗ 20
Final tokens 6 ∗ 500000 ∗K
Connection method Stack
Layers (Path Transformer) 2
Image patch size 14
MSA heads (Path Transformer) 4
Embedding dimension (Path Transformer) 64

Table 5: Hyperparameters of GDT and GDT-plus for D4RL benchmark experiments.

Hyperparameter Value

Layers (Graph Transformer) 3
MSA heads (Graph Transformer) 1
Embedding dimension (Graph Transformer) 128
Nonlinearity function ReLU
Batch size 64
Context length K 20
Return-to-go conditioning 6000 HalfCheetah

3600 Hopper
5000 Walker
12000 Pen, Hammer
2000 Door
3000 Relocate
500 Kitchen

Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Connection method Fusion
Layers (Patch Transformer) 3
MSA heads (Patch Transformer) 1
Embedding dimension (Patch Transformer) 256

15


	Introduction
	Related Work
	Methodology
	Graph Representation
	Graph Transformer
	Patch Transformer
	Training Procedure

	Experiment
	Atari
	D4RL
	Ablations

	Conclusion
	Detailed Input graph design
	Experimental Details
	Baseline
	Training Resources
	Model Parameter

	Additional ablations
	Hyper-parameters

