
Teaching What You Should Teach: A Data-Based Distillation Method
Shitong Shao1 , Huanran Chen1 , Zhen Huang2 , Linrui Gong3 , Shuai Wang4 and Xinxiao Wu1∗

1Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science and
Technology, Beijing Institute of Technology, China

2Univeristy of Science and Technology of China, Hefei, China
3Hunan University, Hunan, China

4Tsinghua University, Beijing, China
1090784053sst@gmail.com, huanranchen@bit.edu.cn, zhenhuang@mail.ustc.edu.cn,
linruigong965@gmail.com, s-wang20@mails.tsinghua.edu.cn, wuxinxiao@bit.edu.cn

Abstract

In real teaching scenarios, an excellent teacher al-
ways teaches what he (or she) is good at but the
student is not. This gives the student the best
assistance in making up for his (or her) weak-
nesses and becoming a good one overall. Enlight-
ened by this, we introduce the “Teaching what you
Should Teach” strategy into a knowledge distilla-
tion framework, and propose a data-based distil-
lation method named “TST” that searches for de-
sirable augmented samples to assist in distilling
more efficiently and rationally. To be specific, we
design a neural network-based data augmentation
module with priori bias to find out what meets the
teacher’s strengths but the student’s weaknesses, by
learning magnitudes and probabilities to generate
suitable data samples. By training the data aug-
mentation module and the generalized distillation
paradigm alternately, a student model is learned
with excellent generalization ability. To verify the
effectiveness of our method, we conducted exten-
sive comparative experiments on object recogni-
tion, detection, and segmentation tasks. The results
on the CIFAR-100, ImageNet-1k, MS-COCO, and
Cityscapes datasets demonstrate that our method
achieves state-of-the-art performance on almost all
teacher-student pairs. Furthermore, we conduct vi-
sualization studies to explore what magnitudes and
probabilities are needed for the distillation process.

1 Introduction
Deep neural networks have been widely applied in many
fields, such as computer vision [Zagoruyko and Komodakis,
2016b; Wieczorek et al., 2021; Chen et al., 2023], natural
language processing [Zhao et al., 2020; Dai et al., 2019],
reinforcement learning [Mnih et al., 2013] and speech sig-
nal processing [Purwins et al., 2019]. However, the im-
proving performance of the deep learning model is always
achieved by the increasing size of the model, which makes

∗Corresponding author

it impractical to deploy the large-scale model further in real-
world scenarios, especially on small devices [He et al., 2022;
Devlin et al., 2018]. To alleviate this problem, researchers
have developed a series of model compression methods, such
as parameter pruning [Frankle and Carbin, 2019], quantiza-
tion [Wu et al., 2016], and knowledge distillation [Hinton et
al., 2015].

Inspired by the teaching process in the human world,
knowledge distillation is firstly proposed by [Hinton et al.,
2015], which aims to improve the target model or so-called
student model, by teaching this model using a better teacher
model instead of only ground truth labels. There are two
mainstream approaches to distilling knowledge from the
teacher to the student. One is the logit-based distillation,
where the student is supervised not only by the ground truth
labels but also the output of the teacher [Zhao et al., 2022;
Huang et al., 2022]. The other is the feature-based distil-
lation, which not only aligns the output of the student and
the teacher, but also aligns the activation map in some lay-
ers [Tung and Mori, 2019; Ahn et al., 2019]. These methods
have achieved remarkable progress on learning efficient and
effective models in the past decades, and the theoretical and
practical systems of these two research directions are pretty
well established. Thus, it is difficult for scholars to come up
with new algorithms to surpass the past ones and further im-
prove the student’s performance.

In this work, we rethink the knowledge distillation algo-
rithm from a new perspective called data-based distillation. In
a real-world teaching scenario, if logit-based distillation and
feature-based distillation can be treated as teaching in differ-
ent styles and ways, then data-based distillation can be seen
as teaching knowledge in different fields. Commonly, a good
teacher will decide which subject to teach based on the stu-
dent’s own deficiencies, and, of course, the teacher should at
least be proficient in that subject. This gives the student the
knowledge it most urgently needs and drives it to improve
its abilities in the corresponding weak subject. Thus, we can
introduce this teaching idea to knowledge distillation and let
the teacher only teach the knowledge that it should teach to
boost the performance and effectiveness of the student.

More specifically, we propose a novel data-based distil-
lation method, named “Teaching what you Should Teach
(TST),” which can improve the student’s generalization abil-

ar
X

iv
:2

21
2.

05
42

2v
6

 [
cs

.C
V

]
 2

0
M

ay
 2

02
3

Affine Encoder

Fitting

Color Encoder

Fitting

magnitude

original image
augmented image

magnitude

original image
augmented image

Single data augmentation without magnitude

save

Stage I Freezed

original image
augmented image

Magnitude List

Probability List

Freezed

augmented image

Magnitude List

Probability List

Freezed

load
Freezed

load

Stage II

Stage III

original image

Equalize Invert Cutout

Rotate ShearY

Single affine data augmentation with magnitude

Single color data augmentation with magnitude

Posterize Sharpness

student logit

teacher logit

student logit

teacher logit

Freezed

Freezed

Figure 1: The overall framework of TST. In Stage I, we introduce priori bias about data augmentation into the neural network-based data
augmentation module. Then, we switch between updating magnitudes and probabilities in Stage II and fS in Stage III to make up for as many
of the weaknesses of the student as possible.

ity by generating a series of new samples that the teacher
excels at but the student does not. We design a mechanism
that contains a data augmentation encoder that aims to gener-
ate augmented samples that the teacher is good at while the
student is not good at; then, the teacher utilizes these aug-
mented samples to guide the student. Note that this encoder
is differentiable and stable, and the safety and diversity of
generated samples can be ensured since it introduces manual
data augmentations (e.g., Translate, Rotate, and Solarize) and
employs the microscopic property of meta-encoders. In ad-
dition, we assume that it is easy for TST to generate samples
that meet its requirements, which is difficult for the student to
learn. Thus, we make the number of training iterations of the
encoder much smaller than that of the student to ensure the
distilled students have the most robust performance improve-
ment.

We conduct extensive experiments on image classifi-
cation (CIFAR-100 [Krizhevsky and Hinton, 2009] and
ImageNet-1k [Russakovsky et al., 2015]), object detection
(MS-COCO [Lin et al., 2014]), and semantic segmentation
(Cityscapes [Cordts et al., 2016]) tasks. As a result, TST
achieves state-of-the-art (SOTA) performance in all quantita-
tive comparison experiments with fair comparison, indicating
that data-based distillation is feasible and needs more schol-
arly attention.

Our contribution can be summarized as follows:

• We rethink knowledge distillation from a data perspec-
tive, which not only inspires us to draw on real-world
teaching scenarios but also helps us come up with a
new idea, improving knowledge distillation by teaching
methods as well as using more desirable data.
• We propose a novel data-based distillation method

named TST to help search for augmented samples that
are suitable for distillation. In TST, we develop a differ-
entiable and stable data augmentation encoder to gener-
ate more data like that and add priori bias into this en-
coder to ensure its stability and interpretability.

• We have achieved SOTA performance on a range of vi-
sion tasks and done plenty of ablation studies to verify
the effectiveness of TST. Besides, we visualize the char-
acteristic information of the data augmentation encoder
learned by TST and discover some patterns in it.

2 Related Work
Categorize Knowledge Distillation. We classify knowl-
edge distillation algorithms into three categories: logit-based
distillation, feature-based distillation, and data-based distil-
lation. Past researchers have explored knowledge distilla-
tion only at the logit or feature levels. Specifically, vanilla
KD [Hinton et al., 2015], DKD [Zhao et al., 2022], and
DIST [Huang et al., 2022] measure the difference in probabil-
ity distribution between the student’s logit and the teacher’s
logit by designing different forms of functions. And Fit-
Net [Romero et al., 2014], ATKD [Zagoruyko and Ko-
modakis, 2016a], and CRD [Tian et al., 2020] apply en-
coders or novel distance metric functions, or both to per-
form knowledge transfer at the feature level. However,
these works focus only on “how to teach” and ignore “teach
what”, which can be analogized to the data level. We cat-
egorize knowledge distillation algorithms on the data level
as data-based distillation and find it has not been investi-
gated in the generic distillation framework [Yin et al., 2020;
Fang et al., 2022]. To fill this gap, we turn to focus on design-
ing a data-based distillation method and use a data augmenta-
tion encoder to obtain new samples from the original samples
that can be recognized by the teacher but not by the student.

Learnable Data Augmentation. Data augmentation uti-
lizes affine and color transformations to expand the train-
ing dataset. Traditional manual data augmentation, in-
cluding RandAugment [Cubuk et al., 2020] and AutoAug-
ment [Cubuk et al., 2019], is non-differentiable and unlearn-
able. In recent years, differentiable data augmentation [Li
et al., 2020] has ensured the learnability of data augmen-
tation through a series of numerical approximations, but its

overly complex framework design has hindered its further ap-
plication. TeachAugment [Suzuki, 2022] effectively solves
the problem of unlearnability of data augmentation through a
neural network-based data augmentation module, but the in-
stability of this module leads to the need to impose a series
of additional constraints to assist training. Thus, in TST, we
add priori bias to the neural network-based data augmentation
module and then freeze it in standard training. This ensures
that the new data encoder is interpretable and stable.

3 Teach What You Should Teach
In this section, we first introduce the total framework of TST.
Then, we present the simple knowledge distillation in Stage
III, the search for desirable data in Stage II, and how to intro-
duce priori bias into the data augmentation module in Stage
I. Finally, the concrete implementation of the data augmenta-
tion module is described.

3.1 Total Framework
As illustrated in Fig. 1, TST can be divided into three stages,
namely Stage I, Stage II, and Stage III. To be specific,
Stage I introduces the reasonable priori bias into the neu-
ral network-based data augmentation module before formal
training, which helps ensure the stability of training in Stage
II and Stage III, and improves the student’s ultimate gener-
alization ability. Then, Stages II and III obtain an excellent
student by alternately training them. In Stage II, we initialize
the learnable magnitudes and probabilities, and search aug-
mented samples that the teacher is good at but the student
is not, by minimizing the cross-entropy of the teacher and
maximizing the cross-entropy of the student. We expect that
the student will serve its deficiencies in Stage III and obtain
good generalization ability after training. In particular, Stage
III can be viewed as a simple knowledge distillation frame-
work that only applies a traditional cross-entropy loss and a
Kullback-Leibler divergence to optimize the student. There-
fore, the core of TST is to find more desirable training data
for Stage III through Stage I and Stage II. The more detailed
algorithmic procedure of TST can be found in Appendix C.

3.2 Simple Knowledge Distillation
Stage III is a simple knowledge distillation framework, which
can be interpreted as follows: given a teacher fT with
parameter θT and a student fS with parameter θS , when
a training set X including the original samples and aug-
mented samples are utilized for training, we can sample the
mini-batch {xk}Bk=1 (B denotes the batch size) from it and
get the student output {fS(xk)}Bk=1 and the teacher output
{fT (xk)}Bk=1 by forward propagation. Let us define the nor-
malized exponential function p, i.e., softmax, to calculate
the probability distribution of the model output. The goal
of knowledge distillation is to minimize the cross-entropy
loss LCE between {p(fS(xk))}Bk=1 and the ground truth label
{yk}Bk=1, and the Kullback-Leibler divergence LKL between
{p(fT (xk)/τ)}Bk=1 and {p(fS(xk)/τ)}Bk=1, where τ refers
to the temperature weight. Thus, the total loss function Ltotal

is formulated as

Ltotal =
1

B

B∑
k=1

wceLCE

(
p(fS(x

k)), yk
)

+wklτ
2LKL

(
p(fT (x

k)/τ)||p(fS(xk)/τ)
)
,

(1)

where wce and wkl are balanced weights. Note that Eq. 1
can also be appended with other distillation loss functions,
e.g. Mean Squared Error function (LMSE), to improve the
performance of distillation, which is applied in TST for the
object detection task.

3.3 Search Desirable Data
The goal of TST is to assist the student in overcoming its de-
ficiencies in Stage III by discovering more desirable data that
the teacher excels at but the student does not in Stage II. We
denote the neural network-based data augmentation module
fDE contains a data augmentation meta-encoder set {f iE}Ni=1

with a parameter set {θiE , θip}Ni=1∪{θim}
N−Nnl
i=1 , whereN and

Nnl refer to the total number of all sub-policies and the to-
tal number of sub-policies without magnitudes, respectively.
Note that each fE has the frozen parameter θE containing
priori bias, and its other parameters, i.e., the magnitude1 θm
and the probability θp, are learnable in Stage II. Therefore, as
shown in the upper right corner of Fig. 1, we denote the loss
function of TST in Stage II as

LTST =
1

B

B∑
k=1

αLCE

(
p(fT (x̂

k)), yk
)

+βLCE

(
1−p(fS(x̂k)), yk

)
,

(2)

where x̂ denotes the augmented sample obtained from the
original sample after fDE , and α and β denote the bal-
anced weights. Specific details about fDE will be pre-
sented in Sec. 3.5. The optimization objective of Stage
II min
{θim,θip}Ni=1

LTST is to let the student misclassify but let the

teacher correctly classify so that the teacher can transfer the
most helpful knowledge to students. To better find desir-
able data that the student cannot classify correctly, we use
LCE

(
1−p(fS(x̂k)), yk

)
instead of −LCE

(
p(fS(x̂k)), yk

)
to

avoid non-convex optimization, and the proof can be found in
Appendix D. Moreover, the parameters {θiE}Ni=1 are frozen
because they contain priori bias in favor of distillation, which
is imported in Stage I. As demonstrated later in Sec. 4.2, dis-
tillation can easily fail if {θiE}Ni=1 is not frozen due to the
instability of the data augmentation module.

During standard distillation training, Stage II and Stage III
alternate. Specifically, TST first employs Stage II to find new
samples suitable for distillation, and then utilizes Stage III to
improve the student’s generalization ability. Inspired by [Car-
lini and Wagner, 2017], we claim that it is easy to search aug-
mented samples in Stage II that match what the teacher is
good at but the student is not, while it is difficult for the stu-
dent to absorb knowledge contained in the augmented sam-
ples in Stage III. Therefore, the number of iterations nencoder

1Magnitudes indicate the strength of the sub-policies transition.
Some sub-policies do not have this variable, such as Cutout, Equal-
ize, and Invert. These details will be introduced later.

Architecture Same Different

Distillation
Type

Teacher ResNet110 ResNet110 WRN-40-2 WRN-40-2 ResNet32×4 VGG13 WRN40-2 ResNet32×4 VGG13
74.31 74.31 75.61 75.61 79.42 74.64 75.61 79.42 75.61

Student ResNet20 [2016] ResNet32 WRN-40-1 [2016b] WRN-16-2 ResNet8×4 VGG8 ShuffleNet-V1 ShuffleNet-V1 MobileNet-V2
69.06 71.14 71.98 73.26 72.50 70.36 70.50 70.50 64.60

Feature-based

FitNet [2014] 68.99 71.06 72.24 73.58 73.50 71.02 73.73 73.59 64.14
ATKD [2016a] 70.22 70.55 72.77 74.08 73.44 71.43 73.32 72.73 59.40
SPKD [2019] 70.04 72.69 72.43 73.83 72.94 72.68 74.52 73.48 66.30
CCKD [2019] 69.48 71.48 72.21 73.56 72.97 70.71 71.38 71.14 64.86
RKD [2019] 69.25 71.82 72.22 73.35 71.90 71.48 72.21 72.28 64.52
VID [2019] 70.16 70.38 73.30 74.11 73.09 71.23 73.61 73.38 65.56
CRD [2020] 71.46 73.48 74.14 75.48 75.51 73.94 76.05 75.11 69.73
OFD [2019] - 73.23 74.33 75.24 74.95 73.95 75.85 75.98 69.48
ReviewKD [2021] - 71.89 75.09 76.12 75.63 74.84 77.14 77.45 70.37

Logit-based
KD [2015] 70.67 73.08 73.54 74.92 73.33 72.98 74.83 74.07 67.37
DKD [2022] - 74.11 74.81 76.24 76.32 74.68 76.70 76.45 69.71
DIST [2022] 69.94 73.55 74.42 75.29 75.79 73.74 75.23 75.23 68.48

Data-based Ours 72.44 75.04 75.32 76.75 76.72 75.03 77.38 76.71 70.82

Table 1: Results on the CIFAR-100 test set. “Same” and “Different” in the first row refer to whether the model architecture is the same for
teachers and students.

Architecture Accuracy Feature-based Logit-based Data-based
Teacher Student Teacher Student OFD [2019] RKD [2019] CRD [2020] SRRL [2021] ReviewKD [2021] KD [2015] DKD [2022] DIST [2022] Ours

ResNet-34 ResNet-18 Top-1 73.31 69.76 71.08 70.34 71.17 71.73 71.61 70.66 71.70 72.07 72.22
Top-5 91.42 89.08 90.07 90.37 90.13 90.60 90.51 89.88 90.41 90.42 90.68

ResNet-50 MobileNet-V1 Top-1 76.16 70.13 71.25 - 71.37 72.49 72.56 70.68 72.05 73.24 72.31
Top-5 92.86 89.49 90.34 - 90.41 90.92 91.00 90.30 91.05 91.12 90.70

Swin-Large Swin-Tiny Top-1 86.30 81.30 - 81.20 - 81.50 - 81.50 - 82.26 82.21

Table 2: Results on the ImageNet validation set. We use ResNet-34 and ResNet-50 released by Torchvision [Marcel and Rodriguez, 2010]
and Swin-Large released by [Liu et al., 2021] as our teacher’s pre-training weight.

of Stage II will be much smaller than the number of itera-
tions nstudent of Stage III. Also, Sec. 4.2 illustrates that the
student trained by TST will have better performance when
nencoder � nstudent.

3.4 Introduce Priori Bias into fDE

Noise-based generative models require expensive computa-
tional costs and suffer from training instability (more de-
tailed can be found in Appendix D.5). Thus, Stage I is
applied to introduce the augmented priori bias into fDE
and let {θip}Ni=1 ∪ {θim}

N−Nnl
i=1 be differentiable. Thanks

to priori bias, TST is able to distill a strong student in a
limited number of iterations. For simplicity, we consider
each meta-encoder fE in the set {f iE}Ni=1 as a black box
in this paragraph. In Stage I, since Equalize, Invert and
Cutout do not have the property of magnitude, they do not
need to be fitted and can be called directly in Stage II and
Stage III. Of course, their probabilities are learnable and
will still be optimized in Stage II. Then, we categorize a se-
ries of single data augmentations as follows: (a) magnitude-
unlearnable transformations, including Equalize, Invert, and
Cutout; (b) learnable affine transformations, including Rotate
ShearX, ShearY, TranslateX, and TranslateY; (c) learnable
color transformations, including Posterize, Solarize, Bright-
ness, Color, Contrast, and Sharpness [Cubuk et al., 2019;
Cubuk et al., 2020]. For the learnable affine transformations
and color transformations, we apply Spatial Transformer Net-
work [Jaderberg et al., 2015] and Color Network for fitting,
respectively. Since both types (a) and (b) are fitted in the
same way, we define a set of the manual data-augmentation
mappings {f iA}

N−Nnl
i=1 that includes all single data augmen-

tations with magnitude. For each matched pair fA and fE
in {f iA}

N−Nnl
i=1 and {f iE}

N−Nnl
i=1 , we will optimize LMSE by

nfitting iterations. The loss function in Stage I can be formu-
lated as

Lencoder =
1

B

B∑
k=1

‖fA(xk,mr)− fE(xk,mr)‖22, (3)

where mr ∼ U(0, 1) refers to the magnitude. Lencoder will be
optimized to a very small error bound after nencoder iterations.
This guarantees that all meta-encoders are well-trained.

3.5 Network-Based Data Augmentation
We will describe the whole process of how x goes through
fDE and finally becomes x̂ in this sub-section. We first de-
scribe how fDE calls {f iE}Ni=1 to accomplish the combination
of various sub-generated samples, and then we present the de-
tails of Spatial Transformer Network [Jaderberg et al., 2015]
and Color Network.

After normalizing {θim}
N−Nnl
i=1 and {θip}Ni=1 to [0, 1] by ap-

plying the sigmoid activation function, we employ the Re-
laxed Bernoulli Distribution to sample new magnitudes and
probabilities for solving the non-differentiable problem [Lim
et al., 2019; Li et al., 2020]. The process can be formulated
as

RBD(p) = sigmoid((log(p) + L)/τl), L∼Logistic(0, 1),

{θim}N−Nnl
i=1 =

{
RBD

(
sigmoid

(
θim

))}N−Nnl

i=1
,

{θip}Ni=1 =
{

RBD
(

sigmoid
(
θip

))}N

i=1
,

(4)
where Logistic and τl stand for the logistic distribution and
the temperature, respectively, and τl is set as 0.05. Then, we
randomly select NA non-repeating numbers {Zi}NA

i=1 from
{i}Ni=1. NA can be interpreted as the number of randomly
sampled primitives, i.e., a larger NA means that the model is

T→S CM RCNN-X101→Faster RCNN-R50 RetinaNet-X101→RetinaNet-R50 T→S FCOS-R101→FCOS-R50
Type Two-stage detectors One-stage detectors Type Anchor-free detectors
Method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL Method AP AP50 AP75 APS APM APL
Teacher 45.6 64.1 49.7 26.2 49.6 60.0 41.0 60.9 44.0 23.9 45.2 54.0 Teacher 40.8 60.0 44.0 24.2 44.3 52.4
Student 38.4 59.0 42.0 21.5 42.1 50.3 37.4 56.7 39.6 20.0 40.7 49.7 Student 38.5 57.7 41.0 21.9 42.8 48.6
KD [2015] 39.7 61.2 43.0 23.2 43.3 51.7 37.2 56.5 39.3 20.4 40.4 49.5 KD [2015] 39.9 58.4 42.8 23.6 44.0 51.1
COFD [2019] 38.9 60.1 42.6 21.8 42.7 50.7 37.8 58.3 41.1 21.6 41.2 48.3 FitNet [2014] 39.9 58.6 43.1 23.1 43.4 52.2
FKD [2021] 41.5 62.2 45.1 23.5 45.0 55.3 39.6 58.8 42.1 22.7 43.3 52.5 GID [2021] 42.0 60.4 45.5 25.6 45.8 54.2
DIST [2022] 40.4 61.7 43.8 23.9 44.6 52.6 39.8 59.5 42.5 22.0 43.7 53.0 FRS [2021] 40.9 60.3 43.6 25.7 45.2 51.2
DIST+mimic [2022] 41.8 62.4 45.6 23.4 46.1 55.0 40.1 59.4 43.0 23.2 44.0 53.6 FGD [2022] 42.1 - - 27.0 46.0 54.6
Ours (KD) 40.5 62.4 44.1 24.0 44.6 52.1 39.9 59.6 42.8 23.3 43.8 53.3 Ours (KD) 40.1 58.3 43.2 23.9 44.1 51.6
Ours (KD+mimic) 42.2 63.4 46.1 24.1 46.5 55.6 40.5 60.0 43.4 23.9 44.5 54.4 Ours (KD+mimic) 41.0 60.0 44.3 24.9 45.0 51.8

Table 3: Results on the COCO validation set (T→S refers to the distillation from T to S). Here, the content in brackets to the right of “Ours”
refers to the methods applied in the distillation process. In addition, CM RCNN-X101 stands for Cascade Mask RCNN-X101.

Method mIoU (%) Method mIoU (%)
T: PSPNet-R101 78.55 S: PSPNet-R18 70.09
SKDD [2020] 74.08 SKDS [2019] 72.70
IFVD [2020] 74.54 CWD [2021]∗ 75.54
DIST [2022] 75.74 Ours∗ 76.55

Table 4: Results on the Cityscapes validation set. ∗: The experi-
ments are performed based on mmrazor [Contributors, 2021].

more difficult to identify the augmented samples. NA is set
as 4 by default in our experiments. We obtain {xiE}

NA
i=1 from

x through all meta-encoders and get the final x̂ by simple sum
denoted as

xiE=

{
θZ

i

p � fE(x, θZ
i

m)− θZi

p � x, Zi ≤ N −Nnl

θZ
i

p � fE(x)− θZi

p � x, Zi > N −Nnl

x̂=x+

NA∑
i=1

xiE ,

(5)

where � denotes the element-wise product. For object de-
tection tasks, the summation in Eq. 5 can easily lead to the
undesired result that a single target object turns into multiple
target objects. Therefore, we use a separate algorithm for this
special task. which is explained in Appendix D.

Spatial Transformer Network fSTN and Color Network fCN
are two different neural network-based meta-encoders. Each
has parameters θE to store priori bias learned from Stage I.
However, fSTN and fCN employ different ways to complete
the calculation. As shown in the next Eq., when x and mag-
nitudem are fed into fSTN, θE (can be considered as a vector)
is first concatenated withm to form a new vector θ̂E , and then
passes through a fully connected layer FC := Rlen(θE)+1 →
R6 to obtain the matrix A ∈ R2×3, denoted as
fSTN(x,m) = Affine(A, x), whereA = reshape(FC([θE ,m])).

For fCN, its forward propagation is composed of convolu-
tion and color transformation. So, θE not only has a vector
θE,V but also a convolution weight θE,C to record priori bias.
When x and m are fed into fCN, θE,V and m concatenate a
new vector θ̂E,V , and we let it through a fully connected layer
FC := Rlen(θE,V)+1 → R2 to obtain the scale and shift pa-
rameters, i.e., θscale and θshift. After that, the output of fCN is
denoted as
fCN(x,m) = C(x�(0.5+sigmoid(θscale))+sigmoid(θshift)−0.5),

where C refers to the convolutional layer. In particular, in our
experiments, we perform RBD on A, θshift and θscale addition-
ally to guarantee the diversity of data augmentation to prevent

{θim}
N−Nnl
i=1 and {θip}Ni=1 from converging to a locally optimal

solution.

4 Experiment
We conduct comparison experiments on three major tasks:
image classification, object detection, and semantic segmen-
tation. The image classification datasets include CIFAR-
100 [Krizhevsky and Hinton, 2009] and ImageNet-1k [Rus-
sakovsky et al., 2015]; the target detection dataset includes
MS-COCO [Lin et al., 2014]; the semantic segmentation
dataset includes Cityscapes [Cordts et al., 2016]. More de-
tails about these datasets can be found in Appendix A. Be-
sides, all the experiment results on CIFAR-100 are the aver-
age over five trials, while the related experiment results on
other datasets are the average over three trials. We apply
batch size 128 and initial learning rate 0.1 on CIFAR-100.
And we follow the settings in [Huang et al., 2022] for the
ResNet34-ResNet18 pair and the ResNet50-MobileNet pair
on ImageNet-1k. The settings of other classification, detec-
tion and segmentation tasks can be found in Appendix B.

4.1 Comparison with SOTA Methods
Classification on CIFAR-100. We compare many state-of-
the-art feature-based and logit-based distillation algorithms
on nine student-teacher pairs. For these teacher-student pairs,
the teacher and student of six pairs have the same structure,
and the teacher and student of the other three pairs have dif-
ferent architecture. The experimental results are presented
in Table 1. Obviously, we can find that TST, as the only
data-based distillation approach, outperforms all other algo-
rithms on eight student-teacher pairs except for ResNet32×4-
ShuffleNet-V1. Especially on three teacher-student pairs,
including ResNet110-ResNet20, ResNet110-ResNet32 and
VGG13-VGG8, our TST surpasses the latest state-of-the-art
methods by almost more than one percent. Besides, in order
to more fully demonstrate the excellent performance of TST,
we conduct simulations of few-shot scenarios on CIFAR-100.
Here, we follow the training settings in [Tian et al., 2020] and
randomly discard 25%, 50%, and 75% samples for training.
As the experimental results shown in Appendix D.6, TST also
performs well in this few-shot scenario.
Classification on ImageNet-1k. To further demonstrate
whether TST can work robustly on ImageNet-1k, we con-
duct experiments with two different architecture pairs, includ-
ing Conv-Conv and ViT-ViT pairs. For Conv-Conv pair, we
consider two teacher-student pairs: ResNet34-ResNet18 and

ResNet50-MobileNet-V1 pairs, and apply the same hyperpa-
rameter settings to show the effectiveness of TST. The re-
sults are illustrated in Table 2. We can find that TST beats
all state-of-the-art methods in ResNet34-ResNet18 pair but is
slightly inferior to SRRL, ReviewKD and DIST in ResNet50-
MobileNet-V1 pair. The possible reason is that the teacher
is stronger, which causes the teacher overconfident in dis-
criminating on the original and generating augmented sam-
ples. In our discussion, we consider this phenomenon in iso-
lation and give two solutions for mitigating poor student per-
formance under TST training with the stronger teacher. In
particular, this is not a defect of TST, but rather due to the
fact that LKL is not adapted to the distillation process with
the stronger teacher. In fact, there are many approaches, in-
cluding DIST [Huang et al., 2022] and DKD [Zhao et al.,
2022], that have been proposed to alleviate the gap between
the teacher and student. For the ViT-ViT pair, we regard
Swin Transformer [Liu et al., 2021], which is widely known
and applied by researchers, as the model architecture in dis-
tillation. We treat Swin Transformer Tiny (Swin-Tiny) as
the student and Swin-Transformer Large (Swin-Large) as the
teacher. The experimental results are presented in Table 2,
where TST surpasses all methods except DIST, showing that
TST is applicable to ViT-based architectures.

Detection on MS-COCO. Comparison experiments are
run on three kinds of different detectors, i.e., two-Stage de-
tectors, one-stage detectors, anchor-free detectors. In partic-
ular, TST introduces additional losses on Stage II that drove
the student box regression to be inaccurate and the teacher
box regression to be accurate. As shown in Table 3, TST
breaks the vanilla KD bottleneck by locating augmented sam-
ples that are conducive to distillation. Due to the additional
loss on box regression in Stage II and the fact that the de-
tection task depends more on the network’s ability to pro-
duce good features, we believe that aligning the student and
teacher feature maps will improve the performance of TST.
Thus, we follow [Huang et al., 2022] by adding auxiliary loss
mimic, i.e., translating the student feature map to the teacher
feature map by a convolution layer and supervising them uti-
lizingLMSE , to the detection distillation task. Ultimately, we
can conclude from Table 3 that TST based on the vanilla KD
and mimic achieves the best performance on Cascade RCNN-
X101-Cascade RCNN-R50 and RetinaNet-X101-RetinaNet-
R50 pairs.

Segmentation on Cityscapes. We conduct comparative
experiments of semantic segmentation on PSPNet-R101-
PSPNet-R18 pair [Zhao et al., 2017]. As shown in Table 4,
TST outperforms all the state-of-the-art methods and demon-
strates that data-based distillation is effective in the field of
semantic segmentation.

4.2 Ablation Study
We conduct ablation studies in three aspects: (a) the effect of
Stage II on the student performance; (b) the effect of different
iteration numbers in Stage II; (c) the impact of varying data
encoders on TST.

As illustrated in Table 5, no matter what kind of teacher-
student pairs or whatever value ofNA, the augmented sample

Teacher Student Learnable
NA

2 4 6

WRN-40-2 WRN-16-2
Yes 76.75 76.58 76.55
No 76.41 76.05 75.66

ResNet110 ResNet20
Yes 72.34 72.44 72.43
No 71.86 71.74 71.80

Table 5: Top-1 test accuracy (%) comparison of whether the neu-
ral network-based data augmentation module is learnable or not on
CIFAR-100.

Teacher Student
nencoder

0· |X|B 1· |X|B 15· |X|B 30· |X|B

WRN-40-2 WRN-16-2 76.05 76.72 76.53 76.58
ResNet110 ResNet20 71.74 72.46 72.41 72.44

Table 6: Top-1 test accuracy (%) comparison on CIFAR-100. Here,
we performed ablation experiments on nencoder. NA for all experi-
ments in this table is set as 4.

search strategy of TST, i.e., Stage II, is always beneficial for
distillation.

In addition, we suppose that TST may easily find aug-
mented samples that the student is not good at, but it is dif-
ficult for the student to absorb the corresponding knowledge
fully. Based on this conjecture, TST should perform best in
the case that nencoder � nstudent. The experimental results in
Table 6 verify our assumption. Note that |X |B actually refers
to the iteration number within an epoch.

At last, we show the impact of different types of data en-
coders on the performance of TST in Table 7 and analyze it.
One of the data encoders, Attack, denotes the direct manip-
ulation of samples in a form similar to PGD [Madry et al.,
2018], which means that TST must let Stage II and Stage III
iterate once each in turn and repeat the process. Based on the
findings in Table 7, we can indicate that it is an extremely
sensible choice to introduce the augmented priori bias into
the data encoder and to freeze the parameters associated with
the bias during distillation process.

5 Discussion
How to alleviate the gap between the teacher and stu-
dent? To analyze this situation, we train two stronger teach-
ers, including WRN-40-4 and WRN-28-10, achieve 80.7%
and 82.0% Top-1 accuracy on the test set of CIFAR-100, re-
spectively. Then, we employ these two teachers for a more
in-depth exploration. As illustrated in Table 8, when wce, wkl,
α and β take default values (i.e., 1, 1, 1 and 1), stronger teach-
ers (i.e., WRN-40-4 and WRN-28-10) usually achieve worse
performance compared to WRN-40-2. To analyze this phe-
nomenon, we show in Fig. 3 that the teacher’s response to the
ground truth label, i.e., the probabilities of correctly discrim-
inating samples. Specifically, in each epoch of Stage III, we
get the teacher’s responses to the correct category correspond-
ing to all training samples, and plot the expectation of the re-
sponses. This indicates that the stronger the teacher is, the
closer its response is to one-hot encoding and the less “dark
knowledge” attached to the logit. Consequently, the perfor-
mance degradation of students caused by stronger teachers
can be mitigated by making the teacher logit not too close

Teacher Student
Mode

Attack Ours+ Ours+∗ Ours
WRN-40-2 WRN-16-2 74.76 66.01 NAN 76.58
ResNet110 ResNet20 71.15 52.91 NAN 72.44

Table 7: Top-1 test accuracy (%) comparison for different data en-
coders on CIFAR-100. Here, + and ∗ stand for not freezing all the
parameters in {f i

E}
N

i=1 and not introducing bias of a priori data aug-
mentation into {f i

E}
N

i=1, respectively. The results “NAN” represents
the gradient explosion. Besides, NA and nencoder for all experiments
in this table is set as 4 and 30· |X|

B
, respectively.

Figure 2: The plot of magnitudes and probabilities variation with
iteration under TST on CIFAR-100. Here we have selected repre-
sentative sub-policies, including ShearX, ShearY, Cutout, Posterize,
and Equalize.

to one-hot coding. We propose two solutions: (a) decrease
wce and increase wkl, simultaneously, to transfer more “dark
knowledge” from the teacher to the student; (b) decrease α
and increase β, simultaneously, to make the teacher not over-
confident about the augmented samples searched by Stage II.
As exhibited in Table 8, both methods assist in bridging the
gap between the teacher and student to some extent.

What are the strengths and probabilities of execution for
augmentations that the teacher excels at, but the stu-
dent does not? To answer this question, we choose 8
magnitudes and probabilities from {θim}

N−Nnl
i=1 and {θip}Ni=1

with distinct patterns and plot their variation with itera-
tion in Fig. 2. The full TST visualization of search re-
sults is shown in Appendix D. Note that there are 3 teacher-
student pairs, i.e., WRN-40-2-WRN-16-2, WRN40-2-WRN-
40-1 and ResNet32×4-ResNet8×4 pairs in these figures, and

Hyperparameters Teacher
wce wkl α β WRN-40-4 WRN-28-10
1.0 1.0 1.00 1.00 75.93 75.79
1.0 1.0 0.95 1.05 76.13 76.04
1.0 1.0 0.85 1.15 76.35 76.18
1.0 1.0 0.75 1.25 76.42 76.34
1.0 1.0 0.5 1.5 76.45 75.80
1.0 1.0 0.25 1.75 76.19 75.81
0.8 1.2 1.00 1.00 76.32 75.89
0.6 1.4 1.00 1.00 76.37 75.96
0.4 1.6 1.00 1.00 76.47 76.02
0.2 1.8 1.00 1.00 76.29 76.17

Table 8: Top-1 accuracy (%) comparison on CIFAR-100. Analytical
experiments ofwce,wkl, α and β hyperparameters. Here, all students
are WRN-16-2.

each pair has two changing curves. Although the mag-
nitudes and probabilities searched by the different models
are various, they have macroscopic similarities. For in-
stance, ShearX and ShearY converge to larger probabilities
and smaller magnitudes; sub-policies without learnable mag-
nitudes, such as Equalize and Cutout, converge to minimal
probabilities. In fact, such a result is intuitive. For in-
stance, the co-characteristics of the dataset let the magnitudes
and probabilities searched by the data augmentation methods
(e.g., PBA and AutoAugment) on one model can also be ap-
plied to another one. Besides, each curve in Fig. 2 differs
at a microscopic level due to the difference between teacher-
student pairs and the stochastic nature of deep learning.

6 Conclusion
In this paper, inspired by realistic teaching scenarios, we de-
sign a data-based distillation algorithm called TST. To be spe-
cific, TST locates augmented samples that the teacher is good
at while the student is not, and transfers the knowledge of
these augmented samples from the teacher to the student with
the expectation that an excellent student can be learned. Our
experimental results, including both qualitative and quantita-
tive ones, demonstrate the feasibility of the data-based distil-
lation method and the validity of the “Teach what you Should
Teach” strategy. In future research, the data-based distilla-
tion, which is as competitive as logit-based and feature-based
distillation, may deserve more attention in the field of knowl-
edge distillation. Meanwhile, combining data-based distilla-
tion with logit-based distillation and feature-based distillation
may lead to greater performance breakthroughs in distillation.

Acknowledgments
This work was supported in part by the Nature Science Foun-
dation of China (NSFC) under Grant No 62072041.

References
[Ahn et al., 2019] Sungsoo Ahn, Shell Xu Hu, et al. Variational

information distillation for knowledge transfer. In Computer Vi-
sion and Pattern Recognition, pages 9163–9171, Long Beach,
CA, USA, Jun. 2019. IEEE.

[Carlini and Wagner, 2017] Nicholas Carlini and David Wagner.
Towards evaluating the robustness of neural networks. In Security
and Privacy, pages 39–57. IEEE, 2017.

[Chen et al., 2019] Kai Chen, Jiaqi Wang, and Pang et al. MMDe-
tection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019.

[Chen et al., 2021] Pengguang Chen, Shu Liu, et al. Distilling
knowledge via knowledge review. In Computer Vision and Pat-
tern Recognition, pages 5008–5017, Virtual Event, Jun. 2021.
IEEE.

[Chen et al., 2022] Huanran Chen, Shitong Shao, Ziyi Wang, Zirui
Shang, Jin Chen, Xiaofeng Ji, and Xinxiao Wu. Bootstrap gener-
alization ability from loss landscape perspective. arXiv preprint
arXiv:2209.08473, 2022.

[Chen et al., 2023] Huanran Chen, Shitong Shao, Ziyi Wang, Zirui
Shang, Jin Chen, Xiaofeng Ji, and Xinxiao Wu. Bootstrap gen-
eralization ability from loss landscape perspective. In Leonid
Karlinsky, Tomer Michaeli, and Ko Nishino, editors, ECCV 2022
Workshops, Cham, 2023. Springer.

[Contributors, 2020] MMSegmentation Contributors. MMSegmen-
tation: Openmmlab semantic segmentation toolbox and bench-
mark, 2020.

[Contributors, 2021] MMRazor Contributors. Openmmlab model
compression toolbox and benchmark, 2021.

[Cordts et al., 2016] Marius Cordts, Mohamed Omran, and Ramos
et al. The cityscapes dataset for semantic urban scene under-
standing. In Computer Vision and Pattern Recognition, pages
3213–3223, Las Vegas, NV, USA, Jun.-Jul. 2016. IEEE.

[Cubuk et al., 2019] Ekin D Cubuk, Barret Zoph, et al. Autoaug-
ment: Learning augmentation strategies from data. In Computer
Vision and Pattern Recognition, pages 113–123, Long Beach,
CA, USA, Jun. 2019. IEEE.

[Cubuk et al., 2020] Ekin D Cubuk, Barret Zoph, et al. Randaug-
ment: Practical automated data augmentation with a reduced
search space. In Computer Vision and Pattern Recognition work-
shops, pages 702–703, Seattle, WA, USA, Jun. 2020. IEEE.

[Dai et al., 2019] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-
XL: Attentive language models beyond a fixed-length context.
In Association for Computational Linguistics, pages 2978–2988,
Florence, Italy, Jul. 2019. ACL.

[Dai et al., 2021] Xing Dai, Zeren Jiang, et al. General instance
distillation for object detection. In Computer Vision and Pattern
Recognition, pages 7842–7851, Virtual Event, Jun. 2021.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[Fang et al., 2022] Gongfan Fang, Kanya Mo, et al. Up to 100x
faster data-free knowledge distillation. In Association for the Ad-
vancement of Artificial Intelligence, number 6, pages 6597–6604,
Virtual Event, Feb.-Mar. 2022.

[Frankle and Carbin, 2019] Jonathan Frankle and Michael Carbin.
The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Represen-
tations, New Orleans, LA, USA, May 2019.

[He et al., 2016] Kaiming He, Xiangyu Zhang, et al. Deep resid-
ual learning for image recognition. In Conference on Computer
Vision and Pattern Recognition, pages 770–778, Las Vegas, NV,
USA, Jun. 2016. IEEE.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie, Yanghao
Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are

scalable vision learners. In Computer Vision and Pattern Recog-
nition, pages 16000–16009, New Orleans, LA, USA, Jun. 2022.
IEEE.

[Heo et al., 2019] Byeongho Heo, Jeesoo Kim, and Sangdoo et al.
A comprehensive overhaul of feature distillation. In International
Conference on Computer Vision, pages 1921–1930, Seoul, Korea
(South), Oct.-Nov. 2019. IEEE.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, Jeff Dean,
et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

[Huang et al., 2022] Tao Huang, Shan You, et al. Knowledge distil-
lation from a stronger teacher. In Neural Information Processing
Systems, New Orleans, LA, USA, Nov.-Dec. 2022. NIPS.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan, et al.
Spatial transformer networks. In Neural Information Process-
ing Systems, volume 28, Montréal, Canada, Dec. 2015. Curran
Associates, Inc.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geoffrey
Hinton. Learning multiple layers of features from tiny images.
Handbook of Sys temic Autoimmune Diseases, 2009.

[Li et al., 2020] Yonggang Li, Guosheng Hu, Yongtao Wang, Tim-
othy M. Hospedales, Neil Martin Robertson, and Yongxing Yang.
DADA: differentiable automatic data augmentation. In Euro-
pean Conference on Computer Vision, Virtual Event, Aug. 2020.
Springer.

[Lim et al., 2019] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon
Kim, and Sungwoong Kim. Fast autoaugment. In Neural In-
formation Processing Systems, pages 6662–6672, Vancouver,
Canada, Jan. 2019. NIPS.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, et al. Microsoft
coco: Common objects in context. In European Conference
on Computer Vision, pages 740–755, Zurich, Switzerland, Sept.
2014. Springer.

[Liu et al., 2019] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin,
Zhenbo Luo, and Jingdong Wang. Structured knowledge distil-
lation for semantic segmentation. In Computer Vision and Pat-
tern Recognition, pages 2604–2613, Long Beach, CA, USA, Jun.
2019. IEEE.

[Liu et al., 2020] Yifan Liu, Changyong Shu, Jingdong Wang, and
Chunhua Shen. Structured knowledge distillation for dense pre-
diction. IEEE transactions on Pattern Analysis and Machine In-
telligence, 2020.

[Liu et al., 2021] Ze Liu, Yutong Lin, et al. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In Inter-
national Conference on Computer Vision, pages 10012–10022,
Virtual Event, Mar. 2021. IEEE.

[Madry et al., 2018] Aleksander Madry, Aleksandar Makelov, Lud-
wig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International
Conference on Learning Representations, Vancouver, Canada,
Apr.-May 2018. OpenReview.net.

[Marcel and Rodriguez, 2010] Sébastien Marcel and Yann Ro-
driguez. Torchvision the machine-vision package of torch. In
ACM international conference on Multimedia, pages 1485–1488,
Firenze, Italy, Oct. 2010. ACM.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602, 2013.

[Park et al., 2019] Wonpyo Park, Dongju Kim, et al. Relational
knowledge distillation. In Conference on Computer Vision and
Pattern Recognition, pages 3967–3976, Long Beach, CA, USA,
Jun. 2019. IEEE.

[Peng et al., 2019] Baoyun Peng, Xiao Jin, et al. Correlation
congruence for knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages
5007–5016, 2019.

[Purwins et al., 2019] Hendrik Purwins, Bo Li, Tuomas Virtanen,
Jan Schlüter, Shuo-Yiin Chang, and Tara Sainath. Deep learning
for audio signal processing. IEEE Journal of Selected Topics in
Signal Processing, 13(2):206–219, 2019.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas, et al. Fit-
nets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng, et al. Ima-
genet large scale visual recognition challenge. International jour-
nal of computer vision, 115(3):211–252, 2015.

[Shu et al., 2021] Changyong Shu, Yifan Liu, et al. Channel-wise
knowledge distillation for dense prediction. In International
Conference on Computer Vision, pages 5311–5320, Montreal,
Canada, Oct. 2021. IEEE.

[Suzuki, 2022] Teppei Suzuki. Teachaugment: Data augmenta-
tion optimization using teacher knowledge. In Computer Vision
and Pattern Recognition, pages 10904–10914, New Orleans, LA,
USA, Jun. 2022. IEEE.

[Tian et al., 2020] Yonglong Tian, Dilip Krishnan, and Phillip
Isola. Contrastive representation distillation. In Interna-
tional Conference on Learning Representations, Addis Ababa,
Ethiopia, Apr. 2020. OpenReview.net.

[Tung and Mori, 2019] Frederick Tung and Greg Mori. Similarity-
preserving knowledge distillation. In International Conference
on Computer Vision, pages 1365–1374, Seoul, Korea (South),
Oct-Nov. 2019. IEEE.

[Wang et al., 2020] Yukang Wang, Wei Zhou, Tao Jiang, Xiang
Bai, and Yongchao Xu. Intra-class feature variation distillation
for semantic segmentation. In European Conference on Com-
puter Vision, pages 346–362, Virtual Event, Aug. 2020. Springer.

[Wieczorek et al., 2021] Mikołaj Wieczorek, Barbara Rychalska,
and Jacek Dabrowski. On the unreasonable effectiveness of cen-
troids in image retrieval. In International Conference on Neural
Information Processing, pages 212–223, Bali, Indonesia, Dec.
2021. Springer.

[Wu et al., 2016] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao
Hu, and Jian Cheng. Quantized convolutional neural networks
for mobile devices. In Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, Jun. 2016. IEEE.

[Yang et al., 2021] Jing Yang, Brais Martinez, et al. Knowledge
distillation via softmax regression representation learning. In In-
ternational Conference on Learning Representations. OpenRe-
view.net, 2021.

[Yang et al., 2022] Zhendong Yang, Zhe Li, et al. Focal and global
knowledge distillation for detectors. In Computer Vision and
Pattern Recognition, pages 4643–4652, New Orleans, LA, USA,
Jun. 2022. IEEE.

[Yin et al., 2020] Hongxu Yin, Pavlo Molchanov, et al. Dream-
ing to distill: Data-free knowledge transfer via deepinversion.
In Computer Vision and Pattern Recognition, pages 8715–8724,
Seattle, WA, USA, Jun. 2020. IEEE.

[Zagoruyko and Komodakis, 2016a] Sergey Zagoruyko and Nikos
Komodakis. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention
transfer. In International Conference on Learning Representa-
tions(ICLR), 2016.

[Zagoruyko and Komodakis, 2016b] Sergey Zagoruyko and Nikos
Komodakis. Wide residual networks. In British Machine Vision
Conference, pages 1–15, York, UK, Sept. 2016. BMVA.

[Zhang and Ma, 2021] Linfeng Zhang and Kaisheng Ma. Improve
object detection with feature-based knowledge distillation: To-
wards accurate and efficient detectors. In International Confer-
ence on Learning Representations, Vienna, Austria, May 2021,
pages 1–14. OpenReview.net, 2021.

[Zhao et al., 2017] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi,
Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing net-
work. In Computer Vision and Pattern Recognition, Honolulu,
HI, USA, Jul, 2017. IEEE.

[Zhao et al., 2020] Hengshuang Zhao, Jiaya Jia, and Vladlen
Koltun. Exploring self-attention for image recognition. In Com-
puter Vision and Pattern Recognition, pages 10076–10085, Seat-
tle, WA, USA, Jun. 2020. IEEE.

[Zhao et al., 2022] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu,
and Jiajun Liang. Decoupled knowledge distillation. In Confer-
ence on Computer Vision and Pattern Recognition, pages 11953–
11962, New Orleans, LA, USA, Jun. 2022. IEEE.

[Zhixing et al., 2021] Du Zhixing, Rui Zhang, Ming Chang, Shaoli
Liu, Tianshi Chen, Yunji Chen, et al. Distilling object detectors
with feature richness. Neural Information Processing Systems,
34:5213–5224, Dec. 2021.

A Datasets
CIFAR-100. Dataset CIFAR-100 [Krizhevsky and Hinton,
2009] is the subsets of the tiny image dataset and consists of
60,000 images with the size 32×32. Specifically, the train-
ing set contains 50,000 images, and the testing set contains
10,000 images.

ImageNet-1k. Dataset ImageNet-1k [Russakovsky et al.,
2015], also commonly referred to as ILSVRC 2012, has 1000
classes, and the benchmark is trained using the training set
and tested using the validation set. Its training and validation
sets contain 1281,167 and 50,000 images, respectively.

MS-COCO. Dataset MS-COCO [Lin et al., 2014] is a
large-scale object detection dataset. The benchmark is the
same as ImageNet-1k, using the training set for training and
the validation set for testing. The training/validation split was
changed from 83K/41K to 118K/5K in 2017. Researchers
commonly apply the 2017 version for experiments.

Cityscapes. Dataset Cityscapes [Cordts et al., 2016] is a
new large-scale dataset for semantic segmentation. It pro-
vides 5,000 images that have been meticulously annotated,
with 2,975 images for training and 500 images for validation,
where 30 common classes are provided and 19 classes are
used for evaluation and testing. Each image is 2048×1024 in
size.

B Hyperparameter Settings
B.1 Basic settings
Classification. For the classification experiments on
CIFAR-100, the batch size is 128, the total number of epochs
is 240, and the learning rate is initialized to 0.1 and divided
by 10 at 150, 180 and 210 epochs. In addition, we employ
an SGD optimizer for training and set the weight decay and
momentum as 5e-4 and 0.9, respectively. For the classifi-
cation experiments on ImageNet-1k (ResNet34-ResNet18
pair and ResNet50-MobileNet pair), the total batch size is
512, the total number of epochs is 100, the batch size in
every GPU is 128, the number of GPUs is 4 and the learning
rate is initialized to 0.1 and divided by 10 at 30, 60 and 90
epochs. Besides, we employ an SGD optimizer for training
and set the weight decay and momentum as 1e-4 and 0.9,
respectively. For the Swin-Large-Swin-Tiny pair, we follow
the setting in [Liu et al., 2021], except for the batch size
and initial learning rate. Specifically, the batch size is 512,
the total number of epochs is 300, the batch size in every
GPU is 64, the number of GPUs is 8, and the learning rate
is initialized to 0.0005 and is decayed by a cosine scheduler.
Furthermore, we utilized an Adam optimizer for training and
set the weight decay as 5e-2. The reason for halving the
batch size is that the GPU memory is insufficient to support
the training with the original hyperparameter settings.

Detection. For the detection experiments on MS-COCO,
we utilize mmdetection [Chen et al., 2019] and mmra-
zor [Contributors, 2021] for both training and testing. Fol-
lowing [Shu et al., 2021; Park et al., 2019], we use the
same standard training strategies on the Cascade RCNN-
X101-Faster RCNN-R50 and RetinaNet-X101-RetinaNet-

R50 pairs. To be specific, the total batch size is 16, the to-
tal number of epochs is 24, the batch size in every GPU is
2, the number of GPUs is 8 and the learning rate is divided
by 10 at 16 and 22 epochs. The initial learning rate is set as
0.02 and 0.01 on Cascade RCNN-X101-Faster RCNN-R50
and RetinaNet-X101-RetinaNet-R50 pairs, respectively. Be-
sides, the setting on the FCOS-R101-FCOS-R50 pair is fol-
lowing [Yang et al., 2022]. Compared with the RetinaNet-
X101-RetinaNet-R50 pair, the only difference is we apply a
warm-up learning rate on the FCOS-R101-FCOS-R50 pair.

Segmentation. For the segmentation experiments on
Cityscapes, we apply mmsegmentation [Contributors, 2020]
and mmrazor [Contributors, 2021] for distillation. we fol-
low the setting in [Contributors, 2021]. In specific, the total
batch size is 16, the total number of iterations is 80,000, the
batch size in every GPU is 2, the number of GPUs is 8 and
the learning rate is 0.01. We make the learning rate decay to
0.9 in each iteration and constrain the minimum learning rate
in training to be 1e-4. And we utilized a SGD optimizer for
training and set the weight decay and momentum as 5e-4 and
0.9, respectively.

B.2 Advanced Settings

Classification. On CIFAR-100, the loss weight is set as
1 for all comparison results and the temperature τ of TST
(i.e., vanilla KD) is 4. We let fDE update the magni-
tudes {θim}

N−Nnl
i=1 and probabilities {θip}Ni=1 (i.e., conduct

Stage II) at 30 and 90 epochs and continuously train fDE
with ALRS [Chen et al., 2022] for 1 epoch. Moreover, on
ImageNet-1k, the loss weight is set as 1 for all comparison
results and the temperature τ of TST (i.e., vanilla KD) is
1. The magnitudes {θim}

N−Nnl
i=1 and probabilities {θip}Ni=1 are

updated at 10 and 20 epochs. Unlike CIFAR-100 training, we
train 5 epochs for fDE continuously.

Detection. On MS-COCO, the loss weight is set as 1 for all
comparison results and the temperature τ of TST (i.e., vanilla
KD) is 1. We add LKL and LMSE to the final predictions of
classes and the neck, respectively. On Stage II, we let not only
the student classification predictions but also the student box
regression be inaccurate. Compare with the student, we make
the teacher’s categorical predictions and box regressions as
accurate as possible. Furthermore, We make fDE update the
magnitudes {θim}

N−Nnl
i=1 and probabilities {θip}Ni=1 at 6 and 12

epochs and continuously train fDE for 1 epoch.

Segmentation. On Cityscapes, we set the loss weight on
LKL between the teacher decode head’s final predictions and
the student decode head’s final predictions as 1.5. In addition,
we set the loss weight on LKL between the teacher auxiliary
head’s final predictions and the student auxiliary head’s fi-
nal predictions as 0.5. Also, the temperature τ of TST (i.e.,
vanilla KD) is set as 1. Last but not least, the magnitudes
{θim}

N−Nnl
i=1 and probabilities {θip}Ni=1 is updated at 7,500 and

15,000 iterations on the total training. We continuously up-
date {θim}

N−Nnl
i=1 and probabilities {θip}Ni=1 with 1,250 itera-

tions.

C Training Process on TST
In this section, we show the full training process of TST in
Algorithm 1. For the sake of simplicity, we do not categorize
the different sub-policies here and consistently consider that
they are all learnable. Moreover, for the object detection task,
Eq. 1 in Algorithm1 can be replaced with other forms, i.e.,
Lmimic + LKL + LCE.

D Supplementary Details
D.1 Details about fDE in object detection tasks
Generally, a target object, after affine transformation and ac-
cumulation according to Eq. 5, generates multiple target ob-
jects, leading to ambiguity in the target detection task. Thus,
we design a method to replace the weighted summation of the
difference between the affine transform result and the origi-
nal image. To be specific, we sum all affine transformation
matrics generated from fSTN for obtaining only one new tar-
get affine transformation matrix Â. And fDE simply learns Â
that satisfies the objective that TST search. In here, we define
two hyperparameters Na and Nc (s.t., Na + Nc = NA) refer
to the number of learnable affine transformations and color
transformations that are actually selected, respectively. Due
to all unlearnable transformations are color transformations,
we can disregard them. First, for a set of affine meta-encoders
{fZi

STN}
Na
i=1 (s.t., Na ≤ NA)2, we can define the set of affine

transformation matrices generated by this set as {AZi}Na
i=1.

Then, the finial matrix Â generated by fDE can be formu-
lated as

AiE= θZ
i

p �AZ
i

− θZ
i

p � I, s.t. i ≤ Na

Â=I +

Na∑
i=1

AiE ,
(6)

where I refers to a matrix∼ R2×3 where only the values on
the diagonal are 1 and the rest are 0. After that. we derive x̂a
by the operator Affine.

x̂a = Affine(Â, x) (7)

Now, we need to apply the remaining meta-encoders to com-
plete the transform of x̂a. As a result, the corresponding com-
putational form is shown in Eq. 8.

xiE=

θZ

i

p � fE(x̂a, θ
Zi

m)− θZi

p � x̂a,
Na < i ≤ NA and Zi ≤ Nnl

θZ
i

p � fE(x̂a)− θZi

p � x̂a,
Na < i ≤ NA and Zi > Nnl

x̂= x̂a +

NA∑
i=Na+1

xiE ,

(8)

Finally, we obtain x̂, which is a part of the input to fT and fS .
In particular, x̂ in Eq. 5 and Eq. 8 have the same meaning.

2Here, for simplicity, we let the first Na of NA actual applied
meta-encoders all be fSTN.

Figure 3: The probability of different-size teachers predicting sam-
ples correctly with epochs. Here, this figure is intended to supple-
ment the discussion section.

D.2 Full probability and magnitude visualization
Due to space constraints in the main paper, we only show 8
sub-policies’ magnitudes and probabilities searched by TST.
So, we illustrate the magnitudes and probabilities of all sub-
policies in Fig. 4 (i.e., 11 magnitudes and 14 probabilities).

D.3 Proof
Here, we will prove −LCE (x, y) is a non-convex function
and LCE (1−x, y) is a convex function, where x is the logits
output from the normalized activation function, i.e., softmax.
And y is the ground truth label. Besides, the lengths of vec-
tors x and y are the number of categories. Since y is one-hot
encoding, −LCE (x, y) can be written as log(xt), where xt
is the predicted logit in x corresponding to the target label.
In particular, 0 ≤ xt ≤ 1 due to the presence of softmax.
As the definition of a convex function, we need to prove the
following equation (note that deep learning is stochastic gra-
dient descent for parameter updating, so the convex function
declared here is downward convex):

log(a+ b) ≤ log(a) + log(b), s.t. 0 ≤ a ≤ b ≤ 1. (9)

Obviously, a + b ≥ 2
√
ab ≥ ab, so Eq. 9 does not hold

and −LCE (x, y) is a non-convex function. Similarly, for
LCE (1−x, y), we can infer that it is a convex function by
Eq. 10 since ab ≤ 1 is a known condition.

− log(2− a− b) ≤ −log(1− a)− log(1− b),
s.t. 0 ≤ a ≤ b ≤ 1,

=>
1

2− a− b ≤
1

(1− a)(1− b) ,

=> ab ≤ 1,

(10)

Table 9: Top-1 test accuracy (%) comparison of the few-shot sce-
nario on CIFAR-100. Here, all teacher-student pairs are ResNet56-
ResNet20 pairs.

Percentage KD CRD Ours
25% 65.15 65.80 66.28
50% 68.61 69.91 70.22
75% 70.34 70.68 71.80

D.4 Combine DIST and TST
TST is a novel data-based distillation algorithm that can be
combined with other arbitrary feature-based and logit-based
distillation algorithms and further enhance students’ gener-
alization ability. For instance, we combine DIST and TST
on ResNet50-MobileNet-V1 on ImageNet-1k with 33 hours,
which boosts the results from 73.24% to 73.55%.

D.5 Generative Adversarial Network and
Learnable Data Augmentation

We started by encoding the original samples based on Gen-
erative Adversarial Networks, but without some regulariza-
tion constraints directly causing training collapse, and even
with some constraints, the performance (75.60%) is still not
as good as the current system, i.e., learnable data augmenta-
tion (76.75%) on WRN-40-2-WRN-16-2 pair on CIFAR-100.

D.6 Supplementary Materials
Due to space constraints in the text, we present here the com-
parison experiments in the few-shot scenario (Table 9) and an
iterative plot of the teacher’s output of the logit’s confidence
as a function of epoch (Table 3).

Algorithm 1 Training procedure of TST

Input: A student fS with the parameter θS , a teacher model
fT with the parameter θT , a data augmentation encoder
set {f iE}

N

i=1 with the parameter set {θiE}
N

i=1, a set of
the priori manual data-augmentation mappings {f iA}

N

i=1,
the parameter of probabilities θp, the parameter of mag-
nitudes θm, dataset X , the probabilistic transformation
function of the ground truth label p, the number of iter-
ations required for the priori manual data augmentation
fitting nfitting, the number of iterations required for a en-
coder training phase nencoder, the number of iterations re-
quired for a student training phase nstudent, the iterative
position set I for probability and magnitude learning, the
learning rate ηθS and ηθE .

1: Random initialization parameter {θiE}Ni=1.
2: for i = 1, · · · , N do
3: for j = 0, · · · , nfitting do
4: Randomly sample a mini-batch, {xk}Bk=1 ∼ X .
5: Randomly sample the magnitude m.
6: {yi,kE }Bk=1 = {f iE

(
xk,m

)
}Bk=1.

7: {yi,kA }Bk=1 = {f iA
(
xk,m

)
}Bk=1.

8: Compute loss for the data augmentation encoder,
Liencoder =

∑B
k=1 ‖y

i,k
E − yi,kA ‖2.

9: Update θiE by the gradient ascent,
θiE ← θiE − ηθE∂Liencoder/∂θ

i
E .

10: end for
11: end for
12: Random initialization parameter the parameter of proba-

bilities θp and the parameter of magnitudes θm.
13: for i = 0, · · · , nstudent do
14: if i ∈ I then
15: for j = 0, · · · , nencoder do
16: Randomly sample a mini-batch, {xk}Bk=1 ∼ X .
17: Calculate new samples {x̂k}Bk=1 using Eq. 5.
18: Compute loss for probabilities and magnitudes,

LTST =
∑B
k=1(− log(p(fS(x̂k))) − log(1 −

p(fT (x̂k))))
19: Update φ by the gradient ascent, θp, θm ← θp −

ηφ∂LTST/∂θp, θm − ηφ∂LTST/∂θm
20: end for
21: end if
22: Randomly sample a mini-batch, {xk}Bk=1 ∼ X
23: Calculate new samples {x̂k}2Bk=1 by Eq. 5 and the con-

catenation operator.
24: Compute loss LS for the student by Eq. 1.
25: Update θS by the gradient descent,

θS ← θS − ηθS∂LS/∂θS
26: end for

Figure 4: The plot of magnitudes and probabilities variation with iteration under TST on CIFAR-100. Here we visualize all sub-policies
mentioned in this paper.

	1 Introduction
	2 Related Work
	3 Teach What You Should Teach
	3.1 Total Framework
	3.2 Simple Knowledge Distillation
	3.3 Search Desirable Data
	3.4 Introduce Priori Bias into fDE
	3.5 Network-Based Data Augmentation

	4 Experiment
	4.1 Comparison with SOTA Methods
	4.2 Ablation Study

	5 Discussion
	6 Conclusion
	A Datasets
	B Hyperparameter Settings
	B.1 Basic settings
	B.2 Advanced Settings

	C Training Process on TST
	D Supplementary Details
	D.1 Details about fDE in object detection tasks
	D.2 Full probability and magnitude visualization
	D.3 Proof
	D.4 Combine DIST and TST
	D.5 Generative Adversarial Network and Learnable Data Augmentation
	D.6 Supplementary Materials

