
Generating Demonstrations for In-Context Compositional
Generalization in Grounded Language Learning

Anonymous ACL submission

Abstract

In-Context-learning and few-shot prompt-001
ing are viable methods compositional out-002
put generation. However, these methods003
can be very sensitive to the choice of sup-004
port examples used. Retrieving good sup-005
ports from the training data for a given006
test query is already a difficult problem,007
but in some cases solving this may not008
even be enough. We consider the setting of009
grounded language learning problems where010
finding relevant supports in the same or011
similar states as the query may be diffi-012
cult. We design an agent which instead013
generates possible supports inputs and tar-014
gets current state of the world, then uses015
them in-context-learning to solve the test016
query. We show substantially improved per-017
formance on a previously unsolved compo-018
sitional generalization test without a loss of019
performance in other areas. The approach020
is general and can even scale to instructions021
expressed in natural language.022

1 Introduction023

It is thought that a compositional understanding024
of language and the world (so-called compositional025
generalization). around is something that enables026
efficient learning in both humans (Chomsky, 1957;027
Tenenbaum, 2018) and machines (Sodhani et al.,028
2021; Jang et al., 2021). However, a long line of029
work and many different datasets show that Deep030
Learning approaches do not always achieve such031
compositional generalization. Some solutions to ad-032
dress this deficiency include modular architectures,033
data augmentation, and sparsity. A recent line of034
work concerns in-context learning (ICL). Instead of035
providing a query and asking for the target directly,036
a few examples of query-target pairs (supports) are037
also provided. Recent work indicates that supports038
covering the elements of the query can help enable039
compositional generalization even if neither shows040
the desired behaviour exactly (Gupta et al., 2023).041
A follow up question is how to find examples for042
each query. Most prior work suggests retrieval from043
the training data (Pasupat et al., 2021).044

However, in the Grounded Language Learning case, 045
retrieval approaches might not be sufficient to make 046
compositional generalization by ICL work well. The 047
expected outputs are conditional not only on the 048
query, but also on the state of the world. Therefore, 049
searching for nearby examples in the input space 050
is problematic. Using the query alone means that 051
it is unlikely that state-relevant examples will be 052
retrieved. There might not be query-covering exam- 053
ples in the same state from the training data. Us- 054
ing similar states is also challenging because small 055
changes in the state can result in large changes to 056
the target sequence. Searching for nearby examples 057
in the output space (Zemlyanskiy et al., 2022) is 058
more promising, but it also relies on being able to 059
find state-relevant covering outputs. It is difficult 060
to make a retrieval-based strategy that works well 061
in all cases. 062

Instead of retrieval, we suggest that generation of 063
the supports based on the state might be a better 064
alternative. We contribute the following: 065

• We confirm that in-context learning is a use- 066
ful method for unlocking output compositional 067
generalization in the grounded language learn- 068
ing context. 069

• We show that support selection for in-context 070
learning is a crucial piece of the puzzle and that 071
retrieval from the training set is not enough to 072
get the best performance due to the challenge 073
of the query state being potentially unobserved 074
in the retrieval examples. 075

• We propose a new method, DemoGen, to 076
generate the necessary supports which show 077
different instructions and targets of which the 078
query instruction requires a composition of. 079
Our experiments on gSCAN show that using 080
in-context learning with these supports unlocks 081
superior compositional generalization perfor- 082
mance. 083

• We extend the gSCAN dataset to natural- 084
language like instructions to show further that 085
that DemoGen method can scale well to 086
natural-language like instructions as well. 087

1



Query

IQ = “spin and pull a small yellow cylinder"
In

st
ru

ct
io

n
G

en
er

at
or

I1 = carefully zigzag and pull a small yellow cylinder (0.46)

I3 = spin and push a small yellow cylinder (0.46)

I5 = take a zigzagging path to a small yellow cylinder (0.35)

I6 = carefully spin and push a small yellow cylinder (0.33)

I8 = spin and nudge a small yellow cylinder (0.29)

I13 = spin and pull a big yellow cylinder (0.19)

I16 = gently pull a small yellow cylinder (0.19)

I18 = spin and carefully pull a small green cylinder (0.18)

I21 = spin and carefully pull a small red cylinder (0.16)

I22 = spin and carefully pull a small blue cylinder (0.15)

B
oo

ts
tr

ap
T
ra

ns
fo

rm
er

A1 = (WALK LTURN WALK RTURN)(3)WALK(2) PULL(3)

A3 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A5 = (WALK LTURN WALK RTURN)(3) WALK(2)

A6 = LTURN(4) (WALK LTURN(4))(4) LTURN (WALK LTURN(4))(3) PUSH

A8 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A13 = LTURN(4) (WALK LTURN(4))(3) LTURN WALK

A16 = (WALK STAY)(4) LTURN (WALK STAY)(3)

A18 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

A21 = LTURN(5) WALK PULL LTURN(3) PUSH

A22 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

Figure 1: Generating demonstrations on gSCAN with DemoGen for an ICL Transformer (Figure 2). The
Instruction Generator takes as input the current state and Iq and produces similar instructions I1, ...In
likely to occur in the same state, sorted by likelihood (parens). A Bootstrap Transformer trained on
the training data generates the corresponding actions A1...An in that state. Some instructions are more
helpful than others. Instructions in green, I1,3,6,8,13,16 show both the correct object in Iq and also either
one of the verb or adverb. Instructions in yellow, I5 show the correct object, but an irrelevant verb and
adverb combination. Instructions in red, I18,21,22 show a different object to the target one. Actions in
grey A13,16,18,21,22 show an incorrect target sequence. As long as the instructions and actions in green are
included in the support set, a sufficiently powerful model can use them and ignore the other supports.

2 Background088

2.1 Compositional Generalization and089
Grounded Language Learning090

Compositional Generalization refers to the ability091
of a system to learn the rule for how solutions to092
sub-problems may be combined in some way, then093
apply the rule to unseen combinations of known094
sub-problem solutions. It can be seen in both the095
inductive and productive sense. In the inductive096
sense, the system must produce some known symbol097
in response to a unseen combination of known query098
inputs. In the productive sense, the system must099
produce some unseen combination of known output100
symbols. The capability of Deep Learning to per-101
form compositional generalization has been studied102
extensively. Early experiments showed the chal-103
lenge of doing so on both RNNs (Lake and Baroni,104
2018) and Transformers (Hupkes et al., 2020) and105
many datasets have been created to demonstrate106
the problem, both with synthetic and “realistic" nat-107
ural language data (Bastings et al., 2018; Kim and108
Linzen, 2020; Keysers et al., 2020; Li et al., 2021;109
Yin et al., 2021; Finegan-Dollak et al., 2018). As110
more datasets become available, so do approaches111
to handle the compositional generalization problem.112
Most approaches generally fall into some combina-113
tion of data augmentation (Andreas, 2020; Li and114
McClelland, 2022; Chen et al., 2022b; Qiu et al.,115
2022; Akyürek et al., 2021), neural module net-116
works (Andreas et al., 2016b; Buch et al., 2021;117
D’Amario et al., 2021; Ruis and Lake, 2022) and118
meta-learning (Lake, 2019; Conklin et al., 2021).119

The field of Grounded Language Learning is natu-120
ral fit to study the problems of both inductive and121
productive compositional generalization. We can122
test inductive generalization by placing the agent123
in a state with a novel combination of input sym-124

bols. Productive generalization can be tested by 125
giving instructions that require generating some 126
novel combination of outputs conditioned on the 127
state. While the former problem is extensively ex- 128
plored by related work, the latter has received less 129
attention and therefore the focus of this work. 130

2.2 In-context Learning 131

Meta-learning and ICL are promising approaches 132
for compositional generalization in sequence gener- 133
ation tasks. In this paradigm, a few support inputs 134
and corresponding support outputs for a given query 135
sequence are provided and the task is to predict 136
the correct target sequence (Lake, 2019; Conklin 137
et al., 2021). This has been popularized by the 138
notion of ICL in large language models, where a 139
few examples of the input-output pairs as well as a 140
query are given as part of a prompt, then the target 141
is predicted autoregressively (Brown et al., 2020; 142
Min et al., 2022a), which has been shown to enable 143
compositional generalization in sequence generation 144
(Chen et al., 2022a; Logeswaran et al., 2020). 145

2.3 Support Selection for ICL 146

ICL methods are sensitive to the choice of support 147
sets used. Mitchell et al. (2021) found that selecting 148
supports that were not relevant to the task at hand 149
degraded performance when using sequence based 150
meta-learning with SCAN. As we also show in our 151
experiments, ICL approachs with a poorly chosen 152
procedure for selecting supports may be worse on 153
all tasks compared to when no ICL is used at all. 154

Different approaches have been proposed for finding 155
good examples. Many methods try to pick good 156
examples from the training data, for example by 157
using a similarity index (Pasupat et al., 2021), or 158
with a metric that takes into account diversity and 159
local structure coverage (Levy et al., 2022; Gupta 160

2



Encoder

S1 I1 A1

P

... Sn In An

P

Sq Iq

Decoder

P

[sos] a1q ... anq

Figure 2: The model architecture for sequence-to-sequence ICL. Each support state S1, ..., Sn, support
instruction I1, ..., In and corresponding support targets A1, ..., An, as well as the query state Sq and query
instruction Iq are used as inputs to a Transformer Encoder (along with positional encoding). Right-shifted
query targets a1q, ..., a

n
q are used as inputs to a Transformer Decoder. Both the support targets and query

targets use the same random permutation on every training step.

et al., 2023; Ye et al., 2023). Such retrieval is161
potentially problematic, because getting relevant162
output supports requires that the retrieved inputs163
are evaluated in the same or a very similar state,164
which can increase the complexity of the retrieval165
problem.166

There are also generative approaches to create the167
support examples, for example subproblem decom-168
position (Yang et al., 2022), chain-of-thought (Wei169
et al., 2022), least-to-most-prompting (Zhou et al.,170
2022) asking for diverse examples (Yu et al., 2023).171
These approaches can get very impressive results172
on ungrounded compositional generalization bench-173
marks, but they have their own requirements in-174
cluding reliance on information in large language175
models or special helper prompts about the input176
structure. A hybrid of generation and retrieval177
is GandR Zemlyanskiy et al. (2022) which first178
guesses the output using a helper model and re-179
trieves examples based on output similarity. Our180
work extends on the generated-example paradigm181
with the idea of generating support instructions for182
a query state, then solving those support instruc-183
tions using a “bootstrap" model. We explain in184
Section 3.2 why this is important in the grounded185
language learning setting.186

3 Method187

In this section, we describe a method we call De-188
moGen. The method is designed to work with189
datasets where there is both an instruction and a190
state in the input.191

3.1 In-Context Learning192

ICL can be realized with a large-context encoder-193
decoder Transformer (see Figure 2). For an initial194
state Sq and instruction Iq, the model is trained195

to generate a sequence of targets A = aQ1 , ..., a
Q
m196

using a set of support inputs I1, ..., In and the cor-197
responding support outputs A1, ..., An.198

The entire set of support states S1, ..., Sn, support199
instructions I1, ..., In and corresponding support200
targets A1, ..., An, along with the query state Sq201

and query instruction Iq are passed as one big 202
sequence to the Transformer Encoder, using sine- 203
cosine positional encoding in (Vaswani et al., 2017). 204
Right-shifted query targets are used as inputs to 205
the Transformer Decoder with causal masking. 206

We do not use a pre-trained model and train only 207
on each problem’s own training set to eliminate the 208
risk of having pre-trained on the test set. To ensure 209
that we still get in-context learning from the ICL 210
Transformer, we use the technique of permuting the 211
symbol-index mapping of the support and query 212
targets on every training step, similar to Chan et al. 213
(2022). 214

3.2 Support Set Generation 215

Choosing the support inputs I1, ..., In and outputs 216
A1, ..., An for the ICL model is not a trivial problem. 217
DemoGen generates the support sets using two 218
models trained on the training data - an Instruc- 219
tion Generator and Bootstrap Transformer. 220

Instruction Generator Support inputs are gen- 221
erated by a BART-like masked language model 222
(Lewis et al., 2020). The model is trained to recon- 223
struct a partially masked sentence. It is trained 224
on a balanced dataset of all the instructions in the 225
training data to ensure that inputs occurring less 226
often have a reasonable chance of being sampled. 227
To generate support inputs, some percentage of the 228
tokens (including padding tokens) in the query Iq 229
(in this work, 20%) are randomly masked and then 230
the entire input is reconstructed by autoregressive 231
decoding. This process is repeated k ≥ n times, to 232
form I1, ..., Ik. We deduplicate the samples and re- 233
move Iq from I1, ..., Ik. We also filter the supports 234
by the use of a scoring model. The scoring model 235
estimates probability that a generated support is 236
in-distribution, conditioned on any relevant context. 237
The score is the length-normalized log-likelihood 238
of generated support inputs. We assume that con- 239
ditionally in-distribution supports are more likely 240
to be solveable by the Bootstrap Transformer 241
below. We take the top n by score to get I1, ..., In. 242

3



SCAN COGS ReaSCAN RTFM DescWorld MetaWorld gSCAN gSCAN-NL
State-cond.
Inductive
Productive
Natural Lang.
Fewshot

Table 1: Comparison of benchmark datasets. Only gSCAN and gSCAN-NL (see Section 4.1) tests
productive compositional generalization in a state-conditioned setting and gSCAN-NL extends the input
instructions to something more like natural language.

Bootstrap Transformer Support out-243
puts A1, ..., An are generated from the244
(S1, I1), ..., (Sn, In) pairs by an Autoregres-245
sive Transformer model trained on the same246
training data. Examples of the generated support247
inputs and outputs are shown in Figure 1.248

Generating both the support inputs and outputs249
has a few interesting advantages. Compared to re-250
trieving on inputs, we can generate examples which251
we know will be relevant to the current state and252
also generate examples which might not be found253
in the training data for a given query. Compared254
to retrieving based on the predicted output, we255
can generate a greater diversity of supports which256
would be valid in the state, as opposed to fetching257
the same output over and over again in many dif-258
ferent states. The only assumption we make is that259
the model used to generate the support targets is260
capable of inductive compositional generalization,261
but not necessarily productive compositional gener-262
alization. In practice, this is already true with the263
Transformer architecture (Qiu et al., 2021; Sikarwar264
et al., 2022). One challenge with generating the265
supports is that our support generator might come266
up with support inputs that are either not relevant267
or not solvable in the current state. We show in268
the experiments that the presence of irrelevant sup-269
ports is not a problem as long as the other useful270
supports are also present.271

4 Experiments272

4.1 Dataset273

We examine which dataset would be appropriate274
to evaluate DemoGen on. Since we know that in-275
context learning helps specifically when it comes to276
productive compositional generalization, we want277
the dataset to test this case. We also limit out278
dataset search to the state-conditioned setting,279
where it makes sense to generate demonstrations280
conditioned on the state. To really test our method,281
we also want a dataset using instructions in the282
form of natural language as well. The result of283
the dataset consideration is found in Table 1. We284
considered well-known compositional generalization285
and grounded language learning datasets. SCAN286
(Lake and Baroni, 2018), COGS (Kim and Linzen,287

2020), CogNiTIon (Li et al., 2021), CFQ (Keysers 288
et al., 2020) and SMCalFlow-CS (Yin et al., 2021) 289
test productive generalization, but are not state- 290
conditioned. ReaSCAN (Wu et al., 2021), gSCAN- 291
RS (Qiu et al., 2021), RTFM (Zhong et al., 2020), 292
BabyAI (Chevalier-Boisvert et al., 2019), ALFRED 293
(Shridhar et al., 2020) and DescribeWorld (Weir 294
et al., 2023) are state-conditioned but mainly test 295
inductive generalization. MetaWorld (Yu et al., 296
2019) tests productive generalization, but in the 297
few-shot learning context where examples are al- 298
ready given. gSCAN (Ruis et al., 2020) is the 299
only dataset which tests productive generalization 300
in a state-conditioned setting, however it uses very 301
simplistic instructions. Based on this criteria, we 302
choose to evaluate on gSCAN, but also extend it by 303
rewriting the instructions using an LLM to resemble 304
natural language. 305

gSCAN is a Minigrid-based environment with a sin- 306
gle training data set and 8 out-of-distribution test 307
splits covering various compositional generalization 308
scenarios. An agent receives an instruction with a 309
target object, a verb to apply to that object and an 310
adverb which affects both navigation and the verb. 311
About 360,000 demonstrations of navigating to var- 312
ious objects and performing some task on them 313
with various adverbs are provided as a training set. 314
A success happens when the agent performs the ex- 315
pected sequence of actions exactly. The input and 316
action vocabularies are small and the instructions 317
constructed using a simple grammar. Typically the 318
instructions follow the form “[verb] a [size] [color] 319
[object] [adverb]", where [size], [color] and [adverb] 320
are sometimes omitted. The in-distribution split is 321
100% solvable by deep learning. 322

More challenging are the eight out-of-distribution 323
test splits. Splits B, C, E, F require inductive gen- 324
eralization, for example identifying a “red square" 325
as a goal in split C and a size-3 object being “small" 326
in relation to other objects in split E. Extensions to 327
gSCAN such as ReaSCAN (Wu et al., 2021) and Re- 328
lational Splits (gSCAN-RS) (Qiu et al., 2021) test 329
further such scenarios. Splits D, G and H require 330
productive generalization at testing-time. Split D 331
requires navigating to an object that is south-west 332
of the agent, which in practice requires the pro- 333

4



duction of LTURN(2) ... LTURN1. Split H requires334
composing a the verb “pull" with the adverb “while335
spinning", which requires the production of novel336
fragments LTURN(4) PULL. Split G is a few-shot337
learning split for a new behaviour “cautiously".338

Parses Words Zipf α RMSE
gSCAN 18 18 1.99 0.11
NL-gSCAN 1550 859 1.29 0.01

Table 2: Linguistic properties of the baseline
(gSCAN) and paraphrased datasets (NL-gSCAN)

.

Natural Language Instructions We also ex-339
tend the gSCAN dataset such that the instructions340
are less formulaic and more like natural language.341
By prompting the openai-gpt3.5 model with 25342
different examples of paraphrases for an instruc-343
tion, we can generate paraphrases of all the other344
instructions in the dataset. To validate that the345
paraphrased dataset looks more like natural lan-346
guage, we estimate the α parameter (closer to 1.0347
meaning more natural) for a Zipf distribution using348
maximum likelihood estimation using the method349
in (Clauset et al., 2009) and also calculate the num-350
ber of unique parses with spaCy. The paraphrased351
data has an α of 1.29 vs 1.99 along with a better352
fit, and there is a greater diversity of both words353
(18 vs 859) and syntax parses (18 vs 1550). The354
target object description was retained in approxi-355
mately 99% of cases. Examples of paraphrases and356
further analysis given in Appendix L. Paraphrased357
instructions are also shown in Figure 1.358

Related Work on gSCAN Various approaches359
to gSCAN including graph networks (Gao et al.,360
2020), linguistic-assisted attention (Kuo et al.,361
2021), symbolic reasoning (Nye et al., 2021), aux-362
iliary tasks (Jiang and Bansal, 2021; Hein and363
Diepold, 2022), modular networks (Heinze-Deml364
and Bouchacourt, 2020; Ruis and Lake, 2022), logic365
programming (Yang et al., 2023) and data augmen-366
tation (Setzler et al., 2022; Ruis and Lake, 2022)367
have been proposed. These approaches tend to368
make some trade-off between performance and gen-369
eralizability. Transformers have been shown to work370
well on on the inductive category of splits (Qiu371
et al., 2021) as well as on ReaSCAN and gSCAN-372
RS (Sikarwar et al., 2022), but there is no general373
approach which works well on the productive cat-374
egory. In this work, we aim to show that an ICL375
approach along with a support generation strategy376
that does not assume too much about the problem377
is a feasible general approach at least for problems378
like the one in Split H.379

1In this work, where an action or subsequence is
repeated n times, we use the notation (ACT1 ACT2)(n)

4.2 What makes for good supports? 380

We first explore what sort of supports work well for 381
gSCAN. These methods are based on pre-existing 382
knowledge of the dataset. When we perform ex- 383
periments with the ICL Transformer, we use the 384
architecture described in Section 3.1 trained to 385
300,000 steps with batch size 128, hidden size of 386
512, 8 attention heads, 12 layers and 16 supports 387
per query example. Training was run for 300,000 388
iterations over 10 seeds. We perform evaluation 389
every 5000 steps on a random subsample of the vali- 390
dation data and the best by split-A (in-distribution) 391
performance are reported. Detailed information on 392
hyperparmeters is given in Appendix C 393

Heuristic Select the best instructions and out- 394
puts for a given state which show; 1) going to the 395
same object, 2) showing the target verb in com- 396
bination with other adverbs, 3) showing the tar- 397
get adverb in combination with other verbs. Note 398
that the generated supports might contain test-set 399
input-output pairs, meaning that we assume extra 400
knowledge not available to the learning agent. The 401
heuristic can be seen as an upper bound on we could 402
expect from an optimal demonstration generator. 403

Random Instructions (RD) Support instruc- 404
tions are selected randomly, without the use of 405
the heuristic described above. Instructions can be 406
about any object in the same state, not just the 407
target one. 408

Other States (OS) We generate the same in- 409
structions as in the Heuristic approach but demon- 410
strations are in states different to the query state. 411
Such states are extracted from the training data. 412
The sampled states are also included in the supports 413
and used by the ICL Transformer. If the training 414
data does not contain a state with the same in- 415
struction as the one generated by the expert, that 416
instruction is not included in the support set. 417

Table 4 shows the coverage of the supports over 418
the query according to some hand-written metrics. 419
Heuristic gets full coverage in every category. If we 420
demonstrate random instructions in the same state 421
(RD), only show demonstrations describing the 422
same object 16% of the time (1). If we pick known 423
good instructions for the query demonstrated in 424
different states (OS) then we often describe the 425
correct object, but the outputs look very different 426
to the query, because the starts (2) or finishes (3) 427
in a different position and the agent-target distance 428
is often different (4). This is also reflected in the 429
ICL Transformer performance in Table 3, where 430
demonstrations of relevant instructions in differ- 431
ent states show a very wide performance gap and 432
demonstrations in the same state with randomly 433
chosen instructions perform better, but still overall 434
worse than the Heuristic. This supports the idea 435

5



No ICL Algorithmic Retrieval Generation
TF FT Heuristic RD OS CovR GandR DemoGen DG-NP DG-NF

A 1.0 1.0 1.0 0.77 0.99 0.99 ± .01 0.99 ± .01 1.0 ± .01 0.94 ± .06 0.96 ± .02
B 1.0 1.0 1.0 0.62 0.0 0.98 ± .01 0.88 ± .05 1.0 ± .01 0.92 ± .05 0.92 ± .02
C 0.96 1.0 1.0 0.66 0.2 0.83 ± .30 0.92 ± .03 0.98 ± .02 0.72 ± .27 0.85 ± .03
D 0.01 0.16 0.50 0.0 0.0 0.0 ± .00 0.0 ± .00 0.03 ± .02 0.0 ± .00 0.01 ± .01
E 1.0 1.0 1.0 0.59 0.0 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .09 0.86 ± .03
F 1.0 1.0 1.0 0.75 0.99 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .08 0.95 ± .01
G 0.0 0.0 0.0 0.0 0.0 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.22 0.22 0.86 0.15 0.0 0.56 ± .10 0.17 ± .01 0.8 ± .05 0.18 ± .02 0.62 ± .2

Table 3: Success rates on gSCAN for different splits (A–H). Numbers are ± standard deviation over 10
seeds, measured after 300,000 steps. Variances are shown only for retrieval and generation experiments
and are negligible on other experiments. Heuristics, Retrieval and Generation all use ICL Transformer as
the architecture, with supports generated by each method. TF is a Transformer baseline and FT is the
same Transformer fine-tuned on generated demonstrations from DemoGen. Best non-oracle results bolded.

RD OS CR GR DG
(1) Desc. Obj. 0.16 1.00 0.33 0.68 0.33
(2) Agent Pos. 1.00 0.03 1.00 0.08 1.00
(3) Tgt. Pos. 0.16 0.03 0.39 0.08 0.44
(4) Same Diff. 0.16 0.02 0.39 0.09 0.44
(5) Tgt. Obj. 0.16 0.19 0.27 0.14 0.44
(6) Verb & (1) 0.16 0.43 0.88 0.15 1.00
(7) Advb & (1) 0.16 0.33 0.78 0.51 0.88
(8) (6) & (7) 0.16 0.19 0.70 0.00 0.88
(9) (4) & (8) 0.16 0.00 0.62 0.00 0.88

Table 4: Fraction of supports matching criteria from
on each generation method on Split H. Omitted is
Heuristic, which is 1.0 in every category. (6)-(8)
are calculated based on whether any support in a
query’s supports match that criteria. Other splits
are shown in Appendix F

that our support selection procedure needs to find436
demonstrations that both cover what is requested437
in the query and also do so in the same state as the438
query.439

4.3 Retrieval vs Generation440

In the real world, we don’t have access to a heuris-441
tic function to generate good supports. Instead we442
have to come up with them using the data we are443
already given. We can either try to retrieve good444
supports from the dataset or try to generate them445
somehow. We compare the following state-of-the-446
art retrieval methods tested on other productive447
compositional generalization problems and compare448
them to DemoGen. Further details of implementa-449
tions are given in Appendix E and D450

Coverage Retrieval (CR, CovR) Supports are451
retrieved using a similarity index on states and in-452
structions, then chosen based on query coverage453
similar to Gupta et al. (2023). Instructions are454
encoded with TF-IDF and states are flattened, one-455

hot encoded, then projected along their 320 prin- 456
cipal components. The influence of the state and 457
instructions on encoding similarity is balanced by 458
multiplying instruction vectors by the ratio of the 459
state vector norm to the instruction vector norm, 460
contatenating and renormalizing. For each query 461
input and state, we find the 128 nearest neighbours, 462
then rank them descending by their one and two- 463
gram coverage. Examples from the retrievals are 464
chosen greedily such that all the one-grams and 465
two-grams in the query are covered maximally. 466

GandR (GR) Supports are retrieved using the 467
Generate-and-Retrieve strategy (Zemlyanskiy et al., 468
2022). In that strategy, a “helper" model trained 469
on the training data makes an initial guess for the 470
outputs of a given query in a state, even if that 471
query is out of distribution. Then examples for later 472
in-context learning are fetched by similarity of their 473
output sequence to the guessed output sequence. In 474
our implementation, similar to CovR, both query 475
instructions and outputs are TF-IDF encoded and 476
retrieved from a similarity index. 128 examples are 477
chosen and similar again to CovR, we greedily pick 478
examples from the 128 nearest output neighbours 479
covering the query input to avoid picking the same 480
(non-covering) instruction many times. 481

DemoGen (DG) Our generation strategy as de- 482
scribed in Section 3.2. 2048 instructions are sam- 483
pled from the language model, deduplicated, and 484
ranked to get the top 16 instructions and corre- 485
sponding support targets for the query state. A 486
Transformer with the same architecture as given in 487
Section 3.1 is used as the Bootstrap model. 488

4.4 Retrieval Methods vs Generation 489

The main challenge for retrieval methods is that the 490
supports inputs and outputs for some test splits 491
may not exist in the training data. In gSCAN, 492
we also found that most states don’t have close 493

6



TF CovR GandR DemoG
A 1.0 ± .00 0.98 ± .03 0.94 ± .01 0.99 ± .00
B 0.99 ± .00 0.93 ± .08 0.92 ± .06 0.96 ± .00
C 0.99 ± .03 0.68 ± .37 0.9 ± .04 0.97 ± .00
D 0.08 ± .16 0.0 ± .00 0.0 ± .00 0.01 ± .01
E 0.98 ± .03 0.95 ± .08 0.89 ± .01 0.98 ± .00
F 1.0 ± .00 0.88 ± .11 0.94 ± .02 0.98 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.44 ± .23 0.17 ± .00 0.59 ± .06

Table 5: Success rates for a non-ICL Transformer
(TF) retrieval baselines and DemoGen on NL-
gSCAN. Best results bolded.

near neighbours. An average example’s nearest494
neighbour had a hamming similarity of 0.74 ± 0.107495
(i.e., 10 of 36 cells would be different in the nearest496
neighbour). Detailed similarity analysis is given497
further in Appendix A.1. This is also reflected in498
the properties of what gets retrieved. In Table 4,499
the distance between the agent and the target object500
is often different in the query versus the supports501
(4) and there are fewer demonstrations showing the502
same exact same target object (5). They also do not503
always have both (8) the correct verb (6) and adverb504
(7) in the retrieved supports. On GandR the adverb505
can significantly change the outputs, so supports506
with the same verb (but without the adverb) are507
not selected. For both methods there are even fewer508
cases where there is least one demonstration of both509
the correct verb and of the adverb on on the same510
path (9).511

Deficiencies in query coverage aside, these baselines512
are still stronger on Split H than many previously513
published results. CovR retrieves examples that514
are very close to the query state like and gets a515
success rate of 56% on gSCAN Split H and 44% on516
NL-gSCAN Split H with high variance, However on517
Split C, CovR loses performance compared to the518
baseline and has high variance between seeds on519
both datasets. The other inductive generalization520
splits on NL-gSCAN also have small but not negligi-521
ble loss compared to a non-ICL Transformer when522
using CovR to retrieve the supports. GandR gets523
17% on Split H, but retains good performance on524
the other splits. However we lose about 10 points525
on splits B and C compared to the Transformer526
baseline on both datasets and also about 5 points527
on Split F of NL-gSCAN.528

Generating the Supports How does generating529
the supports with DemoGen compare? In Table 4530
we see that the generated instructions cover the dif-531
ferent aspects of the instruction and they are made532
in the same state. This means that the agent start-533
ing position is preserved (2), the path between the534
starting the target position (between supports and535
target) is better preserved (4) and, crucially, both536

the correct verb (6) and adverb (7) are present in 537
the demonstration in combination with the correct 538
object. Demonstrating the right things also has 539
an impact on performance. DemoGen, gets 80% 540
on productive generalization Split H for gSCAN 541
and even 59% for the more challenging NL-gSCAN. 542
Performance also remains good on the the inductive 543
generalization splits for both datasets. We provide 544
a summary and detailed comparison to prior work 545
on gSCAN in Appendix B. Aside from (Hein and 546
Diepold, 2022), a specialized architecture with some 547
additional supervision, ours is the best result on 548
Split H. 549

On Splits D and G, performance on retrieval meth- 550
ods and DemoGen is still not good. The reason is 551
they require generation of a pattern that won’t be 552
seen in the outputs in any permutation of the labels. 553
In the case of Split D, it requires LTURN(2) WALK(n) 554
LTURN(1) WALK(n). Only 6% of the data matches 555
this pattern in any index-label permutation. In the 556
case of split G, (LTURN RTURN(3) LTURN WALK)(n) 557
is required. Only 0.0001% of training data matches 558
that up to a permutation. In contrast, Split H 559
requires (LTURN(4) PULL(n)), and there are many 560
examples from the “push a [size] [color] [object]“ set 561
of instructions matching that up to a permutation. 562

Comparing retrieval and generation, we see that 563
retrieval is a good start for finding good supports, 564
but in the state-conditioned setting they still don’t 565
live up to what appears to be possible if we selected 566
known good supports using the Heuristic method 567
in Section 4.2. On the other hand, support genera- 568
tion can get very close to the heuristic method and 569
without any prior knowledge of the problem. Gener- 570
ating the supports for the state also doesn’t cause a 571
loss of performance on the inductive generalization 572
splits. 573

4.5 Ablations and Further Questions 574

Valid Correct C & V C | V
A 0.79 0.70 0.70 0.88
B 0.73 0.64 0.64 0.88
C 0.61 0.50 0.50 0.83
D 0.65 0.24 0.24 0.36
E 0.78 0.66 0.66 0.84
F 0.73 0.63 0.63 0.87
G 0.79 0.72 0.72 0.91
H 0.79 0.56 0.56 0.71

Table 6: DemoGen supports: Fraction of valid
instructions, correct targets, correct and valid (C
& V) and correct given valid (C | V) on synthetic
data by split, according to an oracle function.

Support Quality Ideally, support should com- 575
prise valid support inputs (eg, tasks that are actu- 576
ally solveable in a state) and they should be correct 577

7



enough to facilitate ICL. We investigated this on578
supports generated by our method and reported the579
results in Table 6. On average, about 77% of gener-580
ated support inputs are valid. A support output is581
correct if it matches what an oracle generator would582
have generated for the corresponding instruction583
and state. 50% of the support pairs were both cor-584
rect and valid. The number is clearly lower on splits585
where a Transformer is not able to solve the task586
well. For example on Split H, there may be “pull587
an [object] while spinning" in the support inputs,588
where [object] is not the target object.589

Permutations Our ICL Transformer uses a dif-590
ferent symbol-index mapping on each training591
step. On gSCAN, the sequence "WALK(5) RTURN592
WALK(5)" would be translated into "RTURN(5) LTURN593
RTURN(5)" under the permutation WALK → RTURN,594
RTURN → LTURN. One concern is the possibility that595
a query target with the same symbols for pull596
... while spinning is generated after permutation597
during training, however the probability of this598
happening is very low. We measured that for a sin-599
gle pass through the training data, approximately600
3% of the generated support instructions matched601
pull ... while spinning, 0.3% of the permuted602
query outputs matched PULL actions followed by603
four LTURN instructions, and their intersection was604
0.001% of all sampled supports.605

Architectural Ablations We also compare the606
effect of various ablations on gSCAN success rate in607
Table 3. Fine-Tuning (FT) on the supports gener-608
ated by DemoGen improves performance marginally609
on Split D, but not Split H, which shows the impor-610
tance of using in-context learning for productive611
generalization. Removing the permuter block (DG-612
NP) reduces performance to a similar level of not613
using ICL at all. Remvoing Filtering (DG-NF)614
reduces average Split C and split H performance615
drops by about 13 and 20 points respectively with616
higher variance. We also tried other variants of617
the Transformer architecture, including RoFormer618
(Su et al., 2021), Universal Transformer (Dehghani619
et al., 2019) and Perceiver (Jaegle et al., 2022),620
which all had similar results compared to a regular621
Transformer.622

Criteria Success Rate

Remove Same Object 0.67 ± 0.17
Remove Same Adverb 0.3 ± 0.16
Remove Same Verb 0.21 ± 0.04

Table 7: DemoGen Split H success rate when 16
supports are chosen, excluding specified supports.

Ablations on Supports We also examine how623
important it is to have the right demonstrations at624
inference time. Figure 3 shows the effect of scaling625

2 4 6 8 10 12 14 16
Number of Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ac

t M
at

ch
 Fr

ac
tio

n

Split
a
b
c
d
e
f
g
h

Figure 3: Performance of a ICL Transformer trained
using Demogen and different numbers of demonstra-
tions at evaluation time on each split. Performance
is averaged over 10 different initializations.

the number of inference-time demonstrations on 626
performance of DemoGen. With 4 demonstrations 627
and less, exact match performance suffers quite a 628
lot, and the best performance is found with around 629
12 demonstrations. Additionally, we examine how 630
DemoGen performs on Split H when demonstrations 631
matching certain criteria are removed from the 632
support set. Removing those matching the same 633
object makes a 13 point impact on success rate. 634
Bigger changes come from removing those matching 635
the same adverb (50 points) or verb (59 points). 636
Learning with permutations alone is not enough - 637
its also important that the supports cover the types 638
of output behaviour that are found in the target. 639

5 Conclusion 640

In-Context Learning can help improve performance 641
on challenging compositional generalization prob- 642
lems, but the choice of support examples is cru- 643
cial to its performance. In the grounded-language 644
learning case, we showed that retrieval may not be 645
enough to get good supports. We demonstrate that 646
generated supports better cover what is required for 647
productive generalization with our support analysis 648
and ablation studies. 649

We proposed DemoGen, a method for sampling 650
support inputs from an autoregressive language 651
model conditioned on the query state, then and 652
solving them using a bootstrap model. When De- 653
moGen used with in-context learning, our method 654
outperforms both the best non-retrieval architec- 655
tures with non-specific architectures and also other 656
strong retrieval based baselines on the challenging 657
Split H of gSCAN, while retaining good perfor- 658
mance on other splits. Our method is general and 659
also works well even if the instructions resemble 660
natural language. 661

8



6 Limitations662

In this section, we discuss the limitations of our663
work.664

First, on the dataset and evaluation. gSCAN is a665
synthetic and with quite simple instructions. We666
wanted to evaluate on instructions that were chal-667
lenging like natural language, but we did not have668
the resources to crowdsource annotations for every669
data point in gSCAN. Therefore, we relied on com-670
mercial large language models to generate similar671
instructions instead. These instructions aren’t a672
substitute for exactly human-generated language,673
but they are a good approximation.674

In this work we decided to dive deep into evaluation675
on gSCAN instead of evaluating on a broader set676
of datasets. The main reason for this is first that677
we are not aware of any other datasets which test678
the output-sequence level compositional behaviour679
generalization demanded by for example gSCAN680
Split H. The second reason is that gSCAN is a681
diagnostic dataset with output sequence rules which682
are not noisy and easy to understand for humans.683
This means that we can more precisely measure684
the properties of the generated supports and their685
effectiveness with respect to performance on the686
problem.687

Another limitation of this work is that supports688
need to be generated at test time for the test set.689
In this work, we pre-generated the supports for690
the test set, though a real-time application of this691
work on unseen examples would need to run the692
generation process, which could make inference time693
much longer. There are also other methods to694
improve the performance of the support input and695
support output procedure, for example quantization696
(Dettmers et al., 2022), KV-caching, early stopping,697
etc.698

7 Ethics699

We used commercial large language models to gener-700
ate paraphrases of the inputs to test the scalability701
of our method to natural language data in Section702
4.1. These commercial large language models come703
with their own range of documented ethical issues,704
such as the capability to amplify harmful biases and705
misinformation, labour exploitation in training, en-706
ergy consumption and permission to use web-scale707
training data. There is also an economic ethical708
aspect, where the use of the large language model709
displaces humans who may have been willing to710
perform the labelling. For our usecase, it was by711
many orders of magnitude cheaper to use the large712
language model than crowd-sourced labelling at a713
fair wage. On the other hand, we believe that there714
are better uses of human time than paraphrasing715
hundreds of thousands of examples of simple nav-716

igation problems for the purpose of producing a 717
single research paper. 718

Our work covers the foundational issue of composi- 719
tional generalization in grounded language learning, 720
so we don’t expect direct applications of it to have 721
the potential to cause social harm. However, the 722
work should be adapted with care. In particular, it 723
is important that the model generating the supports 724
for ICL is actually generating supports which are 725
useful for generating the downstream problem. Gen- 726
erating outputs to a problem with generated wrong 727
input-output pairs is likely to result in even more 728
wrong outputs. Our work shouldn’t be deployed 729
in safety critical situations, but instead should be 730
seen as a step towards achieving better data-driven 731
compositional generalization. 732

8 Code and Resources 733

Our project code can be found at https: 734
//acl-2024-demogen-submission.s3.eu-north-1. 735
amazonaws.com/demogen_code_submission.zip. 736

The paraphrased gSCAN dataset referred 737
to in Section 4.1 can be found at https: 738
//acl-2024-demogen-submission.s3.eu-north-1. 739
amazonaws.com/dataset-paraphrased.txt. 740

9 Computational Resource Usage 741

and Reproducibility Requirements 742

Experiments were run on our internal GPU cluster. 743
Running a ICL experiment to 300,000 iterations 744
takes about 3 days on a MI250x GPU. For 6 differ- 745
ent experiment runs with 10 seeds each, the total 746
compute time is about 330 GPU-days, though the 747
experiments can be run in parallel. The number 748
of GPU-days we used to produce this work was 749
much higher, because of tweaks to the experimental 750
conditions, debugging, restarting failed jobs, etc. 751

10 Bibliographical References 752

References 753

Ekin Akyürek, Afra Feyza Akyürek, and Jacob An- 754
dreas. 2021. Learning to recombine and resample 755
data for compositional generalization. In Interna- 756
tional Conference on Learning Representations. 757

Jacob Andreas. 2020. Good-enough compositional 758
data augmentation. In Proceedings of the 58th An- 759
nual Meeting of the Association for Computational 760
Linguistics, ACL 2020, Online, July 5-10, 2020. 761

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, 762
and Dan Klein. 2016a. Learning to compose neural 763
networks for question answering. In NAACL HLT 764
2016, The 2016 Conference of the North American 765
Chapter of the Association for Computational Lin- 766
guistics: Human Language Technologies, San Diego 767
California, USA, June 12-17, 2016. 768

9

https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/demogen_code_submission.zip
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/demogen_code_submission.zip
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/demogen_code_submission.zip
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/demogen_code_submission.zip
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/demogen_code_submission.zip
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://acl-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181


Jacob Andreas, Marcus Rohrbach, Trevor Darrell,769
and Dan Klein. 2016b. Neural module networks.770
In 2016 IEEE Conference on Computer Vision and771
Pattern Recognition (CVPR).772

Jasmijn Bastings, Marco Baroni, Jason Weston,773
Kyunghyun Cho, and Douwe Kiela. 2018. Jump774
to better conclusions: SCAN both left and right.775
In Proceedings of the Workshop: Analyzing and776
Interpreting Neural Networks for NLP, Black-777
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-778
ber 1, 2018.779

Tom B. Brown, Benjamin Mann, Nick Ryder,780
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-781
wal, Arvind Neelakantan, Pranav Shyam, Girish782
Sastry, Amanda Askell, Sandhini Agarwal, Ariel783
Herbert-Voss, Gretchen Krueger, Tom Henighan,784
Rewon Child, Aditya Ramesh, Daniel M. Ziegler,785
Jeffrey Wu, Clemens Winter, Christopher Hesse,786
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,787
Benjamin Chess, Jack Clark, Christopher Berner,788
Sam McCandlish, Alec Radford, Ilya Sutskever,789
and Dario Amodei. 2020. Language models are few-790
shot learners. In Advances in Neural Information791
Processing Systems 33: Annual Conference on Neu-792
ral Information Processing Systems 2020, NeurIPS793
2020, December 6-12, 2020, virtual.794

Shyamal Buch, Li Fei-Fei, and Noah D. Goodman.795
2021. Neural event semantics for grounded language796
understanding. Transactions of the Association for797
Computational Linguistics, 9.798

Stephanie Chan, Adam Santoro, Andrew K.799
Lampinen, Jane Wang, Aaditya Singh, Pierre H.800
Richemond, James L. McClelland, and Felix Hill.801
2022. Data distributional properties drive emergent802
in-context learning in transformers. In NeurIPS.803

Devendra Singh Chaplot, Kanthashree Mysore804
Sathyendra, Rama Kumar Pasumarthi, Dheeraj805
Rajagopal, and Ruslan Salakhutdinov. 2018. Gated-806
attention architectures for task-oriented language807
grounding. In Proceedings of the Thirty-Second808
AAAI Conference on Artificial Intelligence, (AAAI-809
18), the 30th innovative Applications of Artificial810
Intelligence (IAAI-18), and the 8th AAAI Sympo-811
sium on Educational Advances in Artificial Intelli-812
gence (EAAI-18), New Orleans, Louisiana, USA,813
February 2-7, 2018.814

Wei-Lin Chen, Cheng-Kuang Wu, and Hsin-815
Hsi Chen. 2023. Self-icl: Zero-shot in-816
context learning with self-generated demonstrations.817
arXiv:2305.15035.818

Yanda Chen, Ruiqi Zhong, Sheng Zha, George819
Karypis, and He He. 2022a. Meta-learning via820
language model in-context tuning. In Proceedings821
of the 60th Annual Meeting of the Association for822
Computational Linguistics (Volume 1: Long Pa-823
pers), ACL 2022, Dublin, Ireland, May 22-27, 2022.824

Zining Chen, Weiqiu Wang, Zhicheng Zhao, Aidong825
Men, and Hong Chen. 2022b. Bag of tricks for out-826
of-distribution generalization. arXiv:2208.10722.827

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, 828
Salem Lahlou, Lucas Willems, Chitwan Saharia, 829
Thien Huu Nguyen, and Yoshua Bengio. 2019. 830
BabyAI: A platform to study the sample efficiency 831
of grounded language learning. In 7th International 832
Conference on Learning Representations, ICLR 833
2019, New Orleans, LA, USA, May 6-9, 2019. 834

Noam Chomsky. 1957. Syntactic Structures. 835

Aaron Clauset, Cosma Rohilla Shalizi, and Mark 836
E. J. Newman. 2009. Power-law distributions in 837
empirical data. SIAM Rev., 51(4). 838

Henry Conklin, Bailin Wang, Kenny Smith, and 839
Ivan Titov. 2021. Meta-learning to compositionally 840
generalize. In Proceedings of the 59th Annual Meet- 841
ing of the Association for Computational Linguis- 842
tics and the 11th International Joint Conference on 843
Natural Language Processing, ACL/IJCNLP 2021, 844
(Volume 1: Long Papers), Virtual Event, August 845
1-6, 2021. 846

Vanessa D’Amario, Tomotake Sasaki, and Xavier 847
Boix. 2021. How modular should neural module 848
networks be for systematic generalization? In Ad- 849
vances in Neural Information Processing Systems 850
34: Annual Conference on Neural Information Pro- 851
cessing Systems 2021, NeurIPS 2021, December 852
6-14, 2021, virtual. 853

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, 854
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer- 855
sal transformers. In International Conference on 856
Learning Representations. 857

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, 858
Yihan Wang, Han Guo, Tianmin Shu, Meng Song, 859
Eric P. Xing, and Zhiting Hu. 2022. Rlprompt: Op- 860
timizing discrete text prompts with reinforcement 861
learning. In Proceedings of the 2022 Conference 862
on Empirical Methods in Natural Language Pro- 863
cessing, Abu Dhabi, United Arab Emirates, volume 864
abs/2205.12548. 865

Tim Dettmers, Mike Lewis, Younes Belkada, 866
and Luke Zettlemoyer. 2022. Llm.int8(): 8-bit 867
matrix multiplication for transformers at scale. 868
arXiv:2208.07339. 869

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, 870
Nathan Scales, Xinying Song, Xinyun Chen, Olivier 871
Bousquet, and Denny Zhou. 2022. Composi- 872
tional semantic parsing with large language models. 873
arXiv:2209.15003. 874

Catherine Finegan-Dollak, Jonathan K. Kummer- 875
feld, Li Zhang, Karthik Ramanathan, Sesh Sada- 876
sivam, Rui Zhang, and Dragomir R. Radev. 2018. 877
Improving text-to-sql evaluation methodology. In 878
Proceedings of the 56th Annual Meeting of the As- 879
sociation for Computational Linguistics, ACL 2018, 880
Melbourne, Australia, July 15-20, 2018, Volume 1: 881
Long Papers. 882

Tong Gao, Qi Huang, and Raymond J. Mooney. 883
2020. Systematic generalization on gSCAN with 884
language conditioned embedding. In Proceedings of 885

10

https://doi.org/10.1109/CVPR.2016.12
https://doi.org/10.18653/v1/w18-5407
https://doi.org/10.18653/v1/w18-5407
https://doi.org/10.18653/v1/w18-5407
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1162/tacl_a_00402
https://doi.org/10.1162/tacl_a_00402
https://doi.org/10.1162/tacl_a_00402
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://doi.org/10.48550/arXiv.2305.15035
https://doi.org/10.48550/arXiv.2305.15035
https://doi.org/10.48550/arXiv.2305.15035
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.48550/arXiv.2208.10722
https://doi.org/10.48550/arXiv.2208.10722
https://doi.org/10.48550/arXiv.2208.10722
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://proceedings.neurips.cc/paper/2021/hash/c467978aaae44a0e8054e174bc0da4bb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c467978aaae44a0e8054e174bc0da4bb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c467978aaae44a0e8054e174bc0da4bb-Abstract.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.18653/v1/P18-1033
https://aclanthology.org/2020.aacl-main.49/
https://aclanthology.org/2020.aacl-main.49/
https://aclanthology.org/2020.aacl-main.49/


the 1st Conference of the Asia-Pacific Chapter of886
the Association for Computational Linguistics and887
the 10th International Joint Conference on Nat-888
ural Language Processing, AACL/IJCNLP 2020,889
Suzhou, China, December 4-7, 2020.890

Divyansh Garg, Skanda Vaidyanath, Kuno Kim,891
Jiaming Song, and Stefano Ermon. 2022. LISA:892
Learning interpretable skill abstractions from lan-893
guage. In Advances in Neural Information Process-894
ing Systems.895

Prasoon Goyal, Raymond J. Mooney, and Scott896
Niekum. 2021. Zero-shot task adaptation using897
natural language. arXiv:2106.02972.898

Shivanshu Gupta, Matt Gardner, and Sameer Singh.899
2023. Coverage-based example selection for in-900
context learning. arXiv:2305.14907.901

Alice Hein and Klaus Diepold. 2022. A minimal902
model for compositional generalization on gscan.903
In Proceedings of the Fifth BlackboxNLP Work-904
shop on Analyzing and Interpreting Neural Net-905
works for NLP, BlackboxNLP@EMNLP 2022, Abu906
Dhabi, United Arab Emirates (Hybrid), December907
8, 2022.908

Christina Heinze-Deml and Diane Bouchacourt.909
2020. Think before you act: A simple baseline910
for compositional generalization. arXiv:2009.13962,911
2009.13962.912

Felix Hill, Andrew K. Lampinen, Rosalia Schnei-913
der, Stephen Clark, Matthew Botvinick, James L.914
McClelland, and Adam Santoro. 2020. Environmen-915
tal drivers of systematicity and generalization in916
a situated agent. In 8th International Conference917
on Learning Representations, ICLR 2020, Addis918
Ababa, Ethiopia, April 26-30, 2020.919

Matthew Honnibal and Ines Montani. 2017. spaCy920
2: Natural language understanding with Bloom921
embeddings, convolutional neural networks and in-922
cremental parsing. To appear.923

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and924
Elia Bruni. 2020. Compositionality decomposed:925
How do neural networks generalise? J. Artif. Intell.926
Res., 67.927

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste928
Alayrac, Carl Doersch, Catalin Ionescu, David929
Ding, Skanda Koppula, Daniel Zoran, Andrew930
Brock, Evan Shelhamer, Olivier J Henaff, Matthew931
Botvinick, Andrew Zisserman, Oriol Vinyals, and932
Joao Carreira. 2022. Perceiver IO: A general archi-933
tecture for structured inputs & outputs. In Inter-934
national Conference on Learning Representations.935

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kap-936
pler, Frederik Ebert, Corey Lynch, Sergey Levine,937
and Chelsea Finn. 2021. BC-Z: zero-shot task gen-938
eralization with robotic imitation learning. In 5th939
Annual Conference on Robot Learning, 8-11 Novem-940
ber 2021, London, UK.941

Yichen Jiang and Mohit Bansal. 2021. Inducing942
transformer’s compositional generalization ability943

via auxiliary sequence prediction tasks. In Proceed- 944
ings of the 2021 Conference on Empirical Methods 945
in Natural Language Processing, EMNLP 2021, Vir- 946
tual Event / Punta Cana, Dominican Republic, 7-11 947
November, 2021. 948

Daniel Keysers, Nathanael Schärli, Nathan Scales, 949
Hylke Buisman, Daniel Furrer, Sergii Kashubin, 950
Nikola Momchev, Danila Sinopalnikov, Lukasz 951
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao 952
Wang, Marc van Zee, and Olivier Bousquet. 2020. 953
Measuring compositional generalization: A com- 954
prehensive method on realistic data. In 8th Inter- 955
national Conference on Learning Representations, 956
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 957
2020. 958

Najoung Kim and Tal Linzen. 2020. COGS: A 959
compositional generalization challenge based on se- 960
mantic interpretation. In Proceedings of the 2020 961
Conference on Empirical Methods in Natural Lan- 962
guage Processing, EMNLP 2020, Online, November 963
16-20, 2020. 964

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, 965
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large 966
language models are zero-shot reasoners. In Pro- 967
ceedings of the Thirty-Sixth Conference on Neural 968
Information Processing Systems, volume 35. 969

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. 2021. 970
Compositional networks enable systematic general- 971
ization for grounded language understanding. In 972
Findings of the Association for Computational Lin- 973
guistics: EMNLP 2021, Virtual Event / Punta 974
Cana, Dominican Republic, 16-20 November, 2021. 975

Brenden M. Lake. 2019. Compositional generaliza- 976
tion through meta sequence-to-sequence learning. 977
In Advances in Neural Information Processing Sys- 978
tems 32: Annual Conference on Neural Information 979
Processing Systems 2019, NeurIPS 2019, December 980
8-14, 2019, Vancouver, BC, Canada. 981

Brenden M. Lake and Marco Baroni. 2018. Gener- 982
alization without systematicity: On the composi- 983
tional skills of sequence-to-sequence recurrent net- 984
works. In Proceedings of the 35th International Con- 985
ference on Machine Learning, ICML 2018, Stock- 986
holmsmässan, Stockholm, Sweden, July 10-15, 2018, 987
volume 80. 988

Brenden M. Lake, Tal Linzen, and Marco Baroni. 989
2019. Human few-shot learning of compositional 990
instructions. In Proceedings of the 41th Annual 991
Meeting of the Cognitive Science Society, CogSci 992
2019: Creativity + Cognition + Computation, Mon- 993
treal, Canada, July 24-27, 2019. 994

Brian Lester, Rami Al-Rfou, and Noah Constant. 995
2021. The power of scale for parameter-efficient 996
prompt tuning. In Proceedings of the 2021 Con- 997
ference on Empirical Methods in Natural Language 998
Processing, EMNLP 2021, Virtual Event / Punta 999
Cana, Dominican Republic, 7-11 November, 2021. 1000

Itay Levy, Ben Bogin, and Jonathan Berant. 2022. 1001
Diverse demonstrations improve in-context compo- 1002

11

https://doi.org/10.48550/arXiv.2203.00054
https://doi.org/10.48550/arXiv.2203.00054
https://doi.org/10.48550/arXiv.2203.00054
https://doi.org/10.48550/arXiv.2203.00054
https://doi.org/10.48550/arXiv.2203.00054
https://arxiv.org/abs/2106.02972
https://arxiv.org/abs/2106.02972
https://arxiv.org/abs/2106.02972
https://doi.org/10.48550/arXiv.2305.14907
https://doi.org/10.48550/arXiv.2305.14907
https://doi.org/10.48550/arXiv.2305.14907
https://aclanthology.org/2022.blackboxnlp-1.1
https://aclanthology.org/2022.blackboxnlp-1.1
https://aclanthology.org/2022.blackboxnlp-1.1
https://arxiv.org/abs/2009.13962
https://arxiv.org/abs/2009.13962
https://arxiv.org/abs/2009.13962
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://doi.org/10.1613/jair.1.11674
https://doi.org/10.1613/jair.1.11674
https://doi.org/10.1613/jair.1.11674
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://mindmodeling.org/cogsci2019/papers/0123/index.html
https://mindmodeling.org/cogsci2019/papers/0123/index.html
https://mindmodeling.org/cogsci2019/papers/0123/index.html
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.48550/arXiv.2212.06800
https://doi.org/10.48550/arXiv.2212.06800


sitional generalization. In 61st Annual Meeting of1003
the Association of Computational Linguistics.1004

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-1005
jan Ghazvininejad, Abdelrahman Mohamed, Omer1006
Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020.1007
BART: denoising sequence-to-sequence pre-training1008
for natural language generation, translation, and1009
comprehension. In Proceedings of the 58th Annual1010
Meeting of the Association for Computational Lin-1011
guistics, ACL 2020, Online, July 5-10, 2020.1012

Yafu Li, Yongjing Yin, Yulong Chen, and Yue1013
Zhang. 2021. On compositional generalization of1014
neural machine translation. In Proceedings of the1015
59th Annual Meeting of the Association for Com-1016
putational Linguistics and the 11th International1017
Joint Conference on Natural Language Processing,1018
ACL/IJCNLP 2021, (Volume 1: Long Papers), Vir-1019
tual Event, August 1-6, 2021.1020

Yuxuan Li and James McClelland. 2022. System-1021
atic generalization and emergent structures in trans-1022
formers trained on structured tasks. In NeurIPS1023
’22 Workshop on All Things Attention: Bridging1024
Different Perspectives on Attention.1025

Lajanugen Logeswaran, Yao Fu, Moontae Lee, and1026
Honglak Lee. 2022. Few-shot subgoal planning1027
with language models. In Proceedings of the 20221028
Conference of the North American Chapter of the1029
Association for Computational Linguistics: Human1030
Language Technologies, NAACL 2022, Seattle, WA,1031
United States, July 10-15, 2022.1032

Lajanugen Logeswaran, Ann Lee, Myle Ott,1033
Honglak Lee, Marc’Aurelio Ranzato, and Arthur1034
Szlam. 2020. Few-shot sequence learning with trans-1035
formers. In Workshop on Meta-Learning, NeurIPS1036
2020, virtual, volume abs/2012.09543.1037

Sewon Min, Mike Lewis, Luke Zettlemoyer, and1038
Hannaneh Hajishirzi. 2022a. Metaicl: Learning1039
to learn in context. In Proceedings of the 20221040
Conference of the North American Chapter of the1041
Association for Computational Linguistics: Human1042
Language Technologies, NAACL 2022, Seattle, WA,1043
United States, July 10-15, 2022.1044

So Yeon Min, Devendra Singh Chaplot, Pradeep Ku-1045
mar Ravikumar, Yonatan Bisk, and Ruslan1046
Salakhutdinov. 2022b. FILM: Following instruc-1047
tions in language with modular methods. In Inter-1048
national Conference on Learning Representations.1049

Eric Mitchell, Chelsea Finn, and Christopher D.1050
Manning. 2021. Challenges of acquiring composi-1051
tional inductive biases via meta-learning. In AAAI1052
Workshop on Meta-Learning and MetaDL Chal-1053
lenge, MetaDL@AAAI 2021, virtual, February 9,1054
2021, volume 140.1055

Maxwell Nye, Michael Henry Tessler, Joshua B.1056
Tenenbaum, and Brenden M. Lake. 2021. Improv-1057
ing coherence and consistency in neural sequence1058
models with dual-system, neuro-symbolic reason-1059
ing. In Advances in Neural Information Processing1060
Systems.1061

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 1062
2021. Controllable semantic parsing via retrieval 1063
augmentation. In Proceedings of the 2021 Confer- 1064
ence on Empirical Methods in Natural Language 1065
Processing, EMNLP 2021, Virtual Event / Punta 1066
Cana, Dominican Republic, 7-11 November, 2021. 1067

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, 1068
and Fei Sha. 2021. Systematic generalization on 1069
gSCAN: What is nearly solved and what is next? 1070
In Proceedings of the 2021 Conference on Empirical 1071
Methods in Natural Language Processing, EMNLP 1072
2021, Virtual Event / Punta Cana, Dominican Re- 1073
public, 7-11 November, 2021. 1074

Linlu Qiu, Peter Shaw, Panupong Pasupat, 1075
Pawel Krzysztof Nowak, Tal Linzen, Fei Sha, and 1076
Kristina Toutanova. 2022. Improving compositional 1077
generalization with latent structure and data aug- 1078
mentation. In Proceedings of the 2022 Conference 1079
of the North American Chapter of the Association 1080
for Computational Linguistics: Human Language 1081
Technologies, NAACL 2022, Seattle, WA, United 1082
States, July 10-15, 2022. 1083

Laura Ruis, Jacob Andreas, Marco Baroni, Diane 1084
Bouchacourt, and Brenden M. Lake. 2020. A bench- 1085
mark for systematic generalization in grounded lan- 1086
guage understanding. In Advances in Neural Infor- 1087
mation Processing Systems 33: Annual Conference 1088
on Neural Information Processing Systems 2020, 1089
NeurIPS 2020, December 6-12, 2020, virtual. 1090

Laura Ruis and Brenden M. Lake. 2022. Improving 1091
systematic generalization through modularity and 1092
augmentation. In Proceedings of the 44th Annual 1093
Conference of the Cognitive Science Society. 1094

Matthew Setzler, Scott Howland, and Lauren A. 1095
Phillips. 2022. Recursive decoding: A situ- 1096
ated cognition approach to compositional gen- 1097
eration in grounded language understanding. 1098
Arxiv:2201.11766. 1099

Taylor Shin, Yasaman Razeghi, Robert L. Logan 1100
IV, Eric Wallace, and Sameer Singh. 2020. Auto- 1101
prompt: Eliciting knowledge from language models 1102
with automatically generated prompts. In Proceed- 1103
ings of the 2020 Conference on Empirical Methods 1104
in Natural Language Processing, EMNLP 2020, On- 1105
line, November 16-20, 2020. 1106

Mohit Shridhar, Jesse Thomason, Daniel Gordon, 1107
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, 1108
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED: 1109
A benchmark for interpreting grounded instructions 1110
for everyday tasks. In 2020 IEEE/CVF Confer- 1111
ence on Computer Vision and Pattern Recognition, 1112
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 1113
pages 10737–10746. Computer Vision Foundation / 1114
IEEE. 1115

Ankur Sikarwar, Arkil Patel, and Navin Goyal. 1116
2022. When can transformers ground and com- 1117
pose: Insights from compositional generalization 1118
benchmarks. In Proceedings of the 2022 Confer- 1119

12

https://doi.org/10.48550/arXiv.2212.06800
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://aclanthology.org/2022.naacl-main.402
https://aclanthology.org/2022.naacl-main.402
https://aclanthology.org/2022.naacl-main.402
https://arxiv.org/abs/2012.09543
https://arxiv.org/abs/2012.09543
https://arxiv.org/abs/2012.09543
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://openreview.net/forum?id=qI4542Y2s1D
https://openreview.net/forum?id=qI4542Y2s1D
https://openreview.net/forum?id=qI4542Y2s1D
https://proceedings.mlr.press/v140/mitchell21a.html
https://proceedings.mlr.press/v140/mitchell21a.html
https://proceedings.mlr.press/v140/mitchell21a.html
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://doi.org/10.18653/v1/2021.emnlp-main.607
https://doi.org/10.18653/v1/2021.emnlp-main.607
https://doi.org/10.18653/v1/2021.emnlp-main.607
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.48550/arXiv.2210.12786
https://doi.org/10.48550/arXiv.2210.12786
https://doi.org/10.48550/arXiv.2210.12786
https://doi.org/10.48550/arXiv.2210.12786
https://doi.org/10.48550/arXiv.2210.12786


ence on Empirical Methods in Natural Language1120
Processing, Abu Dhabi, United Arab Emirates.1121

Shagun Sodhani, Amy Zhang, and Joelle Pineau.1122
2021. Multi-task reinforcement learning with1123
context-based representations. In Proceedings of the1124
38th International Conference on Machine Learn-1125
ing, ICML 2021, 18-24 July 2021, Virtual Event.1126

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen,1127
and Yunfeng Liu. 2021. Roformer: Enhanced1128
transformer with rotary position embedding.1129
arXiv:2104.09864.1130

Josh Tenenbaum. 2018. Building machines that1131
learn and think like people. In Proceedings of1132
the 17th International Conference on Autonomous1133
Agents and MultiAgent Systems, AAMAS 2018,1134
Stockholm, Sweden, July 10-15, 2018.1135

Ashish Vaswani, Noam Shazeer, Niki Parmar,1136
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,1137
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-1138
tion is all you need. In Advances in Neural Infor-1139
mation Processing Systems 30: Annual Conference1140
on Neural Information Processing Systems 2017,1141
December 4-9, 2017, Long Beach, CA, USA.1142

Jason Wei, Xuezhi Wang, Dale Schuurmans,1143
Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,1144
Quoc V Le, and Denny Zhou. 2022. Chain of1145
thought prompting elicits reasoning in large lan-1146
guage models. In Advances in Neural Information1147
Processing Systems.1148

Nathaniel Weir, Xingdi Yuan, Marc-Alexandre1149
Côté, Matthew Hausknecht, Romain Laroche, Ida1150
Momennejad, Harm Van Seijen, and Benjamin1151
Van Durme. 2023. One-shot learning from a demon-1152
stration with hierarchical latent language. In Pro-1153
ceedings of the 2023 International Conference on1154
Autonomous Agents and Multiagent Systems, AA-1155
MAS ’23, page 2388–2390, Richland, SC. Inter-1156
national Foundation for Autonomous Agents and1157
Multiagent Systems.1158

Zhengxuan Wu, Elisa Kreiss, Desmond Ong, and1159
Christopher Potts. 2021. ReaSCAN: Compositional1160
reasoning in language grounding. In Thirty-fifth1161
Conference on Neural Information Processing Sys-1162
tems Datasets and Benchmarks Track (Round 1).1163

Jingfeng Yang, Haoming Jiang, Qingyu Yin, Dan-1164
qing Zhang, Bing Yin, and Diyi Yang. 2022. SE-1165
QZERO: Few-shot compositional semantic parsing1166
with sequential prompts and zero-shot models. In1167
Findings of the Association for Computational Lin-1168
guistics: NAACL 2022.1169

Zhang Yang, Adam Ishay, and Joohynung Lee. 2023.1170
Coupling large language models with logic program-1171
ming for robust and general reasoning from text.1172
In Findings of the 61th Annual Meeting of the As-1173
sociation for Computational Linguistics.1174

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu,1175
and Lingpeng Kong. 2023. Compositional exem-1176
plars for in-context learning. In International Con-1177

ference on Machine Learning, ICML 2023, 23-29 1178
July 2023, Honolulu, Hawaii, USA, volume 202 of 1179
Proceedings of Machine Learning Research, pages 1180
39818–39833. PMLR. 1181

Pengcheng Yin, Hao Fang, Graham Neubig, Adam 1182
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam 1183
Thomson, and Jacob Andreas. 2021. Compositional 1184
generalization for neural semantic parsing via span- 1185
level supervised attention. In Proceedings of the 1186
2021 Conference of the North American Chapter 1187
of the Association for Computational Linguistics: 1188
Human Language Technologies, NAACL-HLT 2021, 1189
Online, June 6-11, 2021. 1190

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan 1191
Julian, Karol Hausman, Chelsea Finn, and Sergey 1192
Levine. 2019. Meta-world: A benchmark and eval- 1193
uation for multi-task and meta reinforcement learn- 1194
ing. In 3rd Annual Conference on Robot Learning, 1195
CoRL 2019, Osaka, Japan, October 30 - November 1196
1, 2019, Proceedings, volume 100 of Proceedings 1197
of Machine Learning Research, pages 1094–1100. 1198
PMLR. 1199

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong 1200
Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, 1201
Michael Zeng, and Meng Jiang. 2023. Generate 1202
rather than retrieve: Large language models are 1203
strong context generators. In The Eleventh Inter- 1204
national Conference on Learning Representations, 1205
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. 1206

Yury Zemlyanskiy, Michiel de Jong, Joshua Ainslie, 1207
Panupong Pasupat, Peter Shaw, Linlu Qiu, Sumit 1208
Sanghai, and Fei Sha. 2022. Generate-and-retrieve: 1209
use your predictions to improve retrieval for seman- 1210
tic parsing. 1211

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 1212
Smola. 2022. Automatic chain of thought prompt- 1213
ing in large language models. arXiv:2210.03493. 1214

Victor Zhong, Tim Rocktäschel, and Edward 1215
Grefenstette. 2020. Rtfm: Generalising to new en- 1216
vironment dynamics via reading. In International 1217
Conference on Learning Representations. 1218

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 1219
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 1220
Olivier Bousquet, Quoc Le, and Ed H. Chi. 2022. 1221
Least-to-most prompting enables complex reason- 1222
ing in large language models. arXiv:2205.10625. 1223

13

http://proceedings.mlr.press/v139/sodhani21a.html
http://proceedings.mlr.press/v139/sodhani21a.html
http://proceedings.mlr.press/v139/sodhani21a.html
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://dl.acm.org/citation.cfm?id=3237389
http://dl.acm.org/citation.cfm?id=3237389
http://dl.acm.org/citation.cfm?id=3237389
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=Rtquf4Jk0jN
https://openreview.net/forum?id=Rtquf4Jk0jN
https://openreview.net/forum?id=Rtquf4Jk0jN
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
http://peace.eas.asu.edu/joolee/papers/gpt3-reasoning-acl.pdf
http://peace.eas.asu.edu/joolee/papers/gpt3-reasoning-acl.pdf
http://peace.eas.asu.edu/joolee/papers/gpt3-reasoning-acl.pdf
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2210.03493
https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/1910.08210
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625


A Details of the gSCAN Dataset1224

Statistics on the gSCAN dataset are reproduced in Table 8 for the reader’s convenience.1225

Num. Examples Length ± std.
Train 367933 14.35 ± 10.07
A 19282 13.35 ± 8.87
B 18718 13.95 ± 9.72
C 37436 14.07 ± 9.78
D 88642 17.96 ± 10.78
E 16808 13.31 ± 9.48
F 11460 16.50 ± 12.40
G 112880 33.46 ± 16.90
H 38582 43.07 ± 19.67

Table 8: Statistics on the gSCAN dataset and test splits

A.1 Nearest Neighbour Similarity Distribution1226

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
split

a 0.743 0.740 0.737 0.734 0.731 0.725 0.719 0.712 0.702 0.692 0.684 0.681 0.670 0.663
b 0.743 0.741 0.738 0.735 0.731 0.726 0.719 0.710 0.700 0.692 0.686 0.681 0.667 0.661
c 0.759 0.756 0.754 0.750 0.747 0.742 0.738 0.731 0.722 0.710 0.702 0.699 0.690 0.682
d 0.753 0.750 0.748 0.745 0.741 0.737 0.732 0.725 0.714 0.707 0.702 0.699 0.689 0.679
dev 0.767 0.764 0.761 0.757 0.754 0.747 0.742 0.736 0.727 0.715 0.705 0.702 0.693 0.686
e 0.668 0.668 0.668 0.666 0.663 0.659 0.655 0.649 0.638 0.626 0.617 0.614 0.606 0.599
f 0.748 0.746 0.744 0.740 0.737 0.731 0.726 0.721 0.712 0.698 0.689 0.687 0.678 0.670
g 0.767 0.764 0.761 0.757 0.754 0.747 0.741 0.735 0.726 0.714 0.705 0.702 0.693 0.685
h 0.767 0.763 0.760 0.757 0.753 0.747 0.741 0.735 0.726 0.713 0.704 0.702 0.692 0.685
train 1.000 0.767 0.762 0.758 0.754 0.747 0.741 0.735 0.726 0.714 0.705 0.702 0.693 0.685

Table 9: Average state nearest neighbour similarity (between the shown split and the training split) for
each split. X-axis is log-scale. The plots show the average hamming similarity between points in a split
and their Nth nearest neighbour in the training split.

We visualize the average nth training-data nearest neighbour similarity distribution for each dataset split in1227
Figure 4. We created the figure by taking 1000 random examples from each splits, then finding their 81921228
nearest neighbours using a inner-product index over normalized one-hot encoded state representations.1229

In most cases, even the closest nearest neighbour state has quite many differences and these differences1230
grow as we pick nearest neighbours further away from a training data point. This means that it is hard to1231
find an example in the training set containing different instructions in the exact same environment layout.1232

B Additional Comparisons1233

seq2seq GECA FiLM RelNet LCGN ViLBERT
(Ruis et al., 2020) (Ruis et al., 2020) (Qiu et al., 2021) (Qiu et al., 2021) (Gao et al., 2020) (Qiu et al., 2021)

A 97.15 ± .46 87.6 ± 1.19 98.83 ± .32 97.38 ± .33 98.6 ± .9 99.95 ± .02
B 30.05 ± 26.76 34.92 ± 39.30 94.04 ± 7.41 49.44 ± 8.19 99.08 ± .69 99.90 ± .06
C 29.79 ± 17.70 78.77 ± 6.63 60.12 ± 8.81 19.92 ± 9.84 80.31 ± 24.51 99.25 ± .91
D 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.16 ± .12 0.00 ± .00
E 37.25 ± 2.85 33.19 ± 3.69 31.64 ± 1.04 42.17 ± 6.22 87.32 ± 27.38 99.02 ± 1.16
F 94.16 ± 1.25 85.99 ± .85 86.45 ± 6.67 96.59 ± .94 99.33 ± .46 99.98 ± .01
H 19.04 ± 4.08 11.83 ± .31 11.71 ± 2.34 18.26 ± 1.24 33.6 ± 20.81 22.16 ± .01

GroCoT Planning RD Random/RL Modular CMA-ES Role-Guided
(Sikarwar et al., 2022) 2020 (Setzler et al., 2022) (Ruis and Lake, 2022) (Hein and Diepold, 2022) (Kuo et al., 2021)

A 99.9 94.19 ± .71 98.39 ± .17 96.34 ± .28 99.7 ± .1 96.73 ± .58
B 99.9 87.31 ± 4.38 62.19 ± 24.08 59.66 ± 23.76 73.5 ± 25.4 94.91 ± 1.30
C 99.9 81.07 ± 10.12 56.52 ± 29.70 32.09 ± 9.79 99.4 ± .4 67.72 ± 10.83
D 0.0 43.60 ± 6.05 0.00 ± .00 2.2 ± 1.5 11.52 ± 8.18
E 99.8 52.8 ± 9.96 53.89 ± 5.39 49.34 ± 11.60 97.4 ± 2.0 76.83 ± 2.32
F 99.9 95.74 ± .75 94.16 ± 1.25 99.1 ± .6 98.67 ± .05
H 22.9 21.95 ± .03 76.84 ± 26.94 98.4 ± 1.1 20.98 ± 1.98

Table 10: Additional related work comparisons. Splits G and I are not included.

14



100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split Train

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split A

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split B

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split C

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split D

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split E

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split F

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split G

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g 
Si

m
ila

rit
y

Split H

Figure 4: Average state nearest neighbour similarity (between the shown split and the training split) for
each split. X-axis is log-scale. The plots show the average hamming similarity between points in a split
and their Nth nearest neighbour in the training split.

In this section of the appendix, we describe in more detail other related work on gSCAN and provide the 1234
results reported by those works in Table 10 for easier comparison with our experimental results. 1235

Modular A recent work by Ruis and Lake (2022). It uses a specialized decomposition into Perception, 1236
Interaction, Navigation and Transformation Modules, each of which are trained independently with their 1237
own training outputs, then connected together at test time. The modular decomposition gives a prior on 1238
how the problem should be solved (for example by decomposition into egocentric and allocentric plans). 1239
The work also describes how data augmentation can be used to improve the model, but we show the 1240
results coming from use of the modular architecture alone. This approach can get good performance on 1241
Splits G and H. Performance on other splits is either slightly improved or comparable to the baseline in 1242
Ruis et al. (2020), which is likely due to the use of a similar underlying architecture of RNNs and CNNs 1243
as feature encoders. 1244

Role-Guided (Kuo et al., 2021) This approach uses linguistic priors to decompose the parsing problem 1245
and specify how sub-parsers are connected. It can achieve some level of performance on Split D and 1246
comparable performance on Split H to the Transformer. 1247

ViLBERT is an adaptation of the ViLBERT model for gSCAN by Qiu et al. (2021) and extended on 1248
by Sikarwar et al. (2022). The state is first one-hot encoded, a few 2D convolution layers are applied to it. 1249
The state is then flattened and the channel values for each pixel are treated as vectors for each location in 1250
the state. Afterwards, there are several layers of cross-attention between the instruction tokens and the 1251
state tokens. The cross-attented representations are concatenated together and used as input to a causal 1252
Transformer decoder to decode the outputs. 1253

15



GECA Also known as “Good Enough Compositional Augmentation" (Andreas (2020)), applied to1254
gSCAN by Ruis et al. (2020). GECA is an augmentation method which recognizes template fragments in1255
text, then realizes those templates with other possible substitutions. Following the example in that work,1256
if a dataset contains “she picks the wug up in Fresno“ and “she puts the wug down in Tempe", then the1257
augmentation method generates samples of puts down substituted into sentences containing picks up. For1258
example the sentence “Pat picks cats up" can be augmented to “Pat puts cats down". GECA relies on1259
being able to identify templates containing discontiguous fragments which contain at least two tokens.1260
In the case of SCAN, GECA might identify the fragment “jump ... JUMP ... JUMP ... JUMP" from the1261
concatenated instruction-action pair “jump thrice JUMP JUMP JUMP" and substitute it into “walk around1262
right thrice WALK RTURN WALK RTURN WALK RTURN" such that it is augmented into “jump around right thrice1263
JUMP RTURN JUMP RTURN JUMP RTURN". As noted by Andreas (2020), the time and space complexity of1264
GECA can be quite large and scales with the number of recognized templates and fragments. The results1265
reported by Ruis et al. (2020) when using GECA in Table 10 are possibly out of date, since they were1266
generated using an RNN architecture as opposed to a Transformer, where better performance on Splits1267
B, C, E and F has been observed. Also, GECA was only applied to the instructions and state and not1268
to the target commands. Possibly the reason for this is that the computational and memory complexity1269
of GECA makes it difficult to apply the joint space of the state, instruction and target commands as in1270
gSCAN.1271

CMA-ES uses sparse hard attention with CMA-ES as the optimization algorithm as opposed to a1272
gradient-based optimizer. The model architecture consists only of a multi-layer perceptron, predicting the1273
next token with attention over the generated output sequence. The method requires some supervision1274
on what the goal object is, in contrast with other approaches. Its strengths are that convergence can1275
happen very quickly and optimization can be run on lighter hardware. The method also gets very good1276
performance on Split H, however, as of the time of writing, the authors have not yet published their code1277
and did not provide any analysis in their paper as to why the measured Split H performance was so good,1278
so it is not possible to make a detailed comparison with our work.1279

ViLBERT Modular Role-guided Transformer (ours) ICL Transformer
(Qiu et al., 2021) (Ruis and Lake, 2022) (Kuo et al., 2021) Ours Ours

Learning Rate 0.0015 0.001 0.001 0.0001 0.0001
Embedding Dim 128 128 128 512 512
Dropout 0.1 - - 0.1 0.1
Batch Size 128 200 200 128 128
Steps 114.96K 73K 150K 300K 300K
#params 3M 88.3M 88.3M

Table 11: Hyperparameters used in our experiments and the related work

C Experimental Details1280

We ran experiments to determine the performance of our approach. The Transformer blocks use an1281
embedding size (dmodel) of 512 units and fully-connected layer size (dFF) of 2048 units is used. We use 121282
layers for each of the encoder and decoder of the encoder-decoder transformer. The learning rate is 10−5,1283
we have an effective batch size of 128, and training iteration count of 300,000. During training, dropout is1284
not used and weight decay is set to 10−3 with the AdamW optimizer. Beta values are left at their defaults,1285
β1 = 0.9 and β2 = 0.999. Learning rate warmup is used up to step 30,000 to a peak learning rate of 10−5,1286
then decayed on a log-linear schedule from steps 30,000 to 300,000 to 10−6. Gradient norms are clipped1287
at 0.2 to improve training stability. We use 16-bit precision during training and make use of gradient1288
accumulation in order to simulate large batch sizes where memory is limited.1289

D Implementation of GandR for gSCAN1290

We make small adaptations to GandR (Zemlyanskiy et al., 2022) to adapt it to the grounded setting. The1291
baseline transformer model makes an initial prediction for the query input, then the query input and1292
prediction are vector-encoded and used to find other similar query-output pairs using the index, which1293
become the support inputs and outputs used for ICL. Compared to the original, we keep the α trade-off1294
between input and target components fixed as opposed to varying it. We also don’t include the state in1295
the vector though the identity of the target object and also its distance to the agent will likely be similar1296
as we select on the basis of input and output similarity. There is also nothing to ensure that a diversity of1297
different instructions is sampled - only the near neighbours are sampled, even if they all correspond to a1298
single instruction.1299

16



E Implementation of CovR for gSCAN 1300

We implement the main idea behind Set-BSR (Gupta et al., 2023) for the grounded setting. States are 1301
vector-encoded and projected using PCA into 320 dimensions. Instructions are TF-IDF encoded into 1302
vectors. Both are concatenated with each other to make a vector representation of an example. The 1303
instruction component of the vector is weighted with α = 0.125. The training-set vectors are placed 1304
into an inner-product index. For performance reasons, we use a Voronoi index with 512 cells and 10 cell 1305
probes per search. For each vector in a split, we search the index for the 128 nearest neighbours, sort 1306
the neighbours in descending order according to the number of matching two-grams, one-grams and the 1307
cosine similarity to the query state. Then we pick the top k = 16 examples as the support set. 1308

F Properties of Generated Demonstrations, other splits 1309

Properties of Generated Demonstrations for the other splits are shown in tables below. 1310

Split A
DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.32 0.83 0.15 1.00 1.00 0.07
(2) Agent Pos. 1.00 0.07 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.37 0.08 0.27 1.00 0.03 0.07
(4) Same Diff. 0.37 0.31 0.27 1.00 0.02 0.07
(5) Tgt. Obj. 0.37 0.26 0.22 1.00 0.25 0.07
(6) Verb & (5) 1.00 0.93 0.91 1.00 0.50 0.07
(7) Advb & (5) 0.75 0.93 0.77 1.00 0.38 0.07
(8) (6) & (7) 0.75 0.93 0.73 1.00 0.23 0.07
(9) (4) & (8) 0.75 0.57 0.65 1.00 0.00 0.07

Split B

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.00 0.00 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.13 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.32 0.15 0.29 1.00 0.00 0.00
(4) Same Diff. 0.32 0.44 0.29 1.00 0.00 0.00
(5) Tgt. Obj. 0.32 0.03 0.18 1.00 0.00 0.00
(6) Verb & (5) 1.00 0.30 0.85 1.00 0.00 0.00
(7) Advb & (5) 0.66 0.30 0.71 1.00 0.00 0.00
(8) (6) & (7) 0.66 0.30 0.69 1.00 0.00 0.00
(9) (4) & (8) 0.66 0.24 0.63 1.00 0.00 0.00

Split C

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.16 0.47 0.15 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.19 0.13 0.18 1.00 0.03 0.15
(4) Same Diff. 0.19 0.44 0.18 1.00 0.02 0.15
(5) Tgt. Obj. 0.19 0.00 0.00 1.00 0.00 0.15
(6) Verb & (5) 0.79 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.41 0.00 0.00 1.00 0.00 0.15
(8) (6) & (7) 0.40 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.40 0.00 0.00 1.00 0.00 0.15

Split D

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.19 0.83 0.18 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.03 1.00 1.00 0.02 1.00
(3) Tgt. Pos. 0.33 0.03 0.00 1.00 0.02 0.16
(4) Same Diff. 0.33 0.00 0.00 1.00 0.00 0.16
(5) Tgt. Obj. 0.33 0.20 0.05 1.00 0.10 0.16
(6) Verb & (5) 0.99 0.89 0.42 1.00 0.25 0.16
(7) Advb & (5) 0.89 0.88 0.25 1.00 0.17 0.16
(8) (6) & (7) 0.89 0.88 0.20 1.00 0.06 0.16
(9) (4) & (8) 0.89 0.00 0.00 1.00 0.00 0.16

Split E

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.22 0.89 0.07 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.11 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.27 0.12 0.22 1.00 0.00 0.00
(4) Same Diff. 0.27 0.35 0.22 1.00 0.00 0.00
(5) Tgt. Obj. 0.27 0.03 0.14 1.00 0.00 0.00
(6) Verb & (5) 0.96 0.20 0.81 1.00 0.00 0.00
(7) Advb & (5) 0.50 0.20 0.63 1.00 0.00 0.00
(8) (6) & (7) 0.50 0.20 0.60 1.00 0.00 0.00
(9) (4) & (8) 0.50 0.14 0.50 1.00 0.00 0.00

Split F

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.81 0.23 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.33 0.15 0.26 1.00 0.03 0.15
(4) Same Diff. 0.33 0.37 0.26 1.00 0.02 0.15
(5) Tgt. Obj. 0.33 0.00 0.10 1.00 0.07 0.15
(6) Verb & (5) 0.96 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.60 0.00 0.62 1.00 0.29 0.15
(8) (6) & (7) 0.58 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.58 0.00 0.00 1.00 0.00 0.15

Split G

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.39 0.91 0.31 1.00 1.00 0.20
(2) Agent Pos. 1.00 0.14 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.50 0.16 0.37 1.00 0.03 0.20
(4) Same Diff. 0.50 0.35 0.37 1.00 0.02 0.20
(5) Tgt. Obj. 0.50 0.22 0.24 1.00 0.20 0.20
(6) Verb & (5) 1.00 0.91 0.93 1.00 0.51 0.20
(7) Advb & (5) 0.00 0.01 0.00 1.00 0.00 0.20
(8) (6) & (7) 0.00 0.01 0.00 1.00 0.00 0.20
(9) (4) & (8) 0.00 0.00 0.00 1.00 0.00 0.20

Split H

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.33 0.68 0.33 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.08 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.44 0.08 0.39 1.00 0.03 0.16
(4) Same Diff. 0.44 0.09 0.39 1.00 0.02 0.16
(5) Tgt. Obj. 0.44 0.14 0.27 1.00 0.19 0.16
(6) Verb & (5) 1.00 0.15 0.88 1.00 0.43 0.16
(7) Advb & (5) 0.88 0.51 0.78 1.00 0.33 0.16
(8) (6) & (7) 0.88 0.00 0.70 1.00 0.19 0.16
(9) (4) & (8) 0.88 0.00 0.62 1.00 0.00 0.16

G Heuristic Function 1311

The Heuristic function generates relevant instructions by the use of a templating mechanism, which 1312
replaces verbs and adverbs in the sentence with other verbs and adverbs, such that the whole combination 1313
is still in distribution, but not the same as the query instruction. The rules of the system are: 1314

• Replace “pull" with “push" and “walk to" 1315

• Replace “walk to" with “push" and “pull" (but not if “while spinning" is the adverb) 1316

17



Word Symbol Action Symbol
‘a’ 0 PULL 0

‘big’ 1 PUSH 1
‘blue’ 2 STAY 2

‘cautiously’ 3 LTURN 3
‘circle’ 4 RTURN 4

‘cylinder‘ 5 WALK 5
‘green’ 6

‘hesitantly’ 7
‘pull’ 8
‘push 9
‘red’ 10

‘small’ 11
‘square’ 12

‘to’ 13
‘walk’ 14

‘while spinning’ 15
‘while zigzagging‘ 16

Table 12: Default mapping of words and actions to symbols

• Replace “push" with “walk to" and “pull" (but not if “while spinning" is the adverb)1317

• Replace “while zigzagging" with “hesitantly", nothing and “while spinning" (but not if “push" is the1318
verb)1319

• Replace “hesitantly" with “while zigzagging", nothing and “while spinning" (but not if “push" is the1320
verb)1321

• Replace “while spinning" with “hesitantly", “while zigzagging" and nothing1322

Examples of what the oracle function generates for a given query instruction and environment can be1323
found in Figure 10. Actions are generated by using the same procedure provided in Ruis et al. (2020). The1324
instruction generated by the oracle is given to the demonstration generation procedure and a demonstration1325
is generated by that. A demonstration can also be generated by providing the oracle-generated instruction1326
and current state representation as input to a Transformer model trained on the provided training set.1327

H Permuter Blocks1328

The permuter block shuffles the indices mapping words to symbols in the dictionary given in Table 12.1329
Table 13 gives an example of how the permuted sequences might look to the encoders. Essentially the1330
individual symbols no longer hold any special meaning without reference to the demonstrations, only1331
conditional autoregressive probabilities up to a permutation hold meaning.1332

I Natural-ish Language gSCAN Dataset1333

The dataset is generated by extracting all of the input sentences from gSCAN and its derivatives, then1334
using the commercial gpt3.5-turbo model from OpenAI2 to generate additional paraphrases of the1335
input sentence. The paraphrases are generated by creating four dataset specific prompts, each with an1336
10 examples of how one instruction in the dataset may be paraphrased, then requesting 25 additional1337
paraphrases for a different instruction in the same dataset to be completed by the language model. The1338
prompts are given in Appendix J. The prompts modes are described as follows:1339

Simple Paraphrases of “Push a red square"1340

Adverb Paraphrases of “Push a red square cautiously"1341

Relational Paraphrases of “Push a red circle that is south east of a blue circle"1342

ReaSCAN Paraphrases of “Pull the yellow square that is inside of a big red box and in the same row1343
as a small red circle and in the same column as a small cylinder while spinning"1344

2As of 5 May 2023

18



Original actions Permutation Encoded actions Permuted encoding
WALK(5) RTURN WALK(5) PULL(0) → 0, PUSH(1) → 5, STAY(2) →

2, LTURN(3) → 1, RTURN(4) → 3,
WALK(5) → 4,

5(5) 4 5(5) 4(5) 3 4(5)

RTURN WALK(3) PULL(0) → 0, PUSH(1) → 2, STAY(2) →
3, LTURN(3) → 5, RTURN(4) → 4,
WALK(5) → 1,

4 5(3) 4 1(3)

LTURN(4) WALK LTURN(4)
WALK LTURN(5) WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 4, PUSH(1) → 5, STAY(2) →
0, LTURN(3) → 2, RTURN(4) → 3,
WALK(5) → 1,

3(4) 5 3(4) 5 3(5) 5
3(4) 5 3(4) 5 3(4) 5
3(4) 5

2(4) 1 2(4) 1 2(5) 1
2(4) 1 2(4) 1 2(4) 1
2(4) 1

LTURN WALK STAY WALK
STAY WALK STAY WALK
STAY

PULL(0) → 3, PUSH(1) → 0, STAY(2) →
2, LTURN(3) → 5, RTURN(4) → 4,
WALK(5) → 1,

3 5 2 5 2 5 2 5 2 5 1 2 1 2 1 2 1 2

LTURN WALK STAY WALK
STAY

PULL(0) → 0, PUSH(1) → 3, STAY(2) →
4, LTURN(3) → 5, RTURN(4) → 2,
WALK(5) → 1,

3 5 2 5 2 5 1 4 1 4

LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) RTURN WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 0, PUSH(1) → 4, STAY(2) →
5, LTURN(3) → 1, RTURN(4) → 3,
WALK(5) → 2,

3(4) 5 3(4) 5 3(4) 5
3(4) 4 5 3(4) 5 3(4)
5 3(4) 5 3(4) 5

1(4) 2 1(4) 2 1(4) 2
1(4) 3 2 1(4) 2 1(4)
2 1(4) 2 1(4) 2

LTURN WALK(2) PUSH PULL(0) → 1, PUSH(1) → 0, STAY(2) →
5, LTURN(3) → 3, RTURN(4) → 4,
WALK(5) → 2,

3 5(2) 1 3 2(2) 0

Table 13: Actions and possible mapping permutations generated by the permuter block.

gSCAN RS ReaSCAN
Uniq. Instrs. 430 31799 4381
Uniq. Tmpls. - 21 658
Gen. Instrs. 12778 731377 99698
Gen. Tmpls. - 483 14683
Prompt Simple Relational ReaSCAN

Table 14: Generation properties and configuration for each of the datasets

The 10 paraphrase examples were written by ourselves - the idea is that they show how adverbs and 1345
actions can be replaced by synonyms, and also show examples of the same instruction in a different 1346
sentence ordering. For example, “push a red square" can be paraphrased as “shove the red square" or 1347
“Walk to a red square and push it". The paraphrases can also include additional verbs adverbs which are 1348
distractors, for example “grasp a red square and move it along". 1349

We generate paraphrases of instructions in gSCAN, gSCAN-RS and ReaSCAN. The default generation 1350
mode creates paraphrases for each unique instruction individually. However for gSCAN-RS and ReaSCAN, 1351
the number of unique instructions is very large, which would mean that generation would come at both a 1352
high time and monetary cost. The reason for this is the combinatorial explosion of factors; in gSCAN-RS 1353
the instructions are given as target objects with positions relative to other objects. To address this 1354
problem, we also have a "template" generation mode, which replaces the object descriptions (size, color, 1355
shape) with a template placeholder, generates paraphrases for the templates, then generates “realised" 1356
paraphrases from those templates for each of the corresponding object descriptions. This reduces the 1357
number of requests to the model from hundreds of thousands to thousands. 1358

J Prompts used for GPT3.5 1359

J.1 gSCAN Simple Prompt 1360

Here are 10 similar statements to “push a red square" 1361

1. Push the red square 1362

2. Move a red square 1363

3. Shove the red square 1364

19



4. Go to the red square and shove it1365

5. Go to the red square and push it1366

6. Walk to the red square and push it1367

7. Find a red square and push it1368

8. Locate a red square and push it1369

9. Get to the red square and move it along1370

10. Walk up to the red square and then really push it1371

Can you generate 25 similar statements for “{{QUERY}}” in English?1372

K Examples of Generated Paraphrases1373

Examples: 367933 Unique Instructions: 430 Templates: 828 Sample Responses:1374

Original walk to a yellow small cylinder hesitantly1375

1. Walk hesitantly to a small yellow cylinder1376

2. Approach a small yellow cylinder with hesitation1377

3. Take cautious steps towards a small yellow cylinder1378

4. Walk slowly towards a small yellow cylinder1379

5. Move towards a small yellow cylinder with caution1380

6. Walk towards a small yellow cylinder carefully1381

7. Take hesitant steps towards a small yellow cylinder1382

8. Approach a small yellow cylinder slowly and hesitantly1383

9. Walk towards a small yellow cylinder with apprehension1384

10. Move towards a small yellow cylinder hesitantly1385

11. Walk to a small yellow cylinder with reluctance1386

12. Take tentative steps towards a small yellow cylinder1387

13. Walk towards a small yellow cylinder with uncertainty1388

14. Approach a small yellow cylinder with trepidation1389

15. Walk towards a small yellow cylinder with reservation1390

16. Take hesitant strides towards a small yellow cylinder1391

17. Walk to a small yellow cylinder with caution1392

18. Move towards a small yellow cylinder with unease1393

19. Walk towards a small yellow cylinder with doubt1394

20. Approach a small yellow cylinder with timidity1395

21. Walk towards a small yellow cylinder with hesitance1396

22. Take slow steps towards a small yellow cylinder1397

23. Walk towards a small yellow cylinder with wariness1398

24. Move towards a small yellow cylinder with hesitancy1399

25. Walk towards a small yellow cylinder with reluctance and caution.1400

20



Original pull a circle hesitantly 1401

1. Hesitantly pull a circle 1402

2. Pull a circle with hesitation 1403

3. Gently pull a circle 1404

4. Pull a circle slowly and cautiously 1405

5. Approach the circle and pull it hesitantly 1406

6. Pull the circle with care 1407

7. Pull the circle slowly and carefully 1408

8. Take your time and pull the circle hesitantly 1409

9. Pull the circle with a bit of hesitation 1410

10. Approach the circle and pull it gently 1411

11. Pull the circle with caution 1412

12. Pull the circle carefully and hesitantly 1413

13. Slowly pull the circle with hesitation 1414

14. Pull the circle with a sense of caution 1415

15. Pull the circle with a bit of reluctance 1416

16. Pull the circle slowly and with care 1417

17. Hesitate before pulling the circle 1418

18. Pull the circle with a gentle touch 1419

19. Pull the circle with a bit of apprehension 1420

20. Pull the circle with a sense of uncertainty 1421

21. Pull the circle with a bit of nervousness 1422

22. Pull the circle with a bit of trepidation 1423

23. Pull the circle with a sense of hesitation 1424

24. Pull the circle with a bit of doubt 1425

25. Pull the circle with a bit of reservation 1426

Original pull a circle while zigzagging 1427

1. Zigzag while pulling a circle 1428

2. Pull a circle in a zigzag pattern 1429

3. Carefully pull a circle while zigzagging 1430

4. Zigzag and pull a circle simultaneously 1431

5. Pull a circle while moving in a zigzag motion 1432

6. With caution, pull a circle while zigzagging 1433

7. Zigzag your way to the circle and pull it 1434

8. Pull a circle while making zigzag movements 1435

9. Zigzag and pull the circle with care 1436

10. Pull a circle while navigating in a zigzag direction 1437

11. Move in a zigzag pattern while pulling a circle 1438

12. Pull a circle while making a zigzag path 1439

21



13. Zigzag towards the circle and pull it1440

14. Pull a circle while making zigzag turns1441

15. Carefully zigzag and pull the circle1442

16. Zigzag and carefully pull the circle1443

17. Pull a circle while making sharp zigzag movements1444

18. Zigzag and pull the circle with caution1445

19. Pull a circle while making quick zigzag motions1446

20. Zigzag and pull the circle slowly1447

21. Pull a circle while zigzagging in a controlled manner1448

22. Zigzag and pull the circle with precision1449

23. Pull a circle while making small zigzag movements1450

24. Zigzag and pull the circle with care and attention1451

25. Pull a circle while zigzagging smoothly.1452

L Properties of Natural-ish Language gSCAN Dataset1453

parses words zipf a rmse

gSCAN 18 18 1.99 0.11
NL-gSCAN 1550 859 1.29 0.01
SR 234 20 1.90 0.10
NL-SR 9785 126 1.40 0.03
ReaSCAN 1400 35 1.26 0.04
NL-ReaSCAN 42759 631 1.22 0.01

Figure 5: Linguistic properties
of each dataset and its corre-
sponding paraphrased (denoted
NL-) dataset

.

0
20

0
40

0
60

0
80

0

Word

10 6

10 5

10 4

10 3

10 2

10 1

p(
wo

rd
) (

lo
g 

sc
al

e)

Figure 6: Word frequency dis-
tribution of NL-gSCAN and
gSCAN, each compared to the
best fitting Zipf distribution
probability density function.
gSCAN words are in orange and
NL-gSCAN words are in blue
(comprising of the larger vocab-
ulary).

Size Color Object

gSCAN 100% 99.98% 98.63%
SR 100% 100% 100%
ReaSCAN 100% 99.99% 99.93%

Figure 7: Percentage of exam-
ples in each training set whether
the object mentioned in the syn-
thetic dataset was also found in
exactly the same way the corre-
sponding paraphrased example.

L.1 Linguistic Properties1454

In this section we examine the linguistic properties of the dataset. The main research question is whether1455
the instructions as paraphrased by GPT3.5 look more like natural language. Clearly, the paraphrased1456
data has greater vocabulary complexity. But merely substituting words for synonyms would not make1457
synthetic data appear any more natural, nor does it pose any real challenges to a learning algorithm that1458
would need to act on the instructions. We examine two other indicia, unique parses and fit to a Zipf1459
distribution of word frequency.1460

Parses We compute the number of unique parses among all the instructions in each training set. A1461
parse is an assignment of word-role labels, indicating the linguistic role of the token in the instruction.1462
For example, a token may be an adjective, an adverb or some sort of connector. The parses are computed1463
over every instruction in the training data using the spaCy package. As shown in Table 5, the number of1464
unique parses in the paraphrased datasets are an order of magnitude larger than the number of unique1465
parses in the synthetic datasets. This reflects the diversity of instruction structures that exist in the1466
paraphrased datasets.1467

22



Zipfian Distribution Fit Natural language is hypothesized to fit a Zipfian power-law distribution, 1468
where the probability of drawing a word from a corpus is inversely proportional to its frequency p(w) ∝ 1

fa
w

, 1469

where a is a parameter of the distribution which varies for different corpii. We estimate a using maximum 1470
likelihood estimation using the method in (Clauset et al., 2009) and compute the root-mean-squared error 1471
(RMSE) between the estimated probability of a word according to the estimated Zipf distribution and the 1472
empirical probability that word measured by counting word frequencies. A corpus that resembles natural 1473
language more closely will have a low RMSE to its correpsonding Zipf distribution. We find that the 1474
paraphrased datasets better fit their Zipf distribution. We also visualize in both Figure 6 the ordered 1475
frequency distribution of the paraphrased gSCAN dataset and its corresponding Zip probability density 1476
function. 1477

L.2 Compositional Properties 1478

We also examine whether the datasets maintained their compositional properties. Recall that the datasets 1479
are stratified into different splits to test different compositional generalization cases. We want to test 1480
whether these cases still hold. Clearly, in the output space, the compositional stratification still holds 1481
because we do not change the output actions. In the input space, we can only measure whether the same 1482
object is mentioned in each synthetic instruction and its corresponding paraphrased instruction, because 1483
the verbs and adverbs may be changed to a synonym or a sequence of words having a similar meaning. 1484

As shown in Table 7, the retainment of target objects is very high, never going under 98%. We can be 1485
confident that the correct target object is mentioned in the same way in the paraphrased examples. 1486

M Evaluation of baselines on Natural-ish gSCAN, gSCAN-SR and ReaSCAN 1487

We evaluate current published state-of-the-art models with openly available code on the new datasets 1488
using our own re-implementation. We calculate the exact-match performance using seeds 0-9 using the 1489
same hyperparameters for each model, the details of which are specified in Appendix B. The models are 1490
briefly described below: 1491

ViLBERT with Cross-Attention The ViLBERT model proposed in (Qiu et al., 2021), with only cross- 1492
attention between visual and text input streams, then decoding the target action sequence autoregressively. 1493
As in (Sikarwar et al., 2022), the multi-level CNN on the grid world is replaced by adding learnable 1494
position encodings. 1495

VilBERT with GRoCoT Self-Attention The same ViLBERT model but with the tweaks proposed 1496
in (Sikarwar et al., 2022), namely self-attention layers before cross-attention layers.. 1497

Encoder-Decoder Transformer A standard encoder-decoder Transformer, where the transformer 1498
input sequence is the position-encoded and embedded visual stream concatenated with the instruction, 1499
and the target output sequence are the actions, decoded autoregressively. 1500

M.1 Results 1501

N Image-Based gSCAN 1502

We also created an Image-Based gSCAN where the state inputs are images and encoded with a vision 1503
transformer with patch size 12. The results are reported in Table 9. We observed a similar boost on Split 1504
H for the NL + Img dataset as well. However, we note that the model for NL + Img appeared to be 1505
underfitting, so it is possible that with a larger model that the results could have been even better. 1506

O Examples of generated demonstrations 1507

We provide one-example-per-method of each support generation method on Split H in Figure 10. Examples 1508
in green are valid in the environment, relevant to the target object and correctly executed. Examples in 1509
yellow are considered "not relevant" since they concern an object with different properties than the one 1510
mentioned in the query. Examples in red are not correctly executed. Examples in grey are not valid in 1511
the environment. Note that for retrieval-based methods like GandR and Retrieval, the instruction is 1512
being solved in a different state to the query one, which is the reason why the action trajectories are both 1513
valid and correct, but look very different from each other. Up to 9 of the 16 possible supports are shown. 1514

Notice that GandR does not demonstrate the desired adverb “while spinning" (WALK(4)), because it is 1515
only finding near neighbours of “pull", which happen only with WALK and PUSH. 1516

23



Transformer ViLBERT ViLBERT(PP)
gSCAN

A 1.0 ± .00 1.0 ± .00 1.0 ± .00
B 0.86 ± .28 0.94 ± .11 0.93 ± .09
C 0.89 ± .16 0.89 ± .13 0.82 ± .26
D 0.01 ± .02 0.0 ± .01 0.0 ± .00
E 0.99 ± .02 0.93 ± .12 0.71 ± .24
F 1.0 ± .00 1.0 ± .00 1.0 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .06 0.23 ± .01 0.17 ± .06

gSCAN-SR
I 1.0 ± .00 1.0 ± .00 1.0 ± .00
II 0.95 ± .04 0.93 ± .04 0.96 ± .02
III 0.99 ± .01 0.96 ± .03 1.0 ± .00
IV 1.0 ± .00 1.0 ± .00 1.0 ± .00
V 0.46 ± .26 0.72 ± .1 0.9 ± .04
VI 0.17 ± .18 0.61 ± .23 0.89 ± .06

ReaSCAN
IID 0.99 ± .00 0.98 ± .02 0.97 ± .01
A1 0.94 ± .02 0.95 ± .04 0.95 ± .01
A2 0.61 ± .05 0.52 ± .13 0.46 ± .07
B1 0.75 ± .02 0.79 ± .05 0.75 ± .03
B2 0.54 ± .02 0.6 ± .09 0.53 ± .05
C1 0.37 ± .02 0.32 ± .02 0.64 ± .03
C2 0.27 ± .05 0.22 ± .05 0.22 ± .03

Figure 8: The evaluation results for gSCAN,
gSCAN-SR and ReaSCAN at 300,000 iterations,
where performance for splits B-H is measured at
the point where the model performed best on split
A during training. ViLBERT is the model in (Qiu
et al., 2021) and Tformer is an Encoder-Decoder
Transformer. Tformer(PP) the same Transformer
architecture evaluated on the paraphrased dataset.

Transformer DemoGen
NL +Img NL +Img

A 1.0 ± .00 1.0 ± .00 0.99 ± .00 0.84 ± .01
B 0.99 ± .00 0.93 ± .08 0.96 ± .00 0.53 ± .01
C 0.99 ± .03 0.89 ± .16 0.97 ± .00 0.54 ± .01
D 0.08 ± .16 0.0 ± .00 0.01 ± .01 0.11 ± .02
E 0.98 ± .03 0.83 ± .22 0.98 ± .00 0.67 ± .00
F 1.0 ± .00 1.0 ± .00 0.98 ± .00 0.88 ± .01
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.06 ± .05 0.59 ± .06 0.48 ± .02

Figure 9: Evaluation on natural language and image
data. NL refers to natural language instructions,
NL + Img refers to natural language instructions
and patch-encoded images

24



Query

Iq = “pull a red small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a red small circle hesitantly"

I2 = “push a red big circle while spinning"

I3 = “walk to a small circle hesitantly"

I4 = “pull a circle hesitantly"

I5 = “walk to a red circle hesitantly"

I6 = “push a red big circle hesitantly"

I7 = “pull a circle hesitantly"

I8 = “pull a red small cylinder hesitantly"

I9 = “walk to a small circle while spinning"

T
ra

ns
fo

rm
er

A1 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(4)"

A2 = “LTURN(6) WALK LTURN(4) RTURN WALK (LTURN(4) WALK)(4)"

A3 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3)"

A4 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3) (PULL STAY)(3)"

A5 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3)"

A6 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PUSH STAY)(4)"

A7 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PULL STAY)(6)"

A8 = “LTURN(2) (WALK STAY)(4) RTURN (WALK STAY)(4)"

A9 = “LTURN(6) (WALK LTURN(4))(3) RTURN WALK (LTURN(4) WALK)(4)"

(a) Support set generated by Coverage Retrieval
Query

IQ = “pull a yellow cylinder while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a small cylinder"

I4 = “pull a yellow small cylinder while zigzagging"

I14 = “pull a small circle"

I15 = “pull a big cylinder"

I16 = “pull a big cylinder"

T
ra

ns
fo

rm
er

A1 = “LTURN(2) WALK PULL"

A4 = “LTURN(2) WALK RTURN WALK LTURN WALK PULL(2)

A14 = “LTURN(2) WALK PULL

A15 = “LTURN(2) WALK PULL

A16 = “LTURN(2) WALK PULL

(b) Support set generated by GandR
Query

Iq = “pull a green small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a green small circle while spinning"

I2 = “push a green small circle while spinning

I3 = “pull a green small circle while zigzagging

I4 = “pull a green small circle hesitantly

I5 = “pull a green small circle

T
ra

ns
fo

rm
er

A1 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) (WALK RTURN WALK LTURN)(4) WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(5) RTURN (WALK STAY)(4)

A5 = “LTURN(2) WALK(5) RTURN WALK(4)

(c) Support set generated by Heuristic
Query

Iq = “pull a blue small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a blue small circle while spinning"

I2 = “push a blue small circle while spinning

I3 = “pull a blue small circle while zigzagging

I4 = “pull a blue small circle hesitantly

I5 = “pull a blue small circle

T
ra

ns
fo

rm
er

A1 = “LTURN(4) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(2) RTURN (WALK STAY)(4) (PULL STAY)(5)

A5 = “LTURN(2) WALK(4) RTURN WALK(4) PULL(10)

(d) Support set generated by Other States
Query

Iq = “pull a blue small square while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “push a big blue square while zigzagging"

I2 = “push a big blue square while spinning

I3 = “push a small yellow circle

I4 = “push a big blue cylinder

I5 = “walk to a small green cylinder while zigzagging

I6 = “pull a big blue circle while spinning

I7 = “push a big blue cylinder while spinning

I8 = “pull a big blue cylinder

I9 = “push a small yellow circle while zigzagging

T
ra

ns
fo

rm
er

A1 = “LTURN(2) WALK RTURN WALK LTURN WALK RTURN WALK(2) PUSH(2)"

A2 = “LTURN(6) (WALK LTURN(4))(2) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) WALK RTURN WALK(4)

A4 = “WALK(2) LTURN WALK(2) PUSH(2)

A5 = “LTURN(2) WALK RTURN WALK(2)

A6 = “LTURN(4) RTURN WALK (LTURN(4) PULL)(6) PULL

A7 = “(LTURN(4) WALK)(2) LTURN(5) (WALK LTURN(4))(2) PUSH LTURN(4) PUSH

A8 = “WALK(2) LTURN WALK(2) PULL

A9 = “LTURN(2) WALK RTURN WALK(4)

(e) Support set generated by Random Instructions

Figure 10: Demonstrations generated on Split H for different kinds of demonstration strategies.

25


	Introduction
	Background
	Compositional Generalization and Grounded Language Learning
	In-context Learning
	Support Selection for ICL

	Method
	In-Context Learning
	Support Set Generation

	Experiments
	Dataset
	What makes for good supports?
	Retrieval vs Generation
	Retrieval Methods vs Generation
	Ablations and Further Questions

	Conclusion
	Limitations
	Ethics
	Code and Resources
	Computational Resource Usage and Reproducibility Requirements
	Bibliographical References
	Details of the gSCAN Dataset
	Nearest Neighbour Similarity Distribution

	Additional Comparisons
	Experimental Details
	Implementation of GandR for gSCAN
	Implementation of CovR for gSCAN
	Properties of Generated Demonstrations, other splits
	Heuristic Function
	Permuter Blocks
	Natural-ish Language gSCAN Dataset
	Prompts used for GPT3.5
	gSCAN Simple Prompt

	Examples of Generated Paraphrases
	Properties of Natural-ish Language gSCAN Dataset
	Linguistic Properties
	Compositional Properties

	Evaluation of baselines on Natural-ish gSCAN, gSCAN-SR and ReaSCAN
	Results

	Image-Based gSCAN
	Examples of generated demonstrations

