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Abstract. Strategic response options to the COVID-19 pandemic have been 
greatly influenced by predictive epidemiological models. Effects of non-pharma-
ceutical interventions (NPIs; such as mask wearing) unfortunately are based on 
an abundance of very large uncertainties around the extent to which the popula-
tion adopts risk reducing behaviors.  The effects of NPIs appear to have large 
heterogeneity across regions, subgroups, and individual mindsets and capabili-
ties. We hypothesize that these uncertainties can be improved with higher-fidelity 
computational modeling of the social-psychological reactions of individuals, 
groups, and populations.  We build up the ACT-R theory and Instance-Based 
Learning Theory to formulate psychologically valid agents and develop a frame-
work that integrates multi-level cognitive and social simulation with information 
networks analysis, and epidemiological predictions.  We present initial results 
from analyses of beliefs and sentiments about COVID-19 NPIs induced from 
online social media that can provide inputs to seed and validate cognitive agents. 
We present illustrations of cognitive model hypotheses about the dynamics of 
behavior change in response to intentions, attitudes, messaging, and source cred-
ibility. We present an example of social networks propagating attitude change in 
response to NPIs. 
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1 Introduction 

Strategic response options to the COVID-19 pandemic have been greatly influenced in 
the U.S., and elsewhere by predictive epidemiological models [1], which sometimes 
include individual- or agent-based models (ABMs). Response options for non-pharma-
ceutical interventions (NPIs; such as wearing masks or social distancing) unfortunately 
are based on an abundance of very large uncertainties around  the likely effectiveness 
of different policies on  risk reducing behaviors.  The effects of NPIs (e.g., masks, social 
distancing) on important factors such as R(t) (reproduction rate), are typically modeled 
using imprecise assumptions that appear to have large heterogeneity across regions, 
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subgroups, and individual mindsets and capabilities, hence producing large imprecision 
in predicted attack rates and peaks. As the pandemic progresses, decision-makers have 
needed to move from a blanket approach to NPIs to more precise, sustainable re-
strictions tailored to geographical regions, social groups, households, and individuals. 
Consequently, there a need for more precise and accurate models, and especially mod-
els that make predictions about the long-term effects and sustainability of new kinds of 
behavior change (e.g., to wear masks to restaurants or places of worship). To make 
progress on these challenges, we are researching novel computational models of human 
responses to epidemics and NPIs during this global pandemic. In this paper, we present 
a framework that integrates multi-level cognitive and social simulation with infor-
mation networks analysis, and epidemiological predictions.  We present initial results 
from analyses of beliefs and sentiments about COVID-19 NPIs induced from online 
social media that can provide inputs to seed and validate cognitive agents. We present 
illustrations of cognitive model hypotheses about the dynamics of behavior change in 
response to intentions, attitudes, messaging, and source credibility. We present an ex-
ample of social networks propagating attitude change in response to NPIs. 

2 The COVID Simulation Framework 

2.1 Extending Computational Approaches to Epidemiological Prediction 

Humans change behavior in response to epidemics.  The simulation of infectious dis-
ease in populations, in general, assumes that behavioral change is driven by infor-
mation—information about risk coming directly from epidemic markers (e.g., daily 
case count) or social cues, perceived risk mediated by psychological constructs, imita-
tion of others behavior (not necessarily indicating risk) due to social norms/influence, 
and feedback from the results of prior behavior (e.g., an individual’s efficacy of the 
flu shot in prior years).  Such assumptions about behavior change are incorporated 
into both population-level and individual-level modeling approaches (agent-based 
modeling as the latter).  The implementation of behavior-change in simulation models 
of infectious disease ranges from the use of switches (e.g., change behavioral state 
given a set of conditions) to more graded behavioral responses (e.g., a linear function 
between information and behavior change) and sometimes incorporated changes in 

Fig. 1. The conceptual frame-
work:  ACT-R agents (center) 
are used to model behavior 
change (e.g., social distanc-
ing; bottom) in response to in-
formation dynamics (left), 
which have dynamical effects 
on the perceptions, attitudes, 
beliefs, intentions, and 
knowledge (top) influencing 
decisions and actions (right). 
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network contact structures.  Further, some functional specifications between infor-
mation and behavioral response are quite sophisticated, e.g., game-theoretic models 
that incorporate social learning.  However, to date, we do not know of any infectious 
disease simulations that incorporate sophisticated computational models of behavioral 
response that are grounded in psychological first principles or cognitive science; i.e., 
the union with PVAs has yet to be realized.  

We have introduced a general approach for Reciprocal Constraints Paradigm 
(RCP) for simulating social and individual cognitive systems [14]. Central to this 
ABM approach (Figure 1) is the use of the ACT-R cognitive architecture [4, 5] or 
other cognitive architectures (e.g. ,Soar) or approaches from computational psychol-
ogy (ref Read’s work). to model individual agents immersed in social context and in-
teraction (e.g., contact networks) and information consumption and production (e.g., 
social media, mass media, government communications).  This will introduce an un-
precedented degree of psychological fidelity to epidemiological modeling. 

2.2 The Potential of Psychologically Valid Agents 

Our approach (Figure 1) focuses on Psychologically Valid Agents (PVAs) that can sim-
ulate individuals with a range of attitudes, beliefs, and credibility assessments that de-
termine their intentions and decisions in response to NPIs (e.g., to shelter-in-place vs 
go to the beach).  Populations of PVAs, in an ABM framework, will be generated using 
novel techniques that exploit online media and COVID-19 datasets (including polling 
and epidemiological data).  Models can be tested in multiple ways. For instance, we 
can use the PVAs to generate and test predictions about differences in epidemiological 
outcomes arising from the natural experiments across US regions that differ in public 
health interventions and public mindsets. This can be achieved by embedding PVAs in 
existing ABM epidemiological models. We can also test forecasts about observable 
behavior that mediates or moderates viral transmission, such as regional mobility and 
non-essential visit patterns or continuous polls of mask wearing behavior. As of this 
writing, the framework presented in Figure 1 is notional.  Here, we present models and 
analyses that illustrate key phenomena we expect to model and validate in the future. 

2.3 Cognitive Agents to Model NPI Behavior 

The cognitive models of mask wearing behavior discussed here were developed using 
the ACT-R cognitive architecture [4, 5]. Our models are implemented using the ACT-
UP framework [15], which makes it flexible as to whether it represents the decisions 
of a population, community or individual. In this simple simulation, the single model 
represents the entire population, with the set of instances representing the overall be-
lief system, the action representing the percentage of population engaging in that be-
havior (mask wearing, in our case), and the outcomes (as well as the situation) repre-
senting the system variables resulting from the behavior (e.g., the population level of 
infection). An individual model would be substantially similar, but involves individ-
ual beliefs, the probability of individual action, and individual outcomes. The cogni-
tive architecture provides a computational implementation of a unified theory of cog-
nition that specifies representations and mechanisms for cognitive functions such as 
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perception and attention, memory, decision-making, and action selection. IBL [9] 
specifies that decisions are based on memories of communications and experiences.   

Here, we build upon several existing ACT-R models to formulate a first approxi-
mation model of the dynamics of attitudes and behavior in response to experience and 
information sources regarding NPIs.  These models are generally consistent with tra-
ditional psychological theories of decision making [13, 17], behavior change [2], 
mathematical models of attitude change [10], and credibility judgments [6].  There are 
many advantages that result from using ACT-R to provide a computational formula-
tion of these disparate theories.  Amongst these advantages are the integration of mul-
tiple factors into a single predictive theory, the modeling dynamics of attitudes and 
behavior in response to the “dosing” effects of NPI messages, and a foundation for 
modeling effects of (in)coherence of messaging and sources on credibility.  

In our approach, goal intentions are goal-like representations that are stored in de-
clarative memory as a kind of prospective memory to be turned into an active goal, in 
the goal buffer, in response to the right context.  Goal intentions vary in magnitude 
and their retrieval at the right time is dependent on declarative memory activation.  
Together these affect the likelihood of deciding to pursue the goal (e.g., wear a mask).  
Having recalled and chosen to pursue an intention to do a behavior (e.g., maintain so-
cial distance) one may still require ancillary knowledge and effort to actually carry it 
out (e.g., skill at estimating a six-foot distance).  The decision to pursue one intention 
versus others that apply in a given situation is assumed to be modeled by the decision-
making processes of IBL in ACT-R [9]. 
Attitudes towards a behavior are assumed to be beliefs and expectancies regarding the 
behavior’s consequences [2] represented as chunks in memory.  Attitudes influence 
intentions [2]. Mathematical models of attitudes [10] and the Theory of Planned Be-
havior [2, 3] assume that the valence of attitudes is proportional to weighted expec-
tancy-value, i.e., 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒	 ∝ ∑𝑏𝑒𝑙𝑖𝑒𝑓 ∙ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛.  
“Messages” are the generic term we use to capture any communication (tweet, cable 
news, website, pamphlet, poster, signage, etc) from an external source (person, media, 
government official, etc.) [10].   We restrict our interest to those that play a role in 
stimulating attitude change or reminding/reinforcing intentions. Messages are as-
sumed to have the potential to modulate the valence and magnitude of attitudes. 

Source credibility is a cognitive judgement (i.e., subjective) about the source of 
messages that can modulate message effects on attitudes.  Credibility judgments can 
be conceived as a combination of expertise judgments and trust judgments about the 
source [16]. In previous work we showed how topic model techniques plus online so-
cial network analysis could be used to predict credibility assessments of online twit-
ters users [8], and we propose that such models can be generalized and extended.  The 
functional form of the effect of credibility on attitudes is assumed by some [6, 10] to 
be multiplicative, ∆𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 = 𝑠𝑜𝑢𝑟𝑐𝑒	𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ. 
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3 Analyses and Simulations 

3.1 A Pipeline from Data to Cognitive Agent 

Since we want to simulate individuals with a range of attitudes, beliefs, and credibility 
assessments to determine their intentions and decisions in response to NPIs, it is im-
portant to acquire information about individuals’ attitudes and beliefs from the real 
world. One of the very commonly used methods for this goal is surveys conducted 
with individuals belonging to groups of interest as participants. However, conducting 
surveys is expensive and time consuming, and also, to some degree out of context 
(not naturalistic in the sense that survey items probe individuals about current and fu-
ture contexts). It is appealing to use additional methods to gather relevant data. Since 
user-generated text is already available in the public domain where users express their 
opinions and preferences, such as in blogs, articles, tweets, reddit posts etc, we hy-
pothesize that it is possible to identify individuals’ attitudes and beliefs from the text 
they generate. Hence, we developed a pipeline to find textual data relevant to the top-
ics (related to attitudes/beliefs) we are interested in. These textual data are then used 
to extract embedded attitudes and beliefs of the individuals towards various NPIs.  

Table 1. Example entity-based analysis 

Text in the identified tweet (extended tweet with all the parts): 
Stay home if you feel unwell. If you have a fever, cough and difficulty breathing, seek medical atten-
tion. Calling in advance allows your healthcare provider to quickly direct you to the right health facil-
ity. This protects you, and prevents the spread of viruses and other infections. Masks can help prevent 
the spread of the virus from the person wearing the mask to others. Masks alone do not protect against 
COVID-19, and should be combined with physical distancing and hand hygiene... Follow the advice 
provided by your local health authority.  

Entities of interest: "mask(s)", "hygiene" 
Identified dependency relations for entities of interest (below) 

(Note: “DR” = Dependency relation; “Direction” = direction of relation) 
1. Entity:  Masks      
Indicator:  help      
DR:  nsubj      
Direction: Dependent 

3. Entity:  mask      
Indicator:  wearing      
DR:  dobj      
Direction: Dependent 

5. Entity:  Masks      
Indicator:  combined      
DR:  nsubjpass      
Direction: Dependent 

7. Entity:  hygiene      
Indicator:  combined      
DR:  nmod:with      
Direction: Dependent 

2. Entity:  mask      
Indicator:  the      
DR:  det      
Direction: Governor 

4. Entity:  Masks      
Indicator:  protect      
DR:  nsubj 
Direction: Dependent 

6. Entity:  hygiene      
Indicator:  hand      
DR:  compound      
Direction: Governor 

8. Entity:  hygiene      
Indicator: distancing      
DR:  conj:and      
Direction: Dependent 

Similarly, we searched Twitter data to find tweets relevant to the topics (beliefs) 
we are interested in. Textual data thus obtained (e.g., tweets or blog posts etc) is 
parsed. Syntactic relationships are identified between a number of relevant search 
terms, such as “(face) masks” and “(social) distancing”, and other items in the sen-
tences. These items are considered as potential indicators for sentiment of the user to-
wards the NPIs as indicated by the search terms. Entity based sentiment is used to 
identify the polarity of the sentiment (e.g., positive, neutral, negative) as well as inten-
sity of the sentiment (strong vs weak) toward the entity. The syntactic relationships as 
well as sentiments can help us determine the attitudes and beliefs of the users towards 
various NPIs. An example of the kind of analysis involved is shown in Table 1. 
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For our preliminary version, the potential indicators identified as above are 
searched in the sentiment lexicons and their sentiment value is assigned to the entity 
of interest that these potential indicators are in syntactic relationship with to indicate 
the sentiment of the user towards these entities of interest. The beliefs of the user re-
garding the entities of interest can be identified using the indicator and its dependency 
relation with the entity of interest. For example, in chunks 1 and 4 above, a positive 
sentiment will be assigned to “masks”. These chunks indicate that the user holds the 
following belief regarding masks: “masks help and protect.” Detecting such beliefs 
from user-generated texts provide us with information about the beliefs that individu-
als hold in the real world. This information can be useful for developing cognitive 
models of individuals. 

 
Fig. 2. Left: Simulated effects on intention to wear a mask of hypothetical messages advocating 
such behavior delivered at given discrete points in time. Center: Competing intentions to wear a 
mask or not in response to those messages.  Right: Probability of choice to pursue mask wearing 
given competing intentions and NPI messages. 

3.2 Attitudes, Intentions, and Behavior in Response to NPI Message “Dosing” 

We illustrate ACT-R predictions concerning the chain of effects of NPI messagingàat-
titude changeàintentionsàbehavior.  Declarative memory is populated with experien-
tial and belief chunks that capture outcome expectations and utility of past and potential 
decisions and behaviors. These expectancy-value attitudes influence the intention to 
perform a behavior. Figure 2 presents a simulation of the hypothetical effects of receiv-
ing messages at discrete points in time concerning the expected value of “mask wear-
ing” with the aim of promoting an intention to “wear a mask.”  Figure 2 illustrates the 
ACT-R temporal dose-response of intentions to change behavior in response to mes-
sages.  The dose-response curve reflects underlying mechanisms of declarative 
memory:  There is a cumulative effect of multiple intention-change messages, but the 
effects of each specific message decays with time. Figure 2 also presents a simulation 
in which memory populated with attitudes and intentions to ‘not wear a mask’ and to 
‘wear a mask’ and messages promoting the latter attitude are received.  Messaging 
drives attitudes and intentions to ‘wear a mask’ to dominate competing intentions and 
this has an effect on the decision to pursue the behavior. 

Credibility is often defined as a judgment that incorporates assessments of the ex-
pertise of, as well as trust in, the source.  Here we focus on the role of expertise as-
sessment in credibility. Liao et al. [12] used a Hierarchical Bayesian Model (Latent 
Dirichlet Allocation; LDA) and a simple online social network analysis to seed ACT-
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R declarative memory representations with a set of features that correspond to the la-
tent topics, whose feature values correspond to a probability distribution over those 
topics. LDA was used to induce a generative probabilistic model for the collection of 
tweets produced by Twitter users in which each user is represented as a mixture of la-
tent semantic topics, and each topic generates a mixture of words going into tweets [7, 
8].  Given a reference domain of expertise (e.g., ‘health expert’) the topic mixture of 
an information source (e.g., a twitter user, government spokesperson, etc) can be com-
pared to the topic mixture of the “expert” reference. Canini et al. [8] used a probabil-
ity-based ranking algorithm based on LDA to predict credibility judgments, whereas 
Liao et al. relied on ACT-R blending to perform the comparison of an information 
source to the reference mixture for domain expertise. 

We set up ACT-R to have credibility modulate the impact of an NPI messages on 
attitudes. Figure A illustrates this with a sample of repeated blended retrievals of in-
tentional magnitude in response to messages that, to varying degrees, promote (Va-
lence = +1) or disapprove (Valence = -1) of a specific behavior attitude, as modulated 
by source credibility.  Message sources of low credibility have no effect, whereas 
high credibility sources have maximal impact. 
 

 
A phenomenon of interest is the effect of the coherence of messages from infor-

mation sources.  We assume that sources that do not provide coherent messages have 
reduced credibility. Figure B presents a simulation in which a single information 
source produces messages that primarily generated from one domain of expertise (co-
herent) or two (incoherent).  To do this, we used a single topic mixture (coherent) or 
two (incoherent) as referent topic mixtures for a source and generated samples of 
messages that diverged uniformly around those referent mixtures. In Figure B, Coher-
ence = 0.9 means that 9/10 of the source’s messages were generated by a single topic 
mixture (coherent) and Coherence = 0.5 means an even distribution across two topic 
mixtures (incoherence).  The credibility scale is in arbitrary units. 

We have not yet addressed the role of trust in credibility.  One would expect that 
sources that have known biases or that have promoted falsehoods would be judged s 
less credible, and those factors need to be incorporated in future version of our model. 

3.3 Modeling the Propagation of Mask-Wearing Behavior 

We now show some preliminary modeling efforts on mask wearing.  These efforts re-
flect two parallel efforts that were designed to be integrated.  One effort has devel-
oped an agent-based framework that captures simple agent-level decisions with re-
spect to mask wearing and the associated infection dynamics.  The other effort is an 
initial ACT-R based SIR-like modeling framework that reflects the relation between 

Fig. 3. Left: Modulating ef-
fects of source credibility on 
messages advocating (posi-
tive valence) or opposing 
(negative valence) Right: The 
credibility of a source having 
varying degrees of coherence 
in messaging. 
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external information, cognitive processing, decision making and the associated infec-
tion dynamics.  We will review preliminary results from each in turn. 

Agent-based Effort 
In order to demonstrate the effect of belief change in mask wearing on the spread of a 
virus, we implemented SIR (susceptible-infectious-recovered) dynamics on a stochas-
tic network that mimics stylized interactions between individuals in a society. Such an 
approach allows each individual to have a different belief on mask wearing varying 
over time. 
 

 
We employed a network of 
10K nodes and assumed an 
initial infected population of 
1%. Each node can represent 
an individual or a larger group of individuals that share similar characteristics. The state 
transition diagram is presented in Fig. 4. An attribute  is initially assigned to 
all nodes indicating the probability of that node wearing a mask. Therefore, the value 
m specifies the rate at which an unmasked node can be converted to a masked one and 
1-m the rate at which a masked node can be converted to an unmasked one. 

For demonstration purposes, we used a monotonically increasing belief update. 
Thus, at the end of the simulation we expect most nodes to favor mask wearing. As-
suming that a node i has belief mi with N immediate neighbors, the belief update is 

 

where α is a discount factor. The update equation can be substituted by more sophisti-
cated functions that can reflect more complex dynamics that takes into account vari-
ous cognitive aspects of decision making. 

All SIR models were built using the EoN modelling [11]. Fig. 5 show some prelim-
inary results.  Panel A shows the dynamics of the simulation when mask wearing is 
not used because pro-mask beliefs are not distributed in the population.  In Panel B, 
with identical initial conditions, we can see the course of the epidemic when pro-mask 
beliefs become well distributed over time in the population.  This kind of approach, 
importantly, can serve as a platform for incorporation of cognitive architectures for 
belief-based decision making. 

Fig. 4. SIR dynamics with masked and unmasked popu-
lations. Nodes can exhibit spontaneous transitions which 
represent their conversion to a masked or unmasked ver-
sion of their current state. The rate of this conversion is 
defined by the current value of their belief on mask wear-
ing. The grey arrows indicate that the node came in con-
tact with a masked node before the transition (e.g. un-
masked susceptible comes into contact with an unmasked 
infected and is converted to an infected node). The purple 
arrows indicate that the node came into contact with an 
unmasked node. We assume that a contact between a 
masked node and unmasked node will discount the trans-
mission rate β by σ. A contact between two masked nodes 
will discount the transmission even further by δ=σ/2. 
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ACT-R Effort 
 Figure 6 shows three condi-
tions that instantiate a homo-
geneous population of 100K 
agents and differ with re-
spect to the degree to which 
mask-wearing behavior af-
fects the epidemic dynamics.  
Hope agents discount the ef-
fectiveness of mask wearing 
while fear agents are more 
sensitive to it (neutral is 
about 50/50). This is a proto-

type for understanding how person beliefs might interact with the information envi-
ronment to impact decision-making in epidemics. 

 

4 General Discussion 

The dynamics related to NPI compliance 
and viral transmission arise, in part, from 
the behaviors of individuals [18]. We argue 
that we need computational simulation 
models that generate macro phenomena 
from the micro dynamics with fidelity to 

both psychological processes and social structure. For decision-makers, a useful 
model of the efficacy of implementation of NPIs (such as mask wearing) will depend 
crucially on locale, pre-existing social norms and networks, individual attitudes, in-
tentions, perceived behavior control, knowledge, skills, and influence from the infor-
mation ecology.  For instance, lock-down policies aimed at reducing elderly infec-
tions appear to vary geographically in effectiveness depending on proportion of multi-
generational households, preexisting credibility judgments about expertise and media, 
online social network embedding, and the knowledge and experience needed to com-
ply (e.g., proper hand washing, handling of delivered packages, social distancing). We 
build upon the Reciprocal Constraints Paradigm for simulating social and individual 
cognitive systems and embed these within epidemiological ABMs.  Psychological 
Valid Agents will expand upon prior ACT-R models of decision-making and behav-
ior-change and predict individual-level responses and resulting population dynamics. 
In future work will use online media and other datasets to seed populations of PVAs 
that simulate populations of the selected regions, and validate these against compli-
ance behavior and epidemiological data. 
Acknowledgements. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2033390 

Fig. 5. Dynamics of mask-
wearing propagation.  

Fig. 6. ACT-R Epidemic dynamics. 



10 

References 

1. Adam, D. Special report: The simulations driving the world’s response to COVID-19 
Nature, 2020. 

2. Ajzen, I. The Theory of Planned Behavior. Organizational Behavior and Human Decision 
Processes, 50. 179-211. 

3. Ajzen, I. and Kruglanski, A.W. Reasoned action in the service of goal pursuit. Psychological 
Review, 126 (5). 774-786. 

4. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C. and Qin, Y. An 
integrated theory of mind. Psychological Review, 11 (4). 1036-1060. 

5. Anderson, J.R. and Lebiere, C. The atomic components of thought. Lawrence Erlbaum 
Associates, Mahwah, NJ, 1998. 

6. Birnbaum, M.H. Source credibility in social judgment: Bias, expertise, and the judge's point 
of view. Journal of Personality and Social Psychology, 37 (1). 48-74. 

7. Blei, D.M., Ng, A.Y. and Jordan, M.I. Latent Dirichlet allocation. Journal of Machine 
Learning Research, 3. 993-1022. 

8. Canini, K., Suh, B. and Pirolli, P., Finding credible information sources in social networks 
based on content and social structure. in IEEE International Conference on Social 
Computing, SocialCom 2011, (Boston, MA, 2011), IEEE. 

9. Gonzalez, C., Lerch, J.F. and Lebiere, C. Instance-based learning in dynamic decision 
making. Cognitive Science, 27. 591-635. 

10. Hunter, J.E., Danes, J.E. and Cohen, S.H. Mathematical models of attitude change: Volume 
1. Academic Press, Orlando, FL, 1984. 

11. Kiss, I.Z., Miller, J.C. and Simon, P.L. Mathematics of epidemics on networks. Springer, 
Cham, 2017. 

12. Liao, Q.V., Pirolli, P. and Fu, W. An ACT-R model of credibility judgment of micro-
blogging Web Pages. in Proceedings of the International Conference on Cognitive 
Modeling (ICCM 2012), Universitätsverlag der TU Berlin, Berlin, Germany, 2012, 103-108. 

13. Luce, R.D. Individual choice behavior. Wiley, New York, 1959. 
14. Orr, M.G., Lebiere, C., Stocco, A., Pirolli, P., Pires, B. and Kennedy, W.G. Multi-scale 

resolution of neural, cognitive and social systems. Computational and Mathematical 
Organization Theory, 25 (1). 4-23. 

15. Reitter, D. and Lebiere, C. Accountable modeling in ACT-UP, a sclable, rapid-prototyping 
ACT-R implementation. in Salvucci, D.D. and Gunzelmann, G. eds. Proceedings of the 10th 
International Conference on Cognitive Modeling, Drexel, Philadelphia, PA, 2010, 199-204. 

16. Rieh, S.Y. and Danielson, D.R. Credibility: A multidisciplinary framework. in Annual 
Review of Information Science and Technology, Information Today, Medford, NJ, 2007, 
307-364. 

17. Slovic, P., Lichtenstein, S. and Fischhoff, B. Decision theory. in Atkinson, R.C., Herrnstein, 
R.J., Lindzey, G. and Luce, R.D. eds. Steven's handbook of experimental psychology 
(Second Edition; Vol. 2), Wiley, New York, 1988, 673-738. 

18. West, R., Michie, S., Rubin, G.J. and Amlôt, R. Applying principles of behaviour change to 
reduce SARS-CoV-2 transmission. Nature Human Behaviour, 4 (5). 451-459. 

 


