
Searching Latent Program Spaces

Matthew V. Macfarlane⋆
University of Amsterdam

matthew.v.m@live.co.uk

Clément Bonnet⋆
Ndea

clement.bonnet16@gmail.com

Abstract

General intelligence requires systems that acquire new skills efficiently and gener-
alize beyond their training distributions. Although program synthesis approaches
have strong generalization power, they face scaling issues due to the large combi-
natorial spaces that quickly render them impractical, requiring human-generated
DSLs or pre-trained priors to narrow this search space. On the other hand, deep
learning methods have had high successes, but they lack structured test-time adap-
tation and rely on heavy stochastic sampling or expensive gradient updates for
fine-tuning. In this work, we propose the Latent Program Network (LPN), a novel
architecture that builds in test-time search directly into neural models. LPN learns
a latent space of implicit programs—neurally mapping inputs to outputs—through
which it can search using gradients at test time. LPN combines the adaptability of
symbolic approaches and the scalability of neural methods. It searches through a
compact latent space at test time and bypasses the need for pre-defined domain-
specific languages. On a range of programming-by-examples tasks, LPN either
outperforms or matches performance compared to in-context learning and test-time
training methods. Tested on the ARC-AGI benchmark, we demonstrate that LPN
can both learn a compact program space and search through it at test time to adapt
to novel tasks. LPN doubles its performance on out-of-distribution tasks when
test-time search is switched on.

1 Introduction

The central goal of artificial intelligence has long been to create generally intelligent systems with
human-like cognitive capabilities. While recent years have seen remarkable achievements in narrow
AI domains, with systems achieving superhuman performance in games [Campbell et al., 2002, Silver
et al., 2017, Vinyals et al., 2019] and specialized tasks [He et al., 2015, Jumper et al., 2021], we face
a fundamental challenge: our systems struggle to generalize beyond their training distribution [Yu
et al., 2024a] or to effectively adapt to novelty [Zhang et al., 2021]. This highlights a critical gap
between optimizing for task-specific performance and achieving true general intelligence.

In On the Measure of Intelligence, Chollet [2019] argues that traditional benchmarks that measure
skills alone are insufficient for developing generally intelligent systems. Such benchmarks can be
"gamed" through either unlimited prior knowledge of the task encoded by developers or massive
amounts of training data, masking a system’s true ability to generalize and adapt. Instead, it is argued
we need to measure skill-acquisition efficiency—how effectively a system can learn new tasks with
minimal experience—and evaluate generalization capability in a way that controls for both prior
knowledge and training data.

By controlling for prior knowledge and experience, the Abstraction and Reasoning Corpus (ARC-
AGI) [Chollet, 2019] is a benchmark that measures skill acquisition efficiency rather than pure skills.
Its few-shot learning setup requires systems to adapt to novel tasks with very limited data, highlighting
learning efficiency. Importantly, ARC-AGI is designed to evaluate artificial intelligence systems

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



while calibrated to human performance. Therefore, it serves as a useful compass when comparing
general intelligence between humans and machines.

Current approaches to solving ARC-AGI and program synthesis benchmarks generally fall into two
categories: inductive and transductive methods. (1) Inductive approaches [Parisotto et al., 2016,
Devlin et al., 2017b, Butt et al., 2024] infer underlying programs from examples by generating
explicit programs using a domain-specific language (DSL). However, handcrafting problem-specific
DSLs is inherently unscalable for real-world applications and relies on the unrealistic assumption that
a human-generated DSL is always provided. Progress on AI-generated DSLs[Ellis et al., 2021] has
also been limited. In this work, we investigate methods that solve problems using only input-output
example data. (2) In-context learning—also called transductive—methods [Devlin et al., 2017a,
Kolev et al., 2020, Li et al., 2024a] train neural models to condition on a few examples and produce
the desired output for a new input, implicitly inferring the program within the model’s activations.
These methods benefit from greater scalability by removing the need for a predefined DSL. However,
in-context learning struggles with consistency [Devlin et al., 2017b], i.e., being able to map the inputs
to the outputs of the specification itself. Performing fine-tuning at test time is a powerful way to
resolve consistency, but happens to be extremely costly on large models and is also prone to over-
fitting given limited data [Li et al., 2021]. Additionally, in-context learning in transformers [Vaswani
et al., 2017] suffers from the quadratic complexity of self-attention [Hübotter et al., 2024], which
hinders the practicality of scaling specification size.

As an attempt to get the best of both inductive and transductive worlds, we introduce the Latent
Program Network (LPN), which integrates the benefits of a scalable neural architecture with program
induction. By representing implicit programs in a continuous latent space, LPN allows for efficient
test-time program search. LPN is more efficient than test-time fine-tuning methods like in Devlin
et al. [2017a] because it performs backpropagation only through a fraction of the total parameters.
Also, by performing latent program aggregation and recombination in latent space, LPN removes the
quadratic cost of attention when scaling specification size.

Our contributions are as follows. (1) We introduce a new architecture named the Latent Program
Network (LPN) that builds in test-time adaptation by learning a latent space of programs and searching
for the best latent representation given new data. (2) We show that gradient-based latent search during
training optimizes the latent space for effective test-time adaptation, yielding significant performance
improvements. (3) We demonstrate that LPN generalizes to specification sizes beyond those seen
during training, even improving performance, unlike in-context learning, which fails to generalize
without parameter fine-tuning at large specification sizes.

2 Related Work

The challenge of navigating vast program spaces has driven diverse approaches to program synthesis.
Early researchers focused on deductive methods, using theorem-proving techniques to construct
provably correct programs based on formal specifications [Manna and Waldinger, 1980]. How-
ever, the difficulty of obtaining formal specifications led to a shift toward inductive approaches
[Solomonoff, 1964]. These methods instead infer programs from input-output examples [Shaw et al.,
1975, Summers, 1977, Biermann, 1978], making program synthesis more practical for real-world
applications.

However, for real-world problems, the exponential search space is a significant challenge for inductive
program synthesis methods [Lee et al., 2018]. Three distinct paradigms have emerged to narrow
down the search space, all leveraging learning. (1) Researchers have developed differentiable
programming languages that integrate symbolic reasoning with continuous optimization [Feser et al.,
2016, 2017, Gaunt et al., 2017]. (2) Neural networks have been trained as priors to constrain the
search space and enhance the efficiency of program search techniques [Balog et al., 2016, Devlin
et al., 2017b]. In this paradigm of leveraging neural priors for search, large language models
(LLMs) have been demonstrated to be valuable for navigating complex search spaces, including
discrete program synthesis [Wang et al., 2024, Li et al., 2024d, Barke et al., 2024]. CodeIt [Butt
et al., 2024] leverages the pre-trained CodeT5 model [Wang et al., 2023] to guide discrete program
search. (3) In-context/transductive approaches bypass intermediate program representations entirely
by (meta-) training neural networks to directly map input to output examples and a new input
to its corresponding output [Devlin et al., 2017a,b, Kolev et al., 2020]. Neural networks offer a

2



fully differentiable program representation, allowing program induction through gradient descent
in parameter space, where network weights encode the program structure [Graves, 2014, Zaremba
and Sutskever, 2014, Neelakantan et al., 2015, Kaiser and Sutskever, 2015, Kurach et al., 2015].
While early research focused on learning individual programs, more recent works have broadened
the scope to learning multiple programs [Devlin et al., 2017a, Kolev et al., 2020, Li et al., 2024a].
Pre-trained LLMs can also be used to perform transductive reasoning, where they directly generate
outputs from specifications included in the prompt—a process known as in-context learning [Gendron
et al., 2023, Mitchell et al., 2023, Li et al., 2024a, Brown et al., 2020]. Recent works by Hendel
et al. [2023], Yang et al. [2024] demonstrate the emergence of task vectors within LLM activations.
LPN advances this approach by explicitly learning and disentangling the program space from other
activation information. This separation yields two benefits: enhanced program representations and
more efficient program space exploration. While such neural approaches eliminate the need for
formal programming languages or DSLs, they sacrifice both interpretability and the ability to perform
systematic search during inference. As Devlin et al. [2017b] demonstrated, neural approaches struggle
to maintain consistency with given specifications and underperform compared to neural-symbolic
methods [Parisotto et al., 2016].

Recent work has explored fine-tuning model parameters at test time—test-time training (TTT)—to
resolve this inability to be consistent with the specification [Devlin et al., 2017a, Hottung et al., 2021b,
Hübotter et al., 2024, Li et al., 2024a, Akyürek et al., 2024]. TTT treats the network parameters
as a program, where test-time fine-tuning becomes a search through program space via parameter
optimization. Since neural networks are universal function approximators [Hornik et al., 1989],
the target program is likely to exist somewhere in this parameter space. Meta-learning approaches
such as MAML [Finn et al., 2017], perform gradient updates on few-shot data in the full parameter
space. LEO [Rusu et al., 2018] similar to our work explore a version of MAML, introducing a
bottleneck, such that the inner loop optimisation is performed in latent space. Their decoder is then
a hypernetwork [Ha et al., 2016] which conditions on the latent to generate the raw parameters for
inference. LPN removes the need for such a hypernetwork leveraging the in-context learning abilities
of transformers to directly perform generation conditioned on the latent variable.

Conditioning neural models on latent spaces has emerged as a powerful approach across diverse do-
mains. Latent space optimization has been applied to molecule generation [Gómez-Bombarelli et al.,
2018] and combinatorial optimization challenges, including the traveling salesman problem [Hot-
tung et al., 2021a, Chalumeau et al., 2023]. Recent work has extended latent-based approaches to
black-box optimization through energy-based models [Yu et al., 2024b], and symbolic mathematics,
where latent optimization helps balance equation complexity with accuracy [Meidani et al., 2023]. In
program synthesis, LEAPS [Trivedi et al., 2021] demonstrated how reinforcement learning could
search latent program spaces for Karel programs [Pattis, 1994].

LPN can be interpreted through the lens of semi-amortised variational inference (SVI) [Kim et al.,
2018, Marino et al., 2018]. SVI operates in two phases: first, it performs amortized variational
inference using an encoder trained on the complete dataset. Then, for each data point, it performs ad-
ditional updates to minimize the amortization gap [Gershman and Goodman, 2014]—the discrepancy
between the log-likelihood and the evidence lower bound (ELBO) [Krishnan et al., 2018, Cremer
et al., 2018]. The LPN equivalent of these updates for test examples is performing gradient descent in
the latent space.

3 Background

Program Synthesis aims to generate deterministic programs in a target language, such that outputs
generated from inputs are consistent with the given specification. Typically, the problem space Y
consists of programs formulated within a domain-specific language (DSL). Each task is defined by a
specification set X , where each specification, Xm ∈ X , is described by a set of input/output (I/O)
examples:

Xm = {(xm
1 , ym1 ), . . . , (xm

n , ymn )} (1)

A program f ∈ Y is considered to solve the task associated with Xm if it satisfies: ∀j ∈
[1, n], f(xm

j ) = ymj . This definition requires that the program replicates the output for each
input in the specification. We denote Fm to represent the true function that generates the I/O pairs.

3



Program Synthesis Generalization. We consider the problem of applying a learned program to a
new input rather than explaining the specification. Given a set of input-output examples generated by
a program Fm (not necessarily constrained to a DSL), along with an additional input xm

n+1,

Pm = {(xm
1 , ym1 ), . . . , (xm

n , ymn ), xm
n+1}. (2)

The objective is to generalize from the provided examples and predict the corresponding output
for xm

n+1. This can be done via induction or transduction [Li et al., 2024a]. If we do not limit
the Kolmogorov complexity of programs [Kolmogorov, 1965, Solomonoff, 1964], we can find an
explanation for any given specification, whether or not it corresponds to the true program that
underlies the specification. Evaluating generalization performance not only tests the ability to explain
a specification but also whether it can successfully infer the underlying program in its generality and
apply it to a new input. This problem bears a resemblance to few-shot learning, with the difference of
having only one task. The ARC-AGI benchmark [Chollet, 2019] falls under this program synthesis
formulation. Each of its tasks is composed of input-output pairs represented as 2D grid of shape up
to 30x30, whose cells can take any of 10 colors.

4 Latent Program Network (LPN)

Decoder

Latent Optimization

Decoder
Encoder

Figure 1: Inference of the Latent Program Network (LPN) model. (Left): the encoder maps I/O pairs
to a latent space of encoded programs. (Middle): the latent program is refined during an optimization
process to best explain the given I/O pairs (figure detailed in the appendix at Figure 20). (Right): the
decoder executes the latent program to generate the desired output for a newly given input.

Prior work tackling programming by example with a neural approach has focused on directly
training models to maximize the likelihood of decoding the correct output given a specification
(in context) [Kolev et al., 2020]. However, we diverge from such transduction-based methods, as
they cannot inherently adapt at test time or ensure specification consistency. Instead, we explicitly
factorize inference into three core components visualized in Figure 1. First, we introduce a bottleneck
that encourages the network to learn an explicit representation of programs via a compact latent
space, an architecture also used in Neural Processes [Garnelo et al., 2018]. Secondly, we introduce a
method for searching this latent space to explain the given data effectively. Lastly, conditioned on
the latent program and a new input, we predict the output. Despite this added structure, the Latent
Program Network (LPN) remains fully differentiable end-to-end. This structure provides several
key benefits. Firstly, explicitly learning program representations acts as a good neural network prior
for generalization. Secondly, we can use this program encoding to verify that our initial guess for a
latent program explains the given data. If not, the program latent can be refined at test-time to best
explain the given data. Lastly, LPN removes issues faced by transductive approaches that overfit to
specification sizes (number of input-output pairs) seen during training.

4.1 Latent Program Inference

LPN is composed of three core architectural components to perform inference. A neural encoder, a
neural decoder, and a latent space optimization. In this section, we discuss each component and then
outline how to train the full system in later sections.

4



Encoder. The probabilistic encoder is trained to approximate the Bayesian posterior over program
latents. Specifically, it maps an input-output pair (x, y) to a distribution in the latent space qϕ(z|x, y),
representing possible programs that could explain the given input-output mapping. Using a variational
approach is important because, for any given input-output pair, there exists a broad range of possible
programs that map the input to the output, even when restricting to, e.g., programs of low Kolmogorov
complexity [Solomonoff, 1964, Kolmogorov, 1965]. We discuss LPN as semi-amortised variational
inference in Section D. Intuitively, the encoder is trained to learn an abstract representation of
programs in a continuous latent space by implicitly encoding input-output pair examples. In practice,
we use a multivariate normal distribution whose mean µ and diagonal covariance Σ parameters are
inferred by the encoder. To take advantage of hardware parallelization, the encoder can process all the
I/O pairs in a given specification in parallel. By encoding each pair independently and aggregating
using the mean LPN is permutation invariant to the specification order, as opposed to a naive sequence
model that would concatenate I/O pairs.

Decoder. The probabilistic decoder is responsible for mapping a latent program and an input to its
expected corresponding output, directly predicting the output pixel-by-pixel instead of via a DSL. It
models the distribution of possible outputs y given an input x and a latent z. Note that even if the
underlying I/O mappings are deterministic, we still use a probabilistic decoding framework pθ(y|x, z)
to be compatible with maximum likelihood learning. Figure 20 shows the decoder generating different
outputs by keeping the input fixed but varying the latent program, which in this figure represents a
specific grid pattern to reproduce. In a real task, the aim of this encoder-decoder system is to learn
a compressed representation of the space of possible programs we care about (e.g., in the case of
ARC-AGI, this would correspond to programs that use the Core Knowledge priors [Chollet, 2019]).

Latent Optimization. The encoder is trained to approximate the posterior over programs and may
not encode the right abstraction given an I/O pair. Especially if the task is very novel, the encoder
may fail at producing the right latent program, which, fed to the decoder, would generate the wrong
output. Therefore, we include a middle stage of latent optimization where, starting from the encoder’s
prediction z, we search for a better latent program z′, one that would better explain the observed data
according to the decoder pθ. The search process is generally denoted z′ = f(pθ, z, x, y) and can be
implemented in several ways (c.f. section 4.2). Analogous to system 1 / system 2 thinking [Kahneman,
2011], we can think of the encoder generating an intuitive first guess as to what the observed program
may be (system 1), and the latent optimization process executing a search for hypotheses that would
better explain the observations (system 2). See Section C for test-time inference pseudo-code.

Encoder

z ∼ qϕ(z|x, y)
Latent Optimization

z′ = f(pθ, z, x, y)

Decoder

ŷ ∼ pθ(y|x, z′)
(3)

4.2 Search Methods for Latent Optimization

Given n input-output pairs {(xi, yi)}i=1...n, the search process z′ = f(pθ, z, x, y) attempts to find a
z′ that satisfies:

z′ ∈ argmax
z

n∑
i=1

log pθ(yi|xi, z) (4)

This means we search for the latent that would most likely make the decoder generate the right
outputs given the corresponding inputs. By finding a latent that can explain all the input-output pairs,
the latent solution to the optimization problem is more likely to generalize to a new input-output pair.
We describe here two instantiations of the search process, namely a sampling and a gradient ascent
algorithm, both acting in the latent space of programs. We leave for future work the exploration of
other search methods like evolutionary strategies [Hansen and Ostermeier, 2001, Chalumeau et al.,
2023] that could better trade-off exploration and exploitation of the latent space.

Sampling. A naive version of the latent search process is to sample a batch of latents from either
the prior distribution p(z) or around the approximate Bayesian posterior qϕ(z|xi, yi) and select the
latent that gives the highest log likelihood of decoding the given input-output pairs. Specifically,
for all k ∈ [1,K], zk ∼ p(z), and we select z′ ∈ argmaxzk

∑n
i=1 log pθ(yi|xi, zk). Sampling

asymptotically converges to the true maximum-likelihood latent (equation 4) and can prove useful

5



when the function to optimize (here, the decoder log-likelihood) is not differentiable. However, the
efficiency of sampling-based search decreases exponentially with the dimension of the latent space,
which makes it impractical for most applications.

Gradient Ascent. Since the decoder is a differentiable neural network, its log-likelihood
log pθ(y|x, z) is also differentiable with respect to z and one can use first-order methods like gradient-
ascent to efficiently search through the latent space for a solution to the latent optimization problem
(equation 4, see Figure 20 for a visualization of a 2D latent space trained on grid patterns). This
visualization highlights that only a small portion of the latent space can explain all the input-output
pairs, corresponding to high decoding likelihood. Notably, poor initialization can lead the search
to converge to different local minima, highlighting the importance of amortized inference from the
encoder. We initialize z′0 as the mean of all the pair latents sampled from the encoder, and refine it
iteratively as follows:

∀k ∈ [1,K], z′k = z′k−1 + α · ∇z

n∑
i=1

log pθ(yi | xi, z)
∣∣
z=z′

k−1

(5)

The series (z′k)k∈[1,K] should exhibit increasing decoding likelihood if the step size α is small enough.
In practice, we generate the output with the best latent found during the gradient ascent algorithm,
which may not always be the one that is obtained after taking the last gradient step (z′K).

4.3 Training

To train the LPN system end-to-end, we assume we have a dataset of tasks, where a task is defined
as n input-output pairs (xi, yi) generated by the same program. To simulate the test conditions of
predicting a new input from a given specification, we design the training procedure to reconstruct
each of the outputs yi from their inputs xi and all the n− 1 other pairs (xj , yj)j ̸=i. We emphasize
that we do not use the specific pair (xi, yi) to reconstruct yi, which would lead to the encoder directly
compressing the output yi as a shortcut without learning program-related abstractions.

When reconstructing output yi, we first sample latents zj from the encoder qϕ(z|xj , yj) for all j ̸= i.
We then aggregate them by computing their mean 1

n−1

∑
j ̸=i zj , then we perform latent optimization

using e.g., gradient ascent to obtain z′i. Finally, we compute the negative log-likelihood of the
right output yi using its corresponding input xi and the refined latent z′i. In practice, we compute
the cross-entropy loss of the decoder logits pθ(ŷi|xi, z

′
i) and the labels yi, which is derived from

maximizing the likelihood of a categorical distribution. The full training pipeline is detailed in
Section C. Specifically, we compute the reconstruction loss Lrec and the KL loss LKL between the
approximate posterior and the prior:

Lrec(ϕ, θ) =
∑n

i=1− log pθ(yi|xi, z
′
i) LKL(ϕ) =

∑n
i=1 DKL (qϕ(z|xi, yi) ∥ N (0, I))

(6)

The dependence of the reconstruction loss Lrec(ϕ, θ) in ϕ arises from using the reparameterization
trick [Kingma, 2013] when sampling each latent zj . Indeed, we first sample a normal random
vector ϵj ∼ N (0, I), then we infer the mean µj and diagonal covariance Σj using the encoder and
recompose the latent zj = µj + ϵj · Σj . Then, z′i is used by the decoder to reconstruct the output.
Note that we can decide whether to let the decoder gradient flow through the latent update. Indeed,
it is more computationally efficient to stop the gradient through the update, by changing line 9 of
algorithm 2 with z′i = z′i + α · g′i, where g′i = ∇z

∑
j ̸=i log pθ(yj |xj , z)|z=z′

i
, with g′i notating a

stop-gradient on g′i.

We denote β as the weighting factor that balances the reconstruction and KL terms [Burgess et al.,
2018], which gives the combined training objective: Ltotal(ϕ, θ) = Lrec(ϕ, θ) + βLKL(ϕ). This
training procedure offers some freedom in the latent optimization, i.e., how to compute z′i from
zi. Training with gradient ascent latent optimization (as detailed in Algorithm 2) incurs a compute
overhead due to the cost of the latent gradient computation through the decoder. Although we may
use a high compute budget at test-time, we propose to use a small number of gradient ascent steps
during training, ranging from 0 to 5 steps.

6



5 Experiments

Inference
Training Grad 0 Grad 1 Grad 5 Grad 20 Grad 100 Sample 250
Grad 0 3.2 (2.7) 3.6 (3.0) 18.8 (14.4) 52.5 (25.0) 67.5 (20.0) 3.2 (2.7)
Grad 1 8.6 (4.4) 44.6 (10.9) 85.4 (7.6) 98.4 (1.4) 99.5 (0.5) 10.2 (5.3)
Grad 1 ⋆⋆ 0.6 (0.1) 13.7 (3.0) 60.2 (7.5) 88.9 (6.0) 94.1 (3.8) 0.7 (0.2)
Grad 5 0.0 (0.0) 0.4 (0.3) 31.9 (11.2) 88.5 (11.9) 98.1 (2.1) 0.5 (0.4)
Sample 5 6.1 (4.4) 8.2 (6.5) 27.7 (21.6) 56.3 (27.5) 72.2 (21.2) 6.1 (4.4)

Table 1: Ablation of LPN training and inference methods on the Pattern task, reporting exact match
accuracy (%). Rows/columns represent different training/inference methods, differing only in the
latent optimization. Grad [N] stands for N gradient ascent steps, Sample [N] for N samples from
the encoder distribution without leveraging any gradients, and Grad 1 ⋆⋆ means that the decoder
parameter gradient flows through the latent optimization update. Training was performed for 20k
steps with 3 seeds, aggregating performance as mean (and standard deviation in brackets) over the 3
runs. Bold values indicate the best training method for each inference regime. See expanded table in
Section B.1.

5.1 Setup

We consider the ARC-AGI 2024 challenge [Chollet et al., 2024] as the testing domain for our method.
This program synthesis benchmark encompasses diverse tasks designed to test adaptation and out-
of-distribution generalization, rather than memorization. We implement both the LPN encoder and
decoder as small transformers [Vaswani et al., 2017], see Section G for full architecture details.
We introduce the simpler Pattern task to investigate LPN’s dynamics before large-scale ARC-AGI
training, see Section A. It generates 10x10 black input grids with a blue pixel indicating where a 4x4
program-specific pattern should be pasted. This task is sufficient to demonstrate weaknesses in deep
learning models that do not leverage test-time computation (see Section 5.5).

Baselines. We compare LPN to an in-context learning method Kolev et al. [2020], Li et al. [2024a],
which encodes each of the input-output pairs and then concatenates these embeddings to condition
output prediction, notably never producing any intermediate program embeddings. We discuss the
motivation for this design in Section H. Then, we also compare to test-time fine-tuning [Devlin
et al., 2017a, Akyürek et al., 2024], which, given a test-time specification, performs parameter-based
gradient updates on the in-context model. See Section H for details on baseline implementations and
Section E for hyperparameters.

5.2 Pattern Task

We compare a variety of LPN training and inference methods in Table 1, to better understand the
dynamics of LPN. We aim to first answer whether LPN can self-improve at test-time by searching
its latent space, and then how the training inference strategy affects performance. For each training
method, we train a small 1M-parameter model for 20k steps with a batch size of 128 and evaluate it
with different inference modes. We find that inference using no test-time adaptation performs poorly
across all instances of LPN (and in-context baselines, see Section B.2). This shows that amortizing
inference is difficult for models of this size and training time.

All variations of LPN training show strong scaling in performance as the number of gradient steps
at test time is scaled. This demonstrates that LPN is capable of test-time adaptation to improve
pre-trained amortization performance. We visualise the decoded outputs at many points in the
latent space of LPN on a simple pattern task in Section B.4 showing structure in the latent program
representations, and Section B.4 shows the likelihood of the specification is smooth across the space,
enabling gradient based test time search.

When comparing different LPN training inference strategies, 1 gradient ascent step of latent op-
timization shows higher returns than training with mean pooling, with the difference particularly
pronounced when scaling the inference budget. With 100 steps of gradient ascent at inference time,

7



LPN training with Grad 0 gets an accuracy of 67.5%, whereas training with one gradient step (Grad
1) reaches 99.5%. This demonstrates the benefits of training the latent space with the awareness that
gradient ascent will be performed at test-time, an important inductive bias for the LPN architecture.
We also observe that gradient ascent vastly outperforms sampling-based search, validating that a
search without any gradient signal is highly inefficient. Lastly, we perform training with and without
the stop gradient on the gradient update itself. We found that using the stop gradient actually leads to
higher test time performance while also being more computationally efficient.

5.3 String Manipulation Task

To investigate the generalizability of our results beyond environments with significant spatial structure,
we perform an ablation on a synthetic sequence task and replicate the analysis previously conducted
on the pattern dataset.

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 77.7 (1.2) - -
TTT 78.1 (1.1) 72.8 (0.8) 11.8 (1.9)
LPN Grad 0 75.6 (1.7) 83.3 (0.8) 81.3 (0.5)
LPN Grad 1 71.3 (0.4) 86.1 (1.5) 81.8 (1.8)
LPN Grad 1 ⋆⋆ 67.9 (1.3) 85.0 (0.4) 81.0 (1.3)

Table 2: Exact match accuracy (%) on the test set for the
string manipulation task. The comparison includes an In-
Context baseline, Test-Time Training (TTT) (lr = 1e − 4),
and three LPN variants (with lr = 1e − 1): Grad 0, Grad
1, and Grad 1 ⋆⋆ (decoder gradient flows through latent
optimization). Performance is averaged over 3 runs, with
standard deviations in parentheses.

This synthetic dataset features a vast
program space, with over 100 mil-
lion unique programs, each defined
by composing 3 to 5 parameterized
rules that transform sequences of num-
bers (ranging from 0 to 4), see Sec-
tion B.7 for further details. Our ex-
periments demonstrate that Test-Time
Training (TTT) exhibits overfitting, as
evidenced by its performance degra-
dation when gradient fine-tuning is
performed. In contrast, LPN main-
tains robust performance without over-
fitting. Furthermore, incorporating a
single gradient step during training en-
hances LPN performance marginally
at higher inference gradients.

5.4 Starting test-time search from the encoder

0 20 40 60 80 100
Accuracy (%)

Sample 5

Grad 5

Grad 1

Grad 0

Tr
ai

ni
ng

 M
et

ho
d

Inference Method
Grad 0 Grad 100 no encoder Grad 100

Figure 2: Ablation on the role of the encoder and latent
optimization. Latents are initialized from the mean
of the encoder latents (except for orange). Grad N
stands for doing latent optimization with N gradient
steps. Both the encoder initialization and the latent
optimization matter for LPN.

We experiment on the Pattern task again,
this time to assess the benefits of amor-
tizing inference. We ablate the impact of
initializing latent optimization with the en-
coder versus using the prior.

We specifically compare no latent search
(blue) to doing latent optimization in two
ways: sampling from the prior z ∼ p(z)
(orange) and sampling from the encoder
z ∼ qϕ(z|x, y) (green).

Initializing latent search with the encoder
is critical for performance across all train-
ing methods. This validates the intuition
that LPN can perform fast system 1-like
reasoning using the encoder and then nar-
row down the search space during latent
optimization, simulating system 2 reason-
ing.

8



5.5 Adapting Out-Of-Distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 0.0 (0.0) - -
TTT 0.0 (0.0) 1.8 (0.7) 0.3 (0.1)
LPN Grad 0 0.3 (0.5) 18.8 (14.5) 41.1 (29.6)
LPN Grad 1 0.0 (0.0) 59.9 (11.6) 88.0 (5.3)
LPN Grad 2 0.0 (0.0) 38.5 (13.0) 81.8 (10.9)

Table 3: Out-of-distribution (OOD) performance
on the Pattern task, measured as exact match accu-
racy (%). Performance is averaged over 3 training
runs with different seeds, with standard deviation
in parentheses.

A significant challenge to deep learning meth-
ods is generalizing to out-of-distribution (OOD)
tasks. We study the OOD behavior of LPN, in-
context learning, and parameter fine-tuning on
the Pattern task in Table 3. In-context learning
has no test time adaptation performance as it
has no inherent mechanism to scale compute
beyond a single forward pass. We include full
experiments on a range of varying OOD settings
in Section B.2.

When trained with 1 step of gradient ascent,
LPN recovers high accuracy (88%) using 100
steps of gradient ascent at inference time. TTT
and in-context learning are incapable of recover-
ing the right OOD pattern at inference time. We
perform a similar experiment in Section B.7 on a synthetic integer sequence task with less spatial
structure, with the same conclusions.

5.6 Scaling Specification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Specification Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LPN grad 0
LPN grad 100
TTT grad 100
In-Context

Figure 3: Exact match accuracy (%) on the out-of-
distribution (OOD) pattern task as the specification
size is scaled from 1 input output pair to 19 pairs,
for different inference methods.

For any learning method that can handle vary-
ing amounts of data, an important question is
how the method scales to handling more data
than it was trained on. In Figure 3 we evalu-
ate in-context learning, TTT, and LPN with and
without gradient search in the OOD setting of
the pattern task, with varying specification sizes.
LPN smoothly generalizes to different specifica-
tion sizes, with only a small drop in performance
with less data, and keeps improving with more
data. In-context learning overfits to the specifica-
tion size it is trained on, and TTT only performs
well once given a sufficiently large specification
and high inference compute. We ablate this in
Section B.5, repeating the experiment for vary-
ing training specification sizes.

5.7 ARC-AGI 2024

Setup We train on the re-arc dataset [Hodel, 2024], designed to be in distribution relative to
the ARC training set (which we don’t train on) Li et al. [2024b]. The evaluation set is significantly
OOD, representing a challenging generalization experiment. We train a 178M-parameter LPN with a
256-dim latent space for 100k steps for 2 days on a TPU v4-32, see Section E. Leveraging insights
from pattern task experiments, we use gradient ascent in LPN during training. To remain efficient,
we train LPN in Grad 0 mode for 95k steps and then fine-tune in Grad 1 for a further 5k steps, which
we find gives a marginal boost in performance at lower levels of test time compute Section B.8.

Results Table 4 shows top-2 accuracy on ARC-AGI (standard to ensure resolvability of all prob-
lems). Even after significant amortization of inference, we observe large performance gains from
scaling gradient search at test time. LPN significantly outperforms TTT in-distribution. We also see
strong evidence that the LPN has learned a structured latent space for representing programs, demon-
strated by a t-SNE plot of the embeddings of different programs in the training set, see Section F.
Out of distribution, LPN doubles its performance by using latent space search at test-time (scaling
FLOPs from 2e11 to 2e15). Using from 2E+11 to 2E+13 FLOPs, LPN outperforms TTT, until we
scale test-time compute to much higher levels, where TTT achieves higher performance. This finding
is likely due to the lack of diversity in programs seen by LPN during training, relative to experiments

9



FLOPs In-Distribution Out-of-Distribution
LPN TTT CodeIt Mirchandani LPN TTT CodeIt Mirchandani

2E+11 68.75 45.75 - - 7.75 5.85 - -
2E+12 75.95 51.75 - - 10.25 7.35 - -
2E+13 80.00 58.50 - - 15.25 13.50 - -
2E+14 76.25 58.75 - - 15.50 16.00 - -
2E+15 78.50 57.00 - - 15.50 15.25 - -
» 2E+15 - - - 14.00 - - 14.75 6.75

Table 4: Results on ARC-AGI, measured by exact match accuracy (%), for varying values of FLOPs.
In-Distribution refers to puzzles in the ARC train set , not included in the training set, but are
in-distribution relative to re-ARC. Out-of-distribution refers to puzzles from the eval set. LPN and
TTT stand for Latent Program Network (ours), and Test-Time Training. CodeIt and Mirchandani are
baselines from prior work.

on other datasets, limiting the ability to have a smooth expressive latent space. See Section B.11 for
an ablation on the performance contribution to LPN from encoder initialization and gradient search.

Relative to the pattern task, TTT is less susceptible to overfitting on ARC-AGI, possibly due to
the use of larger model sizes. Both methods outperform two ARC-specific LLM approaches that
leverage far larger pre-trained models, including CodeT5 [Butt et al., 2024] (220M parameters) and
text-davinci [Mirchandani et al., 2023] (175B parameters). This work represents an improvement over
such methods due to significantly lower inference and training cost, and greater generalization from
a limited training distribution. At the time of writing, the highest performing model on ARC-AGI
is o3-preview(low) (LLM) which achieves 75.7% at a cost of $200 per task. Both the training and
inference costs are far beyond this work, there is an opportunity for future work to investigate scaling
up this work to such a scale. To further contextualise the results compared to other methods applied
to ARC-AGI we outline in Section I a complete table of leading and diverse approaches to the
benchmark highlighting the training assumptions and compute for all methods where the information
is public.

In section Section B.9 we investigate whether the problems solved, on the ARC-AGI evaluation test
set, by TTT and LPN are different. We find that indeed different subsets of the test set are solved by
each method and we visualize 3 examples of solutions only solved by LPN and TTT respectively.

Lastly, in Section B.10, we explore LPN’s capacity for compositional generalization at test time. We
find that the latent search process can compose programs seen during training into novel combinations,
which avoids the overfitting seen in models without search, that tend to execute only a single program.
However, this capability is not robust; our analysis identifies both successful examples where the
search enables composition and clear failure cases where it does not.

6 Conclusion

We introduced Latent Program Network (LPN), a novel approach to inductive program synthesis
leveraging continuous latent spaces for efficient test-time adaptation. LPN integrates adaptation
directly into its architecture, refining latent representations through gradient-based search, which
we identify as an efficient adaptation method. We show that LPN generalizes beyond the training
distribution, relying on test-time adaptation rather than expanded synthetic datasets.

Limitations and Future Work. A limitation of this work is the limited diversity of programs on
which LPN is trained. While augmentations are used during training, the distribution of programs
remains narrow and restricts the potential for learning an expressive complex latent space. We limit
gradient-based search to standard optimizers. Future work could explore alternative optimization
methods, such as evolution strategies, and explore discrete program representations to enhance
compositional generalization.

10



Acknowledgments and Disclosure of Funding

We thank Google’s TPU Research Cloud (TRC) for supporting this research. We are also grateful to
Nathan Grinsztajn, Natasha Butt, Levi Lelis, and Jessica Hu for their feedback on the early versions
of the paper. Matthew Macfarlane is supported by the LIFT-project 019.011, which is partly financed
by the Dutch Research Council (NWO). We also thank reviewers for their detailed feedback, which
we have integrated into the final version of the paper.

References
Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, and Jacob Andreas. The surprising

effectiveness of test-time training for abstract reasoning. arXiv preprint arXiv:2411.07279, 2024.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
arXiv preprint arXiv:1809.10853, 2018.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and
Nadia Polikarpova. Hysynth: Context-free llm approximation for guiding program synthesis. arXiv
preprint arXiv:2405.15880, 2024. URL https://arxiv.org/abs/2405.15880.

Alan W Biermann. The inference of regular lisp programs from examples. IEEE transactions on
Systems, Man, and Cybernetics, 8(8):585–600, 1978.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901, 2020.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

Natasha Butt, Blazej Manczak, Auke Wiggers, Corrado Rainone, David W Zhang, Michaël Defferrard,
and Taco Cohen. Codeit: Self-improving language models with prioritized hindsight replay. arXiv
preprint arXiv:2402.04858, 2024.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1-2):57–83, 2002.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36:7947–7959, 2023.

Francois Chollet, Mike Knoop, Bryan Landers, Greg Kamradt, Hansueli Jud, Walter Reade, and
Addison Howard. Arc prize 2024. https://kaggle.com/competitions/arc-prize-2024,
2024. Kaggle.

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/1911.
01547.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders.
In International conference on machine learning, pages 1078–1086. PMLR, 2018.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. Advances in Neural Information Processing Systems, 30, 2017a.

11

https://arxiv.org/abs/2405.15880
https://kaggle.com/competitions/arc-prize-2024
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547


Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International conference
on machine learning, pages 990–998. PMLR, 2017b.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design and implementation, pages 835–850,
2021.

John K Feser, Marc Brockschmidt, Alexander L Gaunt, and Daniel Tarlow. Differentiable functional
program interpreters. arXiv preprint arXiv:1611.01988, 2016.

John K Feser, Marc Brockschmidt, Alexander L Gaunt, and Daniel Tarlow. Neural functional
programming. 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In International Conference on Machine Learning, pages 1213–1222. PMLR,
2017.

Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
strong abstract reasoners. arXiv preprint arXiv:2305.19555, 2023.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In Proceed-
ings of the annual meeting of the cognitive science society, volume 36, 2014.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Alex Graves. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, Oct 2023. URL https://arxiv.org/abs/2310.15916.

Michael Hodel. Addressing the abstraction and reasoning corpus via procedural example generation,
2024. URL https://arxiv.org/abs/2404.07353.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021a.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021b.

12

https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2404.07353


Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of llms. arXiv preprint arXiv:2410.08020, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Daniel Kahneman. Thinking, fast and slow. 1st ed. New York : Farrar, Straus and Giroux, [2011]
©2011, 2011. URL https://search.library.wisc.edu/catalog/9910114919702121. In-
cludes bibliographical references (pages 447-448) and index.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-amortized
variational autoencoders. In International Conference on Machine Learning, pages 2678–2687.
PMLR, 2018.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Victor Kolev, Bogdan Georgiev, and Svetlin Penkov. Neural abstract reasoner. arXiv preprint
arXiv:2011.09860, 2020.

Andrei Nikolaevich Kolmogorov. Three approaches to the definition of the concept “quantity of
information”. Problemy peredachi informatsii, 1(1):3–11, 1965.

Rahul Krishnan, Dawen Liang, and Matthew Hoffman. On the challenges of learning with inference
networks on sparse, high-dimensional data. In International conference on artificial intelligence
and statistics, pages 143–151. PMLR, 2018.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. arXiv
preprint arXiv:1511.06392, 2015.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. ACM SIGPLAN Notices, 53(4):436–449, 2018.

Shaohua Li, Xiuchao Sui, Jie Fu, Huazhu Fu, Xiangde Luo, Yangqin Feng, Xinxing Xu, Yong Liu,
Daniel SW Ting, and Rick Siow Mong Goh. Few-shot domain adaptation with polymorphic
transformers. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings,
Part II 24, pages 330–340. Springer, 2021.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
abstract reasoning. arXiv preprint arXiv:2411.02272, 2024a.

Wenhao Li, Yudong Xu, Scott Sanner, and Elias Boutros Khalil. Tackling the abstraction and
reasoning corpus with vision transformers: the importance of 2d representation, positions, and
objects. arXiv preprint arXiv:2410.06405, 2024b.

Wenhao Li, Yudong Xu, Scott Sanner, and Elias Boutros Khalil. Tackling the abstraction and
reasoning corpus with vision transformers: the importance of 2d representation, positions, and
objects, 2024c. URL https://arxiv.org/abs/2410.06405.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with large
language models. In International Conference on Computer Aided Verification, pages 280–301.
Springer, 2024d.

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM Transactions
on Programming Languages and Systems (TOPLAS), 2(1):90–121, 1980.

Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International
Conference on Machine Learning, pages 3403–3412. PMLR, 2018.

13

https://search.library.wisc.edu/catalog/9910114919702121
https://arxiv.org/abs/2410.06405


Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. Snip: Bridging math-
ematical symbolic and numeric realms with unified pre-training. arXiv preprint arXiv:2310.02227,
2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Melanie Mitchell, Alessandro B Palmarini, and Arseny Moskvichev. Comparing humans, gpt-4, and
gpt-4v on abstraction and reasoning tasks. arXiv preprint arXiv:2311.09247, 2023.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley &
Sons, 1994.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

David E Shaw, William R Swartout, and C Cordell Green. Inferring lisp programs from examples. In
IJCAI, volume 75, pages 260–267, 1975.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control, 7(1):1–22,
1964.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Phillip D Summers. A methodology for lisp program construction from examples. Journal of the
ACM (JACM), 24(1):161–175, 1977.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. Advances in neural information processing systems, 34:
25146–25163, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024. URL https://arxiv.org/abs/
2409.03733.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture,
2020. URL https://arxiv.org/abs/2002.04745.

14

https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2002.04745


Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert D. Nowak. Task vectors
in in-context learning: Emergence, formation, and benefits. arXiv preprint arXiv:2501.09240, Jan
2024. URL https://arxiv.org/abs/2501.09240.

Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, and Peng Cui. A survey on evaluation of
out-of-distribution generalization. arXiv preprint arXiv:2403.01874, 2024a.

Peiyu Yu, Dinghuai Zhang, Hengzhi He, Xiaojian Ma, Ruiyao Miao, Yifan Lu, Yasi Zhang, Deqian
Kong, Ruiqi Gao, Jianwen Xie, et al. Latent energy-based odyssey: Black-box optimization via
expanded exploration in the energy-based latent space. arXiv preprint arXiv:2405.16730, 2024b.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

15

https://arxiv.org/abs/2501.09240


A Datasets

A.1 Pattern Task

The ARC-AGI challenge contains many diverse programs leveraging different knowledge priors.
Injecting these priors into LPN by training the model to master ARC-like tasks requires significant
compute resources when training from scratch, without an LLM-based initialization. Therefore,
to investigate the training dynamics and properties of LPN before such a large-scale training, we
develop a simpler task called Pattern task (see figure 4) within the same domain, but using a narrow
distribution of pattern-like programs. This specific task always generates fully-black 10x10 inputs
with a single blue pixel at a random location that defines where the output pastes a 4x4 pattern
sampled from a uniform distribution. The pattern is program-specific, meaning it is the same across
different pairs but varies from specification to specification. This task demonstrates how deep learning
methods without test-time computation may still make errors on such tasks. We then extend this task
to study an out-of-distribution setting in section 5.5.

Figure 4: Example of input (top row) and output (bottom row) pairs of a specification sampled from
the Pattern task. Each sample is a batch of 4 pairs that share the same pattern.

A.2 ARC-AGI

We evaluate LPN on the ARC-AGI benchmark by training it on the re-arc dataset [Hodel, 2024],a
dataset designed to be in distribution relative to the ARC training set, previously used for training
large language models and ARC specific transformers to solve ARC-AGI Li et al. [2024b], Akyürek
et al. [2024]. Most previous works however expand beyond this dataset, usually synthetically adding
additional programs [Butt et al., 2024], or crafted datasets. We restrict training to tasks from only
this dataset with the goal of assessing generalization instead of closing a performance gap with more
data. This also ensures LPN solely learns from core knowledge priors without data leakage from
the evaluation set. The evaluation set is known to be significantly out of distribution and therefore
represents a challenging generalization experiment. We train a 178M-parameter LPN with a 256-dim
latent space for 100k steps (batch size 256) for 2 days on a TPU v4-32, see Section E for further
details, in terms of data, this amounts to 51M I/O pairs. Leveraging insights from smaller scale
experiments we make use of gradient in LPN during training. We train LPN in Grad 0 mode for 95k
steps and then fine tune in Grad 1 for a further 5k steps. We outline our hyperparameter procedure for
both LPN and TTT for ARC-AGI in Section E.

16



B Expanded Experiments

B.1 LPN Training Extended

We provide an expanded version of Table 1 with additional ablations for both the training and
inference axes.

Inference
Training Grad 0 Grad 1 Grad 5 Grad 20 Grad 100 Sample 250
Grad 0 3.2 (2.7) 3.6 (3.0) 18.8 (14.4) 52.5 (25.0) 67.5 (20.0) 3.2 (2.7)
Grad 1 8.6 (4.4) 44.6 (10.9) 85.4 (7.6) 98.4 (1.4) 99.5 (0.5) 10.2 (5.3)
Grad 1 ⋆⋆ 0.6 (0.1) 13.7 (3.0) 60.2 (7.5) 88.9 (6.0) 94.1 (3.8) 0.7 (0.2)
Grad 5 0.0 (0.0) 0.4 (0.3) 31.9 (11.2) 88.5 (11.9) 98.1 (2.1) 0.5 (0.4)
Grad 5 ⋆⋆ 0.0 (0.0) 0.0 (0.0) 9.9 (2.9) 87.1 (6.0) 95.1 (3.3) 0.0 (0.0)
Sample 5 6.1 (4.4) 8.2 (6.5) 27.7 (21.6) 56.3 (27.5) 72.2 (21.2) 6.1 (4.4)
Sample 25 10.8 (8.0) 13.3 (10.1) 39.9 (21.4) 72.3 (18.5) 87.9 (9.2) 10.8 (8.0)

Table 5: Ablation study of LPN training and inference methods on the Pattern task. Rows represent
training methods: LPN Grad [N] for N gradient steps, LPN Grad [N] ⋆⋆ with gradient flow through
latent optimization (analogous to meta-learning), and Sample [N] for N random samples. Columns
represent inference methods: Grad [N] for N gradient ascent steps and Sample [N] for random search
with N samples. Training was performed for 20k steps with 3 seeds, with performance reported
as mean (standard deviation) over 3 runs. Bold values indicate the best performance per inference
method.

B.2 Adapting Out-Of-Distribution

We provide expanded results for the out-of-distribution (OOD) experiments outlined in Section 5.5.
We include results for varying levels of OOD starting with in-distribution, weak OOD, and strong
OOD.

17



Inference
Training Grad 0 Grad 10 Grad 100
In-Context 15.3 (0.6) - -
Test Time Training 15.3 (0.6) 17.0 (1.7) 0.78 (0.69)
LPN Grad 0 30.2 (15.7) 72.8 (29.5) 82.2 (21.3)
LPN Grad 1 26.6 (7.4) 98.0 (0.6) 99.2 (0.6)
LPN Grad 2 14.4 (3.5) 97.2 (1.6) 98.9 (1.2)
LPN Grad 3 1.0 (0.7) 85.7 (6.3) 98.3 (1.9)
LPN Grad 1 ⋆⋆ 10.6 (6.4) 93.8 (5.1) 97.4 (1.9)

In-distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 2.1 (0.9) - -
Test Time Training 2.1 (0.9) 2.1 (1.1) 0.00 (0.00)
LPN Grad 0 7.6 (5.6) 51.3 (35.7) 62.8 (38.3)
LPN Grad 1 7.4 (4.4) 93.1 (4.3) 97.7 (2.2)
LPN Grad 2 3.0 (2.6) 86.1 (6.0) 95.9 (2.1)
LPN Grad 3 0.0 (0.0) 55.0 (7.8) 93.9 (3.8)
LPN Grad 1 ⋆⋆ 1.3 (1.0) 81.7 (13.3) 91.5 (5.5)

Weakly out-of-distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 0.0 (0.0) - -
Test Time Training 0.0 (0.0) 1.8 (0.7) 0.3 (0.1)
LPN Grad 0 0.3 (0.5) 18.8 (14.5) 41.1 (29.6)
LPN Grad 1 0.0 (0.0) 59.9 (11.6) 88.0 (5.3)
LPN Grad 2 0.0 (0.0) 38.5 (13.0) 81.8 (10.9)
LPN Grad 3 0.0 (0.0) 11.3 (9.3) 72.0 (14.0)
LPN Grad 1 ⋆⋆ 0.0 (0.0) 40.9 (19.8) 71.1 (14.3)

Strongly out-of-distribution

Table 6: Study of the out-of-distribution (OOD) performance on the Pattern task. Models are
trained on patterns that have a density of 50% (half black, half colored), then evaluated on the same
distribution, on a density of 75% (weakly OOD) and 100% (strongly OOD). Performance is averaged
over 3 training runs with different seeds, with standard deviation in parentheses.

18



B.3 Validating the Decoder

Training deep networks from scratch to solve ARC-like tasks has been challenging [Li et al., 2024c].
If it is the case that neural networks struggle even to learn to execute single programs this represents a
significant bottleneck to training models from scratch on a broad distribution of programs. Therefore,
before training LPN end-to-end, we conclusively show that our decoder architecture does not suffer
from such a bottleneck, and can learn individual programs.

We show 5 of the 400 total tasks from the ARC-AGI training set, and for each of these tasks,
we train a small LPN architecture of 800k parameters (except for the last task which required a
bigger model with 8.7M parameters) on the corresponding task generator from re-arc [Hodel,
2024]. Specifically, we select the first five tasks from the arc-agi_training_challenges json
file (007bbfb7, 00d62c1b, 017c7c7b, 025d127b, 045e512c) shown in figure Figure 5.

007bbfb7 00d62c1b
017c7c7b

025d127b
045e512c

Figure 5: Overfit training on the first 5 ARC-AGI training tasks. The captions correspond to task IDs.
For each task, the top row contains the input grids, and the bottom row the output grids. Each task
consists of observing all pairs but the first and inferring the output of the leftmost pair given its input.
Each curve corresponds to a separate training run.

We evaluate both the distribution of re-arc generated tasks on which it is trained and on the true
task from the ARC-AGI training set in figure Figure 6. We show that for each task, the small LPN
decoder-only model successfully learns individual programs and manages to solve the corresponding
ARC-AGI task. Therefore, our model outperforms previously reported results in Li et al. [2024c],
and concludes that our architecture does not suffer from a decoder bottleneck. Note that the encoder
is not helpful in this experiment since the task is always the same. Our later results on ARC-AGI
Section 5.7 take this a step further and show that we can learn a single transformer architecture
capable of executing over 270 programs in the ARC training dataset.

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss

Task ID
007bbfb7
00d62c1b
017c7c7b
025d127b
045e512c

(a) Training loss

Pixel Accuracy

Task re-arc ARC-AGI

007bbfb7 100 100

00d62c1b 96.5 100

017c7c7b 99.7 100

025d127b 100 100

045e512c 98.3 100

(b) Performance after 10k steps of training

Figure 6: Training loss and performance of LPN training on 5 of the re-arc distributions. For each
task, only samples from the re-arc generators are used for training. The corresponding ARC-AGI
tasks are never seen during training.

19



B.4 Analyzing the Latent Space

-3.1 -1.3 -0.8 -0.5 -0.2 0.0 0.3 0.6 0.9 1.5
x

-3.1

-1.3

-0.8

-0.5

-0.2

0.0

0.3

0.6

0.9

1.5

y

Figure 7: (Left) A 2D pattern task with inputs containing marker points where patterns should be
placed, with patterns varying for each program. (Right) The latent traversal visualizes the effect of
traversing the latent space, on the predicted pattern by the decoder at marker points.

To validate that the encoder is learning programs in its latent space, we design an even simpler task
with small 4x4 grids that have 2x2 patterns. We train a small LPN model until convergence with
a latent space of dimension 2 to easily visualize it in figure Figure 7. Due to the simplicity of the
task we train the model with mean training, i.e. no latent optimization. Because we are using a 2D
Gaussian prior for the latent space, we can convert R2 to the unit square using the normal cumulative
distribution function (CDF), and then plot on the unit square at coordinates (x, y) the decoder’s output
when conditioned by the latent CDF(z) = (x, y), or equivalently, z = (PPF(x), PPF(y)) using the
percent-point function (PPF). These results demonstrate the diversity and smoothness of the latent
space, showing structure in terms of color patterns, which motivates performing gradient ascent latent
optimization in more complex tasks. This shows that the latent space can encode a wide range of
diversity in its latent space which is especially important for adapting to unseen patterns.

0 5 10 15 20 25
iteration

30

25

20

15

10

5

0

lo
g 

pr
ob

log prob
The figures on the left show a
random initialization in the latent
space and a corresponding latent
trajectory following the gradient as-
cent algorithm. The log-likelihood
for each latent is shown during op-
timization. The decoded pattern is
traced until convergence in the la-
tent space, giving insights into how
LPN performs latent optimization
at test time to find the optimal latent
program.

20



B.5 Scaling Specification Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Specification Size

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

LPN grad 0
LPN grad 10
LPN grad 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Specification Size

0.0

0.2

0.4

0.6

0.8

1.0

In-Context
TTT grad 10
TTT grad 100
TTT grad 400

Figure 8: Accuracy of Latent Program Network (LPN) and Test-Time Training (TTT) models as
we scale specification size. Higher specification sizes improve accuracy across different training
methods. The dashed vertical line at specification size 3 indicates the fixed size used during training.

To analyze the effect of scaling specification size, we conduct an ablation using models trained on
the pattern task for a single seed. We compare both in-context learning and LPN. We then evaluate
different inference strategies on the in-distribution dataset and analyze their performance as the test
specification size increases.

Our results indicate that LPN generalizes effectively across varying specification sizes. This robust-
ness is primarily due to the use of mean pooling, which prevents overfitting to specific context lengths
and enables the model to gracefully handle both slightly larger and significantly larger specifica-
tion sizes. Furthermore, mean pooling encourages representations of the same program to remain
structurally similar, improving generalization.

In contrast, in-context learning exhibits strong overfitting to the training specification size, with a
noticeable drop in performance as the specification size deviates from the training distribution. How-
ever, we observe that fine-tuning-based inference can scale effectively with increasing specification
sizes, provided that a sufficient amount of data is available. The effectiveness of fine-tuning is highly
dependent on the choice of hyperparameters, requiring substantial amounts of data to maintain strong
performance as the specification size grows.

B.5.1 Performance Across Training Sizes

To further explore the impact of training specification size on model performance, we present results
for training sizes 1, 7, and 11, evaluated across test sizes 1, 3, 7, 11, 15, and 19 on the pattern task.
The following tables report accuracy for LPN with and without gradient ascent, In-Context Learning,
and Test-Time Training (TTT). Notably, In-context learning consistently overfits to specific test sizes
that align closely with the training size. In contrast, LPN, particularly with 100 gradient ascent
steps, demonstrates robust generalization, maintaining high accuracy across all test sizes and training
sizes. TTT shows improved performance as test sizes increase, approaching LPN’s accuracy at larger
specification sizes when also trained on large specification sizes.

Method Test Size
1 3 7 11 15 19

LPN grad 0 38.9 44.1 47.5 44.7 48.8 45.9
LPN grad 100 89.8 92.1 94.1 94.1 95.3 96.3
In-Context 2.1 0.0 0.0 0.0 0.0 0.0
TTT grad 100 7.8 19.9 50.9 72.4 81.8 90.4

Table 7: Performance (top-2 accuracy, percentage) for training size 1 on the pattern task.

21



Method Test Size
1 3 7 11 15 19

LPN grad 0 14.6 27.7 32.8 33.4 33.2 35.1
LPN grad 100 87.7 89.3 92.7 91.0 92.6 93.6
In-Context 0.0 0.0 78.3 0.0 0.0 0.0
TTT grad 100 11.3 34.7 77.9 90.6 94.7 93.2

Table 8: Performance (top-2 accuracy, percentage) for training size 7 on the pattern task.

Method Test Size
1 3 7 11 15 19

LPN grad 0 11.1 26.6 40.8 43.2 50.0 48.8
LPN grad 100 91.4 97.1 97.5 96.9 98.0 97.9
In-Context 0.0 0.0 0.1 94.1 0.1 0.0
TTT grad 100 0.1 16.2 56.1 78.3 93.7 92.2

Table 9: Performance (top-2 accuracy, percentage) for training size 11 on the pattern task.

22



B.6 Measuring Floating Point Operations

To evaluate the computational efficiency of different methods, we measure the number of floating-
point operations (FLOPs) required for performing inference on a single task. The reported FLOP
measurements correspond to the cost of generating an entire 30x30 grid given 3 input-output pairs
(specification size).

While gradient-based approaches do not require an additional computational budget in terms of trial
attempts, their inference mechanisms involve performing gradient updates, either in parameter space
or latent space, which adds a computational overhead. A key distinction between TTT and LPN is
their computational cost: LPN updates only the latent space by backpropagating through the decoder,
whereas TTT requires backpropagation through all model parameters. This makes TTT significantly
more expensive and less efficient for real-time applications.

LPN grad 0

In-Context

LPN Sampling 1

LPN grad 1

TTT grad 1

LPN Sampling 10

LPN grad 10

TTT grad 10

LPN Sampling 100

LPN grad 100

TTT grad 100

1012

1013

1014

FL
OP

s

Figure 9: Floating-point operations (FLOPs) required for test-time inference across different methods.

The LPN Sampling results can be understood as ablation of LPN without gradient-based search, but
only sampling multiple latents from the encoder computing the decoder likelihood for each, avoiding
the computational cost of backpropagating through the decoder. However, this efficiency gain comes
at a significant cost in performance, as shown in the pattern task results Table 1.

23



B.7 Sequence Ablation

B.7.1 Dataset

To investigate the generalizability of our results beyond environments with significant spatial structure,
we perform an ablation on a synthetic sequence task and replicate the analysis previously conducted
on the pattern dataset. This synthetic dataset features a vast program space, with over 100 million
unique programs, each defined by composing 3 to 5 parameterized rules that transform sequences of
numbers (ranging from 0 to 4). Programs are composed of 3 to 5 rules with specific integer-based
parameters (e.g., thresholds or operation values). These rules are then applied in their chosen order:
for each rule, we process the sequence from left to right, transforming each position according to the
rule’s condition and operation, producing an intermediate sequence that serves as input to the next
rule. This sequential, rule-by-rule application, with each rule scanning left to right, enables complex
transformations and vast numbers of programs with meaningfully different outputs. The core rules
are defined as follows:

• If a number is greater than its right neighbor by a threshold k, decrease it by a value m,
modulo 5.

• If a number has identical neighbors on both sides, multiply its value by a factor n and clip
the result to 4.

• If a number is greater than its left neighbor by a threshold k, add a value m, modulo 5.
• If a number is less than its right neighbor by a threshold k, subtract a value m, modulo 5.
• Replace the number with a function of its neighbors (e.g., sum, average, maximum, or

minimum), modulo 5.

These parameterized rules may interact at the same position across their sequential applications,
creating cascading effects that result in complex transformations. While a single input-output pair may
not uniquely identify the underlying program, multiple pairs typically provide sufficient information
to determine it. The table below presents accuracy metrics for models evaluated on this task.

24



B.8 LPN fine tuning

We also ablate LPN training by training in full Grad 0 mode for 100k steps. We show the results
compared to fine tuning for 5k steps in Grad 1 mode.

FLOPs LPN Grad 1 Tune LPN Grad 0 Tune
2E+11 7.75 8.25
2E+12 10.25 10.25
2E+13 15.25 13.60
2E+14 15.50 15.10
2E+15 15.50 15.10

Table 10: Performance of LPN with and without gradient tuning on ARC-AGI for 10k steps

We find a marginal performance gain at higher computational budgets from fine-tuning with one
gradient step, so we adopt this approach in the main method. However, we note a slight perfor-
mance drop in Grad 0 inference, which is expected as the network begins to optimize with gradient
adaptation.

25



B.9 ARC-AGI Solution Analysis

In this section we investigate whether there are differences between the types of tasks in ARC-AGI
evaluation dataset that LPN solves vs Test-Time Training. We run both methods at the budget of
2E+14 and analyze the problems solved. We first analyze the overlap between problems solved
between the two methods. We see that there is a spread of the different problems being solved by the
different architectures, a roughly even split between problems only solved by TTT, problems solved
only by LPN and problems solved by both.

TTT only
LPN only

Both LPN & TTT0

5

10

15

20

25

30

35

Nu
m

be
r o

f t
as

ks

Figure 10: Bar Chart showing Problems Uniquely solved by LPN and TTT and tasks solved when at
least one solves the problem

If we measure the accuracy when either LPN or TTT solves an ARC puzzle. We achieve a combined
score of 22%. We also show 3 examples of problems solved only by LPN and 3 examples only solved
by Test-Time Training to understand the differences between the problems each method solved.

26



Figure 11: LPN Example 1

27



Figure 12: LPN Example 2

28



Figure 13: LPN Example 3

29



Figure 14: TTT Example 1

30



Figure 15: TTT Example 2

31



Figure 16: TTT Example 3

32



B.10 Investigating Composition

To evaluate the generalization capabilities of LPN to novel compositions of learned primitives,
we construct simple test cases by combining two distinct operations from the training set that the
model has only encountered separately during training. This setup probes whether LPN can flexibly
integrate these primitives to produce the desired composite effect, a key indicator of its ability to
handle systematic generalization beyond rote memorization.

Figure 17: Testing LPN on the composition of two operations previously only seen separately.

In Figure 17, we examine a specific instance where the first operation extracts the pattern within
a bounding box, while the second replaces all black pixels with pink. The direct output of the

33



encoder reveals overfitting to isolated training patterns: it correctly extracts and the pattern within
the bounding box, but fails to convert black pixels to black. However, by performing gradient ascent
in the latent space to refine the encoding, we can mitigate these errors. This optimization aligns the
latent representation more closely with the composite objective, enabling the decoder to accurately
render the full pink conversion across the extracted pattern. This demonstrates LPN’s potential for
compositional reasoning, where latent-space adjustments unlock emergent behaviors not explicitly
trained for.

Figure 18: Testing LPN on the composition of three operations.

In Figure 18, we examine the combination of three primitives: a gravity-type operation, a fill
operation, and the use of a checkerboard pattern for the fill. While LPN can directly predict the

34



gravity and fill components, it overfits to the fill operations seen during training. As a result, even
with a gradient-based search, it is not able to resolve this error and apply the checkerboard pattern
instead.

35



B.11 LPN ARC-AGI Inference Ablations

To dissect the contributions of key components to LPN’s performance on ARC-AGI, we performed
ablations on various test-time inference strategies. These experiments isolate the roles of the program
prior and gradient-based search, using the ARC-AGI evaluation set (out-of-distribution relative to
Re-ARC). We fix the number of sampled latents during inference and vary the search budgets across
{10, 50, 100, 200, 400} steps, evaluating on a single seed.

We compare the following inference strategies:

• Encoder Sampling. Samples multiple latents from the encoder distribution, evaluates
the specification likelihood for each, and selects the highest-scoring one. This assesses
structured gradient-based search against brute-force sampling near the encoder output.

• Gaussian Init + Gradient Search. Employs the core LPN gradient-based search but
initializes from a sample drawn from the Gaussian prior. This isolates the encoder’s
contributions in providing strong initializations and enhancing overall performance.

• Encoder Init + Local Search. Initializes from the encoder output but substitutes gradient
updates with a mutation operator (continuous noise perturbations). This evaluates gradient-
based optimization against unstructured local search, while permitting exploration beyond
the encoder distribution.

• Gaussian Init + Local Search. Pairs prior-based initialization with local search. This
baseline quantifies the joint necessity of encoder-guided initialization and gradient direction.

• Encoder Init + Gradient Search (LPN). The full LPN inference procedure.

Table 11 reports the performance (in %) across these strategies and budgets.

Table 11: Ablation results (%) on ARC-AGI evaluation for inference strategies under varying search
budgets.

Inference Method 10 50 100 200 400
Encoder Sampling 9.12% 10.75% 10.13% 10.50% 10.62%
Gaussian Init + Gradient Search 1.38% 2.75% 5.37% 6.88% 10.75%
Encoder Init + Local Search 8.38% 9.50% 10.37% 10.75% 10.75%
Gaussian Init + Local Search 0.25% 0.25% 0.25% 0.75% 0.25%
Encoder Init + Gradient Search (LPN) 9.10% 13.25% 15.00% 15.50% 15.50%

These results reveal that repeated encoder sampling yields only marginal gains over a single sample
(7.75%), underscoring the limitations of brute-force approaches. The gap between Gaussian Init +
Gradient Search and Encoder Init + Gradient Search emphasizes the encoder’s dual role: seeding
effective starting points for low budgets and amplifying gains at high budgets (e.g., +4.75% at 400
steps). Encoder Init + Local Search matches gradient search at low budgets (10 steps) but plateaus
thereafter, highlighting gradient guidance’s superiority for deeper exploration. Gaussian Init + Local
Search yields near-zero performance, confirming the indispensability of encoder initialization paired
with directed optimization. In aggregate, Encoder Init + Gradient Search (LPN) dominates all
baselines, validating the encoder-informed initialization and gradient-based refinement as pivotal to
LPN’s efficacy on ARC-AGI.

36



C LPN Algorithm

Below we outline two algorithms: first, LPN test-time inference (Algorithm 1) and its mechanism
for performing inductive inference. Second, we provide the full algorithm for LPN during training
(Algorithm 2).

Algorithm 1 LPN Test-Time Inference with Gradient Ascent Latent Optimization

Require: n input-output pairs (xi, yi), a test input xn+1, number of gradient steps K
1: for i = 1, . . . , n do ▷ Can be done in parallel
2: Sample zi ∼ qϕ(z|xi, yi)
3: end for
4: Initialize latent z′ ← 1

n

∑n
i=1 zi

5: for k = 1, . . . ,K do ▷ Perform gradient ascent
6: z′ ← z′ + α · ∇z

∑n
i=1 log pθ(yi|xi, z)|z=z′

7: end for
8: return yn+1 ∼ pθ(y|xn+1, z

′)

Algorithm 2 LPN Training with Gradient Ascent Latent Optimization

Require: Encoder parameters ϕ, decoder parameters θ
1: for t = 1, . . . , num_training_steps do
2: Sample n input-output pairs (xi, yi) from the same program
3: for i = 1, . . . , n do ▷ Can be done in parallel
4: Sample zi ∼ qϕ(z|xi, yi) ▷ Using the reparameterization trick
5: end for
6: for i = 1, . . . , n do ▷ Can be done in parallel
7: z′i ← 1

n−1

∑n
j=1
j ̸=i

zj

8: for k = 1, . . . ,K do ▷ Perform gradient ascent in the latent space
9: z′i ← z′i + α · ∇z

∑n
j=1
j ̸=i

log pθ(yj |xj , z)|z=z′
i
▷ Optional stop-grad on the 2nd term

10: end for
11: Li ← − log pθ(yi|xi, z

′
i) + β ·DKL(qϕ(z|xi, yi) ∥ N (0, I))

12: end for
13: L ← 1

n

∑n
i=1 Li ▷ Total loss for all pairs

14: Update ϕ and θ via gradient descent on L
15: end for

37



D Variational Inference

Latent Program Networks (LPNs), when operated in grad 0 mode, perform a form of variational
inference. Updating the latent representation using gradients from the encoder constitutes semi-
amortized variational inference [Kim et al., 2018, Marino et al., 2018].

In prior work, such as LEAPs Trivedi et al. [2021], it is assumed during training that the full
representation of a program f is observable. In this setting, variational inference on programs can be
conducted using a standard Variational Autoencoder (VAE) restricted to the program space. LEAPs
introduce a form of variational inference via an Execution Evidence Lower Bound (ELBO), where
function reconstruction is based on correctly executing the function for a given input rather than
reconstructing the full program representation. The Execution ELBO is defined as:

Ez∼qϕ(z|f)
[
Ex∼p(x) [log pθ(y = f(x) | x, z)]

]
− KL(qϕ(z|f) ∥ p(z)).

This formulation is advantageous because it enables learning a function that directly executes the
program without requiring explicit reconstruction of the program followed by execution. In LPNs,
this is critical, as the differentiable parameterization of the function executor allows backpropagation
through the executor to perform program search in the latent space.

In this work, we assume that the functions generating the underlying input-output pairs are not
fully observable, aligning with real-world scenarios where the data-generating functions are rarely
fully known. Instead, we observe only partial data for each function, represented as a dataset
Xd = {(xi,d, yi,d)}Nd

i=1, where each dataset d corresponds to a set of input-output pairs generated by
a particular unseen function. Across D such datasets, the following objective serves as a practical
approximation to the Execution ELBO:

D∑
d=1

Nd∑
i=1

Ez∼qϕ(z|Xd) [log pθ(yi,d | xi,d, z)]− KL(qϕ(z|Xd) ∥ p(z)), (7)

where D is the number of datasets, each representing input-output pairs from a distinct unseen
function, and Nd is the number of samples in dataset d. However, this standard objective is flawed
because the encoder qϕ(z|Xd) can “cheat” by encoding specific details of the pair (xi,d, yi,d) it needs
to reconstruct, leading to memorization rather than capturing the general function f . To address this,
we propose the Leave-One-Out (LOO) objective:

D∑
d=1

Nd∑
i=1

Ez∼qϕ(z|X−i,d) [log pθ(yi,d | xi,d, z)]− KL(qϕ(z|Xd) ∥ p(z)), (8)

where X−i,d = Xd \ {(xi,d, yi,d)} denotes the dataset Xd excluding the i-th input-output pair.
This objective prevents memorization by denying the encoder access to (xi,d, yi,d) when producing
the latent representation z used for its reconstruction. Consequently, qϕ must infer the underlying
function from the remaining data X−i,d, making the LOO objective a better functional approximation
of the Execution ELBO’s intent by directly promoting generalization. Training optimizes the encoder
qϕ(z|Xd) and decoder pθ(y | x, z) across multiple datasets, resulting in an amortized inference
model qϕ that efficiently proposes an approximate posterior for any given dataset Xd.

For optimal performance on a specific test dataset Xtest, we employ semi-amortized variational
inference. First, the trained amortized encoder qϕ(z|Xtest) rapidly generates an initial latent rep-
resentation z0. Then, with the encoder parameters ϕ and decoder parameters θ fixed, we perform
instance-specific optimization starting from z0 to find a refined latent representation z∗. This is
achieved by directly maximizing the ELBO via latent z. This combination of an efficient amortized
proposal and instance-specific ELBO refinement yields a superior latent program representation z∗

tailored to the test problem. This procedure, known as semi-amortized variational inference, balances
computational efficiency with high-quality inference.

38



E Hyperparameters

In this section, we outline our approach to hyperparameter search and provide full documentation of
all the hyperparameters used in all reported experiments.

Hyperparameter Search To ensure a fair comparison between LPN and in-context learning, which
share the same core architecture for embedding inputs and generating outputs, we kept all architectural
parameters identical across methods. We conducted hyperparameter testing to determine whether to
use rotational embeddings. We performed testing by repeating the decoder validation experiment
with and without rotational embeddings. Rotational embeddings improved performance across all
individual tasks and so was selected to be used in both the encoder and decoder of LPN.

For the ARC-AGI results, we performed a hyperparameter search over the learning rate for test time
adaptation for both test-time tuning and LPN. Since these methods operate in different spaces, they
are unlikely to require similar parameters, making it fairer to tune this parameter independently for
each baseline. We validated on a held-out test set of unseen problems from the RE-ARC dataset. We
searched over learning rates ranging from 10−1 to 10−7. Performance was evaluated by measuring
average accuracy across five FLOP measures (ranging from 2E+11 to 2E+15). For the baseline pattern
task in Table 1 we choose a learning rate of 0.1 without performing hyperparameter optimisation as
the experiment is simply to understand the behavior of LPN and not to optimize performance. For
pattern OOD task we perform grid search for LPN and TTT over a dataset of from the strongly OOD
task for 10 gradient steps, filtering out learning rates that do not decrease the test-time loss by at least
1.0%. We use these learning rates for the scaling specification size ablation also.

Validating the Decoder In section B.3, we train an LPN model on each of the re-arc generators
corresponding to the first 5 tasks from the training set. For each task, we train the model for 10k
gradient steps with a batch size of 128 and 4 pairs per specification, resulting in 5,120,000 input-
output pairs. We gather all hyperparameters in table 12, common to all the tasks except 045e512c
which had 4 encoder layers, 8 heads, 32 embedding dimensions per head, an MLP factor of 2.0, for a
total of 8.7M parameters.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 0
Number of Heads 6
Embedding Dimension per Head 16
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 3
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 829k
Training Steps 10k
Batch Size 128
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 30, 30

Table 12: Hyperparameters for the experiments from section B.3, validating the decoder.

39



Pattern Task In section 5.2, we train an LPN model on a 10x10 task with 4x4 patterns. We train
each method (mean, gradient ascent, etc) for a total of 20k steps with a batch size of 128 and 4 pairs
per specification, resulting in a total of 10M input-output pairs.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 973k
Training Steps 20k
Batch Size 128
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 10, 10

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 1e-1
Optimizer Adam

Table 13: Hyperparameters for the experiments from section 5.2, i.e. the pattern task.

40



Analyzing the Latent Space In section B.4, we train a small LPN model on a reduced version of the
Pattern task with grids of size 4x4 and patterns of size 2x2. We used the following hyperparameters
for training in table 14.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 12
MLP Dimension Factor 4.0
Latent Dimension 2
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 12
MLP Dimension Factor 4.0
RoPE False

Training

Number of Parameters 1M
Training Steps 200k
Batch Size 128
Prior KL Coeff 1e-3
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 4, 4

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 1e-1
Optimizer Adam

Table 14: Hyperparameters for the experiment in section B.4, i.e. analyzing the latent space.

41



Out-Of-Distribution In section 5.5, we train LPN models similar to those above in the Pattern task
and evaluate them on different distributions. We gather hyperparameters used for training in table 15.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 4
Number of Heads 8
Embedding Dimension per Head 8
MLP Dimension Factor 2.0
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 8
Embedding Dimension per Head 4
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 1M
Training Steps 100k
Batch Size 128
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 10, 10

Testing

TTT Learning Rate 1e-5
LPN Learning Rate 1e-1
Optimizer Adam

Table 15: Hyperparameters for the experiments from section 5.5, i.e. the study of out-of-distribution
performance of LPN on the Pattern task.

42



ARC-AGI In table 16, we finally present the hyperparameters used for experiments on ARC-AGI
(section 5.7).

Component Hyperparameter Value

Encoder Transformer

Number of Layers 8
Number of Heads 8
Embedding Dimension per Head 64
MLP Dimension Factor 4.0
Latent Dimension 256
RoPE True
RoPE max freq 10

Decoder Transformer

Number of Layers 6
Number of Heads 8
Embedding Dimension per Head 64
MLP Dimension Factor 4.0
RoPE True
RoPE max freq 10

Training

Number of Parameters 178M
Training Steps 100k
Batch Size 256
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 3e-4
Number of Rows & Columns 30, 30

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 5e-2
Optimizer Adam

Table 16: Hyperparameters for the experiment in section 5.7, i.e. training LPN to solve the ARC-AGI
benchmark.

43



F Additional Charts

F.1 Latent Program Embeddings

Figure 19: T-SNE visualization of the latent space of input-output pairs sampled from the re-arc
generators. We see strong evidence that the latent embeddings encode information about programs
with significant clustering in the latent space for the same programs across different input output
pairs.

44



F.2 Decoder Gradient Field

Figure 20 visualizes the likelihood landscape of decoding the correct output conditioned on the given
input for a single pattern task, while varying the latent input. The gradient contours overlaid on the
plot illustrate the optimization dynamics when performing gradient-based updates in this space. The
trajectories depict how gradient ascent seeks to maximize the decoding likelihood, revealing the
structure of the landscape. Certain regions form basins of attraction that lead to valid solutions, while
others correspond to local optima where the likelihood of decoding the correct output stagnates. This
visualization highlights both the feasibility of optimizing the latent representation and the potential
challenges of escaping suboptimal regions in the latent space.

35

30

25

20

15

10

5

Figure 20: Visualization of the likelihood landscape for decoding the correct output conditioned on
the input, as a function of the latent space.

45



G Architecture

In all our experiments, programs are defined in the input-output space of ARC-AGI, i.e., 2D grids
whose cells can take 10 different values and have shapes (n,m) with n,m ∈ [1, 30]. We implement
both the encoder and decoder as small transformers [Vaswani et al., 2017] specifically designed for
this benchmark, in contrast to the more general large language models (LLMs) typically used [Wang
et al., 2023].

3x4 3x4

Rows Columns

4x3 4x3

........

Rows Columns Rows ColumnsPadding tokens Padding tokens

Latent
Input Output

Rows Columns Padding tokensPadding tokens

Latent

Input Output

3 4 ... 3 4 ...

..
. 4 3 ... 4 3 ...

Encoder

Decoder
?

Figure 21: LPN architecture for ARC-AGI. Both the encoder and decoder are small transformers that
take flattened padded grids as inputs. The actual number of rows and columns is prefixed to each
sequence.

We model the input and output images as 2D grids, which we pad and flatten in a raster-scan fashion
to form sequences of pixel values, each of size 30× 30 = 900 (see Figure 21). Each grid sequence
is prefixed with shape information, namely two extra values for the number of rows and columns,
resulting in sequences of 902 values. For both the Encoder and Decoder grid positions are encoded
using RoPE [Su et al., 2024]1 for both row and column indices.

G.1 Encoder

The encoder processes both the input and output grids from a given pair and returns a distribution
of inferred program latents underlying the task. Specifically, it outputs the mean and diagonal
covariance of a multivariate normal distribution from which latents can be sampled. Each grid
sequence contains 902 values, and we add an extra CLS token for the output embedding, resulting
in a total sequence length of 1805 for the encoder transformer. The encoder is implemented as a
standard transformer [Vaswani et al., 2017] with pre-layer normalization [Baevski and Auli, 2018,
Xiong et al., 2020] and multi-head attention. To incorporate identify the input from the output we
add an embedding emb(c), c ∈ {0, 1} is the channel index (0 for input, 1 for output). All 1800 color
values (0 to 9), four shape values (1 to 30), and the CLS token are separately embedded into RH

using lookup tables. Padded tokens, determined by the shape values, are masked, and the sequence is
fed into multiple transformer blocks, see Section E for hyperparameter details. In the encoder the
attention mask is non-causal, allowing all non-padded tokens to attend to each other during encoding.
The CLS embedding is passed through a layer normalization and two parallel dense layers to output
the mean and diagonal log-covariance of the multivariate normal distribution over latents. Sampled
program latents have dimension d, which may differ from the embedding dimension H .

1https://github.com/crowsonkb/rope-flax

46

https://github.com/crowsonkb/rope-flax


G.2 Decoder

The decoder takes an input grid and a latent program and autoregressively generates an output grid.
Its design is similar to the encoder, with key differences. First, the flattened sequence is prefixed with
a projection of the latent embedding. Since the decoder generates the output autoregressively, the
attention mask is causal on the output grid portion of the sequence (the second half). The attention
mask also dynamically accounts for padding tokens based on the predicted output shapes. The
sequence embeddings corresponding to the output are extracted and projected to either shape logits
for the first two embeddings or grid logits for the 900 output grid embeddings. Each output token
embedding maps to logits for the next token in a raster-scan fashion. However, due to padding at
each row, the last embedding of each row is mapped to the first token of the next row.

47



H Baselines

H.1 Transductive Baseline

We compare LPN against a transductive baseline that directly conditions on the specification without
explicitly constructing a latent program representation. This approach, similar to Kolev et al. [2020],
Li et al. [2024a], processes the specification by encoding and concatenating each input-output pair
separately.

Encoder: The encoder maps each input-output pair to an encoding vector:

zi = eϕ(xi, yi) ∀i ∈ [1, n] (9)

where eϕ is a neural network parameterized by ϕ that processes individual input-output pairs.

Concatenation: Unlike LPN which searches for a single latent program, the transductive baseline
uses each encoding as a token embedding in the input sequence to the transformer. Specifically, the
encodings are concatenated as:

zcat = [z1; z2; . . . ; zn] (10)
where [; ] denotes sequence concatenation and each zi serves as a token embedding in the transformer’s
input sequence.

Decoder: The transformer decoder processes this sequence of embeddings along with the new input
to generate the output:

ŷn+1 ∼ pθ(y|xn+1, zcat) (11)
where the decoder attends to both the new input xn+1 and the sequence of specification embeddings
zcat.

By concatenating per-pair embeddings, we ensure a joint representation of all input-output pairs,
allowing the decoder to access information from all grids during inference. Processing input-output
pairs independently in the encoder serves as a strong prior for capturing high-level program features,
reducing the risk of learning spurious correlations between pixels of different pairs. In contrast,
methods that process all raw pairs jointly increase the encoder’s computational demands. Additionally,
feeding all raw pairs directly to the decoder would complicate positional encodings, requiring
simultaneous modeling of both within-pair and across-pair positions. Our approach mitigates this
by encoding positional information separately within each pair at the encoder stage. The decoder
then receives each pair’s embedding in a distinct position within the concatenated sequence, enabling
clear differentiation between examples.

H.2 Test-Time Fine-Tuning

We implement the following test-time parameter tuning approach where the transductive model’s
parameters are fine-tuned on the specification itself. Given a specification of n input-output pairs, we
perform gradient updates on the model parameters to better predict each output given its input and
the remaining pairs.

Update Process: Starting from the pre-trained parameters θ and ϕ (decoder and encoder respectively),
for each pair (xi, yi) in the specification, we compute the loss:

Li
TTT(ϕ, θ) = − log pθ(yi|xi, z

−i
cat ) (12)

where z−i
cat = [eϕ(x1, y1); . . . ; eϕ(xi−1, yi−1); eϕ(xi+1, yi+1); . . . ; eϕ(xn, yn)] represents the con-

catenated embeddings of all pairs except the i-th.

We then update the parameters using gradient descent:

ϕ′ = ϕ− α∇ϕ

n∑
i=1

Li
TTT(ϕ, θ) (13)

θ′ = θ − α∇θ

n∑
i=1

Li
TTT(ϕ, θ) (14)

where α is the learning rate for test-time adaptation.

48



Inference: After K steps of parameter updates, we use the tuned parameters ϕ′ and θ′ to make
predictions on new inputs. The prediction process remains the same as the transductive baseline but
uses the adapted parameters:

ŷn+1 ∼ pθ′(y|xn+1, [eϕ′(x1, y1); . . . ; eϕ′(xn, yn)]) (15)

49



I ARC-AGI Approaches Summary

Comparing methodologies on the ARC-AGI benchmark requires careful consideration of the diverse
variables at play. High-performing methods, such as the o3-preview-low model and the ARC-AGI
2024 winners, often differ substantially in their training data, test-time procedures, and computational
assumptions. Our work is specifically designed to control for these variables, aiming to isolate and
understand the dynamics of test-time adaptation strategies rather than to maximize performance
through increased compute or specific methodological biases. To provide a comprehensive overview
and situate our findings within this broader research landscape, we present a summary table outlining
various prominent methodologies. The table details their model sizes, training strategies, test-time
adaptation approaches, and reported performances.

Table 17: Key for Table Column Abbreviations

Shorthand Column Description

Lang. Pre-Train Indicates whether the model underwent large-scale pre-training on a general language
corpus.

ARC-AGI FT Specifies if the model was fine-tuned on the official ARC-AGI training set.
Re-ARC FT Denotes fine-tuning on the Re-ARC dataset, a procedurally generated dataset for

ARC.
ARC Heavy FT Refers to fine-tuning on ARC Heavy, an augmented and more difficult version of the

ARC dataset.
CoT Infer. Shows if the model uses Chain-of-Thought reasoning during inference.
Prog. Infer. Indicates whether the model generates a program or uses a Domain-Specific Lan-

guage (DSL) to solve the task at inference time.
Model Size The number of parameters in the model (e.g., M for million, B for billion).
ARC-AGI Comps. Notes whether the method includes components or strategies specifically designed

for the ARC-AGI benchmark.
ARC-AGI v1 Perf. The reported accuracy on the ARC-AGI evaluation set.

Table 18: Comparison of Methods on ARC-AGI Benchmark (Part 1 of 2): Training and Inference
Strategies

Method Lang.
Pre-Train

ARC-AGI
FT

Re-ARC
FT

ARC Heavy
FT

CoT
Infer.

Prog.
Infer.

o3-preview-low Yes Yes Not public Not public Yes No
ARChitects Yes Yes Yes Yes No No
Grok4 thinking Yes Not public Not public Not public Yes No
Grok 3 mini low Yes Not public Not public Not public Yes No
Qwen3-256b instruct Yes Not public Not public Not public Yes No
GPT4.5 Yes Not public Not public Not public Yes No
Codeit Yes No Yes No No Yes
Mirchandani Yes No No No No No
LPN No No Yes No No No
LPN + Latent Search No No Yes No No No
Inductive Li et al. Yes No Yes Yes No Yes
Transductive Li et al. Yes No Yes Yes No No
Llama 4 Maverick Yes Not public Not public Not public Yes No

50



Table 19: Comparison of Methods on ARC-AGI Benchmark (Part 2 of 2): Model Details and
Performance

Method Model Model
Size

ARC-AGI
Comps.

ARC-AGI
v1 Perf.

o3-preview-low o3-preview-low Not public 75.7%
ARChitects Mistral-NeMo-Minitron-8B-Base 8B [1] 56.0%
Grok4 thinking Grok-4 Not public 66.7%
Grok 3 mini low Grok-3-mini Not public 16.5%
Qwen3-256b instruct Qwen-3-256b 256B 11.0%
GPT4.5 GPT4.5 Not public 10.3%
Codeit CodeT5 220M [2] 14.75%
Mirchandani text-davinci-003 175B 6.75%
LPN Vanilla Transformer 178M 7.75%
LPN + Latent Search Vanilla Transformer 178M 15.5%
Inductive Li et al. Llama3.1-8B-instruct 8B [2] 38.0%
Transductive Li et al. Llama3.1-8B-instruct 8B 43.0%
Llama 4 Maverick Llama 4 Maverick 400B 4.4%

ARC-AGI Comps.: Whether the methodology directly targets the ARC-AGI benchmark with specific
components.

[1] ARC-specific data augmentations for training and test time, ARC-specific tokenization scheme.
[2] ARC-specific DSL.

51



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a limitations section

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

52



Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all hyperparameters and full describe the method and architecture
used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

53



Answer: [Yes]
Justification: Code is provided with scripts for all experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details on datasets used and hyperparameters for all experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Multiple seeds always performed for experiments with 1-sigma error bars
given and stated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

54

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the exact hardware our experiments were trained
on and the expected runtime.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work is foundational research exploring the adaptation at test time in
neural networks with no direct societal impacts from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

55

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

56

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

57



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

58

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background
	Latent Program Network (LPN)
	Latent Program Inference
	Search Methods for Latent Optimization
	Training

	Experiments
	Setup
	Pattern Task
	String Manipulation Task
	Starting test-time search from the encoder
	Adapting Out-Of-Distribution
	Scaling Specification
	ARC-AGI 2024

	Conclusion
	Datasets
	Pattern Task
	ARC-AGI

	Expanded Experiments
	LPN Training Extended
	Adapting Out-Of-Distribution
	Validating the Decoder
	Analyzing the Latent Space
	Scaling Specification Size
	Performance Across Training Sizes

	Measuring Floating Point Operations
	Sequence Ablation
	Dataset

	LPN fine tuning
	ARC-AGI Solution Analysis
	Investigating Composition
	LPN ARC-AGI Inference Ablations

	LPN Algorithm
	Variational Inference
	Hyperparameters
	Additional Charts
	Latent Program Embeddings
	Decoder Gradient Field

	Architecture
	Encoder
	Decoder

	Baselines
	Transductive Baseline
	Test-Time Fine-Tuning

	ARC-AGI Approaches Summary

