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ABSTRACT

As advancements in Large Language Models (LLMs) continue to accelerate, an
increasing number of researchers are exploring the potential of these models to
assist in everyday tasks. Despite their remarkable achievements in various down-
stream applications, several challenges must be addressed. This paper delves into
applying LLMs in coding tasks, such as ChatGPT and LLama. Initial observa-
tions suggest that directly employing these LLMs does not yield optimal results.
However, we have identified that LLMs demonstrate enhanced performance when
given appropriate feedback. This includes providing information on the accuracy
of the code generated, supplying test cases relevant to the task, and indicating the
correct or incorrect outputs for these test cases. Furthermore, we have developed
an innovative architecture miming human debugging. This approach supplies lo-
cal variable information to the LLM while executing the generated code. Our
architecture facilitates providing feedback to the LLM and simulates the human
debugging experience, thereby significantly improving the LLM’s code generation
capabilities. Utilizing our proposed architecture, our model surpasses the current
benchmarks of state-of-the-art models in the MBPP and Humaneval datasets. We
also present comprehensive analyses and ablation studies to substantiate the effi-
cacy of our methods. These findings open new avenues for enhancing the utility
of LLMs in coding tasks, offering a more interactive and practical approach to
leveraging these advanced technologies.

1 INTRODUCTION

As Large Language Models (LLMs) continue to advance, their integration into various aspects of
daily work has become increasingly prevalent. For instance, LLMs have been explored in the health-
care sector to offer insightful analyses of health-related data (Cascella et al. (2023)). Their applica-
tion in education is also being researched to enhance learning and teaching processes. While these
efforts mark significant strides in applying LLMs to improve daily life, their potential applications
still need to be fully realized.

One area of recent focus is the use of LLMs in programming, specifically in code writing, as in-
dicated in LEVER (Ni et al. (2023)). However, employing LLMs like ChatGPT for direct coding
tasks often yields suboptimal results. A notable challenge is the correction of inaccuracies in the
code generated by these models. Several methods have been attempted to address this issue. For
example, LEVER (Ni et al. (2023)) generates multiple code variations and employs an executor to
select the most effective solution. Meanwhile, LATS (Zhou et al. (2023)) introduces a combination
of tree search and an evaluation module to ascertain the most suitable code output. Despite these
innovations, a critical gap still needs to be in rectifying errors in the code produced by LLMs.

To understand why LLM perform poor in code generation, we used GPT-3.5-turbo to generate test
cases for the MBPP dataset and identified several common issues contributing to poor performance.
First, incorrect function and variable names: the MBPP dataset typically provides a problem de-
scription like ”Write a function to find the longest chain which can be formed from the given set of
pairs,” but LLMs cannot accurately deduce the true function and variable names required for the test
cases. Second, incorrect data structures: for example, given a problem like ”Write a function to find
the similar elements from the given two tuple lists,” the correct solution may need a tuple, but LLMs
might return a set, which fails the test cases. Finally, logic errors in the generated code: these are
particularly challenging to address and are a common issue with LLM-generated solutions.
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def find_Rotations(str):
    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break
    return rotation

It’s too difficult ! def find_Rotations(str):
    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break
    return rotation

I can make it !

Your code has 
bugs, please read it 
and fix the bugs

Your code has 
bugs, I can give 
you the test cases 
and bug analysis, 
please fix it

Figure 1: When there are bugs in the code. Only tell a human that there are bugs; it’s difficult for
humans to fix them. When providing test cases and bug analysis, it’s easier for humans to fix the
bug

To solve this problem, we thought about how humans debug code. In human programming prac-
tices, debugging is an iterative process involving not only identifying that an error exists but also
understanding where and why it occurs by analyzing intermediate variables and logic flow during
code execution. This detailed feedback is crucial for correcting code and improving its accuracy.

Motivated by this observation, we propose a novel architecture that simulates the human debugging
process within LLMs. Our approach provides detailed feedback to the LLM, including specific
bug locations, logical discrepancies, and the state of intermediate variables during code execution.
By doing so, we enable the LLM to iteratively refine and correct its code generation, significantly
enhancing its ability to produce accurate and reliable code.

Our key contributions can be summarized as follows:

• Identification of Limitations: We identify the limitations of existing LLM-based code
generation methods in correcting code inaccuracies and propose a novel method that emu-
lates the human debugging process.

• Human-Like Debugging Architecture: We develop an innovative architecture that sup-
plies detailed feedback to the LLM, including intermediate variable states, mirroring how
human programmers debug code by analyzing execution flow and logic errors.

• State-of-the-Art Performance: We demonstrate through extensive experiments on the
MBPP and HumanEval datasets that our method achieves state-of-the-art performance,
surpassing existing models by up to 7% in Pass@1 accuracy. Our ablation studies further
validate the effectiveness of our approach.

By integrating human-like debugging processes into LLM code generation, we offer a new, inter-
active method that enhances the practical utility of LLMs in coding tasks, paving the way for more
accurate and efficient code generation in real-world applications.

2 RELATED WORKS

2.1 ADVANCEMENTS IN LARGE LANGUAGE MODELS (LLM)

Recent advancements in Large Language Models (LLM) have been remarkable, driven by the ex-
pansion of training data and substantial computational resources. Pioneering models such as BERT
(Devlin et al. (2018)) and GPT-2 (Radford et al. (2019)) laid the groundwork in this domain. A
significant milestone was the introduction of GPT-3 in June 2020, which, with its 175 billion pa-
rameters, began to significantly impact everyday life. This sparked a trend where numerous enti-
ties, including companies and researchers, started developing their own LLMs. Examples include
LLaMA (Touvron et al. (2023)), Chinchilla (Hoffmann et al. (2022)), ERNIE (Wang et al. (2021)),
and BLOOM (Workshop et al. (2022)). These models have shown exceptional performance in vari-
ous applications such as chatting, question-answering, and code generation. Moreover, models like
InstructGPT (Ouyang et al. (2022)) have enhanced human-model interaction by aligning LLMs with
human intent, allowing them to address a broad spectrum of queries. The emergence of open-source
LLMs such as Vicuna (Peng et al. (2023)) and Alpaca (Taori et al. (2023)) based on LLaMA further
demonstrates the potential of these models.
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Evaluation: Unit test failed : arrest find_Rotations("ab")=2

Debug: When the test case is ab,  the ground truth is 2, 

your code output is 0, the local variables tracks are 'str': 

'ab', 'n': 2, 'rotation': 0, 'i’: [0,1]}  

Reasoning: the `rotation` variable 

should be initialized as the length of the 

string `n` instead of 0. This ensures that 

if no rotations are found, the function 

will return the length of the string.

Generated Code:
def find_Rotations(str):

    n = len(str)

    rotation = 0

    

for i in range(1, n):

        if str == str[i:] + str[:i]:

            rotation = i

            break

    return rotation

LLM

Figure 2: The pipeline of our model. We start with a task and use LLM to generate an initial code;
then, we use our code executor to evaluate the generated code using the test cases. If there are
bugs in the generated code, we use our debug module to track the intermediate variables and other
information. Based on the collected information, our architecture will try to provide a reason and
solution to correct the bugs. Then the LLM can start the next iteraion.

2.2 EMPLOYING LLM AS AN AGENT

As LLMs have evolved, efforts have been made to utilize them as agents in everyday scenarios.
In this context, an ’agent’ refers to an entity where we input information such as objectives, envi-
ronment, and feedback, allowing the LLM to assist in decision-making. Starting with the concept
of Chain-of-Thought (Wei et al. (2022)) and Tree-of-Thought (Yao et al. (2023)), researchers have
been teaching LLMs to approach goals incrementally, similar to human processes. In ReAct (Yao
et al. (2022)), there is a shift towards guiding LLMs to generate reasons in addition to actions. Addi-
tionally, recent studies (Chang et al. (2023),Hu et al. (2023)) are exploring the use of reinforcement
learning to provide feedback to LLMs, enhancing their performance. The application of LLMs as
agents spans numerous fields. For instance, they have been used in gaming (Qiao et al. (2023),Ak-
oury et al. (2023)), customer service (Cai et al. (2023), Soni (2023)), and code generation (Ni et al.
(2023), Zhou et al. (2023)). The expansion of LLMs continues to open up new possibilities for their
application in various domains.

2.3 CODE GENERATION

The task of generating code based on given tasks has a long history, with earlier methods being
predominantly rule-based, as seen in works done by Woods (Woods (1973)) in 1973. However,
with the advent of deep learning, there has been a shift towards leveraging these techniques for
code generation, exemplified by Xiao (Xiao et al. (2016)). Recently, LLMs have shown remarkable
efficacy in this field, leading to numerous innovations aimed at refining LLM-generated outputs.
Some recent works (Ni et al. (2023), Zhou et al. (2023)) have experimented with adding an executor
to run the generated code and select the best option from multiple outputs. Concurrently, approaches
like ReAct (Yao et al. (2022)) focus on providing appropriate feedback based on the generated code
and its test cases. Despite these advancements, LLMs face challenges correcting errors in their
generated code. In our research, we simulate the human debugging process and have achieved
significant progress compared to prior methodologies.

3 ARCHITECTURE

3.1 ARCHITECTURE OVERVIEW

In our study, we aim to replicate the human approach to identifying and rectifying coding errors.
Typically, a programmer detects and corrects bugs by isolating a failing test case, running the code
line by line to find the source of the error, and revising the problematic section until it passes all
tests. Drawing from discussions with fellow programmers and personal experience, this multi-step
debugging process informs our research.

We use a Large Language Model (LLM) to mimic this human debugging process. Recognizing the
various stages of human code writing, we divided the task into multiple phases, each simulated by
the LLM. The whole architecture can be seen in Fig2 The first phase involves the code generator,
which replicates the initial code writing. The second phase introduces a module that simulates
human testing and evaluation of the code’s correctness through a code executor.

Given the extensive use of test cases in practical applications, we designed a pseudo test case gener-
ator to provide numerous test scenarios for code assessment. Our architecture’s fourth component is
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the debug module, which examines intermediate variables during execution to locate errors, similar
to how a human would. The fifth phase involves bug correction. Once a bug is identified through
a test case, our feedback module channels this information back to the code generator to facilitate
code revision, mirroring the iterative debugging process humans use.

In summary, our architecture includes five key components: an LLM as the main code generator, a
pseudo test case generator for diverse test scenarios, an executor to validate the generated code and
monitor intermediate variables, a debug module for error analysis, and a feedback module that uses
execution results to guide code regeneration. This holistic approach closely mimics the iterative
process of human code debugging and refinement.

3.2 CODE GENERATOR

In the human coding process, when a programmer is presented with a specific task—such as ”Write
a function to calculate the volume of a cube given its side length”—they begin by understanding
the problem and planning how to implement a solution. They might start by defining the function
signature, choosing appropriate function and parameter names, and writing an initial version of the
code that implements the basic logic.

Similarly, in our architecture, the code generation process starts with inputting the coding task into
the LLM, which acts as the programmer. We provide the LLM with predefined function names and
input parameters to mimic how a programmer would set up their code structure, reducing simple
errors like incorrect function names or mismatched parameters. The LLM then generates an initial
code template that includes the function definition and preliminary implementation.

This template is analogous to a human programmer’s first draft of code. At this stage, while we
obtain a functional code output, its correctness is not yet assured, nor can we identify potential
bugs within the code. Just as a human programmer would proceed to test and refine their code, we
rely on the subsequent components of our architecture to validate and improve the generated code.
This mirrors the initial step in human coding, where the programmer writes code based on their
understanding before entering the testing and debugging phases.

3.3 CODE EXECUTOR

In the human coding process, after writing the initial code, a programmer typically runs the code
to test its functionality. They execute the code with various test cases to see if it produces the
expected results. Importantly, when errors occur, programmers don’t just look at the final output;
they also examine the intermediate states of the program—such as variable values at different points
in execution—to identify where the code is deviating from expected behavior.

Our architecture simulates this aspect of human debugging through the code executor component.
While previous methodologies may only check for correctness of the output, our executor not
only validates whether the generated code produces the correct results but also meticulously tracks
changes in intermediate variables during execution. This is akin to how a programmer might use
debugging tools or insert print statements to monitor variable states.

Specifically, we implement mechanisms within the executor to record the dynamics of intermediate
variables throughout the code execution process. Upon completion of the test cases, the executor first
evaluates if the generated code satisfies all tests. If the code passes, it is deemed correct. If not, the
executor compiles a comprehensive report—including the failed test cases, their expected outputs,
the actual outputs from the generated code, and the state of intermediate variables. This detailed
information mirrors what a human programmer would observe and analyze when debugging their
code, providing valuable insights for the next debugging steps.

3.4 PSEUDO TEST CASE GENERATOR

In human coding practices, programmers often create their own test cases beyond the examples
provided, especially when they anticipate edge cases or wish to thoroughly validate their code. This
involves thinking critically about different input scenarios that could potentially cause the code to
fail, such as boundary values, unusual inputs, or invalid data.
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Our architecture emulates this aspect of human debugging through the pseudo test case generator.
Recognizing that standard datasets may lack sufficient test cases to fully challenge the code, we use
an LLM to generate additional, diverse test scenarios. Just as a programmer might devise various
inputs to test their code’s robustness, the LLM generates a range of test cases that may include edge
cases or uncommon inputs.

While these LLM-generated test cases may not all be perfect, they serve a crucial role in simulating
the human approach to uncover hidden bugs. By incorporating this pseudo-test case generator, we
significantly enhance the robustness of our testing process. We execute these test cases using the
code produced by our architecture, and any failures encountered during these tests are meticulously
recorded. This approach mirrors the comprehensive testing methodology a human programmer
would employ to ensure the reliability and correctness of their code.

3.5 DEBUG MODULE

In the human debugging process, when a programmer’s code does not perform as expected, they
analyze the failed test cases to understand why the code is not working correctly. This involves
checking whether the test cases themselves are valid and then examining the code to identify logical
errors or incorrect assumptions. Programmers often inspect variable values at different points in
execution, consider alternative code paths, and hypothesize about the root causes of the errors.

Our architecture’s debug module simulates this critical step of human debugging. When the code
executor reports failures, the debug module uses an LLM to analyze the detailed information col-
lected—including the failed test cases, expected and actual outputs, and intermediate variable states.
The first objective is to verify the validity of the test cases, ensuring that any potential errors in the
pseudo-test cases are not misleading the debugging process.

Once the test cases are confirmed to be correct, the LLM delves into the code itself, identifying
specific sections that may contain bugs. It offers explanations and possible solutions, much like
a human programmer would reason about why the code is failing under certain conditions. This
involves examining the logic flow, considering the values of variables at different execution points,
and pinpointing where the code diverges from expected behavior. By simulating this analytical
process, the debug module helps guide the LLM in understanding and correcting the underlying
issues in the code.

3.6 FEEDBACK MODULE

In human programming, after identifying potential errors and their causes, a programmer consoli-
dates their findings and uses this insight to modify and improve their code. This iterative process
involves applying the knowledge gained from debugging to refine the code, testing the new version,
and repeating this cycle until the code functions correctly. Programmers also recognize when they
are not making progress and may decide to approach the problem differently to avoid endless cycles
of unproductive changes.

Our feedback module emulates this crucial step in the human debugging process. After the debug
module analyzes the errors and suggests possible fixes, the feedback module compiles this informa-
tion and presents it back to the code generator. This includes detailed explanations of the errors, the
reasoning behind them, and specific suggestions for code modifications.

Upon receiving this feedback, the code generator embarks on an iterative process of refining and
adjusting the code. It strives to produce a version of the code that addresses the identified issues and
aligns with the expected outcomes of the test cases. To ensure this iterative process remains efficient
and does not get trapped in perpetual cycles of regeneration, we establish a cap on the number
of attempts allowed for code correction. This limit is crucial for maintaining a balance between
thoroughness and efficiency in the debugging process.

By incorporating this cyclical process of feedback and refinement, our architecture mirrors the way
human programmers learn from their mistakes, apply critical thinking, and iteratively improve their
code until it meets the desired specifications. This balanced methodology ensures that our architec-
ture debugs efficiently and effectively, closely emulating human cognitive processes in coding and
debugging.
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4 EXPERIMENTS

4.1 DATASET

In our experiments, we use two different datasets:
MBPP dataset: The MBPP dataset contains basic Python programming problems stated in natural
language. The dataset contains 974 problems. For every problem, the dataset contains three different
test cases. Following the previous methods(Ni et al. (2023)), we use the first test cases as part of the
prompt to generate the template containing the function signatures. We use all three test cases during
the test, and only when the generated code passes all three test cases do we think the generated code
is correct. If the generated code fails in any test case, we will think the generated code is wrong and
have bugs.

HumanEval dataset: The HumanEval dataset provides 164 comment descriptions of functions
paired with a canonical implementation of each function and several input–output pairs that the
function should pass. We follow the same evaluation method as the MBPP dataset.

4.2 BASELINE AND EVALUATION METRICS

Evaluation Metrics We use Pass@k as our evaluation metrics which is the same as previous works
(Zhou et al. (2023)Wang et al. (2023)Shinn et al. (2023))

Baseline We compare our methods with several different architecture including Chain-of-Thought
(Wei et al. (2022)), ReAct (Yao et al. (2022)), etc. To better understand the effectiveness of our
methods, we use different Large Language Models, including GPT-3.5-turbo and GPT-4 etc., as the
LLM to test our method and other methods.

method HumanEval MBPP

LLMs(zero shot prompting)

AlphaCode Li et al. (2022) 17.1 -
Incoder Fried et al. (2022) 15.2 17.6
CodeX Brown et al. (2020) 47.0 58.1

PalmCoder Chowdhery et al. (2023) 43.9 32.3
StarCoder Li et al. (2023) 33.6 52.7

Llama-70B Touvron et al. (2023) 30.5 45.4
Code Llama-7B Touvron et al. (2023) 33.5 41.4
GPT-3.5-turbo Achiam et al. (2023) 56.4 52.6

Claude-instance-1 31.1 26.9
GPT-4-turbo Achiam et al. (2023) 58.6 64.8

GPT-4 Achiam et al. (2023) 66.1 69.3

LLM-based optimisation approaches

With GPT-3.5-turbo

CoT Wei et al. (2022) 46.9 54.8
ReAct Yao et al. (2022) 56.9 67.0

Reflexion Shinn et al. (2023) 68.1 70.0
ToT Yao et al. (2023) 54.4 65.8
RAP Hao et al. (2023) 63.1 71.4

Self-Edit Zhang et al. (2023) 62.2 56.4
Self-Planing Jiang et al. (2023) 65.2 58.6

Self-debugging Chen et al. (2023) 61.6 60.1
INTERVENOR Wang et al. (2023) 75.6 69.8

LATS Zhou et al. (2023) 83.8 81.1
AgentCoder Huang et al. (2023) 79.9 89.9

Ours 88.3 90.7

With GPT-4

Reflexion Shinn et al. (2023) 91.0 77.1
Self-debugging Chen et al. (2023) - 80.6

MetaGPT Hong et al. (2023) 85.9 87.7
LATS Zhou et al. (2023) 94.4 -

AgentCoder Huang et al. (2023) 96.3 91.8
Ours 97.2 93.2

With StarCoder Ours 64.2 69.8
With Claude-instance-1 Ours 68.2 79.4

With PalmCoder Ours 66.7 76.4
With Code Llama-7B Ours 70.8 82.1

With GPT-4-turbo Ours 90.4 92.7

Table 1: Quantitative results of our proposed architecture in HumanEval and MBPP dataset, the best
results are highlighted in bold.
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4.3 COMPARISON WITH STATE-OF-THE-ARTS

This section compares our method with several other methods using different LLMs. In table1, we
show our result compared with other methods in the MBPP dataset and the HumanEval dataset, and
our method achieves State-of-the-art in both datasets.

4.4 ABLATION STUDIES

In this section, all experiments are done using GPT-3.5-turbo and tested on the HumanEval dataset.

4.4.1 INFLUENCE OF DIFFERENT LEVEL FEEDBACK

Table 2: Ablation study for different level feedback. The
result will improve with more feedback.

True/False Instance-wise True/False Instance wise Feedback Intermediate Variables Pass@1
% % % % 56.4
! % % % 65.4
! ! % % 76.4
! ! ! % 83.5
! ! ! ! 88.3

In this part of our study, we eval-
uate how varying degrees of feed-
back provided by our feedback mod-
ule affect its performance. This mod-
ule is capable of delivering feedback
at multiple levels, such as assessing
the code’s correctness, analyzing spe-
cific test cases, and examining the in-
termediate variables produced during
code execution. As illustrated in table
2 of our report, it becomes evident that the LLM’s ability to identify bugs and enhance the overall
quality of the final output is significantly improved with more comprehensive feedback.
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Figure 3: Ablation Study for iteration
times. With the increase in iteration
times, the result will increase and re-
main similar. We also compare the
influence of iteration in Relexion and
LATS. Notice that in the first several
iterations, our method have significant
improvement compared to Reflexion.

To elucidate the impact of different feedback levels, we
offer some illustrative examples. At the most basic level,
feedback might simply indicate whether the code is cor-
rect or not, with a prompt like ”Your code is wrong.”
Moving to a more detailed level, instance-wise true/false
feedback provides specifics about the test case where the
code fails, for example, ”Your code is wrong when the
test case is . . . ”. Going a step further, instance-wise feed-
back includes details about the output, such as ”Your code
is wrong, when the test case is . . . , your code output is
. . . , the right output is . . . ”. The most detailed level
involves feedback on intermediate variables, framed as
”Your code is wrong, when the test case is . . . , your code
output is . . . , the right output is . . . When your code is
running, the intermediate variables are . . . ”.

This trend mirrors the human approach to debugging. Just
as a programmer equipped with more information can
more easily locate and rectify bugs in the code, the LLM’s
performance in identifying and correcting errors is sim-
ilarly enhanced with richer feedback. In contrast, lim-
ited information can make the debugging process more
challenging and less efficient. Our findings reinforce the
notion that the depth and detail of feedback are crucial
in effectively guiding both human and machine learning
processes in code debugging.

4.4.2 INFLUENCE OF THE MAX ITERATION NUMBER

After receiving feedback, our code generator will generate a new code. However, we cannot guaran-
tee that our method will always provide a correct code. Hence, we must set a max iteration number
to avoid our method being stuck in a loop. As shown in Figure3, we can see that with the number
of max iterations increasing, the result will first increase and then remain the same, which indicates
that for some challenging problems, it’s difficult for LLM to generate a correct code. But for some
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median difficulty code tasks, giving LLM several chances will help it generate the right code. We
also compare the performance of LATS and Reflexion when the iteration numbers increase.

As shown in Fig3, LATS and our model will have an obvious performance improvement in the
first several iterations, while the Reflection model does not have a very obvious improvement in the
first several iterations. Our analysis of this phenomenon is that LATS and our method will provide
high-level explainable feedback rather than low-level implicit feedback. The high-level feedback
will help the code generator better understand why the previously code-generated code is wrong and
help it better correct its bugs.

4.4.3 INFLUENCE OF THE TEMPERATURE

In this part of our research, we delve into how varying the temperature setting in a Large Language
Model (LLM) impacts its code generation capabilities. The concept of ’temperature’ in the context
of LLMs relates to the level of randomness or unpredictability in the generated text. A lower tem-
perature setting results in outputs that are more focused, coherent, and conservative. This means the
model tends to produce safer, more predictable text. On the other hand, a higher temperature setting
leads to outputs that are more creative and diverse, but potentially less coherent, as the model takes
more risks in its text generation.
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Figure 4: Ablation Study for temper-
ature. Higher temperatures will bring
more randomness and hurt the perfor-
mance of the code generation. Low
temperatures will have less creativity
and make it difficult to correct the bugs.
There is an optimal temperature range
where the LLM strikes a balance be-
tween creativity and coherence

Our investigations, as illustrated in Figure4, reveal a no-
table trend: the performance of code generation initially
improves with an increase in temperature but eventually
starts to decline as the temperature continues to rise. We
hypothesize that this phenomenon occurs due to a balance
between creativity and coherence. At very low tempera-
tures, the generated code tends to lack creativity. This
conservative approach might limit the model’s ability to
effectively address and rectify the bugs present in the
original code. Conversely, at extremely high tempera-
tures, the code produced by the model becomes overly
random. This increased randomness can lead to the gen-
eration of code that is not only less coherent but also rid-
dled with an excess of new bugs.

Therefore, there seems to be an optimal temperature
range where the LLM strikes a balance between creativity
and coherence, enhancing its performance in code gener-
ation. This sweet spot allows the model to be sufficiently
innovative to tackle complex coding tasks and fix bugs,
while still maintaining a level of predictability and struc-
ture that prevents the introduction of too many new er-
rors. Understanding this balance is crucial for fine-tuning
LLMs in code generation tasks, as it can significantly impact the efficiency and reliability of the
output.

4.5 USING OUR METHOD TO DEBUG CODE

In this part, we explore an experimental approach distinct from previous methods. While earlier
methods concentrated on creating accurate code in response to a coding task, and our methodology
has demonstrated superior accuracy, our architecture’s capabilities extend beyond mere code gen-
eration. Inspired by human debugging processes, we were intrigued to discover if our architecture
could also effectively debug existing erroneous code.

We made specific alterations to adapt our architecture for debugging rather than code generation.
Our architecture comprises five components, but we omitted the code generator in the initial iteration
for the debugging task. Since we already had code containing bugs, generating new code was
unnecessary. The other components, however, remained unchanged from their roles in the code
generation process.
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The method for acquiring flawed code involved using the HumanEval and MBPP datasets. We em-
ployed various Large Language Models (LLMs), including GPT-3.5, GPT-4, and LLama, to create
code straightforwardly without employing special techniques. The generated code was then tested
using the provided test cases, and we collected all code samples that failed these tests. Due to the ab-
sence of specialized strategies in code creation, the errors in these samples varied widely, including
incorrect function names, input values, logical errors.
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Figure 5: Result of the Accuracy af-
ter debugging by our architecture. With
more feedback, the accuracy will be
higher after debugging. This is intuitive,
just like humans, provided more infor-
mation will help humans better locate
and correct the bugs.

In the debugging phase, our code executor gathered more
comprehensive information than in its previous use to ac-
count for the diverse nature of the bugs. This information
included specifics like TypeError and AttributeError. The
debug module, therefore, had a broader scope of errors to
address and correct. Once these initial errors were recti-
fied, the module shifted to identifying and fixing any log-
ical flaws in the code, using the test cases as a guide, akin
to the process in our code generation experiments.

Post-debugging, the original flawed code and the feed-
back from our debugging process were fed back to the
code generator. This step was crucial in generating a cor-
rected version of the code based on the erroneous version
and the feedback provided. We then evaluated this newly
generated code against all test cases to determine its ac-
curacy. Through this comprehensive process, we aimed
not only to identify but also to correct a wide range of
coding errors, thereby evaluating the effectiveness of our
architecture in a debugging context, an area previously
unexplored in our research.

To provide a full understanding of the effectiveness of our
different levels of feedback, we experimented with differ-
ent levels of feedback, which have similar settings in our first ablation study. The result can be seen
in Fig5

5 CONCLUSION

This paper presents a novel architecture that enhances code generation and debugging using Large
Language Models (LLMs) by explicitly simulating the human debugging process. Our approach
addresses key limitations in current LLM applications, particularly in identifying and fixing cod-
ing errors. The architecture’s essential components—the code generator, advanced code executor,
pseudo test case generator, and innovative feedback module—collaboratively mirror the step-by-step
methods a human programmer employs during debugging. This emulation significantly improves
the accuracy and efficiency of LLM-generated code.

The advanced code executor goes beyond merely checking code correctness; it meticulously tracks
changes in intermediate variables during execution, providing detailed feedback akin to a program-
mer’s observational insights. The pseudo test case generator augments standard datasets like MBPP
and HumanEval by creating diverse and comprehensive test scenarios, enhancing the robustness and
depth of the debugging process.

Crucially, the debug module identifies error sources in the generated code or test cases, offering
detailed insights and potential solutions, much like a human programmer diagnosing and resolving
issues. This comprehensive and iterative process ensures efficient and thorough code generation and
debugging.

Our architecture achieves state-of-the-art performance on benchmark datasets, demonstrating its
effectiveness. By simulating human debugging and providing detailed feedback, we have advanced
automated code generation and debugging. These insights will guide the development of more
sophisticated and user-friendly coding tools, broadening the applications of LLMs in real-world
programming.
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6 APPENDIX

6.1 IMPLEMENTATION DETAILS

We use GPT-3.5-turbo for most of our experiments. We set the temperature (influence the random-
ness of the generated text) to 0.2, and the maximum generation length to 2048.

6.2 PROMPTS FOR DIFFERENT LEVEL FEEDBACK

In this section, we provide specific examples for different levels of feedback.

6.2.1 TRUE/FALSE
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Q: Write a python function to find the 
minimum number of rotations required to get 
the same string.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

    return rotation
Q: Your generated code is wrong, please fix it.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

6.2.2 INSTANCE-WISE TRUE/FALSE
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Q: Write a python function to find the 
minimum number of rotations required to get 
the same string.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

    return rotation
Q: Your generated code is wrong when test 
case is ‘ab’, please fix it.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

6.2.3 INSTANCE WISE FEEDBACK

6.2.4 INTERMEDIATE VARIABLES
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Q: Write a python function to find the 
minimum number of rotations required to get 
the same string.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

    return rotation
Q: Your generated code is wrong when test 
case is ‘ab’. Your code output of the test case is 
0, the correct output of the test case is 2,   
please fix it.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

6.3 MORE EXAMPLES
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Q: Write a python function to find the 
minimum number of rotations required to get 
the same string.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break

    return rotation
Q: Your generated code is wrong when test 
case is ‘ab’. Your code output of the test case is 
0, the correct output of the test case is 2,  the 
local variables when running your code are 
{'str': 'ab', 'n': 2, 'rotation': 0, 'i': 1}. please fix 
your code.
A: def find_Rotations(str):

    n = len(str)
    rotation = 0
    for i in range(1, n):
        if str == str[i:] + str[:i]:
            rotation = i
            break
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Q: Write a python function to count the number 
of squares in a rectangle.
A: def count_Squares(m,n):
    return (min(m, n) * (min(m, n) + 1) * (2 * 
min(m, n) + 1)) // 6 
Q: Your generated code is wrong when the test 
case is count_Squares(4,3): Your code output 
of the test case is 14, the correct output of the 
test case is 20,  the local variables when 
running your code are {'m': 4, 'n': 3}. You 
should calculate the number of squares of size i 
x i that can fit in the rectangle using the 
formula (m - i + 1) * (n - i + 1). please fix your 
code.
A: def count_Squares(m, n):
    total_squares = 0
    for i in range(1, min(m, n) + 1):
        total_squares += (m - i + 1) * (n - i + 1)
    return total_squares

Q: Write a function to convert snake case string 
to camel case string..
A: def snake_to_camel(word):
    parts = word.split('_')
    return parts[0] + ''.join(x.title() for x in 
parts[1:])
Q: Your generated code is wrong when the test 
case is snake_to_camel('python_program'). 
Your code output of the test case is 
‘pythonProgram’, the correct output of the test 
case is ‘PythonProgram’,  the local variables 
when running your code are {'word': 
'python_program', 'parts': ['python', 'program']}. 
You should consider the first word. please fix 
your code.
A: def snake_to_camel(word):
    parts = word.split('_')
    return parts[0].title() + ''.join(x.title() for x in 
parts[1:])
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