
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVE CODE GENERATION WITH FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

As advancements in Large Language Models (LLMs) continue to accelerate, an
increasing number of researchers are exploring the potential of these models to
assist in everyday tasks. Despite their remarkable achievements in various down-
stream applications, several challenges must be addressed. This paper delves into
applying LLMs in coding tasks, such as ChatGPT and LLama. Initial observa-
tions suggest that directly employing these LLMs does not yield optimal results.
However, we have identified that LLMs demonstrate enhanced performance when
given appropriate feedback. This includes providing information on the accuracy
of the code generated, supplying test cases relevant to the task, and indicating the
correct or incorrect outputs for these test cases. Furthermore, we have developed
an innovative architecture miming human debugging. This approach supplies lo-
cal variable information to the LLM while executing the generated code. Our
architecture facilitates providing feedback to the LLM and simulates the human
debugging experience, thereby significantly improving the LLM’s code generation
capabilities. Utilizing our proposed architecture, our model surpasses the current
benchmarks of state-of-the-art models in the MBPP and Humaneval datasets. We
also present comprehensive analyses and ablation studies to substantiate the effi-
cacy of our methods. These findings open new avenues for enhancing the utility
of LLMs in coding tasks, offering a more interactive and practical approach to
leveraging these advanced technologies.

1 INTRODUCTION

As Large Language Models (LLMs) continue to advance, their integration into various aspects of
daily work has become increasingly prevalent. For instance, LLMs have been explored in the health-
care sector to offer insightful analyses of health-related data (Cascella et al. (2023)). Their applica-
tion in education is also being researched to enhance learning and teaching processes. While these
efforts mark significant strides in applying LLMs to improve daily life, their potential applications
still need to be fully realized.

One area of recent focus is the use of LLMs in programming, specifically in code writing, as in-
dicated in LEVER (Ni et al. (2023)). However, employing LLMs like ChatGPT for direct coding
tasks often yields suboptimal results. A notable challenge is the correction of inaccuracies in the
code generated by these models. Several methods have been attempted to address this issue. For
example, LEVER (Ni et al. (2023)) generates multiple code variations and employs an executor to
select the most effective solution. Meanwhile, LATS (Zhou et al. (2023)) introduces a combination
of tree search and an evaluation module to ascertain the most suitable code output. Despite these
innovations, a critical gap still needs to be in rectifying errors in the code produced by LLMs.

To understand why LLM perform poor in code generation, we used GPT-3.5-turbo to generate test
cases for the MBPP dataset and identified several common issues contributing to poor performance.
First, incorrect function and variable names: the MBPP dataset typically provides a problem de-
scription like ”Write a function to find the longest chain which can be formed from the given set of
pairs,” but LLMs cannot accurately deduce the true function and variable names required for the test
cases. Second, incorrect data structures: for example, given a problem like ”Write a function to find
the similar elements from the given two tuple lists,” the correct solution may need a tuple, but LLMs
might return a set, which fails the test cases. Finally, logic errors in the generated code: these are
particularly challenging to address and are a common issue with LLM-generated solutions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

def find_Rotations(str):
 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break
 return rotation

It’s too difficult ! def find_Rotations(str):
 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break
 return rotation

I can make it !

Your code has
bugs, please read it
and fix the bugs

Your code has
bugs, I can give
you the test cases
and bug analysis,
please fix it

Figure 1: When there are bugs in the code. Only tell a human that there are bugs; it’s difficult for
humans to fix them. When providing test cases and bug analysis, it’s easier for humans to fix the
bug

To solve this problem, we thought about how humans debug code. In human programming prac-
tices, debugging is an iterative process involving not only identifying that an error exists but also
understanding where and why it occurs by analyzing intermediate variables and logic flow during
code execution. This detailed feedback is crucial for correcting code and improving its accuracy.

Motivated by this observation, we propose a novel architecture that simulates the human debugging
process within LLMs. Our approach provides detailed feedback to the LLM, including specific
bug locations, logical discrepancies, and the state of intermediate variables during code execution.
By doing so, we enable the LLM to iteratively refine and correct its code generation, significantly
enhancing its ability to produce accurate and reliable code.

Our key contributions can be summarized as follows:

• Identification of Limitations: We identify the limitations of existing LLM-based code
generation methods in correcting code inaccuracies and propose a novel method that emu-
lates the human debugging process.

• Human-Like Debugging Architecture: We develop an innovative architecture that sup-
plies detailed feedback to the LLM, including intermediate variable states, mirroring how
human programmers debug code by analyzing execution flow and logic errors.

• State-of-the-Art Performance: We demonstrate through extensive experiments on the
MBPP and HumanEval datasets that our method achieves state-of-the-art performance,
surpassing existing models by up to 7% in Pass@1 accuracy. Our ablation studies further
validate the effectiveness of our approach.

By integrating human-like debugging processes into LLM code generation, we offer a new, inter-
active method that enhances the practical utility of LLMs in coding tasks, paving the way for more
accurate and efficient code generation in real-world applications.

2 RELATED WORKS

2.1 ADVANCEMENTS IN LARGE LANGUAGE MODELS (LLM)

Recent advancements in Large Language Models (LLM) have been remarkable, driven by the ex-
pansion of training data and substantial computational resources. Pioneering models such as BERT
(Devlin et al. (2018)) and GPT-2 (Radford et al. (2019)) laid the groundwork in this domain. A
significant milestone was the introduction of GPT-3 in June 2020, which, with its 175 billion pa-
rameters, began to significantly impact everyday life. This sparked a trend where numerous enti-
ties, including companies and researchers, started developing their own LLMs. Examples include
LLaMA (Touvron et al. (2023)), Chinchilla (Hoffmann et al. (2022)), ERNIE (Wang et al. (2021)),
and BLOOM (Workshop et al. (2022)). These models have shown exceptional performance in vari-
ous applications such as chatting, question-answering, and code generation. Moreover, models like
InstructGPT (Ouyang et al. (2022)) have enhanced human-model interaction by aligning LLMs with
human intent, allowing them to address a broad spectrum of queries. The emergence of open-source
LLMs such as Vicuna (Peng et al. (2023)) and Alpaca (Taori et al. (2023)) based on LLaMA further
demonstrates the potential of these models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Evaluation: Unit test failed : arrest find_Rotations("ab")=2

Debug: When the test case is ab, the ground truth is 2,

your code output is 0, the local variables tracks are 'str':

'ab', 'n': 2, 'rotation': 0, 'i’: [0,1]}

Reasoning: the `rotation` variable

should be initialized as the length of the

string `n` instead of 0. This ensures that

if no rotations are found, the function

will return the length of the string.

Generated Code:
def find_Rotations(str):

 n = len(str)

 rotation = 0

for i in range(1, n):

 if str == str[i:] + str[:i]:

 rotation = i

 break

 return rotation

LLM

Figure 2: The pipeline of our model. We start with a task and use LLM to generate an initial code;
then, we use our code executor to evaluate the generated code using the test cases. If there are
bugs in the generated code, we use our debug module to track the intermediate variables and other
information. Based on the collected information, our architecture will try to provide a reason and
solution to correct the bugs. Then the LLM can start the next iteraion.

2.2 EMPLOYING LLM AS AN AGENT

As LLMs have evolved, efforts have been made to utilize them as agents in everyday scenarios.
In this context, an ’agent’ refers to an entity where we input information such as objectives, envi-
ronment, and feedback, allowing the LLM to assist in decision-making. Starting with the concept
of Chain-of-Thought (Wei et al. (2022)) and Tree-of-Thought (Yao et al. (2023)), researchers have
been teaching LLMs to approach goals incrementally, similar to human processes. In ReAct (Yao
et al. (2022)), there is a shift towards guiding LLMs to generate reasons in addition to actions. Addi-
tionally, recent studies (Chang et al. (2023),Hu et al. (2023)) are exploring the use of reinforcement
learning to provide feedback to LLMs, enhancing their performance. The application of LLMs as
agents spans numerous fields. For instance, they have been used in gaming (Qiao et al. (2023),Ak-
oury et al. (2023)), customer service (Cai et al. (2023), Soni (2023)), and code generation (Ni et al.
(2023), Zhou et al. (2023)). The expansion of LLMs continues to open up new possibilities for their
application in various domains.

2.3 CODE GENERATION

The task of generating code based on given tasks has a long history, with earlier methods being
predominantly rule-based, as seen in works done by Woods (Woods (1973)) in 1973. However,
with the advent of deep learning, there has been a shift towards leveraging these techniques for
code generation, exemplified by Xiao (Xiao et al. (2016)). Recently, LLMs have shown remarkable
efficacy in this field, leading to numerous innovations aimed at refining LLM-generated outputs.
Some recent works (Ni et al. (2023), Zhou et al. (2023)) have experimented with adding an executor
to run the generated code and select the best option from multiple outputs. Concurrently, approaches
like ReAct (Yao et al. (2022)) focus on providing appropriate feedback based on the generated code
and its test cases. Despite these advancements, LLMs face challenges correcting errors in their
generated code. In our research, we simulate the human debugging process and have achieved
significant progress compared to prior methodologies.

3 ARCHITECTURE

3.1 ARCHITECTURE OVERVIEW

In our study, we aim to replicate the human approach to identifying and rectifying coding errors.
Typically, a programmer detects and corrects bugs by isolating a failing test case, running the code
line by line to find the source of the error, and revising the problematic section until it passes all
tests. Drawing from discussions with fellow programmers and personal experience, this multi-step
debugging process informs our research.

We use a Large Language Model (LLM) to mimic this human debugging process. Recognizing the
various stages of human code writing, we divided the task into multiple phases, each simulated by
the LLM. The whole architecture can be seen in Fig2 The first phase involves the code generator,
which replicates the initial code writing. The second phase introduces a module that simulates
human testing and evaluation of the code’s correctness through a code executor.

Given the extensive use of test cases in practical applications, we designed a pseudo test case gener-
ator to provide numerous test scenarios for code assessment. Our architecture’s fourth component is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the debug module, which examines intermediate variables during execution to locate errors, similar
to how a human would. The fifth phase involves bug correction. Once a bug is identified through
a test case, our feedback module channels this information back to the code generator to facilitate
code revision, mirroring the iterative debugging process humans use.

In summary, our architecture includes five key components: an LLM as the main code generator, a
pseudo test case generator for diverse test scenarios, an executor to validate the generated code and
monitor intermediate variables, a debug module for error analysis, and a feedback module that uses
execution results to guide code regeneration. This holistic approach closely mimics the iterative
process of human code debugging and refinement.

3.2 CODE GENERATOR

In the human coding process, when a programmer is presented with a specific task—such as ”Write
a function to calculate the volume of a cube given its side length”—they begin by understanding
the problem and planning how to implement a solution. They might start by defining the function
signature, choosing appropriate function and parameter names, and writing an initial version of the
code that implements the basic logic.

Similarly, in our architecture, the code generation process starts with inputting the coding task into
the LLM, which acts as the programmer. We provide the LLM with predefined function names and
input parameters to mimic how a programmer would set up their code structure, reducing simple
errors like incorrect function names or mismatched parameters. The LLM then generates an initial
code template that includes the function definition and preliminary implementation.

This template is analogous to a human programmer’s first draft of code. At this stage, while we
obtain a functional code output, its correctness is not yet assured, nor can we identify potential
bugs within the code. Just as a human programmer would proceed to test and refine their code, we
rely on the subsequent components of our architecture to validate and improve the generated code.
This mirrors the initial step in human coding, where the programmer writes code based on their
understanding before entering the testing and debugging phases.

3.3 CODE EXECUTOR

In the human coding process, after writing the initial code, a programmer typically runs the code
to test its functionality. They execute the code with various test cases to see if it produces the
expected results. Importantly, when errors occur, programmers don’t just look at the final output;
they also examine the intermediate states of the program—such as variable values at different points
in execution—to identify where the code is deviating from expected behavior.

Our architecture simulates this aspect of human debugging through the code executor component.
While previous methodologies may only check for correctness of the output, our executor not
only validates whether the generated code produces the correct results but also meticulously tracks
changes in intermediate variables during execution. This is akin to how a programmer might use
debugging tools or insert print statements to monitor variable states.

Specifically, we implement mechanisms within the executor to record the dynamics of intermediate
variables throughout the code execution process. Upon completion of the test cases, the executor first
evaluates if the generated code satisfies all tests. If the code passes, it is deemed correct. If not, the
executor compiles a comprehensive report—including the failed test cases, their expected outputs,
the actual outputs from the generated code, and the state of intermediate variables. This detailed
information mirrors what a human programmer would observe and analyze when debugging their
code, providing valuable insights for the next debugging steps.

3.4 PSEUDO TEST CASE GENERATOR

In human coding practices, programmers often create their own test cases beyond the examples
provided, especially when they anticipate edge cases or wish to thoroughly validate their code. This
involves thinking critically about different input scenarios that could potentially cause the code to
fail, such as boundary values, unusual inputs, or invalid data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Our architecture emulates this aspect of human debugging through the pseudo test case generator.
Recognizing that standard datasets may lack sufficient test cases to fully challenge the code, we use
an LLM to generate additional, diverse test scenarios. Just as a programmer might devise various
inputs to test their code’s robustness, the LLM generates a range of test cases that may include edge
cases or uncommon inputs.

While these LLM-generated test cases may not all be perfect, they serve a crucial role in simulating
the human approach to uncover hidden bugs. By incorporating this pseudo-test case generator, we
significantly enhance the robustness of our testing process. We execute these test cases using the
code produced by our architecture, and any failures encountered during these tests are meticulously
recorded. This approach mirrors the comprehensive testing methodology a human programmer
would employ to ensure the reliability and correctness of their code.

3.5 DEBUG MODULE

In the human debugging process, when a programmer’s code does not perform as expected, they
analyze the failed test cases to understand why the code is not working correctly. This involves
checking whether the test cases themselves are valid and then examining the code to identify logical
errors or incorrect assumptions. Programmers often inspect variable values at different points in
execution, consider alternative code paths, and hypothesize about the root causes of the errors.

Our architecture’s debug module simulates this critical step of human debugging. When the code
executor reports failures, the debug module uses an LLM to analyze the detailed information col-
lected—including the failed test cases, expected and actual outputs, and intermediate variable states.
The first objective is to verify the validity of the test cases, ensuring that any potential errors in the
pseudo-test cases are not misleading the debugging process.

Once the test cases are confirmed to be correct, the LLM delves into the code itself, identifying
specific sections that may contain bugs. It offers explanations and possible solutions, much like
a human programmer would reason about why the code is failing under certain conditions. This
involves examining the logic flow, considering the values of variables at different execution points,
and pinpointing where the code diverges from expected behavior. By simulating this analytical
process, the debug module helps guide the LLM in understanding and correcting the underlying
issues in the code.

3.6 FEEDBACK MODULE

In human programming, after identifying potential errors and their causes, a programmer consoli-
dates their findings and uses this insight to modify and improve their code. This iterative process
involves applying the knowledge gained from debugging to refine the code, testing the new version,
and repeating this cycle until the code functions correctly. Programmers also recognize when they
are not making progress and may decide to approach the problem differently to avoid endless cycles
of unproductive changes.

Our feedback module emulates this crucial step in the human debugging process. After the debug
module analyzes the errors and suggests possible fixes, the feedback module compiles this informa-
tion and presents it back to the code generator. This includes detailed explanations of the errors, the
reasoning behind them, and specific suggestions for code modifications.

Upon receiving this feedback, the code generator embarks on an iterative process of refining and
adjusting the code. It strives to produce a version of the code that addresses the identified issues and
aligns with the expected outcomes of the test cases. To ensure this iterative process remains efficient
and does not get trapped in perpetual cycles of regeneration, we establish a cap on the number
of attempts allowed for code correction. This limit is crucial for maintaining a balance between
thoroughness and efficiency in the debugging process.

By incorporating this cyclical process of feedback and refinement, our architecture mirrors the way
human programmers learn from their mistakes, apply critical thinking, and iteratively improve their
code until it meets the desired specifications. This balanced methodology ensures that our architec-
ture debugs efficiently and effectively, closely emulating human cognitive processes in coding and
debugging.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 DATASET

In our experiments, we use two different datasets:
MBPP dataset: The MBPP dataset contains basic Python programming problems stated in natural
language. The dataset contains 974 problems. For every problem, the dataset contains three different
test cases. Following the previous methods(Ni et al. (2023)), we use the first test cases as part of the
prompt to generate the template containing the function signatures. We use all three test cases during
the test, and only when the generated code passes all three test cases do we think the generated code
is correct. If the generated code fails in any test case, we will think the generated code is wrong and
have bugs.

HumanEval dataset: The HumanEval dataset provides 164 comment descriptions of functions
paired with a canonical implementation of each function and several input–output pairs that the
function should pass. We follow the same evaluation method as the MBPP dataset.

4.2 BASELINE AND EVALUATION METRICS

Evaluation Metrics We use Pass@k as our evaluation metrics which is the same as previous works
(Zhou et al. (2023)Wang et al. (2023)Shinn et al. (2023))

Baseline We compare our methods with several different architecture including Chain-of-Thought
(Wei et al. (2022)), ReAct (Yao et al. (2022)), etc. To better understand the effectiveness of our
methods, we use different Large Language Models, including GPT-3.5-turbo and GPT-4 etc., as the
LLM to test our method and other methods.

method HumanEval MBPP

LLMs(zero shot prompting)

AlphaCode Li et al. (2022) 17.1 -
Incoder Fried et al. (2022) 15.2 17.6
CodeX Brown et al. (2020) 47.0 58.1

PalmCoder Chowdhery et al. (2023) 43.9 32.3
StarCoder Li et al. (2023) 33.6 52.7

Llama-70B Touvron et al. (2023) 30.5 45.4
Code Llama-7B Touvron et al. (2023) 33.5 41.4
GPT-3.5-turbo Achiam et al. (2023) 56.4 52.6

Claude-instance-1 31.1 26.9
GPT-4-turbo Achiam et al. (2023) 58.6 64.8

GPT-4 Achiam et al. (2023) 66.1 69.3

LLM-based optimisation approaches

With GPT-3.5-turbo

CoT Wei et al. (2022) 46.9 54.8
ReAct Yao et al. (2022) 56.9 67.0

Reflexion Shinn et al. (2023) 68.1 70.0
ToT Yao et al. (2023) 54.4 65.8
RAP Hao et al. (2023) 63.1 71.4

Self-Edit Zhang et al. (2023) 62.2 56.4
Self-Planing Jiang et al. (2023) 65.2 58.6

Self-debugging Chen et al. (2023) 61.6 60.1
INTERVENOR Wang et al. (2023) 75.6 69.8

LATS Zhou et al. (2023) 83.8 81.1
AgentCoder Huang et al. (2023) 79.9 89.9

Ours 88.3 90.7

With GPT-4

Reflexion Shinn et al. (2023) 91.0 77.1
Self-debugging Chen et al. (2023) - 80.6

MetaGPT Hong et al. (2023) 85.9 87.7
LATS Zhou et al. (2023) 94.4 -

AgentCoder Huang et al. (2023) 96.3 91.8
Ours 97.2 93.2

With StarCoder Ours 64.2 69.8
With Claude-instance-1 Ours 68.2 79.4

With PalmCoder Ours 66.7 76.4
With Code Llama-7B Ours 70.8 82.1

With GPT-4-turbo Ours 90.4 92.7

Table 1: Quantitative results of our proposed architecture in HumanEval and MBPP dataset, the best
results are highlighted in bold.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 COMPARISON WITH STATE-OF-THE-ARTS

This section compares our method with several other methods using different LLMs. In table1, we
show our result compared with other methods in the MBPP dataset and the HumanEval dataset, and
our method achieves State-of-the-art in both datasets.

4.4 ABLATION STUDIES

In this section, all experiments are done using GPT-3.5-turbo and tested on the HumanEval dataset.

4.4.1 INFLUENCE OF DIFFERENT LEVEL FEEDBACK

Table 2: Ablation study for different level feedback. The
result will improve with more feedback.

True/False Instance-wise True/False Instance wise Feedback Intermediate Variables Pass@1
% % % % 56.4
! % % % 65.4
! ! % % 76.4
! ! ! % 83.5
! ! ! ! 88.3

In this part of our study, we eval-
uate how varying degrees of feed-
back provided by our feedback mod-
ule affect its performance. This mod-
ule is capable of delivering feedback
at multiple levels, such as assessing
the code’s correctness, analyzing spe-
cific test cases, and examining the in-
termediate variables produced during
code execution. As illustrated in table
2 of our report, it becomes evident that the LLM’s ability to identify bugs and enhance the overall
quality of the final output is significantly improved with more comprehensive feedback.

0 1 2 3 4 5 6 7 8

90

55

85

80

70

75

65

60

50

Reflexion
LATS
Ours

Iteration times

Pa
ss

@
1

0 1 2 3 4 5

80

10

70

60

40

50

30

20

0

Iteration times

Pa
ss

@
1

True/False

Instance-wise True/False

Instance-wise Feedback
Intermediate variables

0.1 0.2 0.3 0.4 0.5 0.6

65

80

85

75

70

60

Temperature

Pa
ss

@
1

90

Figure 3: Ablation Study for iteration
times. With the increase in iteration
times, the result will increase and re-
main similar. We also compare the
influence of iteration in Relexion and
LATS. Notice that in the first several
iterations, our method have significant
improvement compared to Reflexion.

To elucidate the impact of different feedback levels, we
offer some illustrative examples. At the most basic level,
feedback might simply indicate whether the code is cor-
rect or not, with a prompt like ”Your code is wrong.”
Moving to a more detailed level, instance-wise true/false
feedback provides specifics about the test case where the
code fails, for example, ”Your code is wrong when the
test case is . . . ”. Going a step further, instance-wise feed-
back includes details about the output, such as ”Your code
is wrong, when the test case is . . . , your code output is
. . . , the right output is . . . ”. The most detailed level
involves feedback on intermediate variables, framed as
”Your code is wrong, when the test case is . . . , your code
output is . . . , the right output is . . . When your code is
running, the intermediate variables are . . . ”.

This trend mirrors the human approach to debugging. Just
as a programmer equipped with more information can
more easily locate and rectify bugs in the code, the LLM’s
performance in identifying and correcting errors is sim-
ilarly enhanced with richer feedback. In contrast, lim-
ited information can make the debugging process more
challenging and less efficient. Our findings reinforce the
notion that the depth and detail of feedback are crucial
in effectively guiding both human and machine learning
processes in code debugging.

4.4.2 INFLUENCE OF THE MAX ITERATION NUMBER

After receiving feedback, our code generator will generate a new code. However, we cannot guaran-
tee that our method will always provide a correct code. Hence, we must set a max iteration number
to avoid our method being stuck in a loop. As shown in Figure3, we can see that with the number
of max iterations increasing, the result will first increase and then remain the same, which indicates
that for some challenging problems, it’s difficult for LLM to generate a correct code. But for some

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

median difficulty code tasks, giving LLM several chances will help it generate the right code. We
also compare the performance of LATS and Reflexion when the iteration numbers increase.

As shown in Fig3, LATS and our model will have an obvious performance improvement in the
first several iterations, while the Reflection model does not have a very obvious improvement in the
first several iterations. Our analysis of this phenomenon is that LATS and our method will provide
high-level explainable feedback rather than low-level implicit feedback. The high-level feedback
will help the code generator better understand why the previously code-generated code is wrong and
help it better correct its bugs.

4.4.3 INFLUENCE OF THE TEMPERATURE

In this part of our research, we delve into how varying the temperature setting in a Large Language
Model (LLM) impacts its code generation capabilities. The concept of ’temperature’ in the context
of LLMs relates to the level of randomness or unpredictability in the generated text. A lower tem-
perature setting results in outputs that are more focused, coherent, and conservative. This means the
model tends to produce safer, more predictable text. On the other hand, a higher temperature setting
leads to outputs that are more creative and diverse, but potentially less coherent, as the model takes
more risks in its text generation.

0 1 2 3 4 5 6 7 8

90

55

85

80

70

75

65

60

50

Reflexion
LATS
Ours

Iteration times

Pa
ss

@
1

0 1 2 3 4 5

80

10

70

60

40

50

30

20

0

Iteration times

Pa
ss

@
1

True/False

Instance-wise True/False

Instance-wise Feedback
Intermediate variables

0.1 0.2 0.3 0.4 0.5 0.6

65

80

85

75

70

60

Temperature

Pa
ss

@
1

90

Figure 4: Ablation Study for temper-
ature. Higher temperatures will bring
more randomness and hurt the perfor-
mance of the code generation. Low
temperatures will have less creativity
and make it difficult to correct the bugs.
There is an optimal temperature range
where the LLM strikes a balance be-
tween creativity and coherence

Our investigations, as illustrated in Figure4, reveal a no-
table trend: the performance of code generation initially
improves with an increase in temperature but eventually
starts to decline as the temperature continues to rise. We
hypothesize that this phenomenon occurs due to a balance
between creativity and coherence. At very low tempera-
tures, the generated code tends to lack creativity. This
conservative approach might limit the model’s ability to
effectively address and rectify the bugs present in the
original code. Conversely, at extremely high tempera-
tures, the code produced by the model becomes overly
random. This increased randomness can lead to the gen-
eration of code that is not only less coherent but also rid-
dled with an excess of new bugs.

Therefore, there seems to be an optimal temperature
range where the LLM strikes a balance between creativity
and coherence, enhancing its performance in code gener-
ation. This sweet spot allows the model to be sufficiently
innovative to tackle complex coding tasks and fix bugs,
while still maintaining a level of predictability and struc-
ture that prevents the introduction of too many new er-
rors. Understanding this balance is crucial for fine-tuning
LLMs in code generation tasks, as it can significantly impact the efficiency and reliability of the
output.

4.5 USING OUR METHOD TO DEBUG CODE

In this part, we explore an experimental approach distinct from previous methods. While earlier
methods concentrated on creating accurate code in response to a coding task, and our methodology
has demonstrated superior accuracy, our architecture’s capabilities extend beyond mere code gen-
eration. Inspired by human debugging processes, we were intrigued to discover if our architecture
could also effectively debug existing erroneous code.

We made specific alterations to adapt our architecture for debugging rather than code generation.
Our architecture comprises five components, but we omitted the code generator in the initial iteration
for the debugging task. Since we already had code containing bugs, generating new code was
unnecessary. The other components, however, remained unchanged from their roles in the code
generation process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The method for acquiring flawed code involved using the HumanEval and MBPP datasets. We em-
ployed various Large Language Models (LLMs), including GPT-3.5, GPT-4, and LLama, to create
code straightforwardly without employing special techniques. The generated code was then tested
using the provided test cases, and we collected all code samples that failed these tests. Due to the ab-
sence of specialized strategies in code creation, the errors in these samples varied widely, including
incorrect function names, input values, logical errors.

0 1 2 3 4 5 6 7 8

90

55

85

80

70

75

65

60

50

Reflexion
LATS
Ours

Iteration times

Pa
ss

@
1

0 1 2 3 4 5

80

10

70

60

40

50

30

20

0

Iteration times

Pa
ss

@
1

True/False

Instance-wise True/False

Instance-wise Feedback
Intermediate variables

0.1 0.2 0.3 0.4 0.5 0.6

65

80

85

75

70

60

Temperature

Pa
ss

@
1

90

Figure 5: Result of the Accuracy af-
ter debugging by our architecture. With
more feedback, the accuracy will be
higher after debugging. This is intuitive,
just like humans, provided more infor-
mation will help humans better locate
and correct the bugs.

In the debugging phase, our code executor gathered more
comprehensive information than in its previous use to ac-
count for the diverse nature of the bugs. This information
included specifics like TypeError and AttributeError. The
debug module, therefore, had a broader scope of errors to
address and correct. Once these initial errors were recti-
fied, the module shifted to identifying and fixing any log-
ical flaws in the code, using the test cases as a guide, akin
to the process in our code generation experiments.

Post-debugging, the original flawed code and the feed-
back from our debugging process were fed back to the
code generator. This step was crucial in generating a cor-
rected version of the code based on the erroneous version
and the feedback provided. We then evaluated this newly
generated code against all test cases to determine its ac-
curacy. Through this comprehensive process, we aimed
not only to identify but also to correct a wide range of
coding errors, thereby evaluating the effectiveness of our
architecture in a debugging context, an area previously
unexplored in our research.

To provide a full understanding of the effectiveness of our
different levels of feedback, we experimented with differ-
ent levels of feedback, which have similar settings in our first ablation study. The result can be seen
in Fig5

5 CONCLUSION

This paper presents a novel architecture that enhances code generation and debugging using Large
Language Models (LLMs) by explicitly simulating the human debugging process. Our approach
addresses key limitations in current LLM applications, particularly in identifying and fixing cod-
ing errors. The architecture’s essential components—the code generator, advanced code executor,
pseudo test case generator, and innovative feedback module—collaboratively mirror the step-by-step
methods a human programmer employs during debugging. This emulation significantly improves
the accuracy and efficiency of LLM-generated code.

The advanced code executor goes beyond merely checking code correctness; it meticulously tracks
changes in intermediate variables during execution, providing detailed feedback akin to a program-
mer’s observational insights. The pseudo test case generator augments standard datasets like MBPP
and HumanEval by creating diverse and comprehensive test scenarios, enhancing the robustness and
depth of the debugging process.

Crucially, the debug module identifies error sources in the generated code or test cases, offering
detailed insights and potential solutions, much like a human programmer diagnosing and resolving
issues. This comprehensive and iterative process ensures efficient and thorough code generation and
debugging.

Our architecture achieves state-of-the-art performance on benchmark datasets, demonstrating its
effectiveness. By simulating human debugging and providing detailed feedback, we have advanced
automated code generation and debugging. These insights will guide the development of more
sophisticated and user-friendly coding tools, broadening the applications of LLMs in real-world
programming.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Nader Akoury, Qian Yang, and Mohit Iyyer. A framework for exploring player perceptions of llm-
generated dialogue in commercial video games. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 2295–2311, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu, Wang
You, Ting Song, Yan Xia, et al. Low-code llm: Visual programming over llms. arXiv preprint
arXiv:2304.08103, 2023.

Marco Cascella, Jonathan Montomoli, Valentina Bellini, and Elena Bignami. Evaluating the feasi-
bility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. Journal of
Medical Systems, 47(1):33, 2023.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learn-
ing to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. En-
abling efficient interaction between an algorithm agent and an llm: A reinforcement learning
approach. arXiv preprint arXiv:2306.03604, 2023.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code generation
with large language model. arXiv preprint arXiv:2303.06689, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Dan Qiao, Chenfei Wu, Yaobo Liang, Juntao Li, and Nan Duan. Gameeval: Evaluating llms on
conversational games. arXiv preprint arXiv:2308.10032, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Vishvesh Soni. Large language models for enhancing customer lifecycle management. Journal of
Empirical Social Science Studies, 7(1):67–89, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu. Inter-
venor: Prompt the coding ability of large language models with the interactive chain of repairing.
arXiv preprint arXiv:2311.09868, 2023.

Shuohuan Wang, Yu Sun, Yang Xiang, Zhihua Wu, Siyu Ding, Weibao Gong, Shikun Feng, Jun-
yuan Shang, Yanbin Zhao, Chao Pang, et al. Ernie 3.0 titan: Exploring larger-scale knowledge en-
hanced pre-training for language understanding and generation. arXiv preprint arXiv:2112.12731,
2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

William A Woods. Progress in natural language understanding: an application to lunar geology. In
Proceedings of the June 4-8, 1973, national computer conference and exposition, pp. 441–450,
1973.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

11

https://github.com/tatsu-lab/stanford_alpaca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chunyang Xiao, Marc Dymetman, and Claire Gardent. Sequence-based structured prediction for
semantic parsing. In Annual meeting of the Association for Computational Linguistics (ACL), pp.
1341–1350, 2016.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. arXiv preprint arXiv:2305.04087, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

6 APPENDIX

6.1 IMPLEMENTATION DETAILS

We use GPT-3.5-turbo for most of our experiments. We set the temperature (influence the random-
ness of the generated text) to 0.2, and the maximum generation length to 2048.

6.2 PROMPTS FOR DIFFERENT LEVEL FEEDBACK

In this section, we provide specific examples for different levels of feedback.

6.2.1 TRUE/FALSE

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Q: Write a python function to find the
minimum number of rotations required to get
the same string.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

 return rotation
Q: Your generated code is wrong, please fix it.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

6.2.2 INSTANCE-WISE TRUE/FALSE

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Q: Write a python function to find the
minimum number of rotations required to get
the same string.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

 return rotation
Q: Your generated code is wrong when test
case is ‘ab’, please fix it.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

6.2.3 INSTANCE WISE FEEDBACK

6.2.4 INTERMEDIATE VARIABLES

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Q: Write a python function to find the
minimum number of rotations required to get
the same string.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

 return rotation
Q: Your generated code is wrong when test
case is ‘ab’. Your code output of the test case is
0, the correct output of the test case is 2,
please fix it.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

6.3 MORE EXAMPLES

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Q: Write a python function to find the
minimum number of rotations required to get
the same string.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

 return rotation
Q: Your generated code is wrong when test
case is ‘ab’. Your code output of the test case is
0, the correct output of the test case is 2, the
local variables when running your code are
{'str': 'ab', 'n': 2, 'rotation': 0, 'i': 1}. please fix
your code.
A: def find_Rotations(str):

 n = len(str)
 rotation = 0
 for i in range(1, n):
 if str == str[i:] + str[:i]:
 rotation = i
 break

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Q: Write a python function to count the number
of squares in a rectangle.
A: def count_Squares(m,n):
 return (min(m, n) * (min(m, n) + 1) * (2 *
min(m, n) + 1)) // 6
Q: Your generated code is wrong when the test
case is count_Squares(4,3): Your code output
of the test case is 14, the correct output of the
test case is 20, the local variables when
running your code are {'m': 4, 'n': 3}. You
should calculate the number of squares of size i
x i that can fit in the rectangle using the
formula (m - i + 1) * (n - i + 1). please fix your
code.
A: def count_Squares(m, n):
 total_squares = 0
 for i in range(1, min(m, n) + 1):
 total_squares += (m - i + 1) * (n - i + 1)
 return total_squares

Q: Write a function to convert snake case string
to camel case string..
A: def snake_to_camel(word):
 parts = word.split('_')
 return parts[0] + ''.join(x.title() for x in
parts[1:])
Q: Your generated code is wrong when the test
case is snake_to_camel('python_program').
Your code output of the test case is
‘pythonProgram’, the correct output of the test
case is ‘PythonProgram’, the local variables
when running your code are {'word':
'python_program', 'parts': ['python', 'program']}.
You should consider the first word. please fix
your code.
A: def snake_to_camel(word):
 parts = word.split('_')
 return parts[0].title() + ''.join(x.title() for x in
parts[1:])

17

	Introduction
	Related Works
	Advancements in Large Language Models (LLM)
	Employing LLM as an Agent
	Code Generation

	Architecture
	Architecture Overview
	Code Generator
	Code Executor
	Pseudo Test Case Generator
	Debug Module
	Feedback Module

	Experiments
	dataset
	Baseline and Evaluation metrics
	Comparison with State-of-the-arts
	Ablation Studies
	Influence of different level feedback
	Influence of the max iteration number
	Influence of the temperature

	Using our method to debug code

	Conclusion
	Appendix
	Implementation Details
	Prompts for different level feedback
	True/False
	Instance-wise True/False
	Instance wise feedback
	Intermediate Variables

	More examples

