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Abstract

The Mixture of Experts (MoE) selects a001
few feed-forward networks (FFNs) per token,002
achieving an effective trade-off between com-003
putational cost and performance. In conven-004
tional MoE, each expert is treated as entirely005
independent, and experts are combined in a dis-006
crete space. As a result, when the number of ex-007
perts increases, it becomes difficult to train each008
expert effectively. To stabilize training while009
increasing the number of experts, we propose010
∞-MoE that selects a portion of the parameters011
of large FFNs based on continuous values sam-012
pled for each token. By considering experts013
in a continuous space, this approach allows014
for an infinite number of experts while main-015
taining computational efficiency. Experiments016
show that a GPT-2 Small-based ∞-MoE model,017
with 129M active and 186M total parameters,018
achieves comparable performance to a dense019
GPT-2 Medium with 350M parameters. Adjust-020
ing the number of sampled experts at inference021
time allows for a flexible trade-off between ac-022
curacy and speed, with an improvement of up023
to 2.5% in accuracy over conventional MoE.024

1 Introduction025

Large language models (LLMs) have recently026

achieved remarkable performance across a broad027

range of natural language processing tasks, such as028

machine translation, question answering, and code029

generation (Chen et al., 2021; Liu et al., 2021).030

These advances are primarily driven by scaling up031

model parameters, training data, and compute re-032

sources (Kaplan et al., 2020). However, simply033

increasing model size leads to substantial computa-034

tional and memory overheads, motivating research035

into more efficient strategies for scaling.036

Mixture of Experts (MoE) (Shazeer et al., 2017)037

stands out for its ability to expand parameter count038

while maintaining relatively low per-token com-039

pute costs. By routing each input to a subset040

of specialized experts, MoE-based architectures 041

can efficiently store large amounts of knowledge 042

sparsely (Dai et al., 2024; Jiang et al., 2024). Re- 043

cent large-scale models such as DeepSeek(Dai 044

et al., 2024), Mistral(Jiang et al., 2024), and 045

Phi(Abdin et al., 2024) have successfully adopted 046

MoE designs, demonstrating that sparse routing 047

can significantly improve performance without in- 048

curring prohibitive computational expense. 049

A notable trend in recent MoE research is to ag- 050

gressively increase the number of experts for finer- 051

grained specialization. Empirical evidence shows 052

that larger expert pools improve overall capacity 053

and often yield higher accuracy with similar or re- 054

duced compute costs (Fedus et al., 2022; Lepikhin 055

et al., 2020). For instance, PEER (He, 2024) can 056

handle millions of experts, while recent theoretical 057

work (Clark et al., 2022) confirms that MoE perfor- 058

mance scales predictably with the expert count. 059

Following this trend, a natural question arises: 060

can we achieve even better performance by fur- 061

ther increasing the number of experts to infin- 062

ity? In principle, having more experts should allow 063

for even more specialized representations, poten- 064

tially boosting generalization across diverse tasks. 065

We introduce ∞-MoE, which moves from a dis- 066

crete set of experts to a continuous domain, allow- 067

ing theoretically unbounded expert capacity. In this 068

framework, each input samples from a continuum 069

of experts, taking the concept of “increasing ex- 070

perts” to the extreme. Despite the potential for an 071

infinite number of experts, our proposed ∞-MoE 072

remains computationally tractable due to its sparse 073

activation of only a small number of sampled ex- 074

perts at any given time. This design preserves the 075

efficiency of sparse routing while offering signif- 076

icantly enhanced model capacity. Through exper- 077

iments on GPT-2 Small/Medium (Radford et al., 078

2019), we observe that the GPT-2 Small-based ∞- 079

MoE variant (129M active parameters, 186M to- 080

tal) achieves comparable performance to a dense 081
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Figure 1: Overview of the proposed Infinite Mixture of Experts (∞-MoE). The router outputs a continuous
distribution over the expert space, and each sample selects a unique expert.

GPT-2 Medium model with 350M parameters. Fur-082

thermore, increasing the number of samples during083

inference yields additional accuracy gains, while084

reducing it still maintains a 2.5% accuracy improve-085

ment over standard MoE, enabling flexible trade-086

offs between speed and accuracy.087

2 Related Work088

MoE was first proposed to split a problem space089

into multiple specialized expert networks (Jacobs090

et al., 1991), and has lately gained popularity for091

LLMs.092

A central advantage in LLMs is that routing093

each token to just a few experts can greatly ex-094

pand parameter capacity without a matching in-095

crease in compute (Shazeer et al., 2017; Lepikhin096

et al., 2020; Fedus et al., 2022). For instance,097

GShard (Lepikhin et al., 2020) and Switch Trans-098

former (Fedus et al., 2022) employ sparse expert099

activation to train models with hundreds of billions100

of parameters, though they typically rely on a small101

expert pool (16 to a few hundred) that restricts spe-102

cialization.103

Recent work addresses this by substantially rais-104

ing the expert count. PEER (He, 2024) scales up105

to a million experts, demonstrating richer special-106

ization via novel routing mechanisms. Theoret-107

ically, increasing experts improves performance108

without linearly increasing compute (Clark et al.,109

2022; Ludziejewski et al., 2024), but router over-110

head can grow large or over-compressed experts111

may degrade accuracy (Ludziejewski et al., 2024).112

Our approach selects experts at the level of indi-113

vidual FFN nodes or small clusters, offering prac-114

tically unlimited scalability while keeping routing115

overhead low. This strategy heightens representa-116

tion power and scalability without imposing exces-117

sive compute costs. 118

3 Proposed Method 119

This section presents our ∞-MoE framework. We 120

first introduce a generalized MoE formulation for 121

the standard case, then detail the ∞-MoE model, 122

which extends MoE to a continuous expert space. 123

3.1 Generalized Expression of MoE 124

Let Z = {1, 2, . . . , n} be a discrete index set of 125

n experts. Let x ∈ Rdin denote the input. Each 126

expert is a function: 127

f(x, i) : Rdin ×Z → Rdout , 128

where i ∈ Z indexes the expert. A router produces 129

a probability distribution p(i|x) over experts. 130

The MoE output is the expected expert output: 131

y =

n∑
i=1

p(i | x) f(x, i) (1) 132

Connection to Standard MoE. Standard MoE 133

can be seen as a special case where the general 134

expert function f(x, i) simply selects the i-th ex- 135

pert from a set of n pre-defined expert functions, 136

{e1(x), . . . , en(x)}; that is, f(x, i) = ei(x). The 137

router typically uses a softmax function to compute 138

the probability of selecting expert i: 139

p(i|x) = softmax(TopK(g(x)))i (2) 140

where g(x) ∈ Rn is a vector of scores produced by 141

the router network. With a top-k operation select- 142

ing a subset K of experts, the final output is: 143

y =
∑
i∈K

p(i|x) ei(x). (3) 144

This clearly demonstrates the standard MoE is spe- 145

cial case of this discrete formulation. 146
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Table 1: Zero-shot performance on various benchmarks(BoolQ (Clark et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-e/c (Boratko et al., 2018), OpenBookQA (Banerjee et al., 2019),
RACE-high (Lai et al., 2017)). “Active/Total Param” indicates the approximate number of parameters used during
forward vs. total parameters.

Model Active/Total Param BoolQ(↑) HellaSwag(↑) WinoGrande(↑) ARC-e(↑) ARC-c(↑) OBQA(↑) RACE-high(↑) Avg(↑)

GPT-2 Small

Dense 124M/124M 0.601 0.292 0.508 0.431 0.194 0.152 0.513 0.385
Switch Transformer 124M/181M 0.601 0.292 0.512 0.431 0.180 0.144 0.513 0.382
MoE 124M/181M 0.605 0.295 0.515 0.446 0.185 0.158 0.513 0.388
∞-MoE 129M/186M 0.596 0.298 0.542 0.460 0.189 0.176 0.523 0.398

GPT-2 Medium

Dense 350M/350M 0.607 0.314 0.488 0.471 0.201 0.176 0.531 0.398
Switch Transformer 350M/556M 0.584 0.315 0.500 0.480 0.200 0.162 0.552 0.399
MoE 350M/556M 0.593 0.327 0.507 0.483 0.206 0.178 0.527 0.403
∞-MoE 362M/568M 0.566 0.337 0.516 0.497 0.215 0.188 0.570 0.413

3.2 ∞-MoE: Infinite Experts147

∞-MoE extends the discrete MoE to a continuous,148

potentially uncountably infinite, expert space Z ⊆149

Rdz . The router defines a probability density p(z|x)150

over Z . The model output is:151

y =

∫
Z
p(z | x) f(x, z) dz (4)152

We approximate this integral via Monte Carlo sam-153

pling: we sample z ∼ p(z|x) and use f(x, z) as an154

unbiased estimator of y.155

Router Design. We use a Gaussian density for156

the router:157

p(z | x) = N (z | µ(x),Σ(x)), (5)158

where a small neural network predicts µ(x) and159

Σ(x) (i.e., all off-diagonal entries are zero) from160

x. During training, we sample z(k) ∼ p(z | x) K161

times (k = 1, . . . ,K), allowing the router to learn162

to allocate probability mass to appropriate regions163

of Z .164

Expert Design. We treat z as a continuous expert165

index sampled from the router. Intuitively, each dis-166

tinct value of z corresponds to a different expert167

in an infinite expert space. Our FFN is then mod-168

ulated by a mask that “turns off” certain neurons169

in the intermediate layer, allowing the model to170

dynamically select which subset of parameters is171

active.172

Formally, let Wz ∈ Rdff×dz . Given z sampled173

from Equation 5, we apply a top-N% operator on174

intermediate neurons m̂i = Wz z, which keeps175

only the largest N% of nodes and sets the rest to 0:176

mask(z)i =

{
m̂i if m̂i is top N% values,
0 otherwise.

(6)177

Because the retained entries preserve their original 178

values, the resulting mask is partially “soft” for the 179

selected positions, while all other positions become 180

strictly zero. 181

Given this mask, the expert output f(x, z) is 182

computed as: 183

f(x, z) = W2

(
Act(W1x) ⊙ mask(z)

)
, (7) 184

where Act(·) is a non-linear activation, ⊙ 185

is element-wise multiplication, and W1 ∈ 186

Rdff×din ,W2 ∈ Rdout×dff are learnable weight ma- 187

trices. Through this mechanism, each sampled z 188

effectively activates a distinct subset of the FFN’s 189

neurons, mirroring the sparsity in conventional 190

MoE models but generalized to an infinite expert 191

space. 192

4 Experiments 193

We evaluate the effectiveness of ∞-MoE using 194

GPT-2 Small (∼124M parameters) and GPT-2 195

Medium (∼350M parameters) on a broad range 196

of natural language understanding tasks. 197

4.1 Setup 198

Data. We pre-train our models on a large-scale 199

web corpus called FineWeb (Penedo et al., 2024), 200

from which we extract 10 billion tokens. For fine- 201

tuning or direct evaluation, we use the zero-shot 202

setting on standard NLP benchmarks. 203

Compared Methods. We compare four architec- 204

tures: 205r Dense (FFN): A standard Transformer with a 206

single FFN layer shared by all inputs. 207r Switch Transformer (Top-1): Routes each token 208

to exactly one expert. 209r MoE (Top-2): A classic sparse MoE setting that 210
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Figure 2: Comparison of MoE and ∞-MoE models on several tasks while varying the number of experts K ∈
{1, 2, 3, 4, 8}.For GPT-2 small, K = 2 yields 124M active parameters.∞-MoE consistently achieves strong accuracy
across a wide range of K, even with fewer experts.Results for additional tasks are presented in the appendix.

activates the top-2 experts for each token. In this211

configuration, the total number of experts is fixed212

at 4.213 r∞-MoE: Our proposed method with an infinite214

expert space. During both training and testing, two215

samples are drawn (i.e., K = 2); with one sample,216

only 25% of the overall expert space is active.217

218

4.2 Results219

Table 1 presents zero-shot performance on GPT-2220

Small and GPT-2 Medium. Across all tasks, ∞-221

MoE consistently outperforms the Dense baseline,222

Switch Transformer, and standard MoE. Notably,223

for GPT-2 Small, ∞-MoE achieves the highest av-224

erage score of 0.398 versus 0.385 (Dense), 0.382225

(Switch), and 0.388 (MoE). We observe similar im-226

provements with the GPT-2 Medium variant, where227

∞-MoE again attains the best average accuracy228

(0.413).229

5 Ablations230

5.1 Scaling with sampling (K)231

Figure 2 compares ∞-MoE with standard MoE232

across multiple tasks by varying K. In the conven-233

tional setup, increasing K can improve accuracy234

but may also introduce instability at high values.235

By contrast, ∞-MoE scales more smoothly with236

K, yielding robust gains and maintaining strong237

performance even at lower K (achieving a 2.5% im-238

provement over standard MoE). Moreover, treating239

experts as a continuous space enables flexible infer-240

ence, allowing users to adjust K based on hardware241

constraints or latency requirements.242

These results demonstrate that ∞-MoE com-243

bines the expressiveness of an unbounded expert244

ensemble with the efficiency of sparse MoE, mak-245

ing it well-suited to a variety of runtime conditions.246

Figure 3: Accuracy on HellaSwag as a function of train-
ing data size (in billions of tokens). ∞-MoE is com-
pared against a MoE baseline (GPT-2 small backbone).

5.2 Scaling with Dataset Size 247

To evaluate the effectiveness of our proposed 248

method, ∞-MoE, under increasing dataset sizes, 249

we conducted experiments using a GPT-2 small 250

architecture as the base model. We measured the 251

accuracy on the HellaSwag dataset, progressively 252

increasing the training data size in increments of 253

10 billion tokens up to 100 billion. The results are 254

plotted in Figure 3. 255

6 Conclusion 256

This paper introduces ∞-MoE, a novel framework 257

that generalizes Mixture-of-Experts (MoE) mod- 258

els to a continuous, and potentially infinite, expert 259

space. By defining a theoretically infinite number 260

of experts, yet sparsely activating only a small, sam- 261

pled subset, ∞-MoE achieves strong performance 262

while maintaining computational efficiency com- 263

parable to standard MoE. Experiments at the scale 264

of GPT-2 Small and Medium models demonstrate 265

that ∞-MoE outperforms both Switch Transform- 266

ers and standard MoE. Furthermore, ∞-MoE pro- 267

vides a flexible trade-off between inference speed 268

and accuracy by adjusting the number of sampled 269

experts (K) at inference time. 270
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Limitations271

While ∞-MoE offers a promising framework for272

extending Mixture-of-Experts (MoE) models to an273

infinite expert space, several open challenges re-274

main:275

1. Scaling Beyond GPT-2 Medium.276

Although our experiments focus on GPT-2277

Small/Medium, the behavior of ∞-MoE when278

scaling to larger models (e.g., GPT-3 and be-279

yond) is not yet fully understood. In particular,280

it is unclear how performance and efficiency281

will change when:282

• Increasing the total number of parame-283

ters while keeping the active (per-token)284

parameter count fixed,285

• Or scaling both active and total parame-286

ters in tandem.287

These scenarios raise questions about poten-288

tial bottlenecks and trade-offs in both training289

and inference at extreme scales.290

2. Router Distributions.291

Our current implementation employs a uni-292

modal Gaussian router for simplicity. How-293

ever, richer distributions—such as mix-294

tures of Gaussians or nonparametric den-295

sity estimators—could offer more expres-296

sive expert allocations, especially in high-297

dimensional expert spaces. While this298

may improve coverage of diverse input pat-299

terns, designing efficient sampling and sparse-300

inference mechanisms becomes more com-301

plex, and variance reduction in training re-302

mains an open challenge.303

3. Applicability to Other Domains.304

Although our study highlights ∞-MoE’s util-305

ity in language modeling, it remains unclear306

how readily this framework generalizes to307

other domains such as vision (e.g., ViT) or308

multimodal vision-language models (VLMs).309

Practical concerns include adapting continu-310

ous expert indices to handle different input311

modalities, ensuring sparse and efficient rout-312

ing for high-resolution data, and maintaining313

competitive accuracy in tasks beyond NLP.314
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Table 2: Model and training hyperparameters used in the experiments.

Parameter GPT2-small GPT2-medium

Model Hyperparameters

Block size 1024 1024
Vocab size 50257 50257
Layers 12 24
Heads 12 16
Embedding dim 768 1024
Hidden dim 3072 4096
Gate dim(z dim) 256 256

Training Hyperparameters

Total batch size 524288
Gradient accumulation steps 1
Optimizer adamw
Learning rate 0.0006
Weight decay 0.1
Warmup ratio 0.03
Warmup iterations 700
Data type bfloat16
ZeRO stage 1

B Total Computation for Experiments488

We executed the experiments mainly by running489

the training for each model using eight nodes,490

each equipped with eight NVIDIA H200 (141GB)491

GPUs.492

C License493

C.1 Model494

• GPT-2 small/medium: Modified MIT License495

C.2 Dataset496

• FineWeb: Open Data Commons Attribution497

License (ODC-By) v1.0498

D Additional Results499

Figure 4 presents a comparison of MoE and ∞-500

MoE models on all tasks.501
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Figure 4: Comparison of MoE and ∞-MoE models on all tasks while varying the number of experts K ∈
{1, 2, 3, 4, 8}.
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