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Abstract

Time series anomaly detection (TSAD) is an evolving area of research motivated
by its critical applications, such as detecting seismic activity, sensor failures in
industrial plants, predicting crashes in the stock market, and so on. Anomalies are
rare events, making the F1-score the most commonly adopted metric for anomaly
detection. However, in time series the challenge of using standard F1-score is
the dissociation between ‘time points’ and ‘time events’. To accommodate this,
anomaly predictions are adjusted, called point adjustment (PA), before the F1-
score evaluation. However, these adjustments are heuristics-based, and biased
towards true positive detection, resulting in over-estimated detector performance.
However, the current time-series foundation model literature continues to use PA
for model evaluation. Such obtained model perspectives are not a true indication
of the performance. This work proposes an alternative adjustment protocol called
“Balanced point adjustment” (BA). It addresses the limitations of existing point
adjustments and provides fairness guarantees backed by axiomatic definitions of
TSAD evaluation.

1 Introduction

Anomaly detection plays a crucial role in identifying system failures or performance deviations.
Anomalies are rare data patterns, often detected by comparing the likelihood of an instance with
respect to the background distribution. As a result, anomaly and outlier detection are closely related,
with applications spanning tabular, image, and audio data. The detection process involves classifying
observations as either anomalous or normal, making it similar to binary classification. Consequently,
binary classification metrics, such as the receiver operating characteristics (ROC)(1) and F1 score(2),
are commonly used for Time Series Anomaly Detection (TSAD). ROC captures detector behavior
across thresholds, while the F1 score is crucial for assessing a detector’s performance, especially in
the setting of imbalanced data with low anomaly ratios (3).
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(a) A comparative view of different point adjustment
methods. F1KPA has K = 40%. F1BA is proposed
in this paper. F1BA is the only metric that penalizes
false positives. The orange highlights detection which
is left as it is, and green highlights describe instances
that are adjusted before F1 score computation.

(b) Comparison of F1p, F1PA, F1KPA, and our pro-
posed F1BA. In the table, the green color shows ideal
metric values for perfect detection (no false detec-
tions), while red highlights the failure to indicate cor-
rect predictions. The proposed F1BA consistently
makes meaningful transitions, unlike other metrics.

An anomaly detection system typically has two components: the scorer and the detector (4). The
scorer processes signals into a score, and the detector determines a threshold for detecting anomalies.
The ROC curve informs threshold selection, while the F1 score evaluates the detector’s overall
performance.

Applying the standard F1-score to time series presents challenges due to the contiguous nature of
anomalies. Point adjustment (PA), introduced by (5), modifies predictions before evaluating the
F1 score to account for this. However, PA often biases results in favor of true positives, leading to
inflated performance estimates (6). The state-of-the-art time series foundation models still use F1PA

for model evaluation (7; 8; 9). A detailed discussion on the related works is provided in Section A.1.

We introduce a new protocol, ‘Balanced Point Adjustment’ (BA), to address these biases. BA
penalizes false positives and balances the adjustments made for true positives, providing a more
accurate and fair evaluation of TSAD models. This method, as shown in Figure 1a, ensures a more
reliable assessment of anomaly detectors, supported by controlled experiments.

2 Methods

2.1 Notations

Time-series: Let’s consider univariate time-series sample space X . Time series X of length T can be
sampled from X : X ∈ X , so that X = (x1, x2, . . . , xT ). Anomaly labels: For a given time series
X , anomaly labels is a time series δX = (δX1 , δX2 , · · · , δXT ) with δXt ∈ {0, 1} ∀t. Anomaly segment:
An anomaly segment is a contiguous subsequence of timesteps corresponding to an anomaly event.
We define an ith anomaly segment occurring in X as: AX

i := (ai, wi, si) where ai, wi and si denote
the starting timestamp, time-width, and severity of the ith anomaly segment respectively. Note that,

δXt =

{
1 t ∈ ∪i{ai, ai+1 · · · ai+wi−1} = ∪iS

i
a

0 otherwise

where Si
a denotes the set of time-steps corresponding to an anomaly event, {ai, ai+1 · · · ai+wi−1}.

Anomaly detector: An anomaly detector D(t,X) labels a timestep t in X as an anomaly point if
D(t,X) > γ with t ∈ [0, T − 1] and γ being a threshold.

Metric for time-series anomaly detection: Let the metric to quantify the anomaly detection
performance of an anomaly detector D(·, ·) is M(y, δ), where y(t) = D(t,X), δ ∈ {0, 1}T , y ∈ RT .

2.2 Illustrative analysis

We provide analysis of the different metrics concerning diverse scenarios with respect to True Positives
(TP), False Positives (FP), False Negatives (FN) numbers in Figure 1b. The table in the right panel of
Figure 1b studies different metric values for diverse scenarios of TP, FP, and FN events. Firstly, F1p

and F1KPA fail to indicate the perfect detection ŷ1X(t) by detector D1. Further, with varying number
of TP, FP, and FN events, the expected transitions (increase/decrease) of different metrics are also stud-
ied. We observe, that the proposed metric F1BA makes consistent transitions with excellent coverage.
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Figure 2: (a) The behavior of BA metrics PBA, RBA, F1BA

compared to PA metrics for scores from uniform noise with
varying thresholds γ, using anomaly width of 100 and ra-
tio q = 0.2. F1PA rises above 0.75 for random anomaly
scores, (b) The right panel illustrates the behavior of F1PA

and F1BA with varying γ for different anomaly ratios (q).
F1PA increases with higher thresholds, while F1BA remains
unaffected by threshold choice.

2.3 Axiomatic
criterion for TSAD metrics

In TSAD, a detector requires a reli-
able metric for accurate comparison
with other detectors. We formalize
the essential requirements of a TSAD
metric: (a) The metric should be resis-
tant to random noise and uncorrelated
data (6), (b) it should reward better
detectors with higher scores, and (c) it
should grant the best score exclusively
to the best detection performance. To
enable use of standard mathematical
tools, we analyze the detector scores
y = D(X, t) directly, rather than bi-
nary predictions derived from thresh-
olding.
A TSAD metric M(y, δ) is said to be
a good metric if it satisfies the follow-
ing axioms:

• C-1 (robust): For any random detection signal yrandom (⊥⊥ δ), the metric value should always be
less than its chance level value (Mchance = 0.5 for F1 score based metrics),

M(yrandom, δ) ≤ Mchance (1)

• C-1a (threshold agnostic): If yrandom ∼ U [0, 1] uniformly distributed noise, then M(yrandom, δ)
should remain unaffected by threshold variation.

M(yrandom, δ) → Mu, ∀ γ (2)

Note that Mu is a constant (Mu ≤ Mchance).
• C-2 (ordered): For two detectors D1(·, ·) and D2(·, ·) with discriminability order D1 ≥ D2, the

following holds,
M(y1, δ) ≥ M(y2, δ) (3)

where y1 = D1(t,X) and y2 = D2(t,X).
• C-3 (exclusive): The metric should reach maximum value for a perfect detection signal (yprf )

with no FP and FN events (M(yprf , δ) → Mmax), and should fail to converge if a single FP/FN
occurs.

M(yprf + {1 FP/FN}) → Mmax − ϵ, ϵ > 0 (4)

2.4 Metric analysis

We formally show the following:
• The point adjusted (PA) F1 score leads to overestimation of precision and can give very high
F1 score for random anomaly scores, uncorrlated with anomaly labels, as shown in the Figure 2.
Hence, F1PA violates many of the above axioms.

• In contrary, F1BA stays low for random noisy scores (less than 0.5, which is chance level value of
F1 score) as shown in Figure 2, and obeys all the above axioms.

The theoritical proof of the above is detailed in the appendix A.2.

3 Experiments
We provide a detailed empirical evaluation of F1BA against other F1 scores through controlled exper-
iments. We have implemented a controlled experimental setup that allows generating anomaly label
sequences and detector predictions with controlled number of anomaly events, TP, FP, and detector
score quality. The experimental setup and data preperation details are provided in appendix A.3. We
study the scaling relation of F1 scores with the 4 most important anomaly detector characteristics-
precision, recall, detection coverage, and separation score (anomaly vs non-anomaly score).
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3.1 F1 scores vs separation score with varying recall
The behaviour of different metrics against separation score is shown in Figure 3 for three dif-
ferent recall ranges, separately. Separation score indicates the discriminability between detector
anomaly scores in anomalous vs non-anomalous regions as discussed in A.3. Firstly, all the 4
metrics show an increasing trend with separation. The increase in the separation score suggests
better anomaly identification with a constant threshold, which results in an increasing F1 value.
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Figure 3: Metric behavior against the score separation (A.3).
Plots are made for varying recall A.3 in 3 different bins of
< 25%, (25%− 75%) and > 75%. The bins are chosen so
that similar data point cardinality is maintained. Precision is
maintained within (25%− 75%).

However, we note the following three
observations: (a) The F1P is always
very low, even for a high recall and
high separation, (b) for low recall of
< 25% (and precision maintained be-
tween 25%−75%), F1PA and F1KPA

achieve very high score close to 0.8,
which indicates biased behaviour of
the metrics, while F1BA is least af-
fected as it penalizes false positives.
(c) for high recall, F1BA and F1PA

converges, indicating applicability of
F1PA at only high recall setting.

3.2 F1 scores vs precision with varying coverage
The behaviour of different F1 scores against precision is shown in Figure 4a for three different ranges
of coverage, separately with medium recall value (25%− 75%). We make the following remarks:
(a) Among all the metrics, the F1BA shows the highest sensitivity (high slope) to precision which
shows the stricter compliance to the ordering axiom (equation 3), (b) The F1PA is an overestimate at
the low precision and the FKPA is an underestimate at high precision. F1BA behaves like F1KPA at
low precision and like F1PA at high precision. Note that all the metrics show drop in score for high
coverage and high precision as we maintain medium recall while generating the samples.
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(a) Metric behavior plotted against the precision (A.3).
Plots are made for varying coverage score A.3 in 3
different bins of < 20%, (20%− 30%) and > 30%.
Recall is maintained within (25%− 75%).
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(b) Metric behavior plotted against the recall (A.3).
Plots are made for varying coverage score A.3 in 3
different bins of < 20%, (20%− 30%) and > 30%.
Precision is maintained within (25%− 75%).

3.3 F1 scores vs recall with varying coverage
The behaviour of different metrics against recall is shown in Figure 4b for three different ranges
of coverage, separately with medium precision value (25% − 75%). We note the following: (a)
Because of the maintained precision range, the metric scores should not cross 0.75 even for the
highest recall, as the F1 score is a harmonic mean of precision and recall. However, F1PA approaches
1.0 for all coverage values. Similar to F1 scores vs separation score case (Figure 3), this arises
from inappropriate penalization of false positives, overestimating the precision, (b) F1KPA and F1P

continue to behave as underestimate.

4 Conclusion & Future Work
We proposed a new F1 score (F1BA) and motivated it with an illustrative examples and axiomatic
criterions. Additionally, we developed a simulation setup for controlled metric comparison to
demonstrate the efficacy of our proposed score. We believe this contribution will aid both the applied
and research communities by facilitating a more systematic and unbiased approach to anomaly model
selection. We continue to pursue this work to show the effectiveness of the balanced adjustment
across domains.
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A Appendix

A.1 Related Works
Time series anomalies often span multiple time points, and partial detection is typically considered
valid (10). To accommodate this, the F1 score for time series anomaly detection (TSAD) is computed
after point adjustment. Point adjustment extends a detection across the anomaly span, which is then
used in the F1 score calculation (5). However, this introduces bias by overestimating model accuracy,
as even random scores can produce favorable results (11; 6). (6) proposed a stricter adjustment based
on a k% threshold, though its improvements over the original point adjustment remain unclear.

There is ambiguity regarding the appropriate choice of the metric for TSAD due to the shortcomings
of pointwise F1 (F1p), biased point-adjusted F1 (F1PA), and heuristic-based corrections like F1KPA.

• Many studies still use F1PA despite its limitations (12; 13; 14; 15; 16; 17).
• F1PA has also been used extensively in the recent large time-series foundation model evaluation,

viz, GPT4TS (7), Moment (8), TimesNet (9).
• Some studies have adopted F1KPA for TSAD evaluation (18; 19).
• A few revert to using pointwise F1 (F1p)(20; 21; 22; 23), while others combine all three metrics(18).

A.2 Metric analysis

A.2.1 Pre-requisites

To allow analysis of the proposed metric and existing ones, we first need their closed-form expressions.
We find out the limiting expressions of F1PA and F1BA first.
Definition 1 (Point adjustment). The point adjustment procedure involves the following steps:

• Thresholding:

ŷX(t) =

{
1 ifD(X, t) > γ

0 ifD(X, t) ≤ γ
(5)

• Point-adjustment (PA):

ŷX,PA(t) =


1 if ŷX(t) = 1

1 if t ∈ Si
a and∃ t′ ∈ Si

a s.t. ŷX(t′) = 1

0 elsewhere
(6)

• F1PA score:
F1PA = F1(true = δ, prediction = ŷX,PA(t)) (7)

In contrary, our proposed Balanced Adjustment (BA) procedure can be detailed as:
Definition 2 (Balanced Adjustment (BA)). The BA involves:

• Thresholding: Based on Eqn. 5.
• BA:

We define islands of width wN at time u around FPs as:

SN (u) := {k : u− wN

2
− 1 ≤ k ≤ u+

wN

2
,

ŷX(u) = 1, δ(u) = 0} (8)

Clearly, |SN (u)| = wN ,∀u and it is defined only at FP time steps. Using the islands SN (u), we
define adjusted prediction:

ŷX,BA(t) =


1 if ŷX(t) = 1

1 if t ∈ Si
a and ∃ t′ ∈ Si

a s.t. ŷX(t′) = 1

1 if∃u, t ∈ SN (u)

0 elsewhere

(9)

• F1BA score:
F1BA = F1(true = δ, prediction = ŷX,BA(t)) (10)

7



Now, we obtain expressions of F1PA and F1BA based on definitions.
Theorem 1 (F1PA in random noise). The point-adjusted (PA) F1 score (F1PA) of any random
time-series anomaly detector working on a sufficiently large time series of length T having a single
anomaly event (SA := Sa) is:

F1PA =
2q

(
1−N(γ)|Sa|

)
(1−N(γ)) + q

(
1 +N(γ)−N(γ)|Sa|

) (11)

where q = |Sa|
T is the anomaly ratio, N(·) is the noise cdf.

Proof. For sufficiently long time-series (T → ∞),

RPA = Pr (ŷX,PA(t) = 1 | δ(t) = 1)

= 1−
∏
t∈Sa

Pr (ŷX(t) ≤ γ)

(∵ ŷX(ti) ⊥⊥ ŷX(tj), i ̸= j as ŷX ∼ N (noise))

=
(
1−N(γ)|Sa|

)
(12)

PPA = Pr (δ(t) = 1 | ŷX,PA(t) = 1)

=
Pr (ŷX,PA(t) = 1 | δ(t) = 1)Pr (δ(t) = 1)

Pr (ŷX,PA(t) = 1)

=
q
(
1−N(γ)|Sa|

)
(1−N(γ)) + q(N(γ)−N(γ)|Sa|)

(13)

The expression of F1PA follows.

Theorem 2 (F1BA in random noise). The balanced point-adjusted (BA) F1 score (F1BA) of any
random time-series anomaly detector working on a sufficiently large time series of length T having a
single anomaly event (SA := Sa) is:

F1BA =
2q

(
1−N(γ)|Sa|

)
(1−N(γ)wN ) + q

(
1 +N(γ)wN −N(γ)|Sa|

) (14)

Proof. Assume that the minimum separation between false positive predictions in ŷX(t) is more than
the island width (wN ). Now, RPA remains unaltered as in PA.

PBA = Pr (δ(t) = 1 | ŷX,BA(t) = 1)

=
q(1−N(γ)|Sa|)

(1−N(γ)wN ) + q(N(γ)wN −N(γ)|Sa|)
(15)

The expression of F1BA follows. Interestingly, expressions hold same structure as in Eqn. 11 with
additional exponentials of wN .

The Figure 2 studies the F1PA and F1BA for uniformly randomly drawn noise as anomaly score. It
shows that F1PA increases by threshold selection and can give a very high score as well. However,
F1BA score is unaffected by threshold choice and remains below 0.5.

A.2.2 C-1 (robust)

Lemma 2.1. For wN = |Sa|, the F1BA is always less than equal to the chance level F1 score of 0.5
for any randomly generated anomaly score, as long as the anomaly ratio (q) is less than equal to 1

3 .

F1BA(δ, ŷX,BA(t)) ≤ F1chance = 0.5, X ∼ N(·)∀N(·) (16)

8



Proof. Assuming the anomaly event is sufficiently sustained (not momentary) so that the anomaly
width (|Sa|) is not very small,

F1BA =
2q(1−N(γ)|Sa|)

(1−N(γ)|Sa|) + q
(using |Sa| = wN )

=
2q

1 + q
(∵ |Sa| >> 1 =⇒ N(γ)|Sa| → 0) (17)

Now, 2q
1+q ≤ 0.5 =⇒ q ≤ 1

3 = 33.33%

A.2.3 C-1a (threshold agnostic)

Lemma 2.2. If an anomaly scorer generates random score from uniform distribution, the F1BA not
only stays less than the chance value, but also behaves as threshold agnostic (stays constant across all
possible thresholds γ) for almost the entire range of thresholds as long as the anomaly width is not
very small.

F1BA(δ, ŷX,BA(t)) ≤ F1chance = 0.5, X ∼ U [0, 1]
∂F1BA(δ, ŷX,BA(t))

∂γ
→ 0,∀γ ∈ (γmin, γmax) (18)

Proof. Because lemma 2.1 hold for all N(·), it holds for U [0, 1] too. Now, using
N(γ) = γ forN(·) := U [0, 1],

∂F1BA

∂γ
= − 2q2|Sa|γ|Sa|−1

(1− γ|Sa| + q)2
(19)

Note that, F1BA is monotonic w.r.t. γ: ∂F1BA

∂γ ≤ 0. Further,

∂F1BA

∂γ
= −2.

(
q

(1 + q − γ|Sa|)

)2

.|Sa|γ|Sa|−1

with
q

(1 + q − γ|Sa|)
< 1 as |q| < 1, |Sa| >> 1 (20)

|Sa|γ|Sa|−1 → 0 as |Sa| >> 1 (21)
It can be formally shown using limit:

lim
x→∞

x.bx−1 = 0, 0 < b < 1 (22)

Hence, ∂F1BA

∂γ → 0, implying F1BA remains constant across γ.

A.2.4 C-2 (ordered)

Lemma 2.3. Let, for any detector D(t,X) has the following parameters:

α = Pr(ŷX(t) ≤ γ|δ(t) = 1)

β = Pr(ŷX(t) ≤ γ|δ(t) = 0) (23)

Then, for two different detectors D1 and D2 with strength order (D1 > D2) given by the conditions:
αD1

≤ αD2
, βD1

≤ βD2
, the following holds,

F1BA (ŷX,BA(t), δ(t)) ≤ F1BA (ẑX,BA(t), δ(t))

ŷX(t) = D1(t,X), ẑX(t) = D2(t,X) (24)

Proof. For Detector Di (i ∈ {1, 2}):

FDi

1BA =
2q(1− α

|Sa|
Di )

1− β
|Sa|
Di + q(1 + β

|Sa|
Di − α

|Sa|
Di )

(25)

So, F1BA(α1, β) ≥ F1BA(α, β)∀α > α1 and F1BA(α, β) ≥ F1BA(α, β2)∀β2 > β gives
F1BA(α1, β1) ≥ F1BA(α2, β2).
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A.2.5 C-3 (exclusive)

Lemma 2.4. For a perfect anomaly signal yprf that detects the anomaly event correctly and gives no
false alarm, and y1 = yprf + fk being the score which triggers k false alarms,

F1BA(δ, ŷprf,BA(t)) = 1 (26)

F1BA(δ, ŷ1,BA(t)) = 1− ϵ, ϵ > 0 (27)

Proof. By definition, in absence of any FP/FN in ŷprf,BA(t), F1BA(δ, ŷprf,BA(t)) = 1. Now, for a
tiny FP event of width wfp << |Sa|, PPA = |Sa|

|Sa|+wfp
→ 1, PBA = |Sa|

|Sa|+wfp+wN
→ 1− ϵ, ϵ > 0.

As RPA = RBA = 1, F1BA → 1− ϵ, ϵ > 0. Note, F1PA → 1.

A.3 Data preparation

We develop a simulation tool for data preparation. The simulator generates the controlled anomaly
sequences in two steps. First, it produces the ground truth label (δX ), with constraints on the total
number of anomalies, the width of an anomaly event, and the separation between two successive
events. The second step yields a controlled generation of the detector scores y = D(t,X). The second
step consists of three sub-steps, (1) latent detection, (2) score simulation, and (3) threshold-driven
anomaly marking.

Many measurements are computed from simulated labels, along with F1 scores. Let N and M
represent the number of anomaly events in the ground truth and the predictions respectively. ms

tp
denotes the number of true events that are detected, and ns

tp is the number of true positives in
prediction. It must be noted that ms

tp ≤ ns
tp, as a single anomaly event can overlap with multiple

detections. ci is the anomaly detection strength of ith event.

We derive the essential attributes from the simulated samples that are important for our study of F1

metric scores.

Separation Score It is defined as the distribution distance (Hellinger distance (24)) between the

regular and anomalous scores. H(P,Q) = 1√
2

√∑k
i=1 (

√
pi −

√
qi)

2, where P and Q are discrete
probability distribution over regular and anomalous region scores. P and Q are evaluated only over
the overlapped score values, using non-parametric kernel density estimates. A higher value signifies
a better anomaly detector.

Precision We define the precision metric at an event label as PrecisionE =
ms

tp

M . The precision uses
predicted labels only.

Recall Similar to precision, recall is computed at an event level with the ground-truth label, RecallE
=

ns
tp

N .

Coverage This metric measures the average fraction of the detected true events, 1
ns
tp

∑N
i=1 ci.

We have conducted 15, 000 distinct controlled simulated experiments with varying TP, FP, and total
anomaly count. We uniformly sample coverage, and separation score, using parameter grid search.
F1KPA computation uses K = 20%.
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