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Abstract

Peptide design, with the goal of identifying peptides possessing unique biological
properties, stands as a crucial challenge in peptide-based drug discovery. While
traditional and computational methods have made significant strides, they often
encounter hurdles due to the complexities and costs of laboratory experiments.
Recent advancements in deep learning and Bayesian Optimization have paved the
way for innovative research in this domain. In this context, our study presents a
novel approach that effectively combines protein structure prediction with Bayesian
Optimization for peptide design. By applying carefully designed objective func-
tions, we guide and enhance the optimization trajectory for new peptide sequences.
Benchmarked against multiple native structures, our methodology is tailored to
generate new peptides to their optimal potential biological properties.

1 Introduction

Modern pharmaceutical research finds drug discovery resource-intensive and time-consuming [1, 2].
Streamlining this process has profound economic and societal implications. A key phase involves
identifying compounds that effectively bind to target proteins [3]. Recently, peptides, short chains
of amino acids typically comprising fewer than 20 residues, have received more and more attention
as potential binding candidates due to their biochemical traits and strong affinity [4]. Traditional
experimental methods for peptide design are laborious [5, 6]. Computational techniques can often
help experimental methods select target peptides more effectively and efficiently [7, 8]. In recent
years, deep generative models have become pivotal in identifying peptide candidates, often bypassing
traditional computational methods [9, 10, 11, 12, 13]. In particular, merging deep learning models
with Bayesian optimization (BO) can further enhance sequence optimization [14, 15]. BO uses
surrogate models like Gaussian Processes to approximate costly objective functions, balancing
exploration and exploitation [16]. Integrated with deep learning, it enhances molecular discovery by
prioritizing promising and uncertain candidates through model estimates and evaluations.

Since protein sequences are the primary input, we utilized deep learning models to translate these
discrete sequences into continuous latent embedding needed for BO to refine the sequences. While
most prior methods emphasized sequence-level insights, they often overlooked the importance of
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structure-level considerations. This oversight meant that the integration of protein-peptide structural
nuances was often absent in their optimization strategies. In the wake of advancements by tools
like AlphaFold2 [17], the prediction of protein-peptide complex structures has been significantly
enhanced. Given that the 3D structures of protein-peptide complexes inherently carry vast amounts
of information regarding their biochemical functionality, there is an opportunity to refine objective
functions grounded in 3D complex structures.

In this study, we started from Lambo [14], one of the sequence-based methods, which melds BO
with denoising autoencoders for advanced protein sequence design using a multi-objective Gaussian
surrogate process. We complemented Lambo with the protein modeling capabilities of ColabFold
[18] due to its speed in comparison with AlphaFold2, enabling quicker iterations to predict the
complex structures of generated peptides and target proteins. Additionally, we incorporated specific
scoring functions that scrutinize these complex structures, further enhancing the optimization of
peptide sequences. By doing so, we can ensure the selection and optimization of peptides are not
only high-quality but also exhibit desired interactions when complexed with target proteins.

2 Methodology

This study introduces a model that synergizes ColabFold and the BO process to craft peptides with
specific properties. During each iteration, new peptide sequences were assessed by establishing
objective functions for their predicted complex structures in conjunction with the target protein.
All generated optimized peptide sequences in each iteration are subsequently reintroduced to the
candidate pool for passing the optimization process. To validate our method, we selected native
protein-peptide complexes in PDB and artificially mutated the peptides. A protein sequence and the
corresponding mutated peptide sequence were fed into our model, and we evaluated to what extent
our model could recover the native protein-peptide complex.

2.1 Dataset and Data Preprocessing

During our research’s outset, we prioritized data preprocessing for subsequent stages. We obtained
protein-peptide structures from the PDB website to form our benchmark dataset. Native peptide
sequences were artificially mutated for optimization seeds. Executing a BLAST on these sequences
yielded mutated variants in natural selection, broadening our analysis pool. This pool, comprised of
base seeds and optimized sequences from each round, is combined with previous seeds to furnish
data for the next round, ensuring a comprehensive and evolving dataset for analysis. This thorough
preparation readied sequences for the optimization process.

2.2 Algorithm

Our algorithm for peptide design is illustrated in Figure 1. We harnessed the power of BO, cap-
italizing on its ability to operate on latent embeddings of peptides. First, a non-autoregressive
denoising autoencoder converts discrete sequences into continuous token-level embeddings using
Lambo, creating a representation that captures the inherent characteristics and patterns of the peptide
sequences. By operating on latent embeddings, and continuous representations of discrete sequences,
BO efficiently traverses the vast sequence landscape. Central to BO is the Noisy Hypervolume
Improvement (NEHVI) acquisition function [19], an extension of the Noisy Expected Improvement
[20] tailored to multiple objectives that balance exploration and exploitation. The acquisition function
guides the search to promising regions in the latent space. This iterative process, underpinned by
latent embeddings, ensures convergence towards sequences with desired properties. Furthermore,
the probabilistic nature of BO provides a measure of uncertainty, aiding in decision-making. By
leveraging these embeddings, BO offers a nuanced, data-efficient approach to complex sequence
optimization tasks.

In our current implementation, we have structured the optimization process to encompass 64 rounds,
with each round consisting of a batch size of 16 peptide sequences. This systematic approach allows
us to evaluate and mutate these sequences iteratively. As a result, in every round, we are able to
extract 16 distinct mutated peptide sequences. This methodological design ensures a comprehensive
and thorough exploration of the sequence space, facilitating the identification of optimized peptide
variants with desired properties.
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Figure 1: Architecture illustrating the integration of ColabFold and BO [21] framework. In the data
preprocessing phase, seeds are amalgamated to form a comprehensive candidate pool. Protein-peptide
complex structures are then predicted for all peptides with a consistent target protein. By obtaining
objective scores for these structures, the necessary input data is readied for the BO section, facilitating
peptide sequence optimization.

2.3 Objective Functions

Objective functions are key for evaluating our peptide sequences. For every sequence, we predicted
complex structures with the target protein for further analysis. The first function uses the "Solvent
Accessible Surface Area" (SASA) [22] algorithm to assess the interaction strength between the
peptide and protein. The second evaluates the stability of the complex structure. The third examines
the binding sites between the peptide and the protein by measuring the distance between residues;
residues closer than 5Å are considered binding sites. The ratio of these sites gives insight into the
interaction’s strength. Together, these functions create a solid framework in ColabFold for peptide
sequence optimization.

2.3.1 Solvent Accessible Surface Area (SASA)

We calculate the Solvent Accessible Surface Area (SASA) of the protein-peptide complex using the
Shrake and Rupley algorithm [23, 24]. The calculation is performed at the atomic level, using a probe
radius of 1.4 Å to approximate the solvent molecule. We employed a discrete number of points to
represent the surface area of each atom and then estimated the SASA by subtracting the SASA of
the complex from the combined SASAs of the individual components, protein, and peptide. SASA
value indicated the interaction between protein and peptide based on the mutations in the peptide
sequence. Since mutated peptides have different accessible surfaces. Our modified approach for
computing the Solvent-Accessible Surface Area (SASA) diverges from the original LaMBO version
by focusing on the binding region between the protein and peptide. Unlike the traditional method,
which quantifies the solvent-accessible surface of an isolated protein, our technique evaluates the
interface where the protein and peptide interact. This tailored assessment provides specific insights
into the binding interactions, rather than the general solvent exposure of the protein alone.

2.3.2 Energy

Our methodology involves optimizing peptide sequences, guided by their predicted structures, to
enhance stability, as indicated by negative changes in Gibbs free energy (-dG). The evaluation of
energy using FoldX [25] has demonstrated a significant correlation with peptide functionality and
stability. Consequently, this parameter was adopted as a critical objective function in our optimization
process. Lower Gibbs free energy signifies greater stability, making it a key indicator of improved
protein-peptide interaction in our methodology.
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Figure 2: The qualities of optimized peptides. a. Calculation of the TM-score for the initial peptide
sequence and the sequence optimized to be most similar to the native one. In this figure, the native
and predicted protein structures are represented in light blue, the native peptide in dark blue, and the
most similar optimized peptides are in orange. b. The corresponding Multiple Sequence Alignment is
shown for two (initial and most similar) peptide sequences and the native sequences.

2.3.3 Binding Sites Ratio

Our method quantifies the interactions between a peptide and a protein using calculated binding ratios.
This assessment hinges on the spatial proximity of residues within a specified cutoff distance, set at
5Å [26] for our current tests. The binding ratio within the protein is ascertained by the proportion of
unique protein residues that are in proximity to any peptide residue, compared to the total number of
residues in the protein chain. In a similar vein, the binding ratio for the peptide is calculated.

This methodology provides a detailed perspective on molecular interactions, which is important for
elucidating the binding dynamics and stability in protein-peptide complexes. In our optimization
process, we can select any two of these parameters as objective functions in the code settings. This
enables us to rigorously evaluate each newly generated peptide, ensuring a continuous improvement
in our understanding and optimization of peptide-protein interactions. Additionally, once all iterations
of the optimization process are completed, we can extract all desired optimized peptides based on
their objective function values. This extraction at the end of the process allows for a comprehensive
evaluation and selection of the most promising peptides.

3 Evaluating optimized peptides

After progressing through specific iterations, notably round=53 for 7UI8 and round=15 for 8D51,
we have successfully identified sequences strikingly close to their native counterparts. Based on the
structural predictions, shown in Figure 2a,2b, the TM scores for both samples are impressive. This
underscores our method’s ability to maintain the essential structure of the complex while the peptide
sequences undergo modifications and optimizations throughout the process.

As depicted in Figure 3a,3b, a consistent trend is observed across the optimization rounds for both
samples. With the progression of rounds, there is a noticeable decline in both SASA and energy
values. This trend underscores the efficiency of the optimization process; as the rounds increase, the
sequences are directed toward enhanced stability and improved binding affinity. Specifically, 41.86%
of sequences from 7UI8 and 12.01% from 8D51, across all optimization rounds, match the number
of binding sites found on the native peptide in the complex, indicating values consistent with their
native counterparts.

4



Figure 3: Optimization results of energy and SASA. a and b. Bar charts show the trends of the
minimum-maximum and the average value of energy and SASA over the optimization rounds for
both samples. In each plot, the least values of energy and SASA over all rounds are also indicated.
The values are compared to the corresponding energy and SASA native values.

4 Conclusion

In conclusion, our innovative approach, combining BO with protein modeling, shows great promise in
peptide design. The results highlight its success in generating new peptides that bind well with target
proteins and have useful biological functions. Traditional methods, mainly focusing on sequence
properties, often miss the complexities of peptide design. Our approach fills this gap by incorporating
predicted complex structures into the evaluation process, supported by carefully designed objective
functions. This ensures the structural features of peptide sequences are maintained and optimized
when combined with target proteins. This method has some limitations, such as the extensive
computation time required. Additionally, the current embedding method for protein sequence may not
be ideal, suggesting a potential area for future exploration and improvement in embedding techniques.
We will investigate better algorithms and embedding methods to improve the method’s efficacy.
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