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ABSTRACT

Matched-pair experimental designs aim to detect treatment effects by pairing par-
ticipants and comparing within-pair outcome differences. In many situations, the
overall effect size across the entire population is small. Then, the focus naturally
shifts to identifying and targeting high treatment-effect regions where the interven-
tion is most effective. This paper proposes a matched-pair experimental design that
sequentially and actively enrolls patients in high treatment-effect regions. Impor-
tantly, we frame the identification of the target region as a classification problem
and propose an active learning framework tailored to matched-pair designs. Our de-
sign not only reduces the experimental cost of detecting treatment efficacy, but also
ensures that the identified regions enclose the entire high-treatment-effect regions.
Our theoretical analysis of the framework’s label complexity and experiments in
practical scenarios demonstrate the efficiency and advantages of the approach.

1 INTRODUCTION

(a) Randomly enroll 
participants 

(b) Enroll participants in 
a subset of target

(c) Enroll participants in a 
superset of target (Ours)

The entire space 
of participants

A target region of high 
treatment-effect

Enrollment region

Figure 1: The enrollment region of our active design
(c) encloses the target region with a high treatment
effect. The conventional MPED (a) mainly enrolls
unresponsive participants, leading to inefficiency.
Existing active designs (b) risk focusing on a subset
of the target, missing many true responders.

Matched-pair experimental designs (MPED)
group participants with similar properties into
pairs, randomly assigning the treatment to one
participant in each pair and the control to the
other. This design enables experimenters to
compare the treatment and control outcomes
within pairs, reducing the variance in the dif-
ference between treatment and control out-
comes to determine the effectiveness of the
treatment. Hence, MPED is a conventional
technique used in causal inference to draw valid
conclusions for an intervention using a limited
sample size (Stuart, 2010). For instance, policy-
makers, clinicians, and web developers conduct MPED to evaluate the impact of a new policy, drug,
or website design. More details for MPED can be found in Goswami et al. (2015); Welsh et al. (2023).

When the treatment effect across the entire population is small, MPED may lack power with small
sample sizes. In this work, we tackle the problem of detecting treatment efficacy in MPED under the
constraint of the experimental budget that only a limited number of patients are permitted to receive
experimental interventions (or treatments).

Related Work Studies such as Simon & Simon (2013); Burnett & Jennison (2021); Thall (2021)
emphasize the practical need to enroll participants who are highly responsive to the treatment when
the effect size in the entire population is small. To address this challenge, these authors developed
methodologies to actively select participants from sub-populations with high treatment effects, thereby
enabling experimenters to efficiently identify responder regions. However, their designs are motivated
by randomized controlled trials (RCTs), i.e., randomly assigning treatment and control to patient
units without pairing patients. Another line of relevant research focuses on the estimation of the
Conditional Average Treatment Effect (CATE). For example, works such as Jesson et al. (2021);
Piskorz et al. (2025); Shalit et al. (2017); Alaa & Van Der Schaar (2017; 2018) propose actively
enrolling patients into experiments to efficiently estimate individual treatment effects. These studies
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are fundamentally estimation problems, where the objective is to quantify the treatment effect size
with a limited sample. In contrast, our work is developed with the goal of detecting the existence of a
treatment effect. Moreover, our proposed method is a sequential design that actively enrolls patient
responders and sequentially evaluates the existence of the treatment effect through modeling aimed at
identifying the responders.

In this paper, we propose an active-learning-based design tailored to MPED to enroll participants
from high treatment-effect regions, addressing scenarios where the average treatment-effect size is
small across the entire population. We reformulate the identification of high treatment-effect regions
as a classification problem and employ active learning (Hanneke et al., 2014; Balcan et al., 2006)
to address it under a limited experimental (or label) budget. This reformulation as a classification
problem is exclusive to MPED, offering the distinct benefit of “enclosing target regions”. As
illustrated in Figure 1, our design enrolls participants from a superset of the high treatment-effect
target, enhancing experimental efficiency while ensuring that, when a treatment is deemed effective,
its enrollment region includes the target population of responders. This has high clinical value:
Many existing active experimental designs produce enrollment regions with insufficiently revealed
responders, which can lead to the false conclusion that a treatment is not broadly applicable and
cause the premature termination of a study. In this paper, we present an active and sequential
design with theoretical guarantees and practical value to mitigate this issue.

Our contributions are summarized as follows:

• We develop an active-learning-based design, termed MPED-RobustCAL, for MPED. This design is
active and sequential: it actively learns a classifier to identify regions with high treatment effects,
while sequentially enrolling participants from these regions to test whether a treatment is effective.

• We conduct a theoretical analysis of MPED-RobustCAL, demonstrating that the enrollment region
encloses and converges to the target region more efficiently compared to passive learning.

• We present a practical instantiation of MPED-RobustCAL and evaluate it through simulations on
synthetic data as well as two real datasets. The results demonstrate the advantages of MPED-
RobustCAL over conventional approaches, providing empirical support for our theoretical analysis.

2 PRELIMINARIES

In this section, we present the preliminaries of MPED, including the data model for generating
experimental data, the conventional MPED, and the two-sample testing problem.

2.1 DATA MODEL

Let pX(x) denote the probability density function (pdf) from which a participant, represented by
covariates X ∈ Rd, is sampled. Let A ∈ {0, 1} represent a binary random variable (r.v.) indicating
whether a participant is assigned to control (A = 0) or treatment (A = 1). A control or treatment
experiment is conducted for X, resulting in the experimental outcomes Y A (X) as follows,

Y A(X) = A∆(X) + f(X) + E, E ∼ N
(
0, σ2

)
(1)

Here, E represents the noise r.v., and f(x) represents the participants’ control outcome without
noise, which varies with the covariate X. In contrast, ∆(x) represents the treatment effect size and
contributes to the experimental outcome Y A only when a participant is assigned to the treatment
group, or, A = 1. We assume that the outcome-generating model in equation 1 contains i.i.d zero-
mean Gaussian noise r.v. E for participants. However, E is only required to follow a zero-mean
Gaussian distribution, as in a conventional data model (See Section 13.2 in Wasserman (2013)), and
σ2 does not need to be identical across participants. This simplification does not affect the validity of
our the proposed algorithm in Section 4.2 nor its theoretical analysis in Section 4.3.

2.2 A CONVENTIONAL MATCHED-PAIR EXPERIMENTAL DESIGN

One conventional way of forming a matched pair is to randomly sample n participant {Xi}ni=1

from a population following the distribution pX (x). Then, another sequence of participant {X′
i}

n
i=1

is further identified to pair with {Xi}ni=1, ensuring a sufficiently small distance between Xi and
X′

i, ∀i ∈ [1, n]. This results in the matched pairs {(X,X′)i}
n
i=1

. An experimenter randomly
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assigns the left unit in each pair (X,X′) to A (treatment or control), and the right unit to the
opposite 1−A. Herein, we denote the experimental data collected for the n pairs of participants as
Fn = {((O, A) , (O′, 1−A))i}ni=1 where O and O′ represent

(
X, Y A (X)

)
and

(
X′, Y 1−A (X′)

)
,

respectively. The experimenter then compares the outcomes Y A and Y 1−A summarized from each
matched-pair in Fn to determine whether the treatment is effective. A two-sample test, such as the
t-test, is typically performed to make a binary decision about the existence of treatment effect. A key
characteristic of this conventional design is that the resulting pairs of r.v.s {(X,X′)i}ni=1 are i.i.d..
The left covariate unit X in a pair follows pX(x), while the right unit X′ approximately follows
pX(x), given that X and X′ are sufficiently close.

2.3 TWO-SAMPLE TESTING

The experimenter conducts a two-sample test on participants’ responses gathered from treatment
and control groups to determine whether the treatment is effective. Perhaps the most widespread
two-sample test is the two-sample t-test (Student, 1908). Specially, the two-sample t-test evaluates
the mean difference: 1

n

∑n
i=1 Y

1
i − 1

n

∑n
i=1 Y

0
i , resulting from Fn = {((O, A) , (O′, 1−A))i}ni=1,

between treatment and control outcomes. The test then determines whether the treatment effect
EX∼pX

[∆ (X)] in equation 1 is larger than 0. In the experimental design considered in this paper, we
adopt a more generic two-sample test which determines whether the treatment and control outcome
samples are generated from the same distribution. Formally, the experimenter examines the matched
pairs in Fn to test the following null and alternative hypotheses, H0 and H1,

H0 : pY |A (y | 0) = pY |A (y | 1) , H1 : pY |A (y | 0) ̸= pY |A (y | 1) (2)

where Y | a ≡ Y a(X) and X ∼ pX. Two important metrics for evaluating a two-sample test are:

• Type I error: Indicates the probability of mistakenly rejecting H0 when H0 is true.
• Testing power: Indicates the probability of correctly rejecting H0 when H1 is true.

The MPED considered in this work involves a sequential two-sample testing framework that iteratively
processes the experimental data Fn, makes decisions between H0 and H1 and terminates when H0 is
rejected. We define k (α,Fn) as a sequential two-sample testing function that takes a significance
level α ∈ [0, 1] and the data Fn as input, and outputs a decision variable v ∈ {0, 1}, indicating
whether to reject H0. A legitimate sequential test is required to satisfy the statistical validity:

Definition 2.1. (Statistical validity for conventional MPED) A sequential test is statistically valid if,
under H0, P (∃n ≥ 1, kn (α,Fn) = 1) ≤ α,X ∼ pX.

Definition 2.1 states that when participants are randomly enrolled under MPED, a valid sequential test
ensures that the Type I error rate is upper-bounded by the significance level α. A suite of sequential
two-sample tests (Shekhar & Ramdas, 2023; Podkopaev & Ramdas, 2023; Lhéritier & Cazals, 2018)
has been developed to preserve such statistical validity for conventional MPED.

3 PROBLEM SETUP

The primary goal of the experimental design considered in this work is to determine between H0

and H1, as defined in 2. This represents a two-sample testing problem aimed at evaluating the
distributional equality of participants’ responses in the treatment and control groups. Let X denote
the support of pX. We make the following assumption:

Assumption 3.1. (a) Under H0: ∀x ∈ X ,∆(x) = 0. (b) Under H1: ∀x ∈ X ,∆(x) ≥ 0; moreover,
∃γ > 0 and Ωγ ⊂ X , such that ∀x ∈ Ωγ ,∆(x) ≥ γ, and EX∼pX|Ωγ

[∆(X)] > EX∼pX
[∆(X)]1.

Under Assumption 3.1, H0 indicates the absence of treatment effect, i.e., ∆(x) = 0,∀x ∈ X . H1

states that there exists a region Ωγ ⊆ X where the treatment effect exceeds γ, and that the expected
treatment effect over Ωγ is larger than that over the entire space X . In clinical settings, γ is a user-
defined threshold based on prior knowledge, representing the minimum clinically meaningful effect
size. A conventional MPED randomly samples participants X and X′ from a large population to form

1Clinical trials are conducted in multiple phases. In particular, a treatment that passes Phase I is typically
guaranteed not to pose significant harm to patients (Leavitt, 2024), which implies H1 : ∀x ∈ X ,∆(x) > 0.
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i.i.d matched-pairs {(X,X′)i}
n
i=1

, often allocating experimental resources in the unresponsive/low
treatment-effect region when H1 is true. Additionally, the region Ωγ of responders is not known a
priori by the experimenter. Therefore, a natural strategy, as suggested in Simon & Simon (2013);
Burnett & Jennison (2021); Thall (2021), is to identify the high treatment-effect region Ωγ through
data-driven methods and allocate experimental resources in Ωγ . We formalize the problem as follows.

Suppose an experimenter has access to a large unlabeled population of participants {Xi}Mi=1 gathered
from pX. Here, “unlabeled” means the experimenter has not conducted any experiments with
{Xi}Mi=1 to acquire experimental outcomes. Additionally, she can sample a participant X̃ ∈ {Xi}Mi=1

and pair it with another X̃′ ∈ {Xi}Mi=1 to form a matched-pair
(
X̃, X̃′

)
with negligible cost.

Let B represent the maximum number (or label budget) of the participant pairs
(
X̃, X̃′

)
that

the experimenter can include to perform expensive treatment or control experiments to obtain
experimental outcomes

(
Y A

(
X̃
)
, Y 1−A

(
X̃′

))
. Then, the experimenter pre-selects γ, which

defines the target region Ωγ (unknown to the experimenter initially), and a significance level α ∈ [0, 1],
indicating the Type I error for a two-sample test. She actively samples from {Xi}Mi=1 to form

matched-pairs
{(

X̃, X̃′
)}n

i=1
, n ≤ B ≪M . Meanwhile, the experimenter performs a two-sample

test to evaluate the distributional equality of the treatment and control outcomes summarized from{(
Y A

(
X̃
)
, Y 1−A

(
X̃′

))}n

i=1
. The experimenter is expected to ensure the following within B:

• Under H0, including an active design in MPED still maintains the validity of the two-sample test,
meaning Type I error is less than or equal to α.

• Under H1, the active design identifies an enrollment region Ω̂γ as an approximation of Ωγ , enrolling
participants from Ω̂γ into experiments to increase testing power over conventional MPED.

• Under H1, the enrollment region Ω̂γ is expected to include sufficient true responders from Ωγ ,
preventing the false conclusion that the treatment is not broadly applicable.

In addition, we assume that a matching strategy is pre-defined, resulting in balanced covariates within
each matched pair

(
X̃, X̃′

)
. This is formalized by the following assumption:

Assumption 3.2. For any matched-pair
(
X̃, X̃′

)
∈ X × X ,

(
Y 0, Y 1

)
⊥⊥ A |

(
X̃, X̃′

)
.

Here,
(
Y 0, Y 1

)
represents the corresponding potential treatment and control outcomes, respectively,

for
(
X̃, X̃′

)
∈ X × X given a treatment assignment A. Assumption 3.2 ensures the unconfounded-

ness for validating the effectiveness of a treatment in the MPED. A similar assumption is discussed
in Section 12.2.2 in Imbens & Rubin (2015). A body of work (Rubin & Thomas, 1996; Heckman
et al., 1998; Glazerman et al., 2003; Gelman & Meng, 2004) has focused on ensuring high-quality
matching in MPED to support Assumption 3.2. In contrast, our problem setup assumes a pre-defined
matching strategy and instead focuses on the sampling strategy for selecting X̃ from {Xi}Mi=1. In

what follows, we abbreviate {ai}ni=1 to (a)
n. We write

(
X̃, X̃′

)n

to represent a generic sequence of

pairs which can be non-i.i.d., i.i.d. or mixture of both, while (X,X′)
n represents only i.i.d.. pairs.

4 MATCHED-PAIR EXPERIMENTAL DESIGN WITH ACTIVE LEARNING

This section formalizes the identification of Ωγ as an active learning problem and provides a theoreti-
cal analysis. Practitioners may safely proceed to Section 5, which presents a practical instantiation.

4.1 FINDING Ωγ WITH ACTIVE LEARNING

In Figure 2, we formalize the identification of Ωγ as an active learning problem. Active learning
framed within MPED aims to acquire a classifier to identify Ωγ with a limited label budget. Figure 2
presents a problem for constructing a classifier by actively labeling X̃ under a label budget B. In this

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Suppose (X)
M is i.i.d. sampled from pX, and an experimenter conducts treatment and control

experiment using a matched-pair
(
X̃, X̃′

)
, resulting in outcomes

(
Y A

(
X̃
)
, Y 1−A

(
X̃′

))
.

She then labels Z̃ of X̃ as 1 if Y 1
(
X̃
)
− Y 0

(
X̃′

)
≥ γ

(
resp. Y 1

(
X̃′

)
− Y 0

(
X̃
)
≥ γ

)
,

or as 0 otherwise. The active learning for MPED involves, given a label budget B, constructing(
X̃, X̃′

)n

from (X)
M , and, experimenting on the matched-pairs to obtain labeled data(

X̃, Z̃
)n

. The goal is to construct a classifier function q : Rd → {0, 1} with respect to pXZ̃ ,

using
(
X̃, Z̃

)n

subject to n ≤ B ≪M .

Figure 2: Active learning framed under MPED. “Resp.” is an abbreviation for “respectively”.

setup, the feature and label variables represent the the participant covariate, and, an binary indicator
which denotes whether the treatment effect exceeds γ within a pair of experimental outcomes(
Y A

(
X̃
)
, Y 1−A

(
X̃
))

. Consequently, the following proposition holds:

Proposition 4.1. Under H1, Assumption 3.2 and given pXZ̃ , consider the Bayes optimal classifier

defined as q∗ (x) =

{
1 if PZ̃|X (1 | x) ≥ 0.5

0 otherwise
. Then we have Ωγ = {x ∈ X | q∗ (x) = 1}.

Assumption 3.2 implies that ∀ (x̃, x̃′) ∈ X × X , p (ya | x̃) = p (ya | x̃′) in MPED. This indicates
that PZ̃|X precisely characterizes the probability that the treatment outcome exceeds the control
outcome by at least γ, conditional on a participant x. Consequently, finding the Bayes classifier with
respect to pXZ̃ is sufficient for identifying the target Ωγ . We refer readers to Appendix C for details.

4.2 THE MATCHED-PAIR EXPERIMENTAL DESIGN WITH ACTIVE LEARNING

Our experimental design relies on the RobustCAL algorithm detailed in Section 5.2 of Hanneke
et al. (2014). RobustCAL is a variant of an agnostic active learning algorithm proposed in Balcan
et al. (2006), where the term “agnostic” indicates that RobustCAL is robust to classification noise.
Specifically, the typical data model described in equation 1 assumes that the experimental outcomes
contain noise, which leads to an agnostic active learning problem in Figure 2. Accordingly, we
propose the matched-pair experimental design with RobustCAL (MPED-RobustCAL) in Algorithm 1.
The core of MPED-RobustCAL lies in Line 4, which actively labels points from DIS(C)—the region

Algorithm 1 MPED-RobustCALδ (B,α, γ)

1: m← 0, Q← {}, F̃ ← {}, C ← C
2: while |Q| < B and m < 2B do
3: m← m+ 1
4: if X̃ ∈ Ω̂γ = DIS (C)

⋃
POS (C) then

5: Form a matched-pair
(
X̃, X̃′

)
and randomly assign them to treatment/control experi-

ments leading to
(
Y A

(
X̃
)
, Y 1−A

(
X̃′

))
6: Request label Z̃ of X̃ using γ as described in Figure 2
7: Q← Q

⋃{(
X̃, Z̃

)}
; F̃ ← F̃

⋃{((
Õ, A

)
,
(
Õ′, 1−A

))}
8: v = k

(
α, F̃

)
; if v == 1 then break

9: if log2 (m) ∈ N then C ← {q ∈ C | (erQ (q)−minh∈CerQ (h)) |Q| ≤ Ū (m, δ)m}
10: return C and v ∈ {0, 1}

where the classifier set C disagrees—to efficiently reduce classification error when predicting Ωγ .
Additionally, it labels points from POS(C), which consists of points classified by C as belonging
to Ωγ , to enhance the testing power for MPED. The function k denotes a sequential two-sample
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testing procedure that evaluates the collected experimental data F̃ using the significance level α.
MPED-RobustCAL terminates when the test k returns v = 1 indicating that H0 is rejected (i.e., the
treatment is deemed effective), or when the label budget B is exhausted.

Notations in MPED-RobustCAL B represents the label budget, δ denotes the failure probability
of the algorithm, α represents the significance level for a two-sample test k and γ indicates the
treatment effect threshold for defining the target region Ωγ . C =

{
q | q : Rd → {0, 1}

}
denotes the

original class of classification functions, from which an analyst searches for a classifier to identify
Ωγ . The total number of currently generated X̃ is denoted by m, and Q represents the set of
features and queried label pairs, while F̃ indicates a set of available experimental data, including
elements

((
Õ, A

)
,
(
Õ′, 1−A

))
, where Õ =

(
X̃, Y A

(
X̃
))

and Õ′ =
(
X̃′, Y 1−A

(
X̃′

))
.

DIS (C) = {x ∈ X | ∃h, q ∈ C, s.t. h (x) ̸= q (x)} includes points where classification functions in
C ⊆ C disagree with, while POS (C) = {x ∈ X | ∀q ∈ C, q (x) = 1} represents points predicted as 1
by all classifiers in C. The empirical risk of a classifier q over the labeled set Q is denoted by erQ(q),
and Ū is a predefined function used to eliminate poorly performing classifiers from C. Additionally,
MPED-RobustCAL incorporates the sequential two-sample testing function k to decide whether to
reject H0, resulting in a decision variable v ∈ {0, 1}, where v = 1 indicates that H0 is rejected.

How does MPED-RobustCAL work? Central to MPED-RobustCAL are the steps highlighted
in blue in Algorithm 1. Unlike RobustCAL (Hanneke et al., 2014), MPED-RobustCAL queries
labels for features beyond DIS (C) and incorporates seqential two-sample testing k. Compared to
passive learning2, MPED-RobustCAL selectively queries the label of X̃ sampled from pX only if
X̃ belongs to the union of the disagreement region DIS (C) and the positive region POS (C). This
approach results in a classifier with the same classification error but requires fewer label queries
than passive learning. The efficiency arises because MPED-RobustCAL prioritizes querying labels
for X̃ ∈ DIS (C), where classifiers in C disagree, leading to the elimination of a similar number of
classifiers in C with fewer labels compared to passive learning. This classifier elimination is detailed
in Line 9, where classifiers with empirical risks larger than the smallest empirical risk by a margin
determined by the pre-defined function Ū are eliminated. Additionally, MPED-RobustCAL prioritizes
label querying in the positive region POS (C), as it aims to enroll participants in Ωγ to enhance the
label efficiency of the sequential test k in rejecting H0 under H1. Finally, the algorithm returns v,
indicating whether to reject H0, and C, which is used to acquire the enrollment region Ω̂γ .

Remark 4.2. The choice of Ū (m, δ) for MPED-RobustCAL is identical to that in RobustCAL (Han-
neke et al., 2014). we refer readers to equation 20 in Appendix for its expression.

Clinical Implications of MPED-RobustCAL As illustrated in Figure 1 and also guaranteed by
Theorem 4.5 in Section 4.3, MPED-RobustCAL consistently enrolls participants from the region
Ω̂γ = DIS(C) ∪ POS(C) into experiments, ensuring that the enrollment region encloses the target
region Ωγ . This enclosing property of MPED-RobustCAL provides the unique benefit of identifying
all responders in Ωγ . This stands in stark contrast with existing active designs, which may miss many
responders in the target region Ωγ , leading to the false conclusion that the treatment is not broadly
applicable and thereby to the premature termination of follow-up studies.

4.3 LABEL COMPLEXITY OF MPED-RobustCAL

Let dvc denote the Vapnik-Chervonenkis (VC) dimension of the classifier class C. The VC dimension,
dvc, quantifies the complexity of the classifier class C, effectively reflecting the “size” of C from
which an optimal classifier can be selected. We refer readers to Vapnik & Chervonenkis (2015) or
D.4 in Appendix for details. Additionally, we introduce a definition concerning the structure of pX.
Definition 4.3. (Disagreement Coefficient θq (r0) (Hanneke et al., 2014)) Given a classifier q ∈ C and
a probability constant r ∈ [0, 1], we write B (q, r) = {h ∈ C | P (h (X) ̸= q (X)) ≤ r,X ∼ pX}
to represent a class of classifiers whose label predictions disagree with q with the probability r
at most. Then, ∀r0 ≥ 0, define the disagreement coefficient of q with respect to C under px as
θq (r0) = supr>r0

px(DIS(B(q,r)))
r

∨
1.

2Here, passive learning refers to querying the label of every X generated from pX to update C.
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θq (r0) characterizes the probability that a point X ∼ pX resides in the disagreement region DIS (C).
As stated in Section 4.2, only labeling points in DIS (C) contributes to eliminating poorly performing
classifiers from C. Therefore, a smaller θq (r0) indicates a more significant improvement of MPED-
RobustCAL over passive learning, as the latter wastes many labels on points outside DIS (C).
Recall that PZ̃|X results from the labeling process illustrated in Figure 2. We define η̃ (x) =

PZ̃|X

(
Z̃ = 1 | x

)
relative to pXZ̃ and use q∗ to denote the Bayes optimal classifier with respect to

pXZ̃ . Lastly, we introduce an assumption regarding the noise of Z̃ with respect to pXZ̃ .

Assumption 4.4. (Bounded noise (Massart & Nedelec, 2006)) Under H1, ∃a ∈ [1,∞) such that
P (X : |η̃ (X)− 1/2| < 1/ (2a)) = 0 where X ∼ pX, and the Bayes optimal classifier q∗ ∈ C.

a in Assumption 4.4 indicates how noisy Z̃ is, implicitly characterizing the lowest error rate achiev-
able by the Bayes optimal classifier. MPED-RobustCAL enrolls participants from DIS (C)

⋃
POS (C),

which fully covers the target Ωγ . The following theorem establishes that Ωγ ⊆ Ω̂γ =
DIS (C)

⋃
POS (C) with high probability. Furthermore, the ratio of the enrollment region over

target region ,R =
|Ω̂γ |
|Ωγ | , converges to 1 faster than passive learning, i.e., Ωγ is efficiently identified.

Theorem 4.5. Under H1 and pXZ̃ along with Assumption 4.4 and 3.2, let P (Ωγ) =
P (X ∈ Ωγ) ,X ∼ pX. Passive learning attains a classifier set C such that ϵ =

maxq∈C P (q (X) ̸= q∗(X)), and, Ωγ ⊆ Ω̂γ = DIS (C)
⋃

POS (C) with R = 1 +
θq∗ (0)ϵ

P (Ωγ)
, with

probability at least 1 - δ using a label complexity of

Λ′ (ϵ, δ) = O
(
1

ϵ
(dvc log (θq∗ (0)) + log (1/δ))

)
. (3)

In contrast, to attain the same result with probability at least 1− δ, the MPED-RobustCAL requires a
label complexity of

Λ′ (ϵ, δ)P (Ωγ) + Λ (ϵ, δ) , (4)

in which Λ (ϵ, δ) = O
(
log

(
1
ϵ

)
θq∗ (0)×

(
dvc log (θq∗ (0)) + log

(
log(1/ϵ)

δ

)))
.

Remark 4.6. equation 4 indicates a fractional decrease in label complexity compared to equation 3,
suggesting that the ratioR for MPED-RobustCAL converges to 1 faster than that for passive learning.
However, this convergence rate is slower than that of the original RobustCAL. This slowdown arises
because MPED-RobustCAL queries additional labels from POS(C), aiming to efficiently detect the
existence of a treatment effect. Yet, in scenarios where P (Ωγ) is sufficiently small, Λ dominates the
label complexity in equation 4, and MPED-RobustCAL recovers the convergence rate of RobustCAL.

5 INSTANTIATION OF MPED-RobustCAL

Algorithm 1 facilitates a rigorous theoretical analysis, but it may not be directly applicable for
algorithmic implementation. In this section, we provide a practical instantiation of MPED-RobustCAL.
One of the most conventional implementations of active learning is the query-by-committee (Seung
et al., 1992): Given a set of classifiers trained on the current labeled dataset, an active learner selects
a point on which the classifiers disagree to query its label. The final prediction is then made by
averaging class prediction probabilities of all classifiers. Consequently, DIS (C) in Algorithm 1 is
realized by the region where the classifier committee disagrees. However, beyond querying labels in
DIS (C) to efficiently train a classifier, MPED-RobustCAL also queries labels in POS (C) to facilitate
the two-sample testing. To this end, we propose practical MPED-RobustCAL in Algorithm 2.

Algorithm 2 takes inputs a label budget B, a significance level α, and the treatment effect threshold
γ. The classifier set C is initialized using a small training set Q0, which is obtained through random
label querying from S. These labeled points are excluded from S before proceeding to the “active
query” starting from Line 4. The “active query” set E is defined as a set of unlabeled points for which
at least one classifier in C predicts class one. This indicates that the practical MPED-RobustCAL
queries labels from the positive region, i.e., unlabeled points predicted as one by all classifiers, and
from disagreement regions, i.e., points where at least one classifier predicts one. If E is empty, the
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algorithm switches to random label querying. C is updated whenever new
(
X̃, Z̃

)
and

(
X̃′, Z̃

)
are

added to the queried set Q. Additionally, a sequential test k uses the experimental data F̃ to decide
whether to reject H0. The algorithm terminates when k outputs v = 1 or the label budget is exhausted.
Otherwise, the classifiers in C are updated with Q for the next round of experimentation. The outputs
of the algorithm are a decision variable v and a classifier set C used to define the enrollment set E .

Algorithm 2 Practical MPED-RobustCAL (B,α, γ)

1: F̃ ← {},S ← (X)
M

, Q← Q0

2: Initialize a set of classifier C = {q (x)} with Q; E ← {X ∈ S | q (X) = 1, ∃q ∈ C}
3: while |Q| < B do
4: if E ̸= ∅ then Randomly acquire an X̃ ∈ E else Randomly acquire an X̃ ∈ S
5: Form a matched pair

(
X̃, X̃′

)
and randomly assign them to treatment/control experiments

leading to
(
Y A

(
X̃
)
, Y 1−A

(
X̃′

))
6: Request label Z̃ of X̃ and X̃′ using γ as described in Figure 2
7: Q← Q

⋃{(
X̃, Z̃

)
,
(
X̃′, Z̃

)}
; F̃ ← F̃

⋃{((
Õ, A

)
,
(
Õ′, 1−A

))}
8: v = k

(
α, F̃

)
; if v == 1 then break

9: Update C with Q; S ← S\{X̃, X̃′}; E ← {X ∈ S | q (X) = 1, ∃q ∈ C}
10: return C and the decision v ∈ {0, 1}.

Statistical Validity of the Two-Sample Test Under Algorithm 2 k in Algorithm 2 represents a
sequential two-sample test that repeatedly examines F̃ , which consists of data generated through
active enrollment. Definition 2.1 specifies the statistical validity of a sequential test under the
conventional MPED, where each participant X is enrolled randomly. In this context, we index F̃
as F̃n =

{((
Õ, A

)
,
(
Õ′, 1−A

))
i

}n

i=1
, where n ∈ [1, B] indicates that the n-th matched-pair(

X̃, X̃′
)
n

is formed, and their corresponding experimental outcomes are included in F̃ . At each n,

the testing function k utilizes the significance level α and the data F̃n to test between H0 and H1.
Theorem 5.1. (Statistical validity) Suppose an experimenter instantiates k using a statistically valid
test as defined in 2.1. Then, under H0, P

(
∃n ≥ 1, k

(
α, F̃n

)
= 1

)
≤ α for MPED-RobustCAL.

6 SIMULATION RESULTS

Data Description We simulate a synthetic dataset comprising of 1000 matched-pairs, where each
participant has covariates X = (X1, X2) independently drawn from uniform [0, 1]. Under H1, a
treatment effect ∆(X) = 1 is introduced when X1 + s < X2 (with s = 0.5), and zero otherwise.
Under H0, the treatment effect is zero, i.e., ∆(X) = 0 for all X ∈ X . Gaussian noise with variance
σ2 = 0.1 is added to the responses. Additionally, two real-world datasets are used: the PRO-ACT
dataset (Atassi et al., 2014), which includes ∼770 matched pairs and 9 covariates from ALS clinical
trials assessing the FDA-approved drug Riluzole, and the IHDP dataset (Shalit et al., 2017), which
includes ∼750 matched pairs and 25 covariates for assessing the effect of home visits on cognitive
outcomes in premature infants. Both real-datasets simulate the settings under H1.

Implementation Details We implement Algorithm 2 to actively enroll participants from S = (X)
M .

The testing function k is instantiated using the sequential predictive test in Podkopaev & Ramdas
(2023). The labeled set Q is bootstrapped to generate 10 training subsets, which are used to initialize
or update an ensemble C of 10 classifiers for the synthetic, PRO-ACT, and IHDP datasets, respectively.
For the simulation results reported in the main paper, we use an ensemble of logistic regression models
for the synthetic dataset and ensembles of decision trees for the two real-world datasets. The training
set Q is initialized with 50 randomly labeled data points sampled from S for the synthetic datasets,
and with 10 randomly labeled data points for the PRO-ACT and IHDP dataset. The significance level
α is 0.05, and the treatment effect threshold γ is set to 0.2, 0.1, and 4.5 for the synthetic, PRO-ACT,
and IHDP datasets, respectively. Further details on the instantiation of k and the full experimental
results, including sensitivity analyses of the hyper-parameters, are provided in Appendix B.
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Table 1: A comparison of the testing power between the conventional MPED and MPED-RobustCAL.
(a) Synthetic

Label budget 200 300 400 500 600 700
Conventional 0.07 0.11 0.15 0.18 0.19 0.22

MPED-RobustCAL 0.16 0.34 0.61 0.76 0.85 0.85

(b) PRO-ACT
Label budget 250 300 350 400
Conventional 0.10 0.29 0.40 0.67

MPED-RobustCAL 0.19 0.39 0.59 0.79

Table 2: Type I error by MPED-RobustCAL
for synthetic data; α = 0.05.

Label budget 200 300 400 500 600 700

Type I 0.038 0.044 0.046 0.046 0.046 0.046

Evaluations of Testing Power and Type I error
Table 1 presents the testing power of the conven-
tional MPED and MPED-RobustCAL resulting from
100 runs. As shown, MPED-RobustCAL achieves a
higher testing power of rejecting H0 under H1. This
improvement results from MPED-RobustCAL actively enrolling participants from high treatment-
effect regions. Theorem 5.1 implies that the Type I error of practical MPED-RobustCAL is still
upper-bounded by α, even the participants are actively enrolled. Table 2 demonstrate this, showing
that the Type I errors are all smaller than α = 0.05 on various label budget.

Evaluations of the True Positve Rate (TPR) Theorem 4.5 suggests that MPED-RobustCAL is an
experimental design capable of ensuring that the enrollment region encloses the target region Ωγ ,
which corresponds to points with high treatment-effects. To evaluate this, we present the results for
TPR, defined as the ratio of the number of points x with labels 1 (i.e., points with high treatment
effects) included in the enrollment region to the total number of points with labels 1. Additionally, we

(a) Synthetic (b) IHDP (c) PRO-ACT

Figure 3: A comparison of the TPR among MPED-RobustCAL, the regression-based active design (Si-
mon & Simon, 2013), and τ -BALD (Jesson et al., 2021).

compare the TPR of MPED-RobustCAL with other active designs described in Simon & Simon (2013)
and Jesson et al. (2021). The design in Simon & Simon (2013) constructs two regression functions,
ft(x) and fc(x), for treatment and control responses, respectively, and defines the enrollment
region as {x ∈ X | ft(x) − fc(x) ≥ γ}. We refer to this method as the regression-based active
design. The work in Jesson et al. (2021) describes an approach based on Bayesian active learning by
disagreement (BALD), termed τ -BALD, which actively labels samples to approximate the effect size
∆(x) in equation 1 using only one regression function g (x). The enrollment region is then defined as
{x ∈ X | g (x) ≥ γ}. For the regression-based active design, we construct the regression functions
using a Gaussian process and a decision tree for the synthetic and two real-world datasets, respectively.
For τ -BALD, we construct the regression function using a Gaussian process to perform Bayesian
active learning. We obtain the TPR for the enrollment regions identified by MPED-RobustCAL, the
regression-based active design, and τ -BALD by evaluating 100 validation sets. Figure 3 shows that
MPED-RobustCAL consistently achieves a higher TPR, indicating that it includes more participants
from the target region than the two existing active designs.

7 CONCLUSION

We propose an innovative MPED framework that actively enrolls participants from regions with high
treatment effects. Our approach formulates the identification of responsive regions as a classification
task, leading to the algorithm MPED-RobustCAL. Theoretical analysis shows that the resulting
enrollment region not only encloses but also converges to the true responsive region, achieving a
fractional improvement in label complexity compared to passive learning. Experimental results on
both synthetic and real-world datasets validate the advantages of our proposed design over both the
conventional MPED and the existing active designs.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The writing of this submission was polished with the assistance of a large language model (LLM)
tool.

B FULL EXPERIMENTAL RESULTS

This section presents the complete simulation results of experiments conducted on synthetic data,
PRO-ACT (Atassi et al., 2014), and IHDP (Shalit et al., 2017), along with their implementation
details.

B.1 INSTANTIATION OF THE SEQUENTIAL TWO-SAMPLE TEST k

MPED-RobustCAL detects treatment effectiveness using two-sample testing. This section introduces
a specific two-sample test—a sequential predictive test based on betting—to instantiate the sequential
testing function k in MPED-RobustCAL used in both Algorithm 1 and 2.

Sequential two-sample testing Recalling the formulation of two-sample testing in Section 2.3, we
denote (S, A) as the feature and label random variables, where (S, A) ∼ pSA (s, a). For example,
pSA (s, a) can represent the joint distribution of participants’ responses and their treatment/control
assignments in a conventional MPED that randomly enrolls participants. A sequential test receives
observations of (S, A) one at a time and determines, upon each arrival, whether to accept or reject
the null H0 : pS|A (s | 0) = pS|A (s | 1) against the alternative H1 : pS|A (s | 0) ̸= pS|A (s | 1).

Sequential predictive two-sample testing Podkopaev & Ramdas (2023) Testing by betting has
been extensively discussed in Shekhar & Ramdas (2023); Shafer (2021), capturing the following
idea: Under H0, a bettor will neither gain or lose wealth regardless of the betting strategy. In contrast,
under H1 and with an appropriate betting strategy, the bettor’s wealth will grow rapidly, indicating
the bet is profitable (i.e., H1 is true). Podkopaev & Ramdas (2023) introduces a sequential predictive
two-sample test based on the betting. We present this test as follows.

Sequential predictive test based on betting: Given an initial statistic (or wealth) W0 = 1
and a significance level α ∈ [0, 1], an experimenter begins at n = 1 and sequentially receives
(S, A)n , n ≥ 1, where (Sn, An) ∼ pSA. The experimenter updates the statistic (or wealth)
sequentially whenever a new (S, A) arrives by

Wn = Wn−1 (1 + λnLn (Sn, An))

=

n∏
i=1

(1 + λiLi (Si, Ai)) (5)

in which, Ln (S, A) = (2An − 1) (2q̄n (Sn)− 1) represents the payoff function, and
λn ∈ [−1, 1],∀n > 0 denotes betting fraction, both updated sequentially. q̄n is a clas-
sifier developed with respect to pSA to predict A from S. The experimenter stops the test if
Wn ≥ 1

α to reject H0.

The payoff function Ln (Sn, An) in equation 5 returns a value in {−1, 1} based on (Sn, An). It is
updated sequentially through online learning of the classifier q̄n. Assuming λn, ∀n > 0 are positive,
if q̄n correctly predicts the true label An, the experimenter wins the bet, and the statistic (or wealth)
Wn−1 increases by λnWn−1. Conversely, if the prediction is incorrect, the experimenter loses the
bet, and Wn−1 decreased by λnWn−1. Under H0, the experimenter is playing a fair game and Wn

remains unchanged in expectation. However, under H1, as the classifier q̄n improves over time and
and with an appropriate betting strategy for selecting the betting fraction λ, Wn grows exponentially,
leading to the rejection of H0. Shekhar & Ramdas (2023) recommends using the online Newton step
(ONS) proposed in Cutkosky & Orabona (2018) to sequentially identify λi, ∀i > 0, that maximize
E(Si,Ai)∼pSA

[log (1 + λiLi (Si, Ai))] under H1. We refer readers to Definition 5 in Shekhar &
Ramdas (2023) for details of the ONS.
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Applying the sequential predictive test to MPED-RobustCAL Algorithm 3 elaborates on instan-
tiating the sequential test k in (practical) MPED-RobustCAL with the predictive test (Podkopaev
& Ramdas, 2023). For clarity in the subsequent presentation, we index k by n ∈ [1, B], where n

denotes the n-th matched-pair
(
X̃, X̃′

)
n

formed and included in the experiment. Accordingly, we

also index the n-th experimental data as
((

Õ, A
)
,
(
Õ′, 1−A

))
n

. Consequently, the sequential
testing function kn utilizes the past experimental data Fn−1 and the latest experimental data to
decide between H0 and H1. Specifically, only one unit of the latest matched-pair, e.g.,

(
Õ, A

)
n

, is

used here. Fn−1 consists of
((

Õ, A
)
,
(
Õ′, 1−A

))n−1

(F0 = ∅). The experimenter constructs

Algorithm 3 Predictive test kn
(
α,Fn−1,

(
Õ, A

)
n

)
1: Update/Initialize a classifier q̄n using Fn−1

2: λn+1 ← ONS
(
λn,

(
Õ, A

)
n

)
3: Wn ←Wn−1

(
1 + λnLn

(
Õn, An

))
to Wn

4: if Wt ≥ 1
α , then return v ← 1 else return v ← 0

a classifier q̄t using both
(
Õ
)n−1

and
(
Õ′

)n−1

as features, along with their labels (A)
n−1 and

(1−A)
n−1, resulting in a training set of size 2(n − 1). q̄n is used to predict An based on Õn,

and this prediction is compared with the true label An, as described in equation 5, to update the
statistic Wn−1 to Wn (Here, S in equation 5 is expressed as Õ). Moreover, starting from λ1 = 1,
the betting fraction λn is computed using ONS algorithm (see Definition 5 in Shekhar & Ramdas
(2023)). Finally, kn returns 1 indicating the rejection of H0 if Wn ≥ 1

α or otherwise 0.

B.2 APPROPRIATE BASELINES TO CONSIDER

As illustrated in Section 3, MPED-RobustCAL is designed to (1) maintain statistical validity, i.e.,
ensure that the Type I error is bounded above by the pre-selected significance level α, (2) achieve
higher testing power than conventional MPED, and (3) include more true responders from Ωγ than
existing active designs.

To justify (1), we implemented the practical MPED-RobustCAL on synthetic data generated under
H0 and compared the empirical probability of rejecting H0 with the significance level α.

To justify (2), we applied the practical MPED-RobustCAL to two real datasets (Atassi et al., 2014;
Shalit et al., 2017) under H1 and compared its testing power against the conventional MPED. Several
active designs (Li et al., 2024; 2022) aim to maximize testing power by sampling the most informative
data points. However, such approaches can lead to the misleading conclusion that the treatment effect
is confined to only these highly informative samples. In contrast, MPED-RobustCAL is designed
to sample all true responders within a pre-defined target region Ωγ , thereby mitigating the risk of
suggesting that the treatment is not broadly applicable to patients. Consequently, while the testing
power of MPED-RobustCAL exceeds that of conventional MPED, it remains lower than that of
methods that exclusively sample the most informative data points. This reduction in power represents
the trade-off that MPED-RobustCAL accepts in order to achieve its third objective: enrolling all true
responders in Ωγ .

To justify (3), we compare MPED-RobustCAL with two existing active designs described in Simon
& Simon (2013) and Jesson et al. (2021). The active design proposed in Simon & Simon (2013)
approximates the noise-free control response f (x) and treatment response f (x) + ∆ (x) using two
regression functions fc (x) and ft (x). The enrollment region for this design is then defined as

{x ∈ X | ft (x)− fc (x) ≥ γ} ,

where γ is the treatment-effect threshold used to define the target Ωγ in MPED-RobustCAL. We refer
to this approach as the regression-based active design in this work.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In addition, Jesson et al. (2021) proposed an approach based on Bayesian active learning by dis-
agreement (BALD), termed τ -BALD, which actively labels samples to approximate the effect size
∆(x) in equation 1. τ -BALD constructs a regression function g (x) to model Y 1 (x) − Y 0 (x).
Since MPED is an experimental design that has access to both Y 0 and Y 1 for a pair of units (x,x′),
τ -BALD is applicable to modeling the conditional average effect size ∆(x). The authors of Jesson
et al. (2021) apply Bayesian active learning to efficiently learn g (x). Consequently, the enrollment
region for this design is defined as

{x ∈ X | g (x) ≥ γ} .

B.3 EXPERIMENTS WITH SYNTHETIC DATA

B.3.1 DATA MODEL

We first describe the simulation data generated under H1. We simulate a population of participants
using a two-dimensional random variable X = (X1, X2), where both X1 and X2 follow uniform
distributions between 0 and 1, i.e., pX1

(x) and pX2
(x) are uniform (0, 1). We define

f (X) = X1 + 2X1 −X1X2, (X1, X2) ∼ pX1 (x1) pX2 (x2) (6)

∆(X) =

{
1, if X1 + s < X2

0, otherwise
(7)

E ∼ N
(
0, σ2

)
. (8)

Here, the constant s is inversely proportional to the size of high treatment-effect region, while σ2

represents the variance of the noise added to experimental outcomes. For the simulation under H1 in
the following, we set s = 0.5 and σ2 = 0.1. An illustration of the simulated participants’ covariates
is provided in Figure 4. Points classified as 1 lie in the high treatment-effect region, defined as
{∀x ∈ X | ∆(x) = 1}, while points classified as 0 lie in the zero treatment-effect region, defined as
{∀x ∈ X | ∆(x) = 0}.

Figure 4: Illustration of the synthetic data. Class 0 and 1 represents points in zero treatment-effect
and high treatment-effect regions respectively.

For the simulation data generated under H0, we replace equation 7 with ∀X ∈ X ,∆(X) = 0
indicating that the treatment effect is zero everywhere.

B.3.2 IMPLEMENTATION DETAILS

We sample M = 1000 data points (X)
M from pX1X2 . If a participant X̃ ∈ (X)

M is selected by
practical MPED-RobustCAL to be enrolled in the experiment, additional points are sampled from
pX1X2 until a match X̃′ is identified such that X̃ and X̃′ are sufficiently close. Specifically, we pair
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X̃′ with X̃ when ||X̃− X̃′||2 ≤ 0.01. As noted in Balzer et al. (2012) and van der Laan et al. (2012),
it is conventional to consider sampling X̃′ from a distribution conditional on the value of X̃ in order
to form the matched pair

(
X̃, X̃′

)
.

We implement the practical MPED-RobustCAL in Algorithm 2 to actively enroll participants from
S = (X)

M . We define a classifier set C consisting of 10 logistic regression models and initialize
the training set Q with 50 randomly labeled data points queried from S. Specifically, we generate
10 different training sets by bootstrapping Q, and train each classifier in C using one of these sets.
As more labeled data is added to Q during the algorithm’s execution, the same procedure is used to
update C. We set the significance level α = 0.05, the treatment effect threshold γ = 0.2, and evaluate
the performance of MPED-RobustCAL across various label budgets B, ranging from 200 to 700 in
increments of 100. We use the sequential predictive two-sample test (Podkopaev & Ramdas, 2023) to
instantiate k, as outlined in Algorithm 3. Additionally, a logistic regression classifier q̄ is employed
in Algorithm 3 to perform the two-sample test.

We run the simulation 100 times, with simulation data randomly generated for each iteration, and
compare the performance of the conventional MPED and MPED-RobustCAL, summarizing the results
across the 100 simulations.

B.3.3 TESTING POWER AND STOPPING TIME UNDER H1

Table 3 presents the testing power of the conventional MPED and MPED-RobustCAL. As shown,
MPED-RobustCAL achieves a higher probability of correctly rejecting H0 (i.e., higher testing power)
across 100 simulations. This improvement can be attributed to MPED-RobustCAL’s ability to actively
and adaptively identify an enrollment region with a high treatment effect, selectively enrolling
participants from this region in the experiments. In contrast, the conventional MPED randomly
enrolls participants from the entire population, causing a significant portion of the labeling or
experimental budget to be spent on zero treatment-effect regions.

Table 3: A comparison of the testing power between the conventional MPED and the proposed
MPED-RobustCAL across label budgets.

Label budget 200 300 400 500 600 700
Conventional 0.07 0.11 0.15 0.18 0.19 0.22

MPED-RobustCAL 0.16 0.34 0.61 0.76 0.85 0.85

Table 4: A comparison of the average stopping time between the conventional MPED and the
proposed MPED-RobustCAL across various label budgets.

Label budget 200 300 400 500 600 700
Conventional 193.63±26.09 285.89±50.45 375.35±77.03 460.71±106.57 542.69±138.60 620.75±172.70

MPED-RobustCAL 157.93±47.30 179.61±71.48 181.32±75.07 182.06±77.56 182.06±77.56 182.06±77.56

In addition to testing power, another important evaluation metric is stopping time, which refers to
the number of labels required to reject H0 within a given label budget. Experimental designs that
consistently select participants from high treatment-effect regions tend to use fewer labels compared
to designs that allocate a significant portion of the budget to zero treatment-effect regions. Table 4
shows that the average number of labels used by MPED-RobustCAL across various label budgets is
consistently smaller than that of the conventional MPED.

B.3.4 ENROLLMENT REGION UNDER H1

We highlight the differences in the participants selected by the conventional MPED and MPED-
RobustCAL in Figure 5. As expected, MPED-RobustCAL actively enrolls participants covering a
region which encloses the high treatment-effect area highlighted in red. Additionally, this enrollment
region is smaller than the entire population space, leading to improved testing power as shown in
Table 1.
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(a) Conventional (b) MPED-RobustCAL

Figure 5: Illustration of the labeled data obtained by the conventional MPED and MPED-RobustCAL.
Classes 0 and 1 represent points in zero and high treatment-effect regions, respectively. Participants
randomly selected to initialize the classifiers in MPED-RobustCAL are excluded.

In addition to the visualization of labeled points, we also calculate the true positive rates (TPR) and
precision of MPED-RobustCAL along with the increasing label budget, using a validation set of
simulation data. TPR represents the ratio of true high treatment-effect points enrolled by MPED-
RobustCAL to the total high treatment-effect points (i.e., points highlighted by red in Figure 4).
Precision, on the other hand, represents the ratio of true high treatment-effect points enrolled
by MPED-RobustCAL to all points enrolled by MPED-RobustCAL. Both metrics are calculated using
the validation set, which is only used to demonstrate our theoretical analysis in Theorem 4.5. This
validation set is not required in the practical implementation of MPED-RobustCAL in real-world
experiments. As noted in Theorem 4.5, the enrollment region identified by MPED-RobustCAL is a
superset of the target region, and this superset reduces faster than passive learning.

Figure 6: A comparison of the TPR between MPED-RobustCAL and the active design in Simon &
Simon (2013).

To demonstrate Theorem 4.5, which states that MPED-RobustCAL identifies an enrollment region
enclosing the target region, we compare the TPR of MPED-RobustCAL with the regression-based
active design in Simon & Simon (2013) and τ -BALD in Jesson et al. (2021). Gaussian process
regressions are employed to construct the regression functions for both approaches. Figure 6 shows
that MPED-RobustCAL maintains a higher TPR along with the label budget compared to these two
existing active designs in Simon & Simon (2013) and Jesson et al. (2021), indicating that most
points in the target region are included in the enrollment region identified by MPED-RobustCAL, as
suggested by Theorem 4.5.
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(a) Accuracy (b) Precision

Figure 7: Accuracy and precision by MPED-RobustCAL and passive learning.

Finally, we provide a comparison of precision and accuracy between MPED-RobustCAL and passive
learning in Figure 7. As observed, both the precision and accuracy achieved by MPED-RobustCAL
increase more rapidly than those achieved by passive learning, corroborating Theorem 4.5. This
theorem states that MPED-RobustCAL requires fewer labels than passive learning to attain the same
ratio of the enrollment region size to the target region size, as well as the same classifier error rate.

B.3.5 TYPE I ERROR UNDER H0

Theorem 4.5 implies that the Type I error of MPED-RobustCAL is still upper-bounded by α, even
the participants are actively enrolled. Figure 8 demonstrate this, showing that the Type I errors
of MPED-RobustCAL are all smaller than α = 0.05 on various label budget.

Figure 8: Type I error by MPED-RobustCAL across various label budgets

B.4 EXPERIMENTS WITH AMYOTROPHIC LATERAL SCLEROSIS DATA

This section presents experimental results for implementing MPED-RobustCAL (Algorithm 2) using
PRO-ACT, an Amyotrophic Lateral Sclerosis (ALS) dataset described in Atassi et al. (2014).

B.4.1 DATA DESCRIPTION

ALS is a neurological disease that causes progressive muscle weakness and can ultimately lead to
paralysis. Pharmaceutical scientists develop prototype medication treatments and design clinical
trials to validate their effectiveness. Specifically, the Pooled Resource Open-Access ALS Clinical
Trials database (PRO-ACT), as detailed in (Atassi et al., 2014), provides experimental outcomes from
patients who received Riluzole, a drug already approved by the U.S. Food and Drug Administration
(FDA). In conventional clinical trials, the MPED randomly enrolls participants, which can lead to
inefficient use of experimental resources. To address this, we apply the proposed MPED-RobustCAL
to actively enroll participants in regions with high treatment effects, thereby reducing the experimental
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budget required to determine the effectiveness of Riluzole. The PRO-ACT database provides the ALS
Functional Rating Scale (ALSFRS), which includes 10 assessments of ALS patients’ motor function.
From these, we selected scores for “Speech”, “Salivation”, “Swallowing”, “Handwriting”, “Cutting
food and handling utensils”, “Dressing and hygiene”, “Walking”, “Climbing stairs”, and “Breathing”
to construct a dataset of matched pairs, where each participant is represented by nine covariates.
This data creation process is repeated by resampling participants from the entire PRO-ACT dataset,
resulting in 100 datasets, each containing around 770 matched-pairs. Furthermore, the experimental
outcome is defined as the slope of the ALSFRS, which indicates the decline of the sum of nine
assessment scores over a (roughly) similar duration of time. A smaller slope in the treatment group
compared to the control group indicates that the treatment (i.e., Riluzole) is effective in slowing the
decline of ALSFRS scores in ALS patients.

B.4.2 IMPLEMENTATION DETAILS

We employ practical MPED-RobustCAL by setting the treatment-effect threshold γ = 0.1, signif-
icance level α = 0.05 and the label budget B ranging from 250 to 400 in increments of 50. To
evaluate the sensitivity of enrollment region identification to the choice of classifier, we utilize three
sets of classifiers: logistic regression, k-nearest neighbors (KNN), and decision tree. Finally, we
use a separate decision tree for the instantiation of the sequential test k, implemented through the
sequential predictive test.

B.4.3 TESTING POWER AND STOPPING TIME UNDER H1

As the treatment, Riluzole, is a drug approved by FDA, demonstrating that it is an effective medication
for ALS, the experimental data is considered to be generated under H1. Table 5 compares the testing
power of MPED-RobustCAL and the conventional MPED across various classifier sets. As observed,

Table 5: A comparison of the testing power between the conventional MPED and the proposed
MPED-RobustCAL across label budgets, using various classifier sets.

(a) Logistic Regression
Label 250 300 350 400

Conventional 0.10 0.29 0.40 0.67
MPED-RobustCAL 0.18 0.36 0.61 0.81

(b) Decision Tree
Label 250 300 350 400

Conventional 0.10 0.29 0.40 0.67
MPED-RobustCAL 0.19 0.39 0.59 0.79

(c) k-NN
Label 250 300 350 400

Conventional 0.10 0.29 0.40 0.67
MPED-RobustCAL 0.12 0.30 0.56 0.73

MPED-RobustCAL effectively improves the testing power compared to the conventional MPED
across all three classifier sets. It is worth noting that the testing powers for the conventional MPED in
Table 5 (a), (b), and (c) remain identical, as the conventional MPED randomly enrolls participants
from the original population regardless of the classifier used. In addition to testing power, we also
evaluate the number of labels spent, or the stopping time, within each budget. These results are
presented in Table 6. As observed, MPED-RobustCAL achieves a smaller stopping time compared to
the conventional MPED in each comparison.

Table 6: A comparison of the average stopping time between the conventional MPED and the
proposed MPED-RobustCAL across label budgets, using various classifier sets.

(a) Logistic regression
Label budget 250 300 350 400
Conventional 244.45±24.02 285.75±36.30 318.29±52.68 341.24±68.81

MPED-RobustCAL 236.41±39.67 273.02±54.60 299.81±70.37 313.58±82.04

(b) Decision tree
Label budget 250 300 350 400
Conventional 244.45±24.02 285.75±36.30 318.29±52.68 341.24±68.81

MPED-RobustCAL 236.24±42.10 271.48±56.35 298.69±72.53 313.30±84.72

(c) k-NN
Label budget 250 300 350 400
Conventional 244.45±24.02 285.75±36.30 318.29±52.68 341.24±68.81

MPED-RobustCAL 238.81±41.15 278.46±53.97 306.24±67.97 323.28±81.18
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B.4.4 RATE OF TRUE POSITIVE REGIONS

Theorem 4.5 in the main paper suggests that MPED-RobustCAL is an experimental design capable of
ensuring that the enrollment region covers the target region Ωγ , which corresponds to points with
high treatment effects. To evaluate this, we present the results for the true positive rate (TPR), defined
as the ratio of the number of points x with labels 1 (i.e., points with high treatment effects) included
in the enrollment region to the total number of points with labels 1.

(a) k-NN (b) Decision Tree (c) Logistic Regression

Figure 9: TPR comparison between MPED-RobustCAL and a standard active design across various
label budgets.

Additionally, we compare the TPR of MPED-RobustCAL with the regression-based active design
proposed in Simon & Simon (2013) and with τ -BALD from Jesson et al. (2021). For the regression-
based active design, k-nearest neighbors (kNN), decision trees, and logistic regression are used to
construct the regression functions, while for τ -BALD a Gaussian process is employed to construct the
regression function. The TPRs are computed by identifying enrollment points from an independent
validation set under various label budgets. The use of this validation set allows for an unbias TPR
comparison among MPED-RobustCAL and the designs in Simon & Simon (2013) and (Jesson et al.,
2021). However, it is important to note that this validation set is only used for the TPR comparison
and is not required for the practical implementation of MPED-RobustCAL. The comparative results
are presented in Figure 9, showing the average TPR calculated from 100 validation sets sampled
from the entire ALS dataset. Three classifier sets, including knn, decision tree and logistic regression,
are employed to construct the classifier committee. As observed, MPED-RobustCAL consistently
achieves a significantly higher TPR compared to the two active design baselines across various label
budgets, as expected. Ideally, the TPR for MPED-RobustCAL converges to one, as demonstrated
in the results of the synthetic data presented in Figure 6. However, the labels of points in the
PRO-ACT dataset contain noise, meaning that points labeled as one—based on the comparison of
treatment and control responses—do not always accurately indicate that the points belong to Ωγ .
Furthermore, unlike the synthetic data, we do not have perfect identification of points in Ωγ for the
PRO-ACT dataset. This lack of perfect ground-truth of Ωγ leads to the TPR for MPED-RobustCAL
not converging to one.

B.5 EXPERIMENTS WITH THE INFANT HEALTH AND DEVELOPMENT PROGRAM DATASET

B.5.1 DATA DESCRIPTION

The Infant Health and Development Program (IHDP) dataset (Shalit et al., 2017) contains data for
studying the effect of home visits by specialist doctors on the cognitive test scores of premature
infants. In this dataset, the treatment/control assignment A indicates whether a participant received a
home visit, and the outcome represents the cognitive test score. The dataset includes approximately
750 subjects and 25 covariates. Specifically, both factual and counterfactual outcomes are available
for each participant. Therefore, we perform simulations under an exact-match setting, i.e., X̃ = X̃′

for each pair
(
X̃, X̃′

)
, using the IHDP dataset.
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B.5.2 IMPLEMENTATION DETAILS

We implement Algorithm 2 to actively enroll participants from S = (X)
M . The testing function

k is instantiated using the sequential predictive test proposed in Podkopaev & Ramdas (2023), as
presented in Algorithm 3. The labeled set Q is bootstrapped to generate 10 training subsets, which are
used to initialize or update an ensemble C consisting of 10 decision tree, or k-NN models, respectively.
The training set Q is initialized with 10 randomly labeled data points from the IHDP dataset. The
significance level is set to α = 0.05, and the treatment effect threshold γ is set to 4.5. The simulation
on IHDP is conducted solely to evaluate the performance of identifying the target region Ωγ . This is
because the average treatment effect across the entire IHDP population is already high, and random
enrollment alone yields high testing power. We perform sampling using the entire IHDP dataset,
generating 100 subsets, each containing approximately 530 subjects.

(a) k-NN (b) Decision Tree

Figure 10: TPR comparison between MPED-RobustCAL and a standard active design across various
label budgets.

B.5.3 RATE OF TRUE POSITIVE REGIONS

Similar to Section B.4.4, we compare the TPR of MPED-RobustCAL with the regression-based active
design proposed in Simon & Simon (2013) and with τ -BALD from Jesson et al. (2021). For the
regression-based active design, k-nearest neighbors (kNN) and decision trees are used to construct the
regression functions, while for τ -BALD a Gaussian process is employed to construct the regression
function. The TPRs are computed by identifying enrollment points from an independent validation
set under various label budgets. The use of this validation set allows for an unbias TPR comparison
among MPED-RobustCAL and the designs in Simon & Simon (2013) and Jesson et al. (2021). The
comparative results between MPED-RobustCAL and the active designs in Simon & Simon (2013)
and Jesson et al. (2021) are presented in Figure 9, showing the average TPR computed over 100
validation sets sampled from the entire IHDP dataset. Two types of classifier sets—k-NN and
decision tree—are employed to construct the classifier committee. As observed, MPED-RobustCAL
consistently achieves a significantly higher TPR than the active designs in Simon & Simon (2013)
and Jesson et al. (2021) across various label budgets, as expected.

B.5.4 EVALUATIONS OF THE PRECISION

Theorem 4.5 suggests that the enrollment region converges to the target region Ωγ more rapidly
under MPED-RobustCAL than with passive learning. This implies that the true positive rate (TPR)
for both approaches remains close to one throughout the classifier’s training, indicating that most
responders within the target region are eventually retrieved. However, the precision achieved by active
learning improves at a faster rate than that of passive learning. As noted in Remark 4.6 in the main
paper, the learning efficiency of MPED-RobustCAL is lower than that of the original RobustCAL, due
to the additional label queries allocated to the positive region POS (C) to facilitate two-sample testing.
Figure 11 supports both Theorem 4.5 and Remark 4.6, showing that while both active and passive
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learning achieve high TPR, the precision under active learning increases at a moderately faster rate or
remains comparable.

(a) k-NN (b) Decision Tree

Figure 11: Comparison of TPR and precision between passive learning and MPED-RobustCAL across
various label budgets. Each subfigure shows TPR (left) and precision (right) for a given classifier.

B.6 SENSITIVITY ANALYSIS ON THE HYPERPARAMETERS OF PRACTICAL
MPED-ROBUSTCAL

The number of labeled samples used to initialize the committee of classifiers and the size of the
committee are two main hyperparameters for Practical MPED-RobustCAL in Algorithm 2. In this
section, we evaluate the sensitivity of these hyperparameters by examining the testing power under
different settings. Table 7 presents a comparison of testing power, evaluated using the PRO-ACT
dataset, between Practical RobustCAL and conventional MPED as the number of initial labeled
samples and the committee size vary. Decision trees are used to construct the classifiers. The results
show that, across most settings, MPED-RobustCAL achieves higher testing power than conventional
MPED.

Table 7: Testing power comparison by committee size and initial label size. Bold indicates MPED-
RobustCAL outperforming Conventional MPED.

Initial Label Size = 10
Method # Classifiers 250 300 350 400

Conventional MPED – 0.14 0.27 0.47 0.70

MPED-RobustCAL 2 0.17 0.32 0.55 0.78
MPED-RobustCAL 4 0.09 0.27 0.48 0.80
MPED-RobustCAL 6 0.16 0.34 0.58 0.81
MPED-RobustCAL 8 0.22 0.35 0.57 0.76
MPED-RobustCAL 10 0.19 0.39 0.59 0.79

Initial Label Size = 30
Method # Classifiers 250 300 350 400

Conventional MPED – 0.12 0.26 0.49 0.70

MPED-RobustCAL 2 0.13 0.29 0.56 0.75
MPED-RobustCAL 4 0.13 0.30 0.51 0.69
MPED-RobustCAL 6 0.16 0.30 0.54 0.70
MPED-RobustCAL 8 0.18 0.27 0.55 0.77
MPED-RobustCAL 10 0.13 0.31 0.47 0.77

B.7 PERFORMANCE OF PRACTICAL MPED-ROBUSTCAL UNDER VARIOUS PROBLEM
DIFFICULTIES

The difficulty of the synthetic dataset is controlled by adjusting the intercept value from 0.6 to 0,
where a smaller intercept corresponds to an easier problem (see Appendix B.3.1 for details of the data
model). Accordingly, P (Ωγ)—a probabilistic upper bound on POS (C)—increases as the problem
becomes easier. We report simulation results on testing power, comparing MPED-RobustCAL with
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conventional MPED across different difficulty levels in the synthetic dataset. Table 8 shows that
when the problem is easy, the testing power of conventional MPED is already high. The advantage
of MPED-RobustCAL becomes more pronounced as the problem increases in difficulty (e.g., at
intercept = 0.2).

Table 8: Testing power for various intercepts used to generate synthetic data (label budget = 200).
Larger intercepts represent harder problems, corresponding to smaller Ωγ .

Intercept 0.0 0.1 0.2 0.3 0.4 0.5

Conventional MPED 1.00 0.95 0.72 0.41 0.18 0.06
MPED-RobustCAL 1.00 1.00 0.99 0.96 0.73 0.23

C PROOF OF PROPOSITION 4.1

Proof. We divide X , the support of pX, into two regions: Ωγ = {x ∈ X | ∆(x) ≥ γ} and Ωγ̄ =
{x ∈ X | ∆(x) < γ}. Assumption 3.2 states that the observed control and treatment r.v.

(
Y 0, Y 1

)
are independent of the treatment assignment A conditional on (X,X′). This implies that,

∀ (X,X′) ∈ X × X , Y 0 (X) = Y 0 (X′) and Y 1 (X) = Y 1 (X′) . (9)

Consequently, we define G (X) = Y 1 (X) − Y 0 (X) to represent the r.v. indicating the outcome
difference between treatment and control experiments within a matched-pair. MPED-RobustCAL
assigns the label Z̃ = 1 to x if G (x) ≥ γ, and Z̃ = 0 otherwise. Therefore, PZ̃|X

(
Z̃ = 1 | X

)
=

P (G (X)− γ ≥ 0 | X) and PZ̃|X

(
Z̃ = 0 | X

)
= P (G (X)− γ < 0 | X). From the data model

in equation 1, where Y A contains zero-mean noise E ∼ N
(
0, σ2

)
, we have:

G (x) ∼ N
(
µγ (x) , σ

2
)
, µγ (x) ≥ γ, ∀x ∈ Ωγ (10)

G (x) ∼ N
(
µγ̄ (x) , σ

2
)
, µγ̄ (x) < γ, ∀x ∈ Ωγ̄ (11)

Consequently,

PZ̃|X

(
Z̃ = 1 | X

)
= P (G (X)− γ ≥ 0 | X) ≥ 0.5, ∀X ∈ Ωγ (12)

PZ̃|X

(
Z̃ = 0 | X

)
= P (G (X)− γ < 0 | X) < 0.5, ∀X ∈ Ωγ̄ (13)

Hence, the Bayes optimal classifier q∗ (x) =

{
1 if PZ̃|X (1 | x) ≥ 0.5

0 otherwise
, assigns 1 to ∀x ∈ Ωγ and

0 to ∀x ∈ Ωγ̄ .

D PROOF OF THEOREM 4.5

Our proof of Theorem 4.5 closely resembles the proof of Theorem 5.4 in Hanneke et al. (2014)
for the original RobustCAL algorithm. However, our proof has been adapted to accommodate the
proposed MPED-RobustCAL. For details on the original proof for RobustCAL, we refer readers to
Section 5.2 of Hanneke et al. (2014).

Proof. The proof of Theorem 4.5 is established under the following assumption with respect to pXZ̃ ,

Assumption D.1. (Tsybakov (2004)) Given pXZ̃ , a classifier set C and a Bayes optimal classifier
q∗ (x) with respect to pXZ̃ , there exist constants a ∈ [1,∞) and ρ ∈ [0, 1] such that, for every h ∈ C,
the following holds

P (h (X) ̸= q∗ (X)) ≤ a (er (h)− er (q∗))ρ (14)

where er (h) represents the classification error of h over pXZ̃ .
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The authors of Massart & Nedelec (2006) establish that a bounded noise condition implies Assump-
tion D.1 for ρ = 1,

Assumption D.2. (Bounded noise condition (Massart & Nedelec, 2006)) Given η̃ (x) =

PZ̃|X

(
Z̃ = 1 | X

)
with respect to pXZ̃ , there exists a ∈ [1,∞) such that

P (X : |η̃ (X)− 1/2| < 1/ (2a)) = 0 (15)

where X ∼ pX.

Assumption D.2 is stated earlier in Assumption 4.4, indicating that η̃ (x) is bounded away from
1/2, ∀x ∈ X . Additionally, Assumption D.2 implies that η̃ (x) ̸= 1/2, ∀x ∈ X , which addresses
scenarios under H1. Under H0, X and Z̃ are independent, making the classification problem
trivial. Consequently, an adapted version of Assumption D.2 relevant to our work is presented in
Assumption 4.4. We restate it here for the reader’s convenience.

Assumption D.3. (Bounded noise condition (Massart & Nedelec, 2006)) Under H1, there exists
a ∈ [1,∞) such that

P (X : |η̃ (X)− 1/2| < 1/ (2a)) = 0 (16)

where X ∼ pX, and furthermore, the Bayes optimal classifier q∗ ∈ C.

This adapted Assumption D.3 further assumes the Bayes optimal classifier q∗ ∈ C. Herein, we
restated the definition of Vapnik-Chervonenkis (VC) dimension of a classifier class C.

Definition D.4. (VC dimension (Vapnik & Chervonenkis, 2015)) The VC dimension of a non-empty C
is the largest integer m such that there exists a set of m points, (x)m, and for any label assignments
to the points in (x)

m, there always exists h ∈ C that can perfectly classify them.

An important lemma, which will be used throughout the proof, is stated in the following,

Lemma D.5. (Concentration inequalities (Hanneke et al., 2014)) Given pXZ̃ , a classifier set C and
a Bayes optimal classifier q∗ with respect to pXZ̃ , there is a universal constant c ∈ [1,∞) such that,

for
(
X, Z̃

)m

i.i.d. sampled from pXZ̃ , the following holds with probability at least 1− δ,∀h ∈ C

er (h)− er (q∗) ≤ max {2 (erm (h)− erm (q∗)) , ϵ} (17)
erm (h)−min

g∈C
erm (g) ≤ max {2 (er (h)− er (q∗)) , ϵ} (18)

when

m ≥ c max

{
aϵρ−2 (dvc log (θq∗ (aϵ

ρ)) + log (1/δ))(
β+ϵ
ϵ2

)
(dvc log (θq∗ (β + ϵ))) + log (1/δ)) ,

(19)

where dvc is the VC-dimension of C, β is the Bayes error rate of q∗, and θq∗ is the disagreement
coefficient introduced in Definition 4.3 in the main paper.

Lemma D.5 originates from the work of Giné & Koltchinskii (2006), which states ϵ as a function of
m. Replacing ϵ in equation 19 with U (m, δ), the authors of Giné & Koltchinskii (2006) presents
that, given a sample complexity m, the concentration inequalities in equation 17 and equation 18
hold with probability at least 1− δ for

U (m, δ) = ĉ min


(

a
(
dvc log

(
θq∗

(
a( advc

m )
1/(2−ρ)

))
+log(1/δ)

)
m

) 1
2−ρ

dvc log(θq∗ (dvc/m))+log(1/δ)

m +

√
β(dvc log(θq∗ (β)))+log(1/δ)

m

(20)

where ĉ ∈ (1,∞) is an universal constant. Lemma D.5 provides a tool to analyze the sample
complexity needed to acquire a classifier with the excess error ϵ compared to the Bayes classifier q∗.

The passive learning result is presented in Section 3.3 in Hanneke et al. (2014). We restate their
results in the following,
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Theorem D.6. Under Assumption D.1, passive learning attains a classifier h ∈ C such that
er (h)− er (q∗) ≤ ϵ with probability at least 1− δ for any pXZ̃ , using the label complexity at most:

a

(
1

ϵ

)2−ρ

(dvc log (θq∗ (aϵ
ρ)) + log (1/δ)) . (21)

The following proof is comprised of demonstrating that q∗ is included in C throughout the execution
of MPED-RobustCAL in Algorithm 1, provided that the concentration inequalities in Lemma D.5
holds, and analyzing the label complexity incurred at the end of the execution. This analysis leads to
label complexity needed to achieve a classifier with an excess error ϵ compared with q∗. Furthermore,
as presented in this analysis, the ratio R = |DIS(C)

⋃
POS(C)|

|Ωγ | , which represents the ratio of the
enrollment region to the target region, is tied to ϵ.

We write M ⊆ {0, · · · , 2B} to denote the set of values of m obtained during the execution of MPED-
RobustCAL in Algorithm 1. We write Cm and Qm to denote the sets of classifiers and labeled data
when the mth unlabeled X̃ is sampled from pX before entering Line 4 in Algorithm 1. Furthermore,
for each m ∈M with log2 (m) ∈ N, we define Ū (m, δ) in Algorithm 1 as

Ū (m, δ) = U (m, δm) (22)

where δm = δ/ (log2 (2m))
2. The value of Ū (m, δ) is to ensure the total failure probability of the

algorithm sums up to at most δ.

We define E0 as the event that the concentration inequalities in Lemma D.5 hold for every m ∈M
and δm with m satisfying log2 m ∈ N. Then, by using the union bound, the event E0 holds with at
least 1−

∑∞
i=1

δ
(1+i)2

> 1− 2δ/3, implying that for every m ∈M and δm with log2 m ∈ N,

erm (q∗)−ming∈Cerm (g) ≤ U (m, δm) , (23)
and additionally,

er (h)− er (q∗) ≤ max{2 (erm (h)− erm (q∗)) , U (m, δm)}, ∀h ∈ C. (24)
Furthermore, as MPED-RobustCAL only labels points with which h, g ∈ Cm−1 disagrees, then
we have (erQm

(h)− erQm
(g)) |Qm| = (erm (h)− erm (g))m,m > 0. Assuming q∗ ∈ Cm−1 for

some m ∈M and δm, then
(erQm

(h)− erQm
(q∗)) |Qm| = (erm (h)− erm (q∗))m, ∀h ∈ Cm−1. (25)

Combining equation 23 and equation 25 leads to(
erQm

(q∗)− min
g∈Cm−1

erQm
(g)

)
|Qm| ≤ U (m, δm)m, (26)

implying q∗ is also included in Cm in the execution of MPED-RobustCAL, given Line 9 in Algorithm 1.
Furthermore, as q∗ ∈ C stated in Assumption D.3, using the induction leads to q∗ ∈ Cm, ∀m ∈M
under the event E0.

Now, we define iϵ = ⌈log2 (2/ϵ)⌉, I = {0, · · · , iϵ}, and write ϵi = 2−i, ∀i ∈ I . Additionally, we
use ⌈x⌉2 = 2⌈log2(x)⌉ to denote a function that represents the smallest power of 2 greater than or
equal to x. In the following, we define m′

i, ∀i ∈ I\{0},

m′
i = c min

4aϵρ−2
i

(
dvc log (θq∗ (aϵ

ρ)) + log
(

4 log2(ca/ϵi)
δ

))
4
(

β+ϵi
ϵ2i

)(
dvc log (θq∗ (β + ϵi)) + log

(
4 log2(4c/ϵi)

δ

)) (27)

and mi = ⌈m′
i⌉2. Moreover, we set m0 = 0. Considering every i ∈ I\{0} with mi ∈ M ,

combining equation 24, equation 25, q∗ ∈ Cmi−1 and Line 9 in Algorithm 1, we obain the following
results. Conditional on the event E0, it holds that

∀h ∈ Vmi
, er (h)− er (q∗) ≤ 2ϵi, ∀i ∈ I with mi ∈M. (28)

Now, we turn to the analysis of the following label complexity
min{miϵ ,maxM}∑

m=1

1POS(Cm−1)
⋃

DIS(Cm−1) (Xm) =

iϵ∑
i=1

min{mi,maxM}∑
m=mi−1+1

1POS(Cm−1)
⋃

DIS(Cm−1) (Xm)

(29)
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Furthermore, conditional on the event E0, for each i ∈ I\{0} and m ∈ {mi−1+1, · · · ,mi}
⋂

M , we
have DIS (Cm−1) ⊆ DIS

(
Cmi−1

)
⊆ DIS (B (q∗, a (2ϵi−1)

ρ
)). The last subset inclusion results from

Assumption D.1. Combined with the fact that POS (Cm−1) ⊆ Ωγ , ∀m ∈ [1,min{miϵ,,maxM}], the
summation of equation 29 is at most

iϵ∑
i=1

mi∑
m=mi−1+1

1Ωγ
⋃

DIS(B(q∗,a(2ϵi−1)
ρ)) (X) . (30)

equation 30 represents the sum of independent Bernoulli r.v.. By using a Chernoff bound, the
following event E1 holds with probability at least 1− δ/3,

iϵ∑
i=1

mi∑
m=mi−1+1

1Ωγ
⋃

DIS(B(q∗,a(2ϵi−1)
ρ)) (X)

≤ log2 (3/δ) + 2e

iϵ∑
i=1

(mi −mi−1)P
(
Ωγ

⋃
DIS (B (q∗, a (2ϵi−1)

ρ
))
)

≤ log2 (3/δ) + 2e

iϵ∑
i=1

(mi −mi−1)P (Ωγ)︸ ︷︷ ︸
♣

+2e

iϵ∑
i=1

(mi −mi−1)P (DIS (B (q∗, a (2ϵi−1)
ρ
)))︸ ︷︷ ︸

♠
(31)

♣ in equation 31 characterizes the number of the unlabeled points sampled from pX to achieve the
excess error ϵ for a classifier returned by MPED-RobustCAL. Suppose the passive learning is used
rather than querying POS (C)

⋃
DIS (C) in MPED-RobustCAL. Then, the labels of all unlabeled

points are queried, and ♣ indicates the label complexity for passive learning with a constant factor
2eP (Ωγ) to achieve ϵ. By using equation 21 and Definition 4.3, we have

♣ ⪅ 2eaP (Ωγ)

(
1

ϵ

)2−ρ

(dvc log (θq∗ (0)) + log (1/δ)) (32)

In the theoretical analysis of original RobustCAL presented in Theorem 5.4 in Hanneke et al. (2014),
log2 (3/δ)+♠ in equation 31 represents the label complexity of the original RobustCAL. Furthermore,
P (DIS (B (q∗, a (2ϵi−1)

ρ
))) ≤ θq∗ (0) a (2ϵi−1)

ρ based on the Definition 4.3.Then, we restate their
results in the following,

log2 (3/δ) +♠ ⪅ min

a2θq∗ (0) ϵ
2(ρ−1)

(
dvc log (θq∗ (0)) + log

(
log(a/ϵ)

δ

))
log (1/ϵ)

θq∗ (0)
(

β2

ϵ2 + log
(
1
ϵ

))(
dvc log (θq∗ (0)) + log

(
log(1/ϵ)

δ

)) (33)

Combining equation 32 and equation 33, and plugging ρ = 1 given Assumption D.3 leads to the
following label complexity

2eaP (Ωγ)

(
1

ϵ

)2−ρ

(dvc log (θq∗ (0)) + log (1/δ))+

min

a2θq∗ (0) ϵ
2(ρ−1)

(
dvc log (θq∗ (0)) + log

(
log(a/ϵ)

δ

))
log (1/ϵ)

θq∗ (0)
(

β2

ϵ2 + log
(
1
ϵ

))(
dvc log (θq∗ (0)) + log

(
log(1/ϵ)

δ

)) (34)

equation 34 is expressed using big O notation in equation 4 in Theorem 4.5. By selecting the
budget B larger than equation 34, we ensure miϵ ∈ M . Lastly, considering P (E0

⋂
E1) ≥

P (E0) + P (E1)− 1 = 1− δ, we have proved that for each h in C returned by MPED-RobustCAL,
er (h)− er (q∗) ≤ ϵ with probability at least 1− δ using the label complexity in equation 34.

When E0

⋂
E1 holds, the regions not included in POS (C)

⋃
DIS (C) are those where points are

classified as 0, given that q∗ ∈ Cm, ∀m ∈ M . Therefore, Ωγ ⊆ POS (C)
⋃

DIS (C). By the end of
execution by MPED-RobustCAL, the excess error of any classifier in C returned by MPED-RobustCAL
is upper-bounded by ϵ conditional on E0

⋂
E1. Consequently, using the Definition 4.3, the ratioR

of size of the enrollment region to size of Ωγ is

R =
|POS (C)

⋃
DIS (C)|

|Ωγ |
≤ P (Ωγ) + P (DIS (C))

P (Ωγ)
≤ 1 +

θq∗ϵ

P (Ωγ)
. (35)

This completes the proof.
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E PROOF OF THEOREM 5.1

As we instantiate k in MPED-RobustCAL with the sequential predictive two-sample test proposed
in Podkopaev & Ramdas (2023), which is statistically valid under random enrollment (i.e., X ∼ pX),
we aim to demonstrate that this statistical validity is preserved even when the test is conducted
under MPED-RobustCAL. The same proof can be extended to any sequential test that is statistically
valid under random enrollment.

Proof. The sequential predictive two-sample test, illustrated in Figure B.1, was first introduced
in Podkopaev & Ramdas (2023). By combining Equations (5) and (11a) from that work, one
can derive the test statistic defined in equation 5. The authors proved in Theorem 1 (first point)
of Podkopaev & Ramdas (2023) that under the null hypothesis H0—specifically, when the sample
measurement S and group membership A are independent (i.e., S ⊥⊥ A)—the following bound holds:

P

(
∃n ≥ 1 : Wn ≥

1

α

)
≤ α, (36)

regardless of the choice of q̄ used to construct the betting statistic Wn. To establish equation 36, it
suffices to show that (W )

n is a non-negative supermartingale under H0.

Definition E.1. (Supermartingale) A sequence (Y ) is a supermartingale if E [Yn+1 | Y n] ≥ Yn,∀n >
0.

Then, applying the Ville’s inequality (Ville, 1939) immediately yields equation 36. We refer
readers D.3 in Podkopaev & Ramdas (2023) for the same statement. Now, to reuse the result
of equation 36 within MPED-RobustCAL, it remains to demonstrate that the sequence (W )

n re-
sulting from Algorithm 3 applied within MPED-RobustCAL is a non-negative supermartingale
under H0. As MPED-RobustCAL randomly assigns the treatment and control within

(
X̃, X̃′

)
,

we have X̃ ⊥⊥ A. Additionally, under H0 and Assumption 3.1, ∆(x) = 0, ∀x ∈ X , imply-
ing Y A (x) = Y 1−A (x) ,∀x ∈ X , which leads to A ⊥⊥ Y A (x̃). Consequently, P

(
Õ, A

)
=

P
(
X̃, Y A, A

)
= P

(
X̃, Y A

(
X̃
)
|A

)
P (A) = P

(
X̃, Y A

(
X̃
))

P (A) = P
(
Õ
)
P (A). There-

fore, Õ ⊥⊥ A holds within MPED-RobustCAL under H0. In addition, as only one unit of
(
Õ, A

)
is

included to k, we have P (An = 1) = P (An = 0) = 0.5. This leads to, for ∀n > 0 and W0 = 1,

E
[
Wn | (W )

n−1
]
= Wn−1

((
1 + λnLn

(
Õn, 1

))
P (An = 1) +

(
1 + λnLn

(
Õn, 0

))
P (An = 0)

)
= Wn−1. (37)

Futheremore, it is easy to see Wn ≥ 0,∀n > 0 provided that λn ∈ [−1, 1] and Ln

(
Õ, A

)
∈ {−1, 1}.

Hence, under H0, (W )
n is a non-negative supermartingale regardless of the choice of q̄ used to

construct Ln, and this completes the proof.
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