
MARIO: MAth Reasoning with code Interpreter Output
– A Reproducible Pipeline

Anonymous ACL submission

Abstract

Large language models (LLMs) have signifi-001
cantly improved in understanding natural lan-002
guage but still lack in mathematical reasoning,003
a hurdle on the path to true artificial general in-004
telligence. The training of large language mod-005
els, based on next-token prediction, struggles006
to capture the precise nature of mathematical007
reasoning, presenting both practical and theo-008
retical challenges. In this paper, we address this009
challenge by enriching the data landscape and010
introducing a reasonable data format, enhanced011
the text analysis of the LLM with a capability to012
utilize a Python code interpreter. This dataset is013
derived from GSM8K and MATH and has been014
further refined through a combination of GPT015
annotations, human review, and self-training016
processes. Additionally, we propose a tentative,017
easily replicable protocol for the fine-tuning of018
math-specific LLMs, which has led to a sig-019
nificant improvement in the performance of a020
7B-parameter LLM on the GSM8K and MATH021
datasets. We are committed to advancing the022
field of mathematical reasoning in LLMs and,023
to that end, we will make the source code and024
checkpoints publicly available.025

1 Introduction026

The Chain-of-Thought (CoT) prompting tech-027

nique (Wei et al., 2022) has been empirically028

shown to enhance the complex reasoning ca-029

pabilities of large language models (LLMs) by030

generating a sequence of intermediate reason-031

ing steps. Proprietary LLMs, including GPT-032

4(OpenAI, 2023) and Claude-2 (Anthropic, 2023),033

are designed to produce CoT responses by default,034

leading to improved reasoning performance, as ev-035

idenced by a 50.36% accuracy rate on the MATH036

dataset (Hendrycks et al., 2021) with GPT-4 (Zhou037

et al., 2023). Moreover, when LLMs are augmented038

with a plugin capable of executing code snippets,039

their accuracy in arithmetic computations—which040

are typically challenging for LLMs—is further en-041

hanced, e.g., GPT-4-Code achieved a 69.69% accu- 042

racy rate on the MATH dataset (Zhou et al., 2023). 043

This underscores the efficacy of integrating text 044

analysis with code execution in datasets designed 045

for math reasoning tasks. 046

Recently, Yang et al. (2023) demonstrated that, 047

despite extensive fine-tuning for arithmetic oper- 048

ation simulation task, LLMs are still unable to 049

achieve perfect accuracy. Consequently, integrat- 050

ing code for precise numerical computation has be- 051

come an inevitable trend. The Program-of-Thought 052

(PoT) framework (Chen et al., 2022) and Program- 053

Aided Language (PAL) models (Gao et al., 2023) 054

represent seminal efforts in generating code-centric 055

datasets. Building on this trend, ToRA (Gou et al., 056

2023) advances the field by employing a propri- 057

etary annotation methodology along with GPT-4, 058

setting a new benchmark for state-of-the-art per- 059

formance in solving mathematical problems via 060

python code. However, it is noteworthy that the 061

solutions contained within these datasets predom- 062

inantly consist of code snippets, with minimal ac- 063

companying textual analysis. An obvious short- 064

coming of a code-centric solution is that it can 065

overlook common sense in math word problems, 066

e.g.,, as shown in Figure 1, the PoT solutions dis- 067

regard the fact that the quantity of the food taken 068

cannot be negative. 069

MathCoder (Wang et al., 2023a) represents an 070

initiative that emulates the response patterns of 071

GPT-4, integrating a plugin proficient in both 072

code generation and natural language reasoning. 073

This approach harnesses the capabilities of GPT- 074

4, equipped with a code interpreter, to automate 075

the annotation process, producing a blend of text 076

analyses and code snippets, guided by appropriate 077

instructions. 078

Our data generation approach generally mirrors 079

that of MathCoder, but with the enhancement of an 080

extra layer of human verification specifically for 081

the correction of easily rectifiable errors. There- 082

1

Figure 1: A comparison between code-centric solutions and our text-code solution. In the PoT solution provided
by GSM-Hard (Gao et al., 2023), the code-centric approach yields a negative quantity of cups. The PoT solution
from ToRA omits the minus sign in its concluding sentence, failing to address the impractical issue. Our solution,
incorporating both text analysis and a code snippet, recognizes that a negative quantity of cups is illogical.

fore, all mistakes in the original GSM8K (Cobbe083

et al., 2021a) training set have been corrected by084

hand, while the MATH dataset, containing tougher085

problems, are partially fixed and required profes-086

sional annotators’ expertise. To address this, we087

utilize self-training and knowledge distillation tech-088

niques to selectively identify correct solutions, in089

conjunction with more samplings.090

Furthermore, we introduce a tentative and eas-091

ily replicable protocol for the fine-tuning of math-092

specific LLMs. To ensure the reproducibility of our093

experiments, we begin with the extensively stud-094

ied LLM, Llama-2 (Touvron et al., 2023), and uti-095

lize its math-oriented continual pre-training variant,096

Llemma (Azerbayev et al., 2023). Subsequently,097

we apply supervised fine-tuning to our annotated098

dataset to establish a baseline model. Moreover,099

we implement a toolkit for evaluating math an-100

swers, which allows for the comparison between101

the ground truth and the LLM predictions.102

Unlike text generation tasks such as summa-103

rization, mathematical reasoning usually yields a104

unique answer, which simplifies the verification105

of its correctness. However, assessing the rea-106

soning process that leads to the final answer re-107

mains challenging. To address this issue, Light-108

man et al. (2023) introduced a model supervised by 109

processes and a corresponding dataset with man- 110

ually labeled solution procedures. Yet, from a 111

replication standpoint, creating these annotations 112

is both labor-intensive and costly. As a compro- 113

mise, we recommend training a straightforward 114

outcome-supervised model as described by (Cobbe 115

et al., 2021b; Yu et al., 2023a), to serve as an aux- 116

iliary tool for comparing and selecting the best 117

among various solutions. Our outcome value model 118

(OVM) is fine-tuned using the efficient LoRA train- 119

ing (Hu et al., 2021) in a multi-task setting, which 120

enables the model to conserve computational re- 121

sources while maintaining its generative capabil- 122

ities. In summary, our main contributions are in 123

three-fold. 124

1. We create a math reasoning format that integrates 125

both text analyses and code snippets, leveraging 126

logical reasoning and precise computation. 127

2. We introduce a reproducible pipeline for data 128

generation and LLM fine-tuning in the mathemati- 129

cal domain. 130

3. Our experiments demonstrate that our approach 131

can significantly enhance performance on math 132

reasoning tasks. We will open-source our pipeline 133

and model checkpoints. 134

2

Figure 2: The data pipeline illustrates the process of data generation for the GSM8K and MATH datasets. We
employ GPT to provide initial annotations, followed by human verification to fix easily rectifiable errors. For MATH
dataset, an additional sampling strategy derived from a self-trained Large Language Model (LLM) is imposed.

2 Dataset135

In this section, we detail our methodology for build-136

ing the corpus, aiming for seamless integration of137

text analysis and code snippets. The textual con-138

tent should articulate the problem-solving process,139

while the code snippets should perform precise140

computations. As shown in Figure 2, our data141

pipeline mainly includes three steps.142

GPT Generation To create a solution in the de-143

sired format, we utilize instructions inspired by144

REACT (Yao et al., 2022) to ensure GPT recog-145

nizes when to employ an external tool-Python code146

interpreter. In addition to the REACT instruction147

in the prompt, we provide two manually crafted148

demonstration examples within the prompt for the149

language model to emulate. For further details on150

the prompt setup, please see Appendix A.1.1.151

Given that the problems in GSM8K are rela-152

tively straightforward, we initially prompt both153

GPT-3.5 and GPT-4 to tackle each question with154

at maximum 5 code snippets using a temperature155

0. For questions that remain unsolved after the156

initial two attempts, we address the potential re-157

quirement for more creative and diverse solutions158

by re-prompting GPT-4 with a temperature 0.6 for159

another two attempts. Therefore, we obtain at least160

one correct solution for 98.3% of the questions in161

GSM8K. In contrast, we exclusively utilize GPT-162

4 with maximum 8 code snippets allowed due to163

the substantially higher difficulty of the MATH164

questions for all the four attempts. Following this165

process, a mere 66.7% of the questions in MATH166

are provided with at least one correct solution.167

Human Review Approximately 100 questions re-168

main for which the answers generated by GPT169

do not align with the answers from the original 170

GSM8K. Given the manageable number, we have 171

conducted a manual review of the discrepancies 172

and corrected any inaccuracies found in either the 173

LLM-generated or the original answers. This en- 174

sures that each question within the GSM8K training 175

set is associated with at least one correct solution in 176

required format. For MATH dataset, we forgo man- 177

ual solutions for all remaining 1,208 questions due 178

to the significant burden it imposes. Instead, human 179

verification is applied for the correction of easily 180

rectifiable errors in the filed of final answers (see 181

Appendix A.2 for details). Consequently, 83.9% of 182

MATH questions are correctly solved, then com- 183

bined with previously created GSM8K dataset into 184

a unified dataset with size 26.9K. 185

Augmentation We reformatted the seed data from 186

REACT to HTML and fine-tuned it on the pre- 187

trained MATH LLM, Llemma-34B (Azerbayev 188

et al., 2023). For reformatting details, see Ap- 189

pendix A.3. Using the fine-tuned model, we pro- 190

duced up to 100 samples per unsolved question at a 191

temperature of 0.6, stopping after finding at most 4 192

correct solutions. This method yielded a coverage 193

of 93.8% of the questions in MATH with correct 194

solutions. 195

To further augment the scale and variety of ques- 196

tions in our dataset, we incorporate about 240K 197

novel questions from MetaMath (Yu et al., 2023b), 198

which are transformations of those found in the 199

original GSM8K and MATH datasets. It allow us 200

to gather a richer set of sampled solutions including 201

both positive and negative examples. We anticipate 202

that this strategy of data augmentation will signif- 203

icantly boost the model’s performance and serve 204

the training signals for outcome value model. 205

3

Figure 3: The training pipeline is divided into three distinct stages. First, we continue pre-training using a
comprehensive corpus that encompasses both mathematical and coding domains, e.g., Llemma (Azerbayev et al.,
2023). Second, it involves supervised fine-tuning in full parameters, utilizing our specially curated dataset. Finally,
the model is further fine-tuned in multi-task setting.

3 Fine-Tuning206

To enhance a large language model’s mathemat-207

ical reasoning capabilities, we propose utilizing208

the foundational model Llemma (Azerbayev et al.,209

2023). There are two primary reasons for choos-210

ing Llemma. First, Llemma represents a continua-211

tion of the pre-training process initiated by Llama-212

2 (Touvron et al., 2023), extending its proficiency213

into both mathematical and coding domains, which214

aligns seamlessly with our requirements. Sec-215

ond, it has been demonstrated that neither Llama-2216

nor Llemma exhibit excessive overfitting on the217

GSM8K or MATH dataset, as confirmed by (Wei218

et al., 2023).219

3.1 Supervised Fine-Tuning with Full220

Parameters221

The supervised fine-tuning closely mirrors the data222

generation step that serves to expand the coverage223

of the MATH dataset. During the SFT stage, we224

tune the entire set of parameters of the LLM using225

our specially curated dataset. For each given ques-226

tion q and its corresponding correct solution s+,227

we optimize the model by minimizing the follow-228

ing cross-entropy loss.229

min− log p(s+|q)230

3.2 Multi-Task Fine-Tuning with LoRA231

During solution sampling, the LLM is capable of232

effortlessly creating both correct (positive) and in-233

correct (negative) samples s−. This duality enables234

us to train the LLM to discern the validity of a235

solution by predicting whether the final answer is236

accurate. To achieve this, we add a light-weighted237

binary classifier, alongside the existing softmax238

layer responsible for token prediction. We main-239

tain a roughly equal ratio of positive to negative240

examples for balanced training. The overall loss241

follows the multi-task setting.242

min− log p
(
s+,y+|q

)
− log p

(
y−|q, s−

)
243

Note that the first term can be factorized as two 244

tasks p(y+|q, s+)p (s+|q). The value prediction 245

task corresponds to the sequence classification loss 246

calculated for each token with the label as the cor- 247

rectness of the solution. Therefore, y is a vector 248

whose length is equal to the number of tokens in the 249

solution s. Given the significantly larger data size 250

required for training the Value LLM, we employ 251

computationally efficient LoRA (Hu et al., 2021) 252

during training. 253

In our multi-task setting, the Value LLM plays 254

a dual role on generation solutions and evaluating 255

them. The primary benefits of this feature is practi- 256

cality, as it requires the deployment of only a single 257

LLM for the entire inference process. 258

3.3 Outlier-Free OVM Inference 259

The solution-generating LLM can be paired with 260

the Value LLM, which serves as an outcome value 261

model (OVM). The Value LLM primarily serves 262

to evaluate outcomes, that is, to estimate the likeli- 263

hood of the final answer being correct. To improve 264

the quality of solutions generated by the SFT LLM, 265

one might consider re-ranking multiple solutions 266

sampled from the SFT LLM. However, we suggest 267

employing an outlier-free OVM selection algorithm 268

to identify the best answer. Specifically, given K 269

sampled solutions {si}Ki=1 resulting in k distinct 270

final answers {aj}kj=1, the frequency of each an- 271

swer is represented as nj , such that
∑k

j=1 nj = K. 272

The optimal answer is selected according to the cri- 273

terion κ = argmax{j|nj>δK}maxsi∈aj OVM(si). 274

In our experiments, for K = 20, we set δK = 1. 275

This is because a small number of samples, such as 276

20 in our example, might lead to a situation where 277

a random sample yields an anomalously high out- 278

come prediction, making it crucial to exclude out- 279

lier solutions. In the rare case that all K sampled 280

solutions are unique, we simply choose the solution 281

with the highest predicted outcome value. 282

4

Table 1: Data statistics

Data source Generation method Total # Code Trainset
GPT Human Self-train solutions snippets coverage

SFT (correct solutions)
GSM8K 17,480 95 - 17,576 ≤ 5 7,473 / 7,473
MATH 6,483 2,862 1,933 11,277 ≤ 8 7,011 / 7,500
MetaMath - - ∼55K ∼55K ≤ 8 -

OVM (correct / incorrect solutions)
MetaMath - - ∼300K ∼300K ≤ 8 -

In addition, this generation ability of value LLM,283

maintained along with the prediction of token-level284

values, allows for straightforward modifications285

to the decoding algorithm used in the transformer286

decoder implementation. For instance, the beam287

search mechanism could combine the original log-288

likelihood with the predicted value. We will ex-289

plore this potential direction in future work.290

4 Experiments291

4.1 Dataset Recap292

We present the statistics for our positive examples293

used in supervised fine-tuning in Table 1. The seed294

data, derived from GSM8K and MATH datasets,295

culminates in a collection of 26.9K solutions. For296

the augmentation data obtained from MetaMath,297

which encompasses 240K new questions, we em-298

ployed the augmentation method to sample one or299

two solutions for each question and randomly se-300

lect approximately 55K question-correct solution301

pairs. In total, we have gathered 300K examples,302

both positive and negative, maintaining an approxi-303

mately balanced ratio of labels.304

The in-domain test sets come from the original305

GSM8K and MATH datasets. We also conduct306

evaluations on two out-of-domain (OOD) test sets:307

the open-source OCWCourses dataset (Lewkowycz308

et al., 2022) and our proprietary GaoKao2023-309

Math-En dataset. OCWCourses comprises a col-310

lection of 272 STEM problems aimed at the un-311

dergraduate level, requiring multi-step reasoning312

for most questions. The GaoKao2023-Math-En313

dataset consists of 385 mathematics problems from314

the 2023 Chinese higher education entrance exami-315

nation (professionally translated into English), the316

2023 American Mathematics Competitions, and317

the 2023 American College Testing.318

4.2 Implementation Details319

We train the Llemma series (Azerbayev et al., 2023)320

through fine-tuning with our curated corpus, result-321

ing in the development of our SFT LLM series.322

During this optimization phase, we generally em- 323

ployed a learning rate of 5e-5, with the exception of 324

the 7B and 34B models, for which we reduced the 325

rate to 4e-5. We set the global batch size at 512 and 326

used a linear learning rate scheduler that included a 327

warm-up phase constituting 3% of the total training 328

duration, spread over 3 epochs. Training for all 329

models was launched with the accelerate1 in Deep- 330

Speed ZeRO Stage2 (Rajbhandari et al., 2021) and 331

Flash-Attention 2 mechanism (Dao, 2023). When 332

fine-tuning the value LLM with LoRA, we config- 333

ure the hyper-parameters with a rank of 4096 and 334

an alpha of 2048 for the attention parameters Wq 335

and Wv. In the context of the Llama-2-7B archi- 336

tecture, 2B model parameters are trainable. We 337

employ a learning rate of 5e-5, which is progres- 338

sively adjusted using a cosine decay scheduler. We 339

use 8 or 16 A100-80G GPUs for training 7B and 340

34B models. We also implemented a new math 341

answer evaluation toolkit to compare the ground 342

truth with the LLM predictions to determine if they 343

are equivalent expressions. 344

Baselines We conducted comparisons with 345

renowned proprietary and open-source LLMs such 346

as GPT (OpenAI, 2023), Claude (Anthropic, 2023), 347

PaLM (Anil et al., 2023), Minerva (Lewkowycz 348

et al., 2022), Gemini (Team et al., 2023), Llama- 349

2 (Touvron et al., 2023), CodeLlama (Roziere 350

et al., 2023), Qwen (Bai et al., 2023), and 351

DeepSeek (DeepSeek, 2023). We also have re- 352

ported results from a variety of open-source models, 353

most notably Llama-2, along with several SFT mod- 354

els derived from Llama-2, including RFT (Yuan 355

et al., 2023), WizardMath (Luo et al., 2023), Math- 356

Coder (Wang et al., 2023a), MAmmoTH (Yue et al., 357

2023) and ToRA (Gou et al., 2023). 358

4.3 Main Results 359

SFT Model Table 2 demonstrates the performance 360

of greed decoding. Our 7B model across four 361

datasets encompasses both in-domain and out-of- 362

domain problems when comparing with other open- 363

sourced LLMs with similar model size and data 364

size. In contrast, for more complex problems in 365

the MATH dataset, or even for challenging out- 366

of-domain problems, our 34B model consistently 367

outperforms others. Fewer training data may be 368

one reason, but the main reason should be its capa- 369

bility to perform text analysis, which breaks down 370

problems into manageable code snippets, thus en- 371

1https://github.com/huggingface/accelerate

5

https://github.com/huggingface/accelerate

Table 2: Results on different datasets. The best results of open-source models are bold. ∗GK2023-ME represents
Gaokao-2023-Math-En dataset. †maj@K means majority voting over K samples. §The MARIO-OVM-7B here is
simply used as an SFT LLM to generate one single solution.

Model Size Tool Zero In-domain Out-of-domain
Shot GSM8K MATH OCW GK2023∗

Proprietary Models
GPT-4 - % % 92.0 42.5 - -
GPT-4-Code - ✓ % 92.9 69.7 - -
ChatGPT - % % 80.8 35.5 - -
ChatGPT(PAL) - ✓ % 78.6 38.7 - -
Claude-2 - % % 85.2 32.5 - -
PaLM-2 540B % % 80.7 34.3 - -
Minerva 540B % % 58.8 33.6 17.6 -
Gemini Ultra maj@32† - % % 94.4 53.2 - -

Open-Source Models
Llama-2 SFT 7B % ✓ 41.3 7.2 - -
Llama-2 RFT 7B % ✓ 51.2 - - -
Llemma 7B % % 36.4 18.0 7.7 -
Llemma(PAL) 7B ✓ % 40.1 21.5 - -
Qwen 7B % % 51.7 11.6 - -
WizardMath 7B % ✓ 54.9 10.7 - -
DeepSeek-Coder 6.7B ✓ % 43.2 19.2 - -
MathCoder 7B ✓ ✓ 67.8 30.2 - -
MAmmoTH-Coder 7B ✓ % 59.4 33.4 11.0 15.3
ToRA 7B ✓ ✓ 68.8 40.1 2.6 19.5
ToRA-Code 7B ✓ ✓ 72.6 44.6 4.8 23.9
MARIO 7B ✓ ✓ 70.1 47.0 21.7 38.2
MARIO-OVM-7B§ 7B ✓ ✓ 74.5 48.3 21.0 34.8
CodeLlama 34B % % 29.6 12.2 7.0 -
CodeLlama(PAL) 34B ✓ % 53.3 23.9 - -
Llemma 34B % % 51.5 25.0 11.8 -
Llemma(PAL) 34B ✓ % 62.6 27.1 - -
DeepSeek-Coder 33B ✓ % 60.7 29.1 - -
MathCoder 34B ✓ ✓ 81.7 45.2 - -
MAmmoTH-Coder 34B ✓ % 72.7 43.6 14.0 25.2
ToRA-Code 34B ✓ ✓ 80.7 50.8 5.5 31.7
MARIO‡ 34B ✓ ✓ 78.8 53.5 30.2 42.6
DeepSeek-Chat 67B % % 84.1 32.6 - -
WizardMath 70B % ✓ 81.6 22.7 - -
MathCoder 70B ✓ ✓ 83.9 45.1 - -
MAmmoTH 70B ✓ % 76.9 41.8 11.8 24.7
ToRA 70B ✓ ✓ 84.3 49.7 9.6 30.9
Qwen 72B % % 78.9 35.2 - -

6

Table 3: Results on OVM-7B. +x indicates the increased
accuracy compared with the greedy decoding.

Inference method GSM8K MATH OCWCourses GK2023
ToRA-Code-7B 72.6 44.6 4.8 23.9

+maj@50 76.8 +4.2 52.5 +7.9 - -
MARIO-7B 70.1 47.0 21.7 38.2

+maj@20 80.5 +10.4 56.7 +9.7 25.4 +3.7 41.6 +3.4
+OVM-7B@20 82.9 +12.8 59.1 +12.1 28.3 +6.6 45.2 +7.0

MARIO-OVM-7B 74.5 48.3 21.0 34.8
+maj@20 83.8 +9.3 59.7 +11.4 22.1 +1.1 43.6 +8.8

+OVM-7B@20 83.6 +9.1 60.6 +12.3 25.4 +4.4 42.9 +8.1

hancing its problem-solving effectiveness. This is372

verified by the similar pattern observed with our 7B373

model that was trained on an 82K dataset, which374

is in line with past state-of-the-art (SOTA) meth-375

ods. So we conclude that such a model achieves376

superior results on more complex problems, likely377

because these problems demand more than simple378

logic and a few arithmetic steps—scenarios where379

models with a code-centric approach typically have380

an edge.381

OVM Model The experimental findings of our382

outlier-free OVM selection algorithm are displayed383

in Table 3, where we contrast our approach with384

the majority voting algorithm. Our findings indi-385

cate that the gain of majority voting by our ap-386

proach is more significant than ToRA, because text387

generations allow more creative ideas for problem388

solving than code only solution. In addition, our389

outlier-free OVM inference can further push up the390

performance of majority voting. In Table 3, we391

also present a comprehensive results showcasing392

the OVM’s performance when it takes on both the393

roles of solution generation and outcome evalua-394

tion. The OVM demonstrates a comparable profi-395

ciency in generating solutions; however, it exhibits396

a slightly reduced effectiveness on out-of-domain397

datasets. This outcome is to be expected, given that398

our OVM has been continually fine-tuned on the399

MetaMath questions, originating from the GSM8K400

and MATH datasets.401

4.4 Ablation Studies402

We perform the first ablation study to examines403

the impact of each data source by incrementally404

adding more training examples, with the primary405

findings detailed in Table 4. Overall, the advance-406

ments in MATH are more pronounced. We as-407

cribe this trend to three main factors. First, the408

GSM8K dataset, synthesized by GPT, encompasses409

98.3% of the questions, in contrast to the MATH410

dataset’s 66.7% coverage. Secondly, the selection411

Table 4: Ablation study of data usage on 7B model.

Data used # trainset GSM8K MATH
GPT 23.9K 66.3 40.2
+Human 26.9K 67.1 +0.8 43.5 +3.3
+MATH Aug 28.8K 67.4 +1.1 44.4 +4.2
+MetaMath Aug 82K 70.1 +3.8 47.0 +6.8

Table 5: Ablation study of CPT Model and Data format.
#The result is sourced from (Shao et al., 2024).

CPT Model data size data format GSM8K MATH.
DeepSeek-Math-7B# 776K code 83.7 57.4
DeepSeek-Math-7B 28.8K text+code 78.4 56.1
Llemma-Math-7B 28.8K text+code 67.4 44.4

criterion for the MATH dataset hinges on an exact 412

match between GPT’s generated final answer and 413

the dataset’s provided answer, which could lead 414

the fine-tuned model to overfit specific questions 415

that have straightforward answers. Human inter- 416

vention has the potential to enhance the variability 417

of the answers. Lastly, the teacher model’s gen- 418

erated solutions concentrate more heavily on the 419

MATH dataset. This is due to the fact that we 420

have extracted a greater number of multi-step rea- 421

soning solutions according to MetaMath questions, 422

which are likely better suited to the difficulty of the 423

MATH dataset. 424

The second ablation study aims to investigate the 425

impact of the foundational math LLM and the data 426

formatting for SFT. DeepSeek-MATH-7B (Shao 427

et al., 2024), is a specialized math-focused LLM 428

developed through continual pre-training on the 429

Deep-Seek-Code-7B model, which benefits from 430

a more extensive math pre-training corpus than 431

Llemma-7B and purposely omits any content that 432

may relate to GSM8K and MATH datasets. Conse- 433

quently, DeepSeek-MATH-7B is supposed to out- 434

perform Llemma-7B. When applying SFT on a 435

large scale code-centric SFT dataset, DeepSeek- 436

MATH-7B can achieve the SOTA performance as 437

7B LLM. The result presented in the second row of 438

Table 5 shows the results of fine-tuning DeepSeek- 439

MATH-7B with our dataset. Despite being only 440

1/30th the size of their used dataset, our hybrid for- 441

mat demonstrates greater data efficiency. The result 442

presented in the last row of Table 5 suggest that 443

SFT from a superior CPT model enhances math 444

reasoning capabilities. 445

7

Table 6: Results on GSM-Hard (Gao et al., 2023). ∗PAL is based on code-davinci-002.

Model PAL (Gao et al., 2023) DeepSeek-Coder MAmmoTH ToRA-Code MARIO MARIO-OVM
Size 175B∗ 6.7B 7B 7B 7B 7B
Accuracy 61.2 40.3 56.5 56.0 50.0 53.2

4.5 Why GSM-Hard is not a good testset for446

MATH LLM?447

The GSM-Hard dataset, introduced by Gao et al.448

(2023), is akin to the original GSM8K test set, with449

the sole distinction being the alteration of numbers450

in the original problem statements. However, as451

illustrated in Figure 1, these modifications to the452

numbers do not always align with the common453

sense of real physical world, e.g., ages cannot be454

negative, and the number of people cannot be frac-455

tional. Methods following the PoT paradigm tend456

to generate code without verifying the sensibility of457

their output, scarifying this ability of LLMs. In con-458

trast, our approach incorporates a textual analysis459

that ensures the results derived from code execution460

are consistent with the constraints of the physical461

world. As a result, our LLM will opt not to produce462

an illogical final answer or to arbitrarily round frac-463

tions, even if the so-called correct answer has been464

computed from the code execution in our approach.465

This accounts for the lower accuracy of our method466

on this dataset, shown in Table 6. In addition, we467

found some solutions in the GSM-Hard remain the468

same as the original GSM8K, even the numbers469

have changed. Some representative examples are470

provided in Appendix A.4, which compares the471

solutions between ground truth provided by GSM-472

Hard, ToRA, and our approach. In summary, we473

suggest not the use GSM-Hard dataset unless the474

mentioned errors have been fixed.475

Reformatting In Appendix A.3, we quantitatively476

verify the intuition by reformatting the REACT477

data to HTML data.478

5 Related Works479

Mathematical reasoning attracts more attentions480

because of the emergence of LLMs. Recent481

works (Wei et al., 2022; Kojima et al., 2023; Wang482

et al., 2023b; DeepSeek, 2023) on mathematical483

reasoning have made impressive progress empow-484

ered by LLMs. Yet exact calculations and symbolic485

manipulations within the reasoning process remain486

challenging. Some works have explored tools in-487

cluding calculators (Cobbe et al., 2021b; Shao et al.,488

2022) and code interpreters (Gao et al., 2023) to 489

address the limitations. Further research (Wang 490

et al., 2023a; Yue et al., 2023; Gou et al., 2023) 491

attempt to combine tool-use and textual reasoning 492

process to leverage the strengths of both. 493

Knowledge distillation (Hinton et al., 2015; 494

Gou et al., 2021) is a commonly used approach to 495

promote student models by transferring knowledge 496

from teacher models to them. Utilizing teacher 497

LLM to construct reasoning samples for student 498

model to fine-tune proved to be effective practice 499

of knowledge distillation(Fu et al., 2023; Ho et al., 500

2023). Our corpus construction includes knowl- 501

edge distillation of this kind on MATH with more 502

samplings from 34B SFT LLM. 503

Verification in mathematical reasoning plays 504

a crucial role in ensuring inference performance by 505

allowing auto-regressive models to correct already- 506

made errors. It has been proved that LLMs can self- 507

verify (Anonymous, 2023; Weng et al., 2023; Xie 508

et al., 2023) and self-refine (Madaan et al., 2023) 509

by designed prompting. A specifically trained ver- 510

ifier can also play a similar role by intervening 511

the decoding process (Cobbe et al., 2021b; Khalifa 512

et al., 2023; Yu et al., 2023a). In this paper, we 513

use multi-task fine-tuning which is similar to the 514

training of a simple outcome supervision model. 515

6 Conclusion 516

This paper introduces a reproducible pipeline that 517

covers both the construction of a math-specific 518

dataset and the fine-tuning of a large language 519

model (LLM). Our approach demonstrates that in- 520

tegrating text analyses with code snippets enhances 521

the model’s capabilities for common sense reason- 522

ing and precise computation in mathematical rea- 523

soning tasks. Moreover, our fine-tuning method 524

enhances model performance by incorporating a 525

verifier model that requires only a negligible num- 526

ber of additional parameters. To the best of our 527

knowledge, our approach sets a new state-of-the-art 528

benchmark for LLMs with a size around 7 billion 529

parameters on the MATH datasets, and it exhibits 530

notable generalization ability on challenging out- 531

of-domain math datasets. 532

8

7 Limitations533

The primary limitation of this study lies in the ex-534

penses associated with generating data. To begin535

with, producing raw data in the REACT format536

necessitates using the GPT API, e.g., generating537

a single solution for questions in the GSM8K and538

MATH datasets costs $0.01 and $0.025 respectively539

when utilizing GPT-4 in non-stream mode. Addi-540

tionally, human intervention for error correction541

demands approximately 80 working hours of la-542

bor to rectify solutions. Scaling up this dataset543

would therefore entail a significant increase in both544

financial outlay and manpower.545

Furthermore, our initial experimentation encoun-546

tered several mistakes in the details of both the data547

and training pipelines, which resulted in additional,548

unnecessary expenditures. As a result, we have549

decided to release the source code for our data and550

training pipelines. We hope that by doing so, other551

researchers in this field can draw on our experience552

and avoid similar costly errors, thereby reducing553

their expenses.554

References555

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-556
son, Dmitry Lepikhin, Alexandre Passos, Siamak557
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng558
Chen, et al. 2023. Palm 2 technical report. arXiv559
preprint arXiv:2305.10403.560

Anonymous. 2023. Solving challenging math word561
problems using GPT-4 code interpreter with code-562
based self-verification. In Submitted to The Twelfth563
International Conference on Learning Representa-564
tions. Under review.565

Anthropic. 2023. Model card and evaluations for claude566
models.567

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,568
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,569
Jia Deng, Stella Biderman, and Sean Welleck. 2023.570
Llemma: An open language model for mathematics.571
arXiv preprint arXiv:2310.10631.572

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,573
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei574
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,575
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,576
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,577
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong578
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-579
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,580
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,581
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-582
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang583
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang584
Zhu. 2023. Qwen technical report.585

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 586
William W Cohen. 2022. Program of thoughts 587
prompting: Disentangling computation from reason- 588
ing for numerical reasoning tasks. arXiv preprint 589
arXiv:2211.12588. 590

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 591
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 592
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 593
Nakano, Christopher Hesse, and John Schulman. 594
2021a. Training verifiers to solve math word prob- 595
lems. arXiv preprint arXiv:2110.14168. 596

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 597
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 598
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 599
Nakano, et al. 2021b. Training verifiers to solve math 600
word problems. arXiv preprint arXiv:2110.14168. 601

Tri Dao. 2023. FlashAttention-2: Faster attention with 602
better parallelism and work partitioning. 603

DeepSeek. 2023. Deepseek coder: Let the code 604
write itself. https://github.com/deepseek-ai/ 605
DeepSeek-Coder. 606

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and 607
Tushar Khot. 2023. Specializing smaller language 608
models towards multi-step reasoning. In Proceedings 609
of the 40th International Conference on Machine 610
Learning, volume 202 of Proceedings of Machine 611
Learning Research, pages 10421–10430. PMLR. 612

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 613
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 614
ham Neubig. 2023. Pal: Program-aided language 615
models. In International Conference on Machine 616
Learning, pages 10764–10799. PMLR. 617

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and 618
Dacheng Tao. 2021. Knowledge distillation: A 619
survey. International Journal of Computer Vision, 620
129(6):1789–1819. 621

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, 622
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 623
Chen. 2023. Tora: A tool-integrated reasoning agent 624
for mathematical problem solving. 625

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 626
Arora, Steven Basart, Eric Tang, Dawn Song, and 627
Jacob Steinhardt. 2021. Measuring mathematical 628
problem solving with the math dataset. NeurIPS. 629

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 630
Distilling the knowledge in a neural network. 631

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023. 632
Large language models are reasoning teachers. In 633
Proceedings of the 61st Annual Meeting of the As- 634
sociation for Computational Linguistics (Volume 1: 635
Long Papers), pages 14852–14882, Toronto, Canada. 636
Association for Computational Linguistics. 637

9

https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
http://arxiv.org/abs/2309.16609
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2023.acl-long.830

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,638
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,639
et al. 2021. Lora: Low-rank adaptation of large lan-640
guage models. In International Conference on Learn-641
ing Representations.642

Muhammad Khalifa, Lajanugen Logeswaran, Moontae643
Lee, Honglak Lee, and Lu Wang. 2023. GRACE:644
Discriminator-guided chain-of-thought reasoning. In645
Findings of the Association for Computational Lin-646
guistics: EMNLP 2023, pages 15299–15328, Singa-647
pore. Association for Computational Linguistics.648

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-649
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-650
guage models are zero-shot reasoners.651

Aitor Lewkowycz, Anders Andreassen, David Dohan,652
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,653
Ambrose Slone, Cem Anil, Imanol Schlag, Theo654
Gutman-Solo, et al. 2022. Solving quantitative rea-655
soning problems with language models. Advances656
in Neural Information Processing Systems, 35:3843–657
3857.658

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri659
Edwards, Bowen Baker, Teddy Lee, Jan Leike,660
John Schulman, Ilya Sutskever, and Karl Cobbe.661
2023. Let’s verify step by step. arXiv preprint662
arXiv:2305.20050.663

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-664
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei665
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-666
ardmath: Empowering mathematical reasoning for667
large language models via reinforced evol-instruct.668
arXiv preprint arXiv:2308.09583.669

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler670
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,671
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,672
Sean Welleck, Bodhisattwa Prasad Majumder,673
Shashank Gupta, Amir Yazdanbakhsh, and Peter674
Clark. 2023. Self-refine: Iterative refinement with675
self-feedback.676

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages677
2303–08774.678

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,679
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:680
Breaking the gpu memory wall for extreme scale681
deep learning. In Proceedings of the International682
Conference for High Performance Computing, Net-683
working, Storage and Analysis, SC ’21, New York,684
NY, USA. Association for Computing Machinery.685

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten686
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,687
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.688
Code llama: Open foundation models for code. arXiv689
preprint arXiv:2308.12950.690

Zhihong Shao, Fei Huang, and Minlie Huang. 2022.691
Chaining simultaneous thoughts for numerical rea-692
soning. In Findings of the Association for Computa-693
tional Linguistics: EMNLP 2022, pages 2533–2547,694

Abu Dhabi, United Arab Emirates. Association for 695
Computational Linguistics. 696

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 697
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and 698
Daya Guo. 2024. Deepseekmath: Pushing the limits 699
of mathematical reasoning in open language models. 700
arXiv preprint arXiv:2402.03300. 701

Gemini Team, Rohan Anil, Sebastian Borgeaud, 702
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 703
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 704
Anja Hauth, et al. 2023. Gemini: a family of 705
highly capable multimodal models. arXiv preprint 706
arXiv:2312.11805. 707

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 708
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 709
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 710
Bhosale, et al. 2023. Llama 2: Open founda- 711
tion and fine-tuned chat models. arXiv preprint 712
arXiv:2307.09288. 713

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 714
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 715
Mingjie Zhan, and Hongsheng Li. 2023a. Mathcoder: 716
Seamless code integration in llms for enhanced math- 717
ematical reasoning. 718

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 719
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 720
and Denny Zhou. 2023b. Self-consistency improves 721
chain of thought reasoning in language models. In 722
The Eleventh International Conference on Learning 723
Representations. 724

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 725
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 726
et al. 2022. Chain-of-thought prompting elicits rea- 727
soning in large language models. Advances in Neural 728
Information Processing Systems, 35:24824–24837. 729

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, 730
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng, 731
Weiwei Lü, Rui Hu, et al. 2023. Skywork: A more 732
open bilingual foundation model. arXiv preprint 733
arXiv:2310.19341. 734

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, 735
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. 736
2023. Large language models are better reasoners 737
with self-verification. In Findings of the Associa- 738
tion for Computational Linguistics: EMNLP 2023, 739
pages 2550–2575, Singapore. Association for Com- 740
putational Linguistics. 741

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min- 742
Yen Kan, Junxian He, and Qizhe Xie. 2023. De- 743
composition enhances reasoning via self-evaluation 744
guided decoding. 745

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, 746
Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023. 747
Gpt can solve mathematical problems without a cal- 748
culator. arXiv preprint arXiv:2309.03241. 749

10

https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.18653/v1/2022.findings-emnlp.187
https://doi.org/10.18653/v1/2022.findings-emnlp.187
https://doi.org/10.18653/v1/2022.findings-emnlp.187
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak750
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.751
React: Synergizing reasoning and acting in language752
models. In The Eleventh International Conference753
on Learning Representations.754

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.755
Outcome-supervised verifiers for planning in mathe-756
matical reasoning. arXiv preprint arXiv:2311.09724.757

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,758
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-759
guo Li, Adrian Weller, and Weiyang Liu. 2023b.760
Metamath: Bootstrap your own mathematical ques-761
tions for large language models. arXiv preprint762
arXiv:2309.12284.763

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting764
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and765
Jingren Zhou. 2023. Scaling relationship on learning766
mathematical reasoning with large language models.767

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-768
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.769
2023. Mammoth: Building math generalist models770
through hybrid instruction tuning. arXiv preprint771
arXiv:2309.05653.772

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun773
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi774
Song, Mingjie Zhan, et al. 2023. Solving challenging775
math word problems using gpt-4 code interpreter776
with code-based self-verification. arXiv preprint777
arXiv:2308.07921.778

11

http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825

A Appendix779

A.1 Introduce to our submitted code repository780

A.1.1 Reproducing Data Generation781

To generate the solution of a provided question, please refer to the following example script in our782

submitted code repository.783

python gpt_react.py \784

--verbose \785

--dataset math \786

-g gpt-4-1106-preview \787

-q "Find all the roots of x^4 + 4 = 0."788

A.1.2 Fine-tuning789

Our training is mostly performed on LLaMA-Factory2 code base. Please refer to that repository for more790

details.791

A.1.3 Inference792

Single question inference.793

python react.py -c /path/to/checkpoint_dir -q "Compute tan(45)." --verbose794

Large scale inference with vllm3.795

python batch_react.py -c /path/to/checkpoint_dir -q /path/to/question_file796

Question file should be in jsonl format, where each line is a json string. The json string should at least797

include a key value pair for question.798

A.1.4 Evaluation Toolkit799

In order to evaluate the model prediction, it requires our implemented toolkit that is located in folder800

math_evaluation.801

python eval.py -q /path/to/question_file802

Question file should be in jsonl format, where each line is a json string at least containing "pred" and803

"answer" keys for prediction and ground truth, respectively.804

A.1.5 Prompts805

The REACT Instruction is as follows. For the demonstration examples for GSM8K and MATH, please806

refer to the file prompts.py in our submitted code repository.807

You are a powerful agent with broad math knowledge and great Python programming808

skills. Answer the math questions as best you can. You have access to the following809

tool:810

811

python_interpreter: A Python shell to execute python code snippet.812

813

When solving math problem, you should think step by step, where each step includes 4814

mini-steps Thought/Action/Action Input/Observation. Note that if some step requires815

accurate calculation (including but not limited to symbolic simplification,816

derivation, numerical calculation, solving equations or inequalities), you should817

write Python code and execute it to obtain result.818

The following is the required template.819

820

Question: the input question821

2https://github.com/hiyouga/LLaMA-Factory/)
3https://github.com/vllm-project/vllm

12

https://github.com/hiyouga/LLaMA-Factory/)
https://github.com/vllm-project/vllm

822

Thought: the text analysis, and list the math equations if necessary 823

824

Action: the action to take, should be python_interpreter, or None 825

826

Action Input: the Python Code in markdown format (if Action is None, it is None), e.g., 827

```python 828

import math 829

theta = math.pi / 4 830

some_var = math.cos(theta) 831

print(some_var) 832

``` 833

834

Observation: the result of the action 835

836

... (this Thought/Action/Action Input/Observation can repeat N times) 837

838

Thought: the final analysis of the answer 839

840

Final Answer: the concise answer without verbose context 841

842

The following are 2 demonstrations examples. 843

844

{examples} 845

846

Now! It's your turn. 847

848

Question: {question} 849

850

Thought: 851

A.2 Human Review for MATH 852

Our own researchers are responsible for the human review. We mainly fix the following issues in the field 853

of final answer. 854

• Redundant text Even in the prompt we have indicated the field of final answer should only include 855

the math expression of final answer without other text. It is inevitable that a full sentence will be 856

generated in this field. Therefore, we will remove the redundant text, e.g., 857

Final Answer: John spent 25 dollars in total. => Final Answer: 25 858

859

• Equivalent expression Because the text analysis of LLM is based on python code snippets and the 860

corresponding execution results, the generated final answers prefer the ‘sympy’ format, which differs 861

from the ‘latex’ format provided in the MATH dataset. However, they are sometimes equivalent. In 862

this case, we should consider the generated solution as correct, e.g., 863

\\frac{8 - 7x}{6} = 4/3 - 7x/6 864

\\begin{pmatrix} 1 & 2 \\\\ 3 & 4 \\end{pmatrix} = Matrix([[1, 2], [3, 4]]) 865

866

This also motivates us to develop the math evaluation toolkit. 867

13

0 20 40 60 80 100
iteration

0.25

0.50

0.75
0.82

1.02

lo
ss

REACT
HTML

Figure 4: Train loss of different formats within first 100 iterations when fine-tuning on Llemma-34B.

A.3 Re-formatting868

The data generation with REACT is depicted in A.1.5. However, the data we obtained using the REACT869

template’s keywords was not used directly. Instead, we converted the REACT data into an HTML-like870

format, using <p></p> to encapsulate text analyses and <code></code> to encapsulate code snippets, as871

demonstrated in the Figure 5. We observed that employing REACT instructions typically yielded higher872

quality output from GPT models. Yet, when it comes to fine-tuning a pre-trained Large Language Model873

(LLM), utilizing an HTML-like format for the initial iteration results in a training loss that is, on average,874

approximately 20% lower. A thorough comparison is available in Section 4. Our hypothesis is that the875

HTML-like format may bridge the gap between the pre-training corpus and the fine-tuning corpus, leading876

to improved initialization performance.877

The standard template for REACT examplified in previous section employs a key-value pair format878

represented as strings, with each step comprising elements like “Thought:text analysis", “Action:879

tool name", “Action Input: code snippet", and “Observation: execution output". REACT (Yao880

et al., 2022) is an excellent approach to empower the LLM the capability of using external tool. However,881

our analysis of the log-likelihood for REACT examples suggests that such data formats are rare in882

the corpora used for pre-training LLMs. In contrast, when converting REACT data into an HTML883

format, using tags such as “<p>text analysis</p>" and “<code>code snippet</code>", we noted a884

substantial decrease in log-likelihood. In our data pipeline of Figure 2, when training the Llemma-34B on885

the 26.9K dataset with different formats, this reduction was evident from the initial loss observed in the886

first iteration.887

As Figure 4 demonstrates, the loss for fine-tuning with HTML-formatted data is 20% lower than when888

using the original REACT format. However, upon evaluating the performance on the test sets after 3889

epochs of SFT, we observed only a marginal improvement (1%) on MATH test set. Given the substantially890

reduced initial loss, we hypothesize that careful hyper-parameter tuning could potentially enhance the891

performance of data formatted in HTML. We intend to explore this possibility in future work.892

A.4 Case Study on GSM-Hard893

In this case study, we present three typical examples demonstrating why many of our model’s final answers894

are unjustifiably deemed incorrect.895

A.4.1 Incorrect or unreasonable answer896

In this example, the PoT solution provided by GSM-Hard remains the same as the initial answer in the897

GSM8K test set, yet it fails to align with the question as it does not incorporate the number 780786 in898

its program. Meanwhile, the ToRA solution neglects the crucial detail that the quantity of Pokemon899

must be an integer. In contrast, our model had previously generated the fractional answer, but its internal900

self-verification process detected inconsistencies, leading it to ultimately output ’None.’901

Question: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is.902

14

Figure 5: A re-formatting example includes a combined display of text analyses and accompanying code snippets.
Please note that the display represents a restructured format resembling HTML, from the original REACT format
generated.

Together they have caught 780786 Pokemon. Alex has caught 5 more than Stan, and Stan 903

has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon 904

has Stan caught? 905

906

PoT Solution from GSM-Hard: 907

908

def solution(): 909

stan = -1 # we don't know how many pokemon stan has caught, so we set it to -1 910

total = 780786 911

alex = stan + 5 912

adelwolfe = (stan + 13) / 4 913

stan = total - alex - adelwolfe 914

write values for alex and adelwolfe in terms of stan 915

stan = total - (stan + 5) - ((stan + 13) / 4) 916

simplify 917

stan + 5 + (stan + 13) / 4 + stan == 339 918

4 * stan + 20 + stan + 13 + 4 * stan == 4 * total 919

9 * stan + 33 == 4 * total 920

9 * stan == 4 * 339 - 33 921

so we get 922

stan = (4 * 339 - 33) / 9 923

result = stan 924

return result 925

Answer: 147.0 926

927

928

PoT Solution from ToRA: 929

930

```python 931

from sympy import symbols, Eq, solve 932

933

def stan_pokemon(): 934

# Define the symbols 935

a, s, ad = symbols('a s ad') 936

937

15



# Define the equations938

eq1 = Eq(a + s + ad, 780786)939

eq2 = Eq(a, s + 5)940

eq3 = Eq(s, 4*ad - 13)941

942

# Solve the system of equations943

solution = solve((eq1, eq2, eq3), (a, s, ad))944

945

return solution[s]946

947

result = stan_pokemon()948

print(result)949

```950

```output951

1041037/3952

```953

Stan has caught $\\boxed{\\frac{1041037}{3}}$ Pokemon.954

955

956

Our Solution:957

958

<p>959

Let's assume that Adelwolfe has caught x Pokemon. According to the given information, Stan960

has caught 13 less than 4 times as many Pokemon as Adelwolfe, so Stan has caught (4x - 13)961

Pokemon. Alex has caught 5 more than Stan, so Alex has caught (4x - 13) + 5 = 4x - 8 Pokemon.962

Together, they have caught 780786 Pokemon, so we can set up the equation:963

964

x + (4x - 13) + (4x - 8) = 780786965

966

Now, I will solve this equation to find the value of x, which represents the number of967

Pokemon Adelwolfe has caught. Once I have x, I can calculate the number of Pokemon Stan968

has caught by substituting x into the expression (4x - 13).969

</p>970

971

<code>972

```python973

from sympy import symbols, Eq, solve974

975

x = symbols('x')976

equation = Eq(x + (4*x - 13) + (4*x - 8), 780786)977

solution = solve(equation, x)978

stan_pokemon = 4*solution[0] - 13979

stan_pokemon980

```981

</code>982

Output: 1041037/3983

984

<p>985

The solution to the equation is x = 1041037/3. However, since x represents the number of986

Pokemon Adelwolfe has caught, it must be an integer. I need to verify that the solution987

for x is indeed an integer.988

</p>989

16

990

<code> 991

```python 992

is_integer = solution[0].is_integer 993

is_integer 994

``` 995

</code> 996

Output: False 997

998

Final Answer: None 999

A.4.2 Incorrect or unreasonable intermediate step 1000

In this case, the PoT solution offered by GSM-Hard calculates an intermediate variable cows as -3016191, 1001

which is not feasible. Even though the final answer representing the number of chickens is positive, the 1002

question is deemed invalid because the quantity of cows cannot be a negative value. Regarding the ToRA 1003

solution, it arrives at the same answer as GSM-Hard despite generating an incorrect program output. Our 1004

model’s program produces identical intermediate results to what is considered the correct answer, yet 1005

upon textual analysis, it recognizes that the count of animals must not be negative. Consequently, the 1006

model persists in self-verification up to a predetermined maximum number of steps and ultimately yields 1007

’None’ as the output. 1008

Question: Farmer Brown has 3016226 animals on his farm, all either chickens or cows. 1009

They have a total of 70 legs, all together. How many of the animals are chickens? 1010

1011

PoT Solution from GSM-Hard: 1012

1013

def solution(): 1014

total_animals = 3016226 1015

total_legs = 70 1016

chicken_legs = 2 1017

cow_legs = 4 1018

cows = (total_legs - (total_animals * chicken_legs)) / (cow_legs - chicken_legs) 1019

chickens = total_animals - cows 1020

result = chickens 1021

return result 1022

Answer: 6032417.0 1023

1024

1025

PoT Solution from ToRA: 1026

1027

```python 1028

def chicken_count(): 1029

total_animals = 3016226 1030

total_legs = 70 1031

# Let\'s denote the number of chickens as x. Then the number of cows is 3016226 - x. 1032

# The total number of legs is the sum of the legs of the chickens and the cows. 1033

# So we have the equation: 2x + 4*3016226 = 70 1034

# Solving this equation for x gives us the number of chickens. 1035

chickens = (total_legs - 4 * total_animals) / 2 1036

return int(chickens) 1037

1038

chickens = chicken_count() 1039

print(chickens) 1040

17



```1041

```output1042

-60324171043

```1044

The number of chickens is $\\boxed{6032417}$.1045

1046

1047

Our solution:1048

1049

<p>1050

To solve this problem, we need to set up an equation based on the information given.1051

We know that each chicken has 2 legs and each cow has 4 legs. Let's denote the number1052

of chickens as c and the number of cows as w. The total number of legs is the sum1053

of the legs of all the chickens and all the cows, which can be expressed as $2c + 4w = 70$.1054

We also know that the total number of animals is $c + w = 3016226$. We can use these1055

two equations to solve for c and w.1056

</p>1057

1058

<code>1059

```python1060

from sympy import symbols, Eq, solve1061

1062

# Define the symbols1063

c, w = symbols('c w')1064

1065

# Equation for the total number of legs1066

legs_eq = Eq(2*c + 4*w, 70)1067

1068

# Equation for the total number of animals1069

animals_eq = Eq(c + w, 3016226)1070

1071

# Solve the system of equations1072

solution = solve((legs_eq, animals_eq), (c, w))1073

print(solution)1074

```1075

</code>1076

Output: {c: 6032417, w: -3016191}1077

1078

<p>1079

The solution to the system of equations indicates that there are 6032417 cows and1080

-3016191 chickens, which is not possible since the number of animals cannot be negative.1081

This suggests there might be an error in the interpretation of the problem or in the1082

equations set up. The negative number of chickens indicates that the equation for1083

the total number of legs is incorrect.1084

</p>1085

1086

...(skip many verification steps)1087

1088

Final Answer: None1089

18

A.4.3 Ambiguous question 1090

In this instance, the solutions provided by GSM-Hard and ToRA are more precise, yielding the exact 1091

figure of 377712.375. In fact, our model also generates this precise number during an intermediate step. 1092

However, the question’s phrasing regarding “how many hours” is somewhat ambiguous, leading our model 1093

to round the answer to the nearest whole number to better align with the question’s apparent emphasis on 1094

the duration in hours. 1095

Question: Lori wants to buy a $320.00 pair of shoes and a matching belt that is 1096

$3021379. Her part-time job pays her $8.00 an hour. How many hours will she have 1097

to work before she can make her purchase? 1098

1099

PoT Solution from GSM-Hard: 1100

1101

def solution(): 1102

shoes_cost = 320 1103

belt_cost = 3021379 1104

hourly_wage = 8 1105

total_cost = shoes_cost + belt_cost 1106

hours_worked = total_cost / hourly_wage 1107

result = hours_worked 1108

return result 1109

Answer: 377712.375 1110

1111

1112

PoT Solution from ToRA: 1113

1114

```python 1115

def hours_to_work(): 1116

shoe_cost = 320.00 1117

belt_cost = 3021379.00 1118

total_cost = shoe_cost + belt_cost 1119

hourly_wage = 8.00 1120

hours_needed = total_cost / hourly_wage 1121

return hours_needed 1122

1123

hours_needed = hours_to_work() 1124

print(hours_needed) 1125

``` 1126

```output 1127

377712.375 1128

``` 1129

Lori will have to work $\\boxed{377712.375}$ hours before she can make her purchase. 1130

1131

1132

Our Solutions: 1133

1134

<p> 1135

To find out how many hours Lori needs to work, we need to calculate the total cost 1136

of the shoes and the belt, and then divide that by her hourly wage. 1137

</p> 1138

1139

<code> 1140

19


```python1141

shoes_cost = 320.001142

belt_cost = 30213791143

total_cost = shoes_cost + belt_cost1144

hourly_wage = 8.001145

hours_needed = total_cost / hourly_wage\nprint(hours_needed)1146

```1147

</code>1148

Output: 377712.3751149

1150

<p>1151

The calculation shows that Lori needs to work approximately 377712.375 hours to make1152

her purchase. Since she can't work a fraction of an hour, she will need to round up1153

to the nearest whole hour.1154

</p>1155

1156

<p>1157

Since Lori can't work a fraction of an hour, and the calculation shows that she needs1158

to work approximately 377712.375 hours, she will have to work 377713 hours to make1159

her purchase.1160

</p>1161

1162

Final Answer: $377713$1163

20

	Introduction
	Dataset
	Fine-Tuning
	Supervised Fine-Tuning with Full Parameters
	Multi-Task Fine-Tuning with LoRA
	Outlier-Free OVM Inference

	Experiments
	Dataset Recap
	Implementation Details
	Main Results
	Ablation Studies
	Why GSM-Hard is not a good testset for MATH LLM?

	Related Works
	Conclusion
	Limitations
	Appendix
	Introduce to our submitted code repository
	Reproducing Data Generation
	Fine-tuning
	Inference
	Evaluation Toolkit
	Prompts

	Human Review for MATH
	Re-formatting
	Case Study on GSM-Hard
	Incorrect or unreasonable answer
	Incorrect or unreasonable intermediate step
	Ambiguous question

