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Abstract

Slice discovery methods (SDMs) are prominent algorithms for finding systematic weaknesses
in DNNs. They identify top-k semantically coherent slices/subsets of data where a DNN-
under-test has low performance. For being directly useful, slices should be aligned with
human-understandable and relevant dimensions, which, for example, are defined by safety
and domain experts as part of the operational design domain (ODD). While SDMs can be
applied effectively on structured data, their application on image data is complicated by the
lack of semantic metadata. To address these issues, we present an algorithm that combines
foundation models for zero-shot image classification to generate semantic metadata with
methods for combinatorial search to find systematic weaknesses in images. In contrast to
existing approaches, ours identifies weak slices that are in line with pre-defined human-
understandable dimensions. As the algorithm includes foundation models, its intermediate
and final results may not always be exact. Therefore, we include an approach to address
the impact of noisy metadata. We validate our algorithm on both synthetic and real-world
datasets, demonstrating its ability to recover human-understandable systematic weaknesses.
Furthermore, using our approach, we identify systematic weaknesses of multiple pre-trained
and publicly available state-of-the-art computer vision DNNs.

1 Introduction

With recent advances in machine learning (ML), there has been a significant improvement in the modeling
of unstructured data, such as images. However, for safety-critical applications, ML models need to be
developed with a focus on trustworthiness by investigating and correcting potential failure modes. To that
end, systematic errors of DNNs need to be studied and rectified. Hidden stratification (Oakden-Rayner
et al., 2020) and fairness-related bias (Buolamwini & Gebru, 2018; Wang et al., 2020; Li et al., 2023) due to
spurious correlations (Xiao et al., 2020; Geirhos et al., 2020; Mahmood et al., 2021) and underrepresented
subpopulations (Santurkar et al., 2020; Sagawa et al., 2019) are some examples of potential failure modes
where the error or weakness is systematic in nature. The existence of these modes implies that there are
slices 1 of data where the performance of the DNN-under-test (DuT) is worse than the average performance
on the entire test dataset. Although identifying slices with weak performance would be trivial by simply
grouping samples on which models have high error, identifying slices that are both semantically coherent
and have high error is challenging. This is due to the lack of semantic metadata that describes the slices
for many data domains (e.g., images, text). Despite this challenge, identifying such slices provides a human-
understandable global explanation of the model behavior. Moreover, semantically coherent weak slices offer
actionable insights for debugging and auditing models.

From a safety and certification perspective, upcoming standards (e.g., ISO/PAS 8800 (ISO, 2024)), and
works with a focus on AI in automotive (Koopman & Fratrik, 2019; Burton et al., 2022), aerospace (EASA,
2023) and railway (Zeller et al., 2023) domains have highlighted the importance of data completeness and
quality using, in most cases, Operational Design Domains (ODDs). In automotive, Herrmann et al. (2022)

1In the literature, slices are often also called subgroups or subsets of data. All three terms are used interchangeably in
relation to systematic weakness analysis.
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have proposed ontologies for different traffic participants that can be used to build ODDs for automated
driving. The goal of using such ODDs is to describe the scope of AI applications in terms of human-
understandable, safety-relevant dimensions where comprehensible safety argumentations can be built w.r.t.
robustness, explainability, and interpretability. To facilitate building such safety augmentations, testing
approaches for ML developers and safety experts that evaluate DNN performance and identify systematic
weaknesses are essential.

Although in recent years, several works (Chung et al., 2019; Sagadeeva & Boehm, 2021; d’Eon et al., 2022;
Eyuboglu et al., 2022; Metzen et al., 2023; Plumb et al., 2023; Jain et al., 2023; Gao et al., 2023; Chen et al.,
2023) have proposed methods for analyzing systematic weaknesses, there is a lack of focus on identifying weak-
nesses of models evaluated on real-world datasets, where the weaknesses align with human-understandable
semantic concepts defined, for example, by safety experts in ODDs. We argue that it is more beneficial from
a safety perspective if the approaches to identify systematic weaknesses are ODD-compliant for two main
reasons: (i) the slices are useful as the identified vulnerabilities are aligned with human-understandable
safety-relevant dimensions, and (ii) the slices are actionable as ML developers can gather more data to re-
train or reweight existing samples to improve performance along the safety-relevant dimensions. We address
the challenge of analyzing unstructured image data by designing an algorithm that leverages recent advances
in foundational models and systematic weakness analysis methods for structured data. Our contributions
can be summarized as follows:

• We introduce an algorithm that takes in an image dataset, ODD description and performance values
of a DuT as inputs and outputs systematic weaknesses of the DuT (see section 3).

• Concretely, as part of the metadata generation module, we make use of CLIP (Radford et al., 2021)
to leverage its rich joint image, text embedding space. As part of the slice discovery module, we
propose using SliceLine (Sagadeeva & Boehm, 2021) with modifications to identify weak slices that
align with the ODD (see section 3).

• In addition, we address the noisy nature of metadata generation and propose a way to recover
relevant weak slices even if CLIP labeling is suboptimal. We empirically evaluate the behavior of
our algorithm at various levels of label quality using synthetic data (see section 4).

• Furthermore, we evaluate multiple pre-trained and publicly available DNNs-under-test using our
algorithm on real-world datasets and provide insights into their systematic weaknesses (see section 5).

2 Related Work

In this section, we review the recent progress in analyzing systematic weaknesses using slice discovery methods
(SDMs) (Eyuboglu et al., 2022) for structured and unstructured data and highlight their connection to
interpretability and feature attribution methods.

For structured data, methods such as SliceFinder (Chung et al., 2019) and SliceLine (Sagadeeva & Boehm,
2021) leverage the rich metadata available in the form of features to slice the data and exhaustively search
for top-k low-performing slices. The differences between these two approaches lie in the scoring of errors, the
pruning strategy, and how they handle slice sizes. Although these two approaches were explicitly developed to
identify systematic weaknesses, subgroup-discovery techniques (Atzmueller, 2015), a subset of data mining,
have a similar problem formulation and could also potentially be used for slice discovery of structured data.

For unstructured data such as images, where metadata is not directly available, SOTA approaches have
taken two lines of research. In the first line of prior work, referred to as slice-and-tag approaches by (Chen
et al., 2025), for a given test dataset, DNN embeddings are used as proxies for coherency. Weak-performing
slices of the data are obtained by clustering these embeddings along with model errors. Here, approaches
such as Spotlight (d’Eon et al., 2022) perform clustering on the embeddings of the final layers of the DuT
itself. In contrast, recent approaches leverage the joint embedding space of foundational models such as
CLIP (Radford et al., 2021) and apply mixture models like in DOMINO (Eyuboglu et al., 2022) or SVMs
like in SVM-FD (Jain et al., 2023) to identify coherent clusters. In Spotlight, an additional step involving
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humans is required to inspect and understand what uniquely constitutes a weak slice. DOMINO and SVM-
FD automate the slice description process to reduce human effort and bias using an additional DNN. In all
these approaches, as coherence is only loosely enforced based on DNN embeddings, it is not always clear what
specific human-understandable concept uniquely constitutes a slice. Without this knowledge, it would be
unclear to the ML developers what new data samples would need to be collected to retrain the model and fix
the systematic weakness. To mitigate this problem, some approaches (Gao et al., 2023; Slyman et al., 2023)
propose iterative human-in-the-loop testing to ensure that the identified slices are human-understandable.

In the second line of prior work, referred to as tag-and-slice approaches by (Chen et al., 2025), inspired by
counterfactuals and leveraging CLIP, several approaches (Wiles et al., 2022; Metzen et al., 2023) propose
synthetically generating new (counterfactual) images that would lead to erroneous predictions by controlling
the content and data shift in the image. Among these, PromptAttack (Metzen et al., 2023) also proposes to
identify weaknesses that are aligned with the ODDs. However, while PromptAttack generates new samples
using image-generation DNNs, which could potentially introduce biases due to domain shift, our approach
is more closely aligned with earlier methods that evaluate a DNN on a given test dataset. In this direction,
HiBug (Chen et al., 2023) utilizes a GPT-based model to assign attributes to a given dataset. Building on
this and appearing concurrently with our work, HiBug2 (Chen et al., 2025) extends HiBug with a search
algorithm to identify weak slices. While we also apply attributes to the data to perform a subsequent weak
slice search, we, instead, opt for the less compute-intensive CLIP Radford et al. (2021) model to generate
attributes. Additionally, we develop a Bayesian framework to compensate for the label noise that occurs
from the attribution.

In contrast to SDMs, local interpretability and feature attribution methods (Ribeiro et al., 2016; Lundberg
& Lee, 2017), while linking achieved understandability to actionability (Guidotti et al., 2022), identify
local explanations and not the global systematic weaknesses. In addition, the feature attribution methods
themselves might not always be robust or consistent (Krishna et al., 2022).

3 Method

In this section, we present our algorithm for weakness detection on the basis of human-understandable se-
mantic dimensions. To this end, we introduce notation regarding metadata and slicing, discuss the generation
of metadata, formulate DNN weakness within a Bayesian framework to account for the impact of noise, and
lastly detail how such impact can be acknowledged within slice discovery algorithms.

Notation: Consider a DNN-under-test (DuT) M trained on some computer vision task. Let D be the (test)
dataset containing the inputs and the corresponding task-related ground truth. For each sample si ∈ D,
using some per-sample performance metric (e.g., intersection over union (IoU)) and, if applicable, applying
some threshold, we obtain binarized DuT errors, defined as ei ∈ {0, 1}. Each sample is either correctly
(ei = 0) or incorrectly (ei = 1) predicted by the DuT. Here, we slightly deviate from conventional notation
by considering individual samples rather than the DuT inputs. Although identical for image classification,
in the case of object detection, multiple samples (i.e., objects) may be present in a given input image, over
which inference is performed. Using a set of samples with individual errors ei allows us to define slices S ⊆ D
of the data and their corresponding (average) error rate ē|S , defined as 1

|S|
∑

s∈S es. One of the goals of slice
discovery methods is to find slices where ē|S is significantly worse than the global average ē|D. However,
this constraint alone could be trivially satisfied by selecting all samples where ei = 1. But, this, in general,
would reveal no further information than the known data-points with bad performance.

As outlined in section 2, existing works in slice discovery can be broadly categorized into two areas of
research: (i) slice-and-tag and (ii) tag-and-slice, as introduced by (Chen et al., 2025). The first category
includes methods such as DOMINO Eyuboglu et al. (2022), Spotlight d’Eon et al. (2022), and SVM-FD Jain
et al. (2023). These approaches begin by embedding each input s using some DNN E (e.g., CLIP or the DuT
itself). In the resulting embedding space, clustering or classification approaches (e.g., using GMMs or SVMs)
are applied to the joint space of DuT performance e and the embeddings E(s) across the full test dataset.
(Plumb et al., 2023) offers a helpful overview of the different embedding and clustering approaches used in
slice discovery. This constitutes the slicing step with the expectation that the obtained slices S ⊆ D retain
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Figure 1: Our algorithm for finding systematic weaknesses of CV models. Given a model, a test dataset,
and an ODD description for the objects we are interested in, we build a database of object-level performance
and metadata in a structured format. Weak slice discovery methods are then applied to this database to
identify top-k weak slices of the model.

semantic coherency and also contain high DuT errors. Next, as part of the tagging step, some approaches
use language models to explain S. As the approaches do not explicitly enforce the explanations to follow
a set of semantics within Z, the explanations might be very general. Moreover, there is no guarantee
that a coherent region in the latent space corresponds to a single, human-understandable concept. Instead,
mixtures across broader categories may arise, and elements of an assumed semantic concept for S may
also be reflected in data points beyond the slice. In contrast, the tag-and-slice approaches like ours and
HiBug2 Chen et al. (2025) focus on “tagging” each input s from a predefined set Z of semantic dimensions
and corresponding attributes. To enable this, some DNN G (e.g., CLIP or GPT) is used to both embed and
classify each input s based on the dimensions in Z. For instance, in pedestrian detection, such dimensions
can be fairness-related, such as “gender” or “age”, with attributes like “young” or “old”, but may also
include other safety-relevant aspects such as “occlusion” or “clothing-color”. This way, unstructured image
data is transformed into structured metadata containing the relevant semantic dimensions. As part of the
slicing step, this metadata is combined with the DuT errors e and analysed using a search algorithm. These
approaches offer direct interpretability of the slices, and the choice of dimensions can be aligned, e.g., with
existing safety considerations. More concretely, larger parts of Operational Design Domains can often be
formalized in terms of simple sets Z. For our work, the concrete set used is inspired by the ODD of Herrmann
et al. (2022) from the autonomous driving domain and we use Z and ODD synonymously in the remainder.2
PromptAttack (Metzen et al., 2023) also falls within the tag-and-slice category. However, in this method,
instead of metadata generation for existing data, new data points s′ are generated that are not within D
using diffusion models based on semantics defined in Z. By using the generated s′ as a test set, weaknesses
of DuT are evaluated. Here, issues related to syn2real gap and systematic weaknesses of diffusion models
must be considered when evaluating the results.

2In practice, ODDs are often ontological in nature, and only sub-components of them might be captured by semantic sets
of the form Z. For example, “trucks” and “pedestrians” could be part of the same ODD for a DuT but would have different
semantic dimensions.
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In fig. 1, we present our algorithm, where, using inputs such as a dataset D, a predefined ODD Z, and a DuT
M , we transform the task of finding systematic weaknesses in the unstructured data domain into a problem
in the structured data domain. The algorithm is designed with modular components for adaptability. The
first module handles the generation of structured metadata, while the second module applies the weak slice
search algorithm to the generated structured metadata. With a structured description of the data, we
can formulate slices as rules over Z, e.g., gender = male ∧ occlusion = (0.9, 1.0]. This allows for a more
probabilistic notation p(e|S) of the expected true error given the slice. Slice discovery is then the task of
finding (coherent) conditions S such that the conditional expectation is maximized.

Metadata Generation: While there is great interest from safety experts and certification bodies in ODDs
for safety argumentation, metadata that align with the ODD are scarcely available for most, particularly
image, domains. Human annotation of such metadata is often out of scope for large datasets due to cost
and time constraints. However, an automated metadata generation module that captures different semantic
dimensions of Z is feasible with existing technologies. For example, a multi-modal foundational model like
CLIP (Radford et al., 2021) with its joint image and text embedding space could be a potential candidate
for such automated annotation out of the box or after fine-tuning. For a given attribute a we can use CLIP
as a zero-shot classification function G, which maps a given sample si onto the attributes, which represent
the potential classes. As such, it therefore provides the coherence of the slices discussed above.

Taking the ontology for pedestrians from the automotive domain as a baseline, a qualitative evaluation of
CLIP’s capability was performed by Gannamaneni et al. (2023). While CLIP achieved SOTA level zero-
shot performance on different dimensions such as gender, skin-color, and age for portrait shots of human
faces in the celebA (Liu et al., 2015) dataset, they observed a drop in performance on real-world datasets
containing pedestrians like in the Cityscapes (Cordts et al., 2016) dataset. The drop in performance can
be attributed to more challenging conditions, such as complex poses, low illumination, and high occlusion.
These observations, along with our experiments, show that the classification function G is subject to varying
degrees and types of uncertainty, depending on the dimensions of Z: (i) the presence of data-based (aleatoric)
uncertainties, i.e., where the image resolution is low or the object in question is heavily occluded or distant,
leading to errors in the generated metadata. (ii) the presence of model-based (epistemic) uncertainties, i.e.,
where the function G exhibits suboptimal performance. While (i) can occur in the case of both human
and CLIP-based annotation, (ii) occurs more prominently in non-human, automated labeling.3 Therefore,
any method that aims to consider metadata generated using such techniques should take into account the
incurred noise in downstream tasks.

Bayesian Framework to Account for the Impact of Noise: To address the uncertain nature of
classification, we extend the previous slice notation of the error to the joint probability p(e, C,S), where
C represents the outcome of automated labeling for some attribute of a dimension, while S denotes the
corresponding ground truth. For simplicity, we drop the indices and make the additional assumption that
S, C can be seen as binary, i.e. they may either be true (S, C) or not true (¬S, ¬C), respectively (for details
on the non-binary case, see appendix B.4). Using Bayes’ Theorem and marginalizing over C or S, we can
express

p(e|S) =p(e|C,S)rC + p(e|¬C,S) (1− rC) , (1)
p(e|C) =p(e|C,S)pC + p(e|C,¬S) (1− pC) . (2)

Here, p(e|S) represents the true slice error, while p(e|C) denotes the observed slice error. Furthermore,
pC = p(S|C) and rC = p(C|S) are shorthand for precision and recall of the labeling function G measured
towards the ground truth, and are used in our algorithm, fig. 1, for the quality check. A detailed derivation
of the equations is provided in appendix B.1. Making these relations explicit allows us to investigate the
hypothesis typically underlying Slice Discovery Methods in more detail. Specifically, based solely on the
observed slice performance/weakness p(e|C), one may conclude that a related data property S represents a
weakness of the DuT, i.e., we assume that p(e|S) also has a comparable performance/weakness. While in our
algorithm the relation between S and C is explicit as the latter is given by a classifier for the former, in other

3High-quality human labeling typically requires multiple measures to reduce inter-observer variability or epistemic uncer-
tainty in general (e.g. via labeling guides). However, in this work, we consider human labeling as high-quality compared to
DNN-based labeling.
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approaches (d’Eon et al., 2022; Eyuboglu et al., 2022; Jain et al., 2023) the relation is implicit, as observed
sets C are interpreted to indicate a meaning of S (typically referred to as a slice label). Another assumption
typically made is the independence between the labeling function G and DuT. This independence would
imply that the errors of the DuT do not depend on the noise (errors) of G. Specifically, for a semantic
attribute, the error rates p(e|C,S) when G is correct and the error rate p(e|¬C,S) when it is not should be
(approximately) equal. However, our experiments indicate that this is not always the case; therefore, we
denote the difference by

δp(e|S) = p(e|¬C,S)− p(e|C,S) . (3)

Please note that δp describes intra-set variances of the error rate in the set S and is not a conditional
probability on its own. Taking into account this potential dependence, we can derive the true error from the
observed error exactly given the performance of the annotation process using

p(e|S) = p(e|C) p¬C + p(e|¬C) (pC − 1)
pC + p¬C − 1︸ ︷︷ ︸

independence assumption

+ δp(e|S)

κS︷ ︸︸ ︷(
pCp¬C

pC + p¬C − 1 − rC

)
+δp(e|¬S)

κ¬S︷ ︸︸ ︷
(pC − 1)p¬C

pC + p¬C − 1︸ ︷︷ ︸
correction terms

. (4)

As long as the independence assumption is (approximately) valid, implying δp(e|S) ≈ δp(e|¬S) ≈ 0, the slice
error given the semantic attribute S is obtained by separating the two types of observed error probabilities
p(e|C), which is possible as long as the denominator is non-zero.4 An analysis of properties of this equation
w.r.t. the denominator allows us to automatically create quality indicators on the validity or invalidity of
the obtained corrected slices for attribute S. The full derivation and further details on quality indicators
can be found in appendix B.2.

Weak Slice discovery on Structured ODD Data with SliceLine: We have now established methods
to generate metadata and correct for noise during the metadata generation. With this background, in algo-
rithm 1, we propose three-stages for Systematic Weakness Detection (SWD-1,2,3). In SWD-1, using the gen-
erated structured metadata and observed errors p(e|C), we employ algorithms such as SliceLine (Sagadeeva
& Boehm, 2021) to provide a ranked list of top-k worst performing slices based on a scoring function that
takes into account the errors and sizes of the slices (see eq. (5) in appendix A.4 for details on how SliceLine
works). As we have motivated, observed errors may not always provide a sufficient signal to identify the
underlying error (see the top row in fig. 2). Therefore, in SWD-2, using eq. (4) to compensate for noise
in the metadata, we provide corrected errors instead of observed errors to SliceLine to provide a second
ranked list of top-k worst-performing slices S. However, as it requires extensive human effort to identify
certain parameters, i.e., δp(e|S), δp(e|¬S) in eq. (4), in particular for combinations of semantics, we make
a cheaper approximation only considering the independence assumption part of the equation. This is im-
plemented in computeCorrectedError() in algorithm 1. To operationalize this part of the equation, we
estimate precision values based on human evaluation of metadata quality on only n = 60 samples per at-
tribute (see appendix B.4). The subsequent corrected errors from this independence assumption are used
in the SliceLine scoring function. Based on the slice quality indicators discussed above, we are also able to
discard invalid slices due to denominator values close to zero. In addition to SWD-1 and SWD-2, we also
consider a merge of the resulting slices from SWD-1 and SWD-2, as this might provide a complementary
effect. We refer to this merged list as the output of SWD-3. The merge step includes sorting based on the
score of the slice from the scoring function, removal of duplicate slices, and filtering of invalid slices. The
SliceLine hyperparameters include the level (maximal search depth), i.e. the maximal number of semantic
dimensions considered simultaneously, as well as a cut-off for the necessary slice error ē|S to consider S a
valid slice.

4For the sake of numeric stability, also denominators which are only approximately zero should be discarded.
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Algorithm 1: Systematic Weakness Detector (SWD)
Input: Metadata {CZ1 , CZ2 , . . . }, errors e, Precision vectors {pC}, SliceLine hyper-parameters
Output: Top-K slices TS

1 SWD-1: SliceLine with observed errors p(e|Ci);
2 [TS1]← SliceLine({CZ1 , CZ2 , . . . }, e, hyperparameters);
3 SWD-2: SliceLine with corrected errors (approximations to p(e|Si));
4 [TS2, Quality Indicators]←

SliceLine({CZ1 , CZ2 , . . . }, computeCorrectedError(e, pC), hyperparameters);
5 SWD-3: Combined Slices;
6 [TS]← Merge(TS1 ∪ TS2);
7 return TS;

4 Proof of Concept with Synthetic Data

To demonstrate the efficacy of our algorithm fig. 1, we first present evaluations on a synthetic dataset. This
is done to evaluate the impact of noise on the labeling process and to determine the degree to which our
algorithm can compensate for it. The synthetic data is a tabular dataset containing columns for nine “real”
semantic dimensions for 200 000 samples each containing binary attributes. For each of the “real” dimensions
(GT), a “predicted” metadata column is included as a proxy for the metadata that would be generated by
CLIP in our algorithm (see fig. 1). In addition, one final column contains the binarized DuT errors (e).
The first four dimensions are generated to be imbalanced with only ∼ 5% of the samples belonging to the
attribute “1”. The other five dimensions are generated such that both attributes have equal distribution.
The error column is designed such that weak slices are induced for the specified ground-truth attributes.

We consider three regimes of noise, i.e., different quality of labeling of the simulated annotation process:
(i) a regime of “good” quality CLIP labeling, represented with pC above 80%, (ii) a regime of “medium”
quality CLIP labeling, represented with pC between 40% and 70%, and (iii) a regime of “bad” quality CLIP
labeling, represented with pC between 10% and 40%. For all three regimes, we considered 100 runs of the
experiments to account for statistical influence. Further details about the dataset generation can be found
in appendix A.2. In fig. 2, in the top row, the error distributions show how labeling quality impacts the
spread of error between attributes for each semantic dimension, i.e., the upper and lower ends of the bars
are given by the error rates for ē|S , ē|¬S and similarly using C or the corrected errors. In the good labeling
quality regime, as expected, observed errors and corrected errors both display the same spread as the GT
error. But when labeling quality is medium or bad (where the impact of eq. (4) is stronger), the spread
of the observed error is significantly lower than that of the corrected error. In contrast, the corrected error
either has close estimates to the true error or overestimates the true error (GT). From a safety perspective,
we argue that overestimating the error within a DNN is better than underestimating it. In the bottom row,
we evaluate the results of SWD-1,2,3. This is shown by comparing how well SWD-1,2,3 recover the top-k
weak slices in comparison to top-k slices from Oracle, i.e., a situation where we have access to perfect “GT”
labeling quality annotation. Precision and recall are calculated for the three data quality regimes w.r.t.
the Oracle case by considering the overlap of identified weak slices at an increasing number of top-slices
k. Note that precision and recall in this figure refer to quality metrics on weak slice discovery and not
precision and recall of the CLIP labeling. While, at level 2, the maximum number of slices k is 162 for 9
binarized dimensions5, we consider only slices fulfilling the cut-off requirement as a weak slice. Of these 162
slices, only ∼ 30 are identified as weak slices. Although under good labeling quality, the slices identified
by SWD-1,2,3 basically have 100% overlap with the slices from the Oracle, under medium and strong label
noise, SWD-3 shows significantly more recall than SWD-1 and marginally over SWD-2. However, this comes
with a small loss in precision. In cases of strong noise, SWD-1 only recovers a few slices where the error
signal is dominant, which explains the high precision at the cost of low recall. SWD-3, on the other hand,
has a reduced precision, but recovers most of the weak slices identified by Oracle. For the rest of this work,
we focus primarily on the slices identified by SWD-3.

59 × 2 +
(9

2

)
× 22
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Figure 2: Based on labeling quality, we divide the generated datasets into (i) good quality (left), (ii) medium
quality (middle), and (iii) bad quality (right). In three cases, we look at the spread of error in GT (p(e|S)),
Observed (p(e|C)), and Corrected (p(e|S)). In the second row, corresponding performance in terms of
precision and recall of SWD-1,2,3 are shown. Precision and Recall in this figure are metrics to evaluate weak
slice recovery and are not related to labeling quality. The legend for both rows are presented on the figures
on left.

5 Evaluations of real-world DNNs

In this section, we first present our experimental setup. We then show the evaluation of our systematic
weaknesses detection method on a publicly available pre-trained model for the CelebA dataset. Here, the
dataset’s rich metadata annotation allows us to investigate the influence of noisy metadata annotation.
In addition, we compare against SOTA SDM methods to evaluate our claim that adherence to the ODD
descriptions is useful to end users (e.g., safety experts, ML developers). Subsequently, we present the insights
gained by using our approach on DNNs trained on autonomous driving datasets.

5.1 Experimental Setup

Datasets and Models: Four pre-trained models, ViT-B-16 (Dosovitskiy et al., 2020)6, Faster R-CNN (Ren
et al., 2015)7, SETR PUP (Zheng et al., 2021)8, PanopticFCN (Li et al., 2021) are evaluated using four
public datasets (CelebA (Liu et al., 2015), BDD100k (Yu et al., 2020), Cityscapes (Cordts et al., 2016), and
RailSem19 (Zendel et al., 2019)), respectively. We restrict the number of combinations (level) to 2 in this
work. However, as presented in appendix B.4, our approach allows correction of errors even at higher levels
of combinations. We used the cutoff for the slice error as 1.5 ē|D for all experiments except the PanopticFCN
model evaluation. In the PanopticFCN evaluation, we utilize the cut-off point for the slice error as 1.0 ē|D
as the global average error is already quite high. For a detailed experimental setup, see appendix A.1. To
foster reproducibility, code and the prompts used for metadata generation with CLIP will be provided.

5.2 Evaluation of our Systematic Weaknesses Detection Method

Evaluating a ViT Model on CelebA: As our first experiment, we evaluated the weaknesses of the ViT-B-
16 (Dosovitskiy et al., 2020) model (DuT) trained on ImageNet21k (Ridnik et al., 2021). We use the model

6https://github.com/huggingface/pytorch-image-models
7https://github.com/SysCV/bdd100k-models/tree/main/det
8https://github.com/open-mmlab/mmsegmentation
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Histogram of pretrained ViT-B-16 predictions on CelebA dataset

Person
Not Person

Slice Description

wearing-hat: true
beard: false

Slice S1 Slice Statistics

Slice Size |S|: 7600
pcorr(e|S) of Slice: 0.6856

Performance degradation: -0.6304

Figure 3: Left: The hierarchy level-0 (Ridnik et al., 2021) predictions of the pre-trained ViT-B-16 model on
the full CelebA dataset converted into a binary classification problem. While a majority of the predictions
are correct, there is a non-trivial subset of images with systematic errors due to label overlap issues. Right:
Top-1 weak slice, identified by SWD-3, of a ViT-B-16 classification model trained on ImageNet21k and
evaluated on the full celebA dataset. The statistics provide a quantitative evaluation of the entire slice. For
qualitative evaluation, we provide some sample images from the slice.

for the targeted task of identifying the class “person” in the CelebA dataset (Liu et al., 2015) as a real-world
proof of concept for our approach. Due to the extensive range of label categories in ImageNet (Deng et al.,
2009) and the significant noise in the labeling style, models trained on the full ImageNet dataset or its
standard subset ImageNet1k (Russakovsky et al., 2015) can suffer from systematic weaknesses. For example,
although the primary foreground object in an image might be a human, in some instances the image can be
labeled as belonging to the class “person” while in other similar instances the label might be about more
granular classes like “bride” or “guitarist”. To fix this issue, (Ridnik et al., 2021) proposed 11 hierarchies
based on WordNet (Miller, 1995) semantic trees such that classes at higher hierarchy levels are superclasses
that subsume classes at lower hierarchy levels. However, despite these efforts, considerable label noise in
terms of class overlap still persists. For example, humans holding specific objects might occur at the same
hierarchy level as the class “artifact” or “person”. Similar problems exist, for example, for hairstyles (see
“pompadour” existing at the same level as “person”). For a further analysis, also see the work of (Northcutt
et al., 2021).

Earlier works (Beyer et al., 2020; Shankar et al., 2020) have proposed using multi-label evaluation metrics
as a way to deal with label noise. However, we consider the simplified task of identifying a dedicated class,
“Person”, in a dataset with only human faces (celebA) by focusing on the top-1 class predictions for level-0
of the label hierarchy proposed in ImageNet21k. We obtain an accuracy of 94.44% on the 202 599 images in
the CelebA dataset. The softmax of the top-1 prediction, see fig. 3, shows, besides the “person” class, the
presence of several other classes, most prominently “artifact” and “pompadour”. As this model is commonly
used as a pre-trained backbone for various applications, uncovering potential shortcomings might also be
beneficial for potential downstream use cases of various types. Furthermore, the CelebA dataset serves as an
ideal testing ground for approaches identifying systematic weaknesses due to the availability of the ground-
truth metadata attributes. As an ODD for this test case, we propose a simplified subset of these available
metadata attributes in analogy to the work of Gannamaneni et al. (2023), for details see appendix A.3. As
proposed in our algorithm, we generate metadata using CLIP for the given ODD dimensions. Subsequently,
the generated metadata is combined with the errors of the DuT.

Weak Slice Discovery Since the CelebA dataset contains annotated metadata for 40 attributes, we have
access to noiseless metadata which, when used with SliceLine, can be considered as the “Oracle” approach.
In table 1, we present the quantitative comparison of the top-7 slices identified by SWD-3 against corre-
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sponding slices in SWD-1 and Oracle. Basically, we list the top-7 slices of SWD-3 and evaluate where these
slices would be ranked by SWD-1 and Oracle and what the corresponding statistics would be to highlight
the importance of error correction. From the slice descriptions, all the identified weak slices contain some
variation of the semantic concept “wearing hat”. The discovery of these slices can be seen within the context
of the frequent misclassification of images as class “artifact” by the DuT (see fig. 3). In these cases, the
model likely focuses on the hats as the foreground object and predicts the class “artifact”. To evaluate the
quality of the identified slices, we utilize the errors of the slices, i.e., pcorr(e|S), p(e|C), and p(e|S) defined
in section 3. We observe, based on the rank column, that the top-6 Oracle slices are captured in top-7
SWD-3 slices. Notably, while the observed error p(e|C) of SWD-1 underestimates the true error p(e|S) of
Oracle, SWD-3 effectively corrects this in pcorr(e|S). For instance, in the third row, which corresponds to the
top-ranked weak slice identified by the Oracle, the difference between the Oracle slice error and the SWD-1
slice error is 0.3, while between SWD-3 and Oracle it is only 0.07. A thorough evaluation of our approach
on the top-60 slices shown in fig. 5 in appendix C.1 reveals that SWD-3 obtains 100% recall of weak slices
at the cost of a reduction in precision. Note that precision and recall in this figure refer to quality metrics
on weak slice discovery and not precision and recall of the CLIP labeling. From a safety perspective, given
the noisy labeling, high recall (detection of all weak slices) at the cost of some reduction in precision can be
considered acceptable. Interestingly, the top-1 slice of SWD-1 (not shown in table) refers to slice description
“wearing hat: true” and “pale-skin: true”. Gannamaneni et al. (2023) discussed the limitations of CLIP in
separating the latter dimension and corresponding low performance. This high level of noise in the generated
metadata leads to SWD-1 identifying “pale-skin” as a top-1 slice while SWD-3 effectively corrects for this by
discarding the wrongly detected slice as “invalid” using the quality indicators (see algorithm 1) and hence
does not identify this dimension in top-7. For a qualitative evaluation of SWD-3, the top-1 slice with sample
images from the slice are available in fig. 3 (see fig. 6 in appendix C.2 for a qualitative evaluation of the
top-5 slices).

Slice Slice Description SWD-3 SWD-1 Oracle
rank(S) |S|corr pcorr(e|S) rank(S) |S| p(e|C) rank(S) |S| p(e|S)

S1
Wearing-Hat: True
Beard: False 1 7600 0.69 6 12152 0.33 2 6267 0.51

S2
Wearing-Hat: True
Smiling: False 2 5132 0.60 3 8573 0.36 9 6476 0.45

S3
Wearing-Hat: True
Gender: Female 3 4435 0.61 2 7393 0.38 1 2947 0.69

S4
Wearing-Hat: True
Age: Young 4 7974 0.54 4 12758 0.34 3 6937 0.50

S5
Wearing-Hat: True
Eyeglasses: False 5 8606 0.54 5 12594 0.33 6 8417 0.45

S6
Wearing-Hat: True
Goatee: False 6 8845 0.53 7 11453 0.33 4 8284 0.46

S7
Wearing-Hat: True
Bald: False 7 9676 0.51 8 15501 0.32 5 9795 0.44

Table 1: Evaluation of top-7 slices of SWD-3 (see algorithm 1) by comparing its statistics with corresponding
slice statistics of SWD-1 and Oracle. The rank column indicates the slice ranking in each approach.

Comparison to SOTA SDM method In addition to the evaluation of SWD-3, we compare three SOTA
methods DOMINO (Eyuboglu et al., 2022), Spotlight (d’Eon et al., 2022), and SVM FD (Jain et al., 2023)
against Oracle. Similarly to our work, DOMINO and SVM FD use CLIP (ViT L/14) in their workflows.
However, they encode the images in the CLIP embedding space and then search for weak slices without
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explicitly enforcing any semantic concepts. To describe the slices, both approaches perform an additional
step, where the identified slices are explained using text from large language models. In contrast, Spotlight
directly uses the embedding space of the DuT to cluster weak slices and provides no descriptions of the
identified slices. The former methods follow a broader trend (like us) of using foundational models like CLIP
in testing smaller models. However, they do not thoroughly address limitations in CLIP’s capabilities and
the limitations of their approaches w.r.t. actionability when the slice descriptions are not very meaningful.
Our approach tackles both these limitations as we address noise in CLIP labeling and also correctness of
descriptions. However, our approach also has a limitation as it can only identify weaknesses w.r.t. dimen-
sions in Z while the other methods could identify more novel weaknesses. However, this advantage of SOTA
methods, as will be shown below, can only be realized if the description or coherence of a slice is understand-
able and actionable to the end-user. To assess the actionability of the SOTA methods, we consider (i) slice
descriptions based on the methods themselves, (ii) slice coherence based on human inspection, and (iii) slice
coherence based on overlap with top-5 slices of Oracle.

Qualitative results and slice descriptions are provided for the three methods in appendix C.2. We identified
that DOMINO descriptions can be very generic and not helpful in identifying the unique attributes of a slice.
This problem was also discussed in other works (Jain et al., 2023; Gao et al., 2023). For Spotlight, descriptions
are not available as part of the method. In contrast, in SVM FD, the slice description is targeted and covers
one dimension of the weak slice identified by Oracle, namely, “wearing hat”. However, as shown earlier,
the weaknesses identified from Oracle stem from the combination of semantics. Therefore, slice descriptions
from the SOTA methods are not enough for actionability. Second, to further evaluate the coherence of the
slices, we manually inspect a sample of the images from a slice to identify the semantics. Such an approach
is necessary for all methods that do not provide slice descriptions. For such manual inspection to identify
the coherence of the slice, we consider samples from the slice and samples from the remaining data (last
column) as a form of control group. For top-1 slices of all three approaches, it is hard to determine what
uniquely constitutes the top-1 slice when considering the combination of semantics. Furthermore, such an
exercise is time intensive and might potentially uncover spurious patterns.

Finally, to evaluate the coherence of the slice based on overlap with Oracle slices, we present in table 2
the top-1 slice identified by each method, their corresponding statistics and the overlap (Jaccard Similarity
Coefficient) of the top-1 slice with the top-5 Oracle slices. From the slice statistics, it can be observed that
the methods recover slices with significant performance degradation and observed error p(e|C). However,
the overlap of the top-1 slices with top-5 of Oracle is quite low. This indicates that the methods might
be uncovering weaknesses w.r.t. dimensions not present in the ODD. However, without useful descriptions,
the actionability of these slices is low. Furthermore, we evaluate the overlap of the top-1 slice with a slice
that is purely made up of FNs of the DuT. High values in this column might indicate that priority is given
to identifying FNs rather than semantic coherence, as it is unlikely that all weaknesses of a DNN can be
explained by one semantic concept. Therefore, grouping all FNs into one slice would be counterproductive.
As DOMINO captures 64% of all false negatives in its top-1 slice, it is unlikely that such a slice is actionable.
In contrast, Spotlight and SVM FD capture fewer FNs in the top-1 slice. Therefore, they might be capturing
some form of combination of semantics. Based on these evaluations, we conclude that the SOTA methods,
when integrated with improved slice description techniques, could complement our approach. However, in
their current form, our approach offers greater actionability due to its inherent slice descriptions.

5.3 Insights on SOTA Pedestrian Detection Models

Having shown the benefits of our proposed method, we evaluate a more safety-relevant task of pedestrian
detection using models trained in real-world autonomous driving (AD) datasets to identify their system-
atic weaknesses when predicting the class “pedestrian”. For this, we require pedestrian level performances
(intersection-over-union (IoU)) and metadata. To avoid noisy labeling in our metadata generation step, we
perform some additional steps which were not required for the previous experiment. First, we cropped all
pedestrians from the images and considered these crops as D. This is done to focus the CLIP model only on
pedestrians during metadata generation.9

9To avoid that the aspect ratio of pedestrians is changed by the CLIP pre-processing, we use padding to obtain square crops.
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Method Slice Statistics Slice Coherence with Attributes

Perf.
degr. Size

Overlap with
Oracle top-5

slices

Overlap
with
FNs

ē|D
-

p(e|C)
|S1| p(e|C) J(S1,SO

1 ) J(S1,SO
2 ) J(S1,SO

3 ) J(S1,SO
4 ) J(S1,SO

5 ) |S1∩SF N |
|SF N |

DOMINO -0.5629 11726 0.6181 0.13 0.19 0.20 0.21 0.24 0.64
Spotlight -0.8622 4050 0.9179 0.32 0.32 0.32 0.31 0.31 0.33
SVM FD -0.3844 2642 0.4295 0.11 0.15 0.16 0.16 0.16 0.24

Table 2: Comparison of three metadata-free SOTA methods with top-5 slices of Oracle. J(S1,SO
x ) indicates

the Jaccard similarity coefficient between the two slices. appendix C.2 contains samples from each slice of the
SOTA methods along with slice descriptions and statistics. For overlap with the oracle slice, higher values
are better. For the overlap with the FNs, low values indicate that a slice does not contain “significant”
weaknesses or is highly specific, while high values indicate that potentially all weaknesses of the DuT are
in one slice and it might, therefore, be too generic. This implies that in general one would expect or desire
medium overlap ranges.

Second, we calculate the pixel area of the pedestrians based on the ground truth bounding box area and use
this to filter D by removing pedestrians that occupy small pixel areas (“smaller” pedestrians). Such filtering
is necessary as: (i) Due to low resolution and high pixelation of “smaller” sized pedestrians, i.e., there is a high
aleatoric uncertainty regarding the correct labels affecting both CLIP and human labelers in understanding
the image content (e.g., to determine gender, age, etc.). (ii) “Smaller” pedestrians are more likely to be farther
from the ego-vehicle 10 and, therefore, might be considered less safety-relevant (in terms of vehicle breaking
time). (iii) As the small size can be strongly correlated to performance (due to distance (Gannamaneni
et al., 2021; Lyssenko et al., 2021) or occlusion), this signal can strongly dominate the search for systematic
weaknesses by SliceLine, thus not providing any novel insights in terms of systematic weaknesses. For this
reason, we remove the low-resolution “smaller” pedestrians to improve the quality of metadata generation
and gain further novel insights about model failures w.r.t. more safety-relevant pedestrians.

The metadata generation using CLIP is performed using ODDs more suitable for automotive context (see ap-
pendix A.3). We also perform a manual evaluation of a subset of images (n = 60) for each attribute in each
dataset to evaluate the quality of the generated metadata by estimating the precision pC and recall rC (as
discussed in section 3) and show the results in table 3.

In these experiments, using SWD-3, we evaluate the weaknesses of an object detection model (Faster R-CNN),
a segmentation model (SeTR PUP), and a panoptic segmentation model (Panoptic-FCN). The models are
evaluated on their respective datasets, i.e., BDD100k, Cityscapes, and RailSem19. Samples of image crops
of the identified top-1 weak slice for each experiment are shown in fig. 4 (see figs. 10 to 12 in appendix C.2
for top-5 weak slices). In table 4, we present the largest and worst performing slice of the top-5 to provide
insights about the three models. In all three experiments, the performance degradation of the identified
slices is significant. “Occlusion”, skin-color and clothing-color are reoccurring slice descriptions for the first
two models, which are tested on datasets that contain images with many nighttime scenes (BDD100k)
or relatively high gray-toned scenes (Cityscapes). In contrast, the third model, which contains relatively
brighter scenes, has a significant weakness for the dimension “age”. The estimated precision pC and recall rC
in table 3 were provided as input to algorithm 1 to obtain these slices and to determine the quality of the
identified weaknesses. Therefore, in contrast to SOTA SDMs, our approach identifies human-understandable
safety-relevant systematic weaknesses in DNNs used for real-world applications.

10Unless if small size is due to occlusion. For BDD100k dataset, where occlusion is available as annotation, we show impact
of occlusion as well
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Sem.
dim. Attri. Estimated Precision pC Estimated Recall rC

BDD100k Cityscapes RailSem19 BDD100k Cityscapes RailSem19

Age Adult 0.95± 0.03 0.99± 0.02 0.97± 0.02 0.76± 0.03 0.70± 0.02 0.55± 0.02
Young 0.69± 0.06 0.56± 0.06 0.42± 0.06 0.93± 0.06 0.97± 0.06 0.94± 0.06

Gender Female 0.84± 0.05 0.97± 0.02 0.85± 0.04 0.90± 0.05 0.95± 0.02 0.87± 0.04
Male 0.94± 0.03 0.97± 0.02 0.94± 0.03 0.88± 0.03 0.97± 0.02 0.92± 0.03

Cloth.-
color

Bright-
color 0.81± 0.05 0.85± 0.04 0.79± 0.05 0.30± 0.05 0.23± 0.04 0.66± 0.05

Dark-
color 0.76± 0.05 0.65± 0.06 0.82± 0.05 0.96± 0.05 0.97± 0.06 0.89± 0.05

Skin-
color

Dark 0.82± 0.05 0.55± 0.06 0.56± 0.06 0.92± 0.05 0.71± 0.06 0.76± 0.06
White 0.99± 0.02 0.95± 0.03 0.89± 0.04 0.96± 0.02 0.91± 0.03 0.75± 0.04

Blurry True 0.71± 0.06 0.63± 0.06 0.87± 0.04 0.42± 0.06 0.87± 0.06 0.64± 0.04
False 0.48± 0.06 0.95± 0.03 0.84± 0.05 0.74± 0.06 0.82± 0.03 0.95± 0.05

Constru.-
Worker

False - - 0.97± 0.02 - - 0.98± 0.02
True - - 0.65± 0.06 - - 0.55± 0.06

Table 3: The estimated precision and recall using our proposed approach for evaluating the quality of the
generated metadata. Here, we provide the mean and σ/2, for n of 60, of the estimated precision and recall.
Certain dimensions like occlusion are available as part of the datasets themselves. We do not perform human-
evaluation for these dimensions but these are considered in the weak slice search.

Model &
Dataset

Largest Slice
(in top-5)

Worst Performing Slice
(in top-5)

|S|
|D| % pcorr(e|S) Perf.

Degr.
|S|
|D| % pcorr(e|S) Perf.

Degr.
Faster R-CNN

BDD100k 34.44% 0.1263 -0.0693 14.22% 0.2206 -0.1636

SeTR
Cityscapes 13.34% 0.0594 -0.0446 9.24% 0.1046 -0.0897

Panoptic-FCN
RailSem19 25.49% 0.8663 -0.222 8.13% 1.0 -0.4602

Table 4: Quantitative analysis of three pre-trained autonomous driving models (results are only for SWD-3).
From the top-5 weak slices, we show the largest slice and the weakest performing slice. Please refer to
the appendix C.2 for the top-5 slices.
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Slice S1

(a) Faster R-CNN

Slice S1

(b) SeTR

Slice S1

(c) Panoptic-FCN

Figure 4: Left: Samples from top-1 weak slice of a Faster R-CNN object detector trained and evaluated
on BDD100k dataset. Middle: Samples from top-1 weak slice of SeTR model trained and evaluated on
Cityscapes dataset. Right: Samples from top-1 weak slice of a Panoptic-FCN model trained and evaluated
on RailSem19 dataset.

6 Conclusion

In this work, we present an algorithm for our Systematic Weakness Detector (SWD) to analyze the systematic
weaknesses of DNNs that perform classification, object detection, and semantic segmentation tasks on image
data. In the first step, we overcome the problem of missing metadata by generating metadata with a
foundation model. Subsequently, in the second step, we perform slice discovery on the structured metadata,
which comprises of DNN-under-test’s per-object performance and previously acquired per-object metadata.
Using our algorithm, we transform the slice discovery of unstructured image data into an (approximate)
slice discovery problem on structured data. In addition, we study the impact of noisy labeling in a Bayesian
framework and operationalize it by integrating error correction and slice validity based on quality indicators
into our approach. In the ablation experiments, we show that our SWD detects the same weak slices as
would be identified in hypothetical cases where we have access to perfect metadata. The primary advantage
of our algorithm, in comparison to SOTA methods, is that the identified weak slices are aligned with human-
understandable semantic concepts that can be derived from a description of the ODD. As upcoming safety
and trustworthy AI specifications require evidences for building safety argumentations w.r.t. such ODDs, the
results from our approach can directly contribute. In addition, the identification of human-understandable
weak slices enables ML developers to take mitigation actions, such as a targeted acquisition or generation of
data, addressing the weaker slices and, thus, facilitating effective re-training with a limited acquisition budget.
Furthermore, we show that our approach has clear advantages over several metadata-free SOTA methods
by giving more actionable results, and we demonstrate the applicability of our approach by identifying
systematic weaknesses in multiple AD datasets. For this, we also provide a quantitative evaluation of the
quality of the generated metadata.

Our algorithm does have certain limitations. Primarily, a minimum metadata labeling quality is required
for the discovered slices to be meaningful. In addition to our proposed metadata quality estimation, future
works could therefore focus on improving metadata quality by human correction of a subset of generated
metadata, fine-tuning (Eyuboglu et al., 2022) of CLIP, metadata acquisition from other sources (e.g., depth
sensor). Secondly, all approaches based on ODD definitions, like ours or PromptAttack (Metzen et al., 2023),
would suffer from the lack of completeness of the semantic concepts in ODD. A potential solution could be
in the direction of Gannamaneni et al. (2024) by performing a root-cause analysis of found weaknesses.
Such approaches could address potential issues between correlation and causation for found small slices.
In addition, SDMs based on the evaluation of the test dataset can suffer from insufficient coverage of the
application domain by the test dataset. Both aspects become more relevant with the increasing broadness
of the assumed ODD scope. For instance, if one intends to investigate false positives in object detection, the
description would effectively contain most other objects (and parts thereof) that could appear in the scene.
While we, therefore, limit our scope to the more narrowly defined false negatives, our approach still provides
valuable insights into, often more critical, missed detections in terms of human-understandable and, thereby,
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actionable weak slices. We believe that such results can contribute to the development of trustworthy AI
models and their safety.
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