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Abstract

In the context of video domains, continual learning has tra-
ditionally relied on data storage to prevent forgetting the
knowledge learned in the previous tasks. However, due to the
substantial size of data compared to images, it costs signif-
icant storage complexity and time complexity to store and
select important frames. To this end, we explore methods to
maintain prior information without storing or reusing data,
proposing a Time-Class Cross-Attention Classifier for con-
tinual learning in video action recognition. We employ learn-
able class queries to compress class knowledge, and a cross-
attention classifier architecture to capture the relationship be-
tween class queries and temporal information in videos. Then
we transfer information from the previous cross-attention
classifier when learning new tasks to preserve the necessary
temporal cues for the classification of previous classes. Ex-
perimental results show that the proposed model significantly
improves performance in scenarios regardless of whether data
reuse is feasible or not, offering a novel perspective on con-
tinual learning in the field of action recognition. Our code will
be made available.

Introduction
Video action recognition, a fundamental task in computer vi-
sion, has witnessed remarkable progress with the advent of
deep learning. Deep models have demonstrated the capabil-
ity to recognize a wide range of actions in videos, from sim-
ple gestures to complex human movements. However, the
practical application of these models in real-world scenarios
often demands the ability to learn continually, adapting to
new action classes and data streams without compromising
knowledge acquired from previous tasks.

Continual learning in the context of video action recog-
nition addresses this problem, but still presents a formidable
challenge. Traditional approaches have often relied on mem-
ory rehearsal, storing video frames in a memory bank and
training them along with new data to maintain performance
on previously learned tasks while adapting to new ones.
While these methods have proven effective, they introduce
a notable contrast to the core premise of continual learn-
ing, the ability to maintain prior task performance without
overly relying on retraining substantial portions of the pre-
vious dataset. Memory rehearsal methods inherently involve
retraining a considerable amount of the existing data, pre-

senting a potential bottleneck in the continual learning pro-
cess.

Furthermore, the practical applicability of memory re-
hearsal is limited in real-time systems that demand prompt
responses. Such systems cannot tolerate delays arise dur-
ing the selection of important frames from incoming video
streams, a common issue in existing memory rehearsal-
based methods. Additionally, accessing stored data is unfea-
sible in environments with strict privacy regulations or lim-
ited storage capacity. These constraints emphasize the need
for alternative approaches that do not rely on the rehearsal
of past data.

To tackle this issue, we address the exemplar-free contin-
ual learning approach in video action recognition by intro-
ducing Time-Class Cross-Attention classifier. To maintain
the information of previous classes without storing data, we
train class-specific queries. We then perform cross-attention
between video segment features and class queries, allowing
the model to capture which temporal segment of the video is
significant for predicting right action class. The key innova-
tion of our approach lies in its ability to compress class in-
formation into class queries by attending to crucial temporal
cues for the class. The training of class queries is achieved
by adding a lightweight cross-attention layer. As a result,
any model with a video feature extractor can easily adopt
our method by simply adding the learnable class queries and
a cross-attention classifier, avoiding any intensive computa-
tional demands. The learned knowledge is transferred to the
next task, persisting the acquired class knowledge for subse-
quent tasks.

Our comprehensive experiments show notable improve-
ments in performance in scenarios where the reuse of data is
not available. We demonstrate that our single-layered cross-
attention classifier effectively preserves previous knowledge
in the form of class queries, without relying on a Large Lan-
guage Model(LLM) or pre-trained models. Our work paves
a new path for continual video action recognition systems,
introducing a more practical approach in the field of video
continual learning.

Our contributions are as follows:

• We propose a very simple plug-and-playable module for
class-incremental video action recognition without the
need for storing past data. We suggest and validate a
novel way to predict class logit.



Figure 1: Description of class-incremental learning for action recognition task. In each task, a set of new action classes is
introduced, and the model is required to classify all the classes seen so far. Unlike task-incremental learning, there is no
provision of task information in the input.

• We demonstrate that efficient data replacement can be
achieved by compressing information about video action
labels into class queries.

• We introduce a new perspective on exemplar-free ap-
proaches to video continual learning and provide a base-
line that serves as the starting point for this approach.

Related Works
Continual learning has seen substantial growth and develop-
ment, especially in the domain of computer vision. How-
ever, video action recognition has received comparatively
less attention in the continual learning research community.
While action recognition has made impressive strides in gen-
eral, the adaptation of continual learning techniques for this
specific domain remains constrained and uncharted. In this
section, we review notable works in the realm of continual
learning and its application to video action recognition.

Continual Learning
Continual learning aims to enable models to learn new
classes while retaining knowledge of previously learned
ones. The strategies can be broadly categorized into four
techniques, each aimed at mitigating the catastrophic forget-
ting problem, a fundamental challenge in continual learning.

Regularization-based Methods. Regularization methods
focus on preventing the change of important weights learned
in the previous task. EWC(Kirkpatrick et al. 2016) employs
the Fisher Information Matrix to quantify the importance of
weights, while LwF(Li and Hoiem 2017) distills the output

of the old model when training the new task to preserve ex-
isting knowledge. This approach has been widely used in
continual learning, but is often computationally heavy and
exhibit limited generalization ability.(Van de Ven and Tolias
2019).

Replay-based Methods. Methods such as iCaRL(Rebuffi
et al. 2016) and Gradient Episodic Memory (GEM)(Lopez-
Paz and Ranzato 2017) concentrate on replaying previous
data to uphold knowledge of previously learned classes. The
replay-based strategy stands out as one of the most effec-
tive methods for preserving past knowledge by retaining the
original training data. However, its practicality diminishes
when faced with limited memory or substantial size of each
exemplar.

Architectural Approach. Architectural approaches en-
large network’s capacity dynamically through growing the
number of network parameters in accordance with the in-
creased amount of classes(Yoon et al. 2017; Teja and Panda
2020). DEN(Yoon et al. 2017) selectively updates param-
eters in the existing network and dynamically expands the
trained network by assessing whether additional capacity is
needed during training. CaCL(Teja and Panda 2020) com-
pacts the expanded network efficiently by employing low-
rank approximation and task-specific residual learning.

Prompting Methods. Prompting based methods(Radford
et al. 2021; Thengane et al. 2022) originated with the ad-
vent of prompt learning utilizing large language model.
L2P(Wang et al. 2022b) is the first attempt to adopt prompt
learning using a pretrained transformer encoder in the



continual learning of image classification domain. Dual-
Prompt(Wang et al. 2022a) trains two sets of disjoint prompt
pools to decouple higher level prompt spaces. ZSCL (Zheng
et al. 2023) preserves Zero-Shot transfer ability in Continual
Learning by leveraging the original CLIP model as a teacher
in feature space.

These approaches have shown promise in alleviating
catastrophic forgetting in the image domain, but may not
fully address the unique demands of video action recogni-
tion. Transitioning to video domain may render them im-
practical in real-time systems due to the substantial storage
demands associated with video data and a large number of
model weights.

Video Action Recognition
In the domain of video action recognition, numerous mod-
els and datasets have been established to advance the state
of the art. Works such as Two-Stream CNNs(Simonyan and
Zisserman 2014), I3D(Carreira and Zisserman 2017), and
TSN(Wang et al. 2016) have significantly enhanced the ac-
curacy of action recognition. However, these models are of-
ten optimized for static datasets and single-task scenarios,
making the transition to more complex, dynamic environ-
ments like continual learning and real-time applications a
non-trivial challenge.

Attention Mechanisms
Concurrently, attention mechanisms have emerged as pow-
erful tools in a diverse array of natural language processing
and computer vision tasks, characterized by their capacity
to spotlight interrelated information within the data. Trans-
former(Vaswani et al. 2017) played a pivotal role in high-
lighting the significance of attention mechanism. With the
advent of the Vision Transformer(ViT)(Dosovitskiy et al.
2020), Transformer has been applied in various ways in the
vision domain. DETR(Carion et al. 2020) introduced learn-
able query embeddings that attend to each object for object
detection in images, and Mask2Former(Cheng et al. 2022)
proposed masked attention to support universal image seg-
mentation. In the context of action recognition, divided at-
tention has been employed separating spatial attention and
temporal attention.

Continual Learning for Action Recognition
A limited number of studies have explored the challenges of
continual learning in video action recognition. TCD(Park,
Kang, and Han 2021) can be credited as one of the pioneer-
ing attempts at introducing continual learning into the realm
of action recognition. This method proposed channel-wise
importance to select feature maps that have a greater impact
on previous tasks. vCLIMB(Villa et al. 2022b) introduced
the first benchmark for video continual learning, address-
ing the challenge of storing videos in memory through the
incorporation of a temporal consistency loss. It further em-
phasized the prominence of rehearsal-based methods as top
performers, where a subset of video frames is retained in the
memory bank. However, such approaches suffer from the

need to select and store frames in the replay memory, incur-
ring substantial time and storage costs.

SMILE(Alssum et al. 2023) aimed to alleviate this burden
by preserving one frame per video and subsequently gener-
ating a video with repetitive copies of this image for training.
PIVOT(Villa et al. 2022a) utilized a pre-trained image and
text encoder derived from CLIP to harness knowledge from
a large-scale embedding space to enable zero shot trans-
fer of knowledge. However, the training procedure becomes
complex as prompt-based methods require the training of a
task identifier to lookup task-specific prompts (Villa et al.
2022a; Wang et al. 2022b). Even though they aims to lever-
age knowledge on the unknown set using a large pre-trained
model, they still rely on the replay of exemplars and presents
large performance drop without directly storing class data.
Hence, we aim to present an approach with minimal time
and storage requirements.

Although there were some noteworthy contributions, the
limited body of research in the intersection of continual
learning and action recognition underscores the need for
novel approaches and solutions. Our proposed Time-Class
Cross-Attention classifier aims to address this gap by inte-
grating elements of continual learning with video specific
attention mechanisms, presenting an innovative perspective
on exemplar-free continual learning in the context of action
recognition.

Method
We present the Time-Class Cross-Attention classifier and
its distillation protocol. Our method is designed to adapt to
new action classes while retaining knowledge of previously
learned ones, all without the need for extensive data storage
or memory rehearsal.

Problem Statement
We focus on class-incremental learning, which aims to
train a single model with new class set that arrives while
maintaining the performance on previous class sets. A sin-
gle model Θ is trained through a task sequence T =
{T1, T2, . . . , Tt, . . .}, each of which are trained in different
time step t. Each task Tt consists of videos of distinct action
classes and corresponding action label set pair, {Xt,Yt}.
Each pair contains the same number of new action labels.
We evaluate the model’s performance using test data of all
the classes seen so far without any task information.

Temporal Feature Extractor
We employ TSN(Wang et al. 2016) as a base feature extrac-
tor to capture important spatio-temporal features which are
crucial for recognizing action. An input video is divided into
K segments, and each segment is fed into the ResNet(He
et al. 2016) module. Rather than passing through a consen-
sus module that original TSN has, we train the cross atten-
tion classifier to find weights for each temporal segment. We
select ResNet34 based TSN for a fair comparison with pre-
vious research.



Figure 2: (a) Overall architecture of our approach. Learnable class queries are randomly initialized, and key and values are
transformed from temporal features. (b) Details of Time-Class Cross Attention classifier. The cross attention module computes
attention between class queries and temporal features, to produce output logits.

Time-Class Cross Attention (T-CCA) Classifier
To achieve continual learning without data storage, we de-
sign a classifier tailored for training learnable class queries.
Cross attention is adopted as the core architecture of the
classifier, to highlight the important temporal segment for
predicting the right class. The module calculates attention
between class queries and temporal features, followed by a
feed forward layer which outputs a class logit for each query.
The logits are passed through the softmax function to gener-
ate the final class prediction.

Let’s denote the inputs for the current task t as xt. xt is
divided into K segments, and they are passed through the
current feature extractor Ft to extract K features, denoted
as ft. ft is transformed into K keys kt and K values vt. At
the beginning of the first task, a number of learnable class
queries are dynamically added and randomly initialized, cor-
responding to the classes appearing in the current task qt.
Then the cross attention module computes attention st be-
tween each key, values and learned class queries so far, to
capture essential spatio-temporal cues from video sequences
for classifying action.

st = Softmax(qt · kTt
√

dk)vt (1)

at = wt(̇st + qt) (2)

lt = FeedForward(at) (3)

Attention score at is calculated by multiplying learned
weights of each temporal segment and st. Original query
feature is added here for residual connection. at ∈
RB×C1:t×D is transformed to class logits lt ∈ RB×C1:t×1

through a feed-forward layer, where B, C, and D each stands
for the batch size, number of known classes, and hidden di-
mension. Feed forward layer compresses the attention out-
put into class logits. Then ŷt is outputted as a final prediction
considering the class with the highest logit as a correct label.

The rationale behind computing attention between class
queries and temporal segments stems from the varying im-
portance of each segment when determining action class. In
contrast to the image domain, the occurrence of an action
is confined to a subset of the entire video as described in
Figure 3. Within this subset, specific segment of the video
play a pivotal role in determining the action class. Our clas-
sifier is designed to enable queries to attend to these cru-
cial temporal segments throughout the video. By first attend-
ing to different temporal segments in parallel, and then find
weights based on their contribution to the model’s perfor-
mance. This procedure incorporates temporal information
into class logit, enabling the classifier to discern significant
temporal features crucial for predicting the action class.

To train the classifier and obtain correct predictions from
the logits, temporal classification loss Lcls is applied. The
Temporal Classification Loss minimizes the cross-entropy
between the predicted class probabilities and the ground



Figure 3: An example data of class ’Drink’ in HMDB51. The video data starts with a man just sitting on the couch, and drinking
starts from 27th frame. After the action, man stares someone without drinking or holding a cup. The key segment for predicting
the provided label only corresponds to a subset of the entire input frames(Specifically, frames 27 to 106). This shows the evident
example of the case why we choose to attend the class query to the segments of video divided along the temporal axis, to capture
important temporal feature.

truth yt, guiding the model to improve its action recognition
capabilities. While learning proper logit distribution, class
queries are trained to produce discriminative logit with each
other.

Lcls = −
C∑
i=1

yt,i log ŷt,i (4)

As queries are learnable, they are updated during the
training process. The cross-attention classifier facilitates
the simultaneous learning of important temporal features
and class-specific information. The detailed structure of the
module is depicted in the Figure 2.

Temporal Feature Transfer (TFT)
To ensure that knowledge of previously learned classes is
retained, the weights of cross-attention module and class
queries are transferred from the previous cross-attention
classifier during the learning of new action classes. The
Temporal Distillation Loss Ldist serves a crucial role in the
process, retaining previous knowledge and preserving clas-
sification capabilities for prior classes. It minimizes the KL-
Divergence between the distribution of logits from the previ-
ous cross-attention module and that from the current module
to balance the influence of new and prior knowledge. To fur-
ther mitigate forgetting, we applied weighting term to put
more weights to the previous knowledge as task sequence
gets longer. The loss is calculated as:

Ldistq = P (qt−1) · logP (qt−1)Q(qt) (5)

Ldist = Wt(P (x) · logP (x)Q(x)) + Ldistq (6)
where Wt is logarithmic weight function, P (x) is the soft-

max output of lt−1, Q(x) is the softmax output of lt in the
log space, P (qt−1) and Q(qt) are previous and current dis-
tribution of class query weights. The distillation loss serves
as a regularization term to prevent significant changes for
predicting previous classes. Effects of each component are
measured in ablation study in the supplementary material.

With balancing two loss functions, the cross-attention
classifier adapts to capture new action class-specific fea-
tures while retaining the ability to recognize actions learned
in previous tasks. The cross-attention module captures es-
sential temporal features crucial for predicting the correct

classes, and the class query is updated to learn distinctive
features for each class. The learned knowledge is retained
across tasks by constraining the classifier to generate similar
logit distribution for previous action classes. The final objec-
tive function L is described with balancing hyperparameter
λ1 and λ2 as:

L = λ1 · Lcls + λ2 · Ldist (7)

Experiments
In this section, we empirically evaluate the effectiveness of
the Time-Class Cross-Attention Classifier in addressing the
challenges of continual learning in action recognition. We
present the datasets, experimental setup, and results of our
method.

Datasets
For the experiments, we use a widely recognized action
recognition dataset: the UCF101(Soomro, Zamir, and Shah
2012) and HMDB51(Kuehne et al. 2011). UCF101 consists
of 13.3K videos spanning 101 action classes, and HMDB51
contains 6.8K videos devide into 51 action categories from
public databases. Following the previous work(Park, Kang,
and Han 2021), we adopt the first split among 3 official train-
test splits to evaluate our approach on in-distribution training
setting.

Experimental Setup
Pre-trained with in-distribution data. Initially, we con-
duct experiments using the class-incremental scenarios em-
ployed in TCD(Park, Kang, and Han 2021) on UCF101
and HMDB51 datasets with in-distribution pretraining. For
UCF101, we first train the model with 51 classes and di-
vide the remaining 50 classes into 5, 10, and 25 tasks for the
class-incremental step. For HMDB51, the model is initially
trained with 26 classes, and the remaining 25 classes are di-
vided into 5 and 25 tasks. We employ ResNet34 based TSN
for UCF101, and train the entire network for 20 epochs with
a batch size of 32. ResNet50 based TSN is trained for 20
epochs with a batch size of 16 for HMDB51, to make a fair
comparison with previous works.

Without pre-training in-distribution data. Following
the vCLIMB benchmark(Villa et al. 2022b), we test vari-
ous models on the UCF101 dataset without in-distribution



pre-training. We execute experiments both with and without
memory for this scenario. We evenly divide the entire set of
classes into 10 and 20 tasks. To assess the performance of
T-CCA, Average Accuracy(ACC) and Backward Forgetting
(BWF) are measured. For experiments based on PIVOT, we
train the model for 40 epochs with a batch size of 50, uti-
lizing the SGD optimizer with a constant learning rate of
0.01. For iCaRL, we train the model for 40 epochs with a
batch size of 50, utilizing the SGD optimizer with a con-
stant learning rate of 0.01. For the memory bank, we follow
the information given by each paper.

Evaluation Metrics
Following previous works, we employ the following evalua-
tion metrics to asses the performance of our method.

Average Accuracy(ACC). Average Accuracy is a stan-
dard metric used to measure the overall accuracy of a model
across all seen tasks. It is calculated as the average of ac-
curacies achieved on individual tasks after finishing training
on the current task.

ACC =
1

t

t∑
i=1

acci (8)

where t is the total number of tasks and acci is the accuracy
of the trained model on the i-th task. Higher ACC means
better performance.

Backward Forgetting (BWF). Backward Forgetting
quantifies the extent to which a model forgets knowledge
of previously learned tasks when adapting to new ones.
It is computed as the difference in accuracy for the last
task between models trained with and without considering
previous tasks.

BWF =
1

t− 1

t−1∑
i=1

acci,i − acct,i (9)

where acci,j represents the accuracy of j-th task after
training i-th task. Lower BWF means less forgetting, thus
represents better performance.

Exemplar-free Baseline
In the absence of existing approaches for exemplar-free con-
tinual learning in action recognition tasks, we select three
prior works with distinct approaches, Time Channel Distil-
lation(TCD)(Park, Kang, and Han 2021), PIVOT(Villa et al.
2022a), and iCaRL(Rebuffi et al. 2016), and entirely remove
the sections involving memory rehearsal to assess exemplar-
free performance. Results are presented in Table 1 and Table
2 as TCDEF , PIVOTEF , and iCaRLEF .

TCD(Park, Kang, and Han 2021) conducts pre-training on
the half set of the entire classes before incrementally learn-
ing the remaining classes. To assess the efficacy of this ap-
proach in an exemplar-free scenario, we omit the use of a
memory bank and class-balanced tuning, while retaining all
other training details including time channel distillation. The
exemplar-free performance of this baseline is presented in
Table 1. TCD originally achieves an average accuracy of

74.89% with five rounds of incremental tasks, but the ac-
curacy drops to 31.5% when we restrain using exemplar.
To preserve the learned information without utilizing previ-
ous data, we integrate our methodology, the cross-attention
classifier and learnable class query, achieving a performance
improvement of 10.73% in the 10 classes 5 tasks setting.
It consistently excels in scenarios involving 10 and 25 in-
cremental tasks, demonstrating improvements of 8.01% and
3.87%, respectively. In the HMDB51 dataset, our method
also shows improvement, indicating the ability to mitigate
forgetting without a memory bank. By adopting weighting
parameter to distillation loss, we could effectively enhance
performances in 25 tasks setting of both dataset.

We also validate our non-exemplar approach on
PIVOT(Villa et al. 2022a) and iCaRL(Rebuffi et al. 2016),
following the protocol of vCLIMB(Villa et al. 2022b)
benchmark. It evenly divides the entire set of classes into
5 or 10 classes per step, and experiments on 10 or 20
steps without in-distribution pre-training. We exclude the
memory bank to assess the models under the non-exemplar
scenario. PIVOT leverages large pretrained vison-language
models(VLM), CLIP(Thengane et al. 2022), achieving a
high performance of 94.8% when data is stored. However,
it drops to 26.19% without storing data, showing the fact
that leveraging VLM has been insufficient for retaining pre-
vious knowledge without any data storage. By incorporat-
ing class queries and the cross-attention classifier into this
non-exemplar baseline, we achieve 6.45% and 3.76% im-
provement on 10 and 20 task experiments. iCaRLEF shows
more promising results even without storing data, showing
around 12% higher accuracy than PIVOTEF on 10 incre-
mental tasks setting. Our method gains 7.89% improvement
in accuracy than the non-exemplar version of iCaRL on 10
tasks, and 8.39% on 20 tasks. Thus, T-CCA has proven to
be an effective approach for remembering and maintaining
information on previous classes without the need for data
storage.

Results with Exemplars
While we design our method to address the need for non-
exemplar approaches, we expand our methodology into en-
vironments where data rehearsal is allowed to demonstrate
its efficacy as a continual learning method. We plug our
cross-attention classifier and class query into the original
versions of TCD, PIVOT, and iCaRL for the experiments.

First, we experiment with iCaRL, a representative
rehearsal-based method that stores data to maintain perfor-
mance on previous classes. Our approach results in perfor-
mance improvements of 5.51% and 4.07% for 10 and 20
tasks, recording 86.48% and 80.66% respectively. In the
case of PIVOT, one of the state-of-the-art methods, the per-
formance is already close to the oracle yielding 94.80% of
average accuracy when data is stored. Our method shows a
slight increase in average accuracy on PIVOT, and notable
enhancement in backward forgetting. There is a 1.11% and
0.95% decrease in backward forgetting(BWF), which means
the added module helps maintaining previous knowledge,
fulfilling the intent of adopting class query. The amount can
be considered significant given that the performance had al-



Table 1: Results on UCF101 and HMDB51 with in-distribution training. In each scenario, model is pre-trained on the half set
of the classes, followed by incremental learning on the remaining class set.

UCF101 HMDB51
Method 10× 5tasks 5× 10tasks 2× 25tasks 5× 5tasks 1× 25tasks

Exemplar-free TCDEF 31.53 20.12 8.41 17.60 7.62
T-CCAEF 42.36 28.13 12.28 22.30 10.22

With Exemplars

UCIR 74.31 70.42 63.22 44.90 37.04
PODNet 73.26 71.58 70.28 44.32 38.76

TCD 74.89 73.43 72.19 45.34 40.07
T-CCA 80.34 78.86 76.63 47.82 42.06

Table 2: Results on UCF101 without in-distribution training. Following vCLIMB, we split the entire dataset into 10 and 20
tasks.

10 Tasks 20 Tasks
Method ACC↑ BWF↓ ACC↑ BWF↓

Exemplar-free

EWC 9.51 98.94 4.71 92.12
MAS 10.89 11.11 5.90 5.31

PIVOTEF 26.19 62.32 14.33 56.58
PIVOTEF +Ours 32.64 72.74 18.09 66.23

iCaRLEF 36.50 68.02 28.79 73.21
iCaRLEF +Ours 44.39 35.12 37.18 67.52

With Exemplars

BiC 78.16 18.49 70.69 24.90
iCaRL 80.97 18.11 76.59 21.83

iCaRL+Ours 86.48 12.24 80.66 17.74
PIVOT 94.80 3.89 93.70 4.77

PIVOT+Ours 94.93 2.78 94.72 3.82

ready reached the oracle. Due to the inability to train class
queries in the middle of the prompt learning module of
PIVOT, we simultaneously train class queries using video
features alongside prompt learning. We jointly optimize the
classification loss for the cross-attention classifier with the
original training loss. The result is summarized in the lower
part of Table 2.

We also validate our method in an in-distribution training
environment and compare the result with TCD(Park, Kang,
and Han 2021). On the UCF101 dataset with a 10-classes &
5-tasks configuration, our method achieves a performance
of 80.34%, surpassing the previous method by 5.45%. In a
5-classes & 10-tasks setup, we observe an accuracy gain of
5.43% reaching 78.86%, and in a 2-classes & 25-tasks setup,
the accuracy increases by 4.44% reaching 76.63%. On the
HMDB51 dataset, we obtain a performance improvement of
2.48% and 1.99% on 5-classes & 5-tasks and 1-classes &
25-tasks settings respectively. While there is limitation that
improvement of performance in the 25-tasks environment
is restricted, our method consistently demonstrates perfor-
mance enhancements across all tested settings, showing its
robust effectiveness. Those results and comparisons with the
previous method are summarized in Table 1.

Conclusion
Our Time-Class Cross-Attention classifier presents a
straightforward yet promising approach for exemplar-free
continual learning in action recognition. Through the in-

corporation of class queries and a cross-attention layer, we
demonstrate a way to store class information without stor-
ing extensive video sequences or selecting frames. We have
taken the initial step in video continual learning to ap-
ply non-exemplar approach for real-world scenarios where
memory storage is not feasible. Building on this research,
we hope to see further progress in exploring non-exemplar
video continual learning methods in the future.
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