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Abstract

Imitation learning from human feedback studies how to train well-performed
imitation agents with an annotator’s relative comparison of two demonstrations
(one demonstration is better/worse than the other), which is usually easier to collect
than the perfect expert data required by traditional imitation learning. However, in
many real-world applications, it is still expensive or even impossible to provide a
clear pairwise comparison between two demonstrations with similar quality. This
motivates us to study the problem of imitation learning with vague feedback, where
the data annotator can only distinguish the paired demonstrations correctly when
their quality differs significantly, i.e., one from the expert and another from the non-
expert. By modeling the underlying demonstration pool as a mixture of expert and
non-expert data, we show that the expert policy distribution can be recovered when
the proportion α of expert data is known. We also propose a mixture proportion
estimation method for the unknown α case. Then, we integrate the recovered
expert policy distribution with generative adversarial imitation learning to form an
end-to-end algorithm1. Experiments show that our methods outperform standard
and preference-based imitation learning methods on various tasks.

1 Introduction
Imitation learning (IL) is a popular approach for training agents to perform tasks by learning from
expert demonstrations [1–3]. It has been applied successfully to a variety of tasks, including robot
control [1], autonomous driving [4], and game playing [5]. However, traditional IL methods struggle
when presented with both expert and non-expert demonstrations, as the agents may learn incorrect
behaviors from the non-expert demonstrations [6]. This problem, which researchers refer to as
“Imitation Learning from Imperfect Demonstration” (ILfID), arises when the demonstrations used to
train the model may contain some non-expert data [6–9].

One popular solution to ILfID is resorting to an oracle to provide specific information, such as explicit
labels (confidence from an expert) of each demonstration, as in Figure 1a. However, such a specific
oracle is quite expensive. A more recent framework, Reinforcement Learning from Human Feedback
(RLHF) [10, 11], incorporates human feedback into the learning process, including a key part of
the pipeline used for training ChatGPT [12]. There exist two widely studied paradigms of feedback:
full ranking and global binary comparison, as in Figures 1b and 1c. Methods that use full-ranked
demonstrations assumed that the feedback between every pair of trajectories is available, and further
employed preference-based methods to solve the problem [13, 14]. Other studies have investigated
situations where demonstrations can be divided into two global binary datasets, allowing the learner
to filter out non-expert data from these global comparisons [7, 8]. However, data processed by any
feedback of Figures 1a, 1b, and 1c require the guarantee that clear ranking information or at least one
set consisting of pure expert demonstrations exists, so that off-the-shall IL methods can be applied
immediately. The availability of expert demonstrations raises the question of what if, in practice,
the feedback is not clear enough to provide purely expert demonstrations but mixed with non-expert
demonstrations? The question poses a challenge that previous methods fail to address since none of

1The code is available on https://github.com/caixq1996/COMPILER.
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(a) Explicit label (b) Full ranking

(c) Global (clear) comparison (d) Vague comparison (our setting) (e) A maze example

Figure 1: (a)–(d): The comparisons among the imitation learning with the explicit label, full ranking,
global comparison, and our setting. denotes the expert data while denotes the non-expert one. (e)
An example of labeling route navigation. In the example, Path 1 and Path 2 share the same distance.
A similar situation lies in Path 3 and Path 4. The data collectors cannot provide explicit, ranking, or
pairwise information as in (a), (b), and (c), while they can only provide vague comparisons that Γ+

can be more expert-like than Γ−.

the previous IL algorithms handles the issue of the mixture of expert and non-expert demonstrations
without other information. Their conventional strategies are to deal with the vagueness in the data
processing stage (relying on human feedback) not during the learning stage (by the learning agent).

Therefore, we consider a kind of weaker feedback than those previously formulated in the liter-
ature, which unintentionally mixes expert and non-expert demonstrations due to vague feedback.
Specifically, the human annotator demonstrates in a pairwise way and only distinguishes the expert
demonstration from the non-expert one. However, the annotator cannot tell the origin when both
are from an expert or a non-expert. As depicted in Figure 1d, this annotation process results in two
datasets: Γ+, containing demonstrations the annotator believes to be most likely from experts, and
Γ−, containing non-expert-like demonstrations. If one only places the distinguishable demonstrations
into the pools and discards the indistinguishable ones, it results in Figure 1c. Since we aim to
investigate the potential of IL under the presence of non-expert demonstrations, we distribute the
indistinguishable demonstrations randomly, one to Γ+ and the other to Γ−. This step embodies the
vagueness we wish to study in this paper. Note that either dataset contains non-expert demonstrations,
and thus, a direct application of the existing IL method might be inappropriate due to the danger of
learning from undesirable demonstrations.

Vague feedback commonly exists in many scenarios, especially regarding RLHF [12]. In a crowd-
sourcing example of routes navigation, as shown in Figure 1e, most of the time crowd-workers may
lack domain expertise. Meanwhile, it is quite difficult to distinguish every pair of demonstrations
(when facing two trajectories from the same source, such as ( , ) or ( , )). Therefore, we cannot
obtain high-quality crowd-sourcing labels when the data are annotated [15] as in Figures 1a, 1b,
and 1c. On the other hand, it is natural for workers to provide vague comparisons as in Figure 1d.

In this work, we formulate the problem of Vaguely Pairwise Imitation Learning (VPIL), in which
the human annotator can only distinguish the paired demonstrations correctly when their quality
differs significantly. In Section 4, we analyze two situations within this learning problem: VPIL with
known expert ratio α and unknown α. For VPIL with known α, we provide rigorous mathematical
analysis and show that the expert policy distribution can be empirically estimated with the datasets
Γ+ and Γ−; for the more challenging situation of VPIL with unknown α, we propose a reduction of
the problem of estimating α to a mixture proportion estimation problem [16] and develop an iterative
update procedure to estimate α. In Section 5, we integrate our algorithm with an off-the-shelf IL
method to solve VPIL problems. In Section 6, we evaluate our methods with state-of-the-art ILfID
methods on a variety of tasks of MuJoCo [17] with different α ratios and find that our methods
obtained the best performance.

2 Related Work
In imitation learning scenarios, a model is trained to mimic the actions of expert demonstrations. One
of the main challenges of imitation learning is that the gathered demonstrations can be imprecise,
making it difficult for the learner to accurately replicate the underlying policy of the demonstrations.
To overcome this issue, various works have utilized an annotator, a source of supplementary supervi-
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Figure 2: The description of the data collection process.

sion that can aid the learner in better understanding the expert’s intent. For example, [18] used explicit
action signals of the annotator; [14], [19], and [13] used ranking/preference information from the
annotator to learn the policy; [6] utilized confidence information from the annotator to re-weight the
unlabeled demonstrations and further learned the policy. However, as illustrated in Section 1, in some
cases, the annotator may not be able to provide explicit information for the imperfect demonstrations,
especially when the demonstrations come from different sources.

Alternative strategies for IL by imposing prior knowledge instead of an annotator have also been
put forward, such as state density estimation for importance weighting [20], state-action extrapolat-
ing [21], and adding noise to recover ranking [22]. But this research line relies on certain assumptions
about the state/state-action spaces, which may not always hold in many real-world applications. In
this work, we focus on using an annotator with vague information, which is also low-cost.

Our methods drew inspiration from the risk rewriting technique in weakly supervised learning
literature [23], which aims to establish an unbiased risk estimator for evaluating the model’s quality
only with weak supervision. Although the technique has been successfully applied to various specific
weakly supervised learning problems [24–27], these methods typically require knowledge of a
parameter called the mixture proportion, i.e., the expert ratio in our problem [28], the estimation of
which can be challenging in the imitation learning problem (see Section 6.3 for more details). To
overcome this issue, we introduce an iterative data selection procedure to better estimate the expert
ratio, leading to superior empirical performance. It is worth noting that [6] also used the risk rewriting
technique to identify the expert demonstrations, but their algorithm does not require estimation of
the expert ratio as the confidence score is given. However, such information is unavailable in VPIL,
making the problem more challenging.

3 Preliminaries and Problem Setting
In this section, we first introduce the IL process. Then we formulate the VPIL problem.

3.1 Preliminaries
Markov Decision Process. In policy learning problems, a Markov Decision Process (MDP) can
be represented by a tuple ⟨S,A,P, γ, r, T ⟩, where S is the state space; A is the action space;
P : S ×A× S → [0, 1] is the transition probability distribution; γ is a discount factor in the range
(0, 1]; r : S → R is the reward function; and T is the horizon. The goal is to learn a policy π that
maximizes the expected returns E[

∑∞
t=0 γ

tr(st, at)], where E denotes the expectation.

In IL, the learner does not have access to the reward function r. Instead, the learner is given m
expert demonstrations τE,1, τE,2, . . . , τE,m, where τE,i, i ∈ {1, . . . ,m} is the i-th trajectory (a series
of state-action pairs) drawn independently following the demonstrator’s policy πE. The goal of the
learner is to learn a policy πθ to mimic πE.

Occupancy Measure. Since in IL we do not have reward functions, we need to measure the
policy performance in the state-action space, i.e., occupancy measure ρπ. The occupancy measure
ρπ : S ×A 7→ R was introduced to characterize the distribution of state-action pairs generated by a
given policy π, which was defined with the discount factor: ρπ(s, a) = π(a|s)

∑∞
t=1 γ

t Pr[st = s|π],
where Pr[st = s | π] is the probability of reaching state s at time t following policy π [29].

Moreover, we know that there is a one-to-one correspondence between the occupancy measure and
the policy. Specifically, we have the following theorem.

3



Theorem 1 (Theorem 2 of [29]). Suppose ρ is the occupancy measure for πρ(a | s) := ρ(s,a)∑
a′∈A ρ(s,a′) .

Then, πρ is the only policy whose occupancy measure is ρ.

We can also define a normalized version of the occupancy measure by pπ(s, a) ≜
ρπ(s,a)∑

s′∈S,a′∈A ρπ(s′,a′)
= (1 − γ)ρπ(s, a). If we have m expert demonstrations τE,1, τE,2, . . . , τE,m,

the occupancy measure pπE can be empirically estimated by the trajectories as p̂πE(s, a) =

1−γ
m

m∑
i=1

∞∑
t=0

γt1

[
(s

(i)
t , a

(i)
t ) = (s, a)

]
, where 1[·] is an indicator function that returns 1 if · is true

and returns 0 otherwise. Finding out the underlying pπE is the key for solving IL problems [1, 30].

3.2 Vaguely Pairwise Imitation Learning
In this work, we focus on the ILfID problem with pairwise information, where the learner aims
to learn a good policy with a pairwise dataset (Γ+,Γ−), generated from a mixture demonstration
pool performed by an expert policy πE and a set of non-expert policies {π(k)

NE }Kk=1. In this work, we
consider the mixed occupancy measure of the non-expert policy set as pπNE . The proportion of the
expert data within the pool is denoted as α ∈ (0, 1]. The data collection process is shown in Figure 2.
To clearly reveal the effect of mixed demonstrations and explain the proposed framework, we choose
to assume that the data collector is not an attacker and will make mistakes, so there will be no noise
during the collection process. In Section 6.4, we discuss how our method can easily be extended to
handle the presence of human error.

Also, in this work, we do not consider that the data collector could be an attacker or make mistakes,
so there will be no noise during the collection process.

Collection of Pairwise Datasets. The data collector would first sample a pair of trajectories (τi, τj)
independently from the mixture pool. If (τi, τj) are from different sources, i.e., one is from the expert,
and another is not, then the collector will take the expert one τi into Γ+ and the non-expert one τj
into Γ−. Otherwise, the collector randomly puts them into Γ+ and Γ−. Under such a data generation
process, the expertise probabilities of this pair are as follows:

Pr[τi ∼ pπE , τj ∼ pπE ] = α2,

Pr[τi ∼ pπNE , τj ∼ pπNE ] = (1− α)2,

Pr[τi ∼ pπE , τj ∼ pπNE ] = 2α(1− α).

(1)

In such a case, Γ+ is always “not worse” than Γ− as it contains more expert data.

4 Learning frameworks for Solving VPIL Problems
In this section, we analyze the core challenge in VPIL problems with the pairwise datasets Γ+ and
Γ−, i.e., recovering the occupancy measure of the expert policy pπE . To this end, we propose two
learning frameworks for VPIL with known α and unknown α, respectively.

4.1 VPIL with Known α

Most of the IL methods based on the occupancy measure need to assume that the demonstrations are
sampled only from the expert policy, so that they can directly estimate pπE and match the learner’s
distribution with pπE . However, the occupancy measure of the expert policy pπE is inaccessible in
the VPIL problem, since both Γ+ and Γ− contain non-expert data while the label of each data is
unavailable. Below, we attempt to approximate pπE with {Γ+,Γ−}.

Let n+ = |Γ+|; p̂+i (s, a) = (1 − γ)
∑∞
t=0 γ

t
1 [(st,i, at,i) = (s, a)] for i = 1, . . . , n+ be the

empirical occupancy measure of a trajectory τi ∈ Γ+, where (st,i, at,i) ∈ τi is a state action pair
at time t. Let p̂π+

(s, a) =
∑n+

i=1 p̂
+
i (s, a)/n+. Define p̂π−(s, a) similarly. We have the following

theorem.
Theorem 2. Assume the pairwise datasets (Γ+,Γ−) are generated following the procedure in
Section 3.2. Let pπ+

(s, a) = EΓ+

[
p̂π+

(s, a)
]

and pπ−(s, a) = EΓ−
[
p̂π−(s, a)

]
be the expected

occupancy measures of Γ+ and Γ−, where the randomness is taken over the draws of Γ+ and Γ−.
Then, we have {

pπ+
(s, a) =

(
2α− α2

)
pπE(s, a) + (1− α)2pπNE(s, a),

pπ−(s, a) = α2pπE(s, a) + (1− α2)pπNE(s, a),
(2)
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{
pπE

(s, a) = 1+α
2α pπ+

(s, a)− 1−α
2α pπ−(s, a),

pπNE(s, a) = − α
2(1−α)pπ+(s, a) +

2−α
2−2αpπ−(s, a).

(3)

A proof can be found in Appendix A. The Theorem provides a feasible way to recover the unknown
occupancy measure of the expert policy from contaminated data pools Γ+ and Γ−. Thus, we can use
an off-the-shelf IL method to learn the policy.

Once we have recovered pπE by Eq. (10), we can use an off-the-shelf IL method to learn the policy.

4.2 VPIL with Unknown α

When facing a more challenging problem in which the expert ratio α is unknown, a straightforward
way is to estimate the ratio first and then reconstruct the expert policy by the approach developed
for known α cases. Here, we will first introduce how to estimate the expert ratio by reducing it into
a mixture proportion estimation (MPE) problem [28] and then identify that a direct application of
the estimated ratio is not accurate enough to reconstruct the expert policy. To this end, we further
propose an iterative sample selection procedure to exploit the estimated expert ratio, which finally
leads to a better approximation of the expert policy.

Estimation of the Expert Ratio α. In this paragraph, we show that the estimation of the expert
ratio α can be reduced to two MPE problems [28]. Let P andN be two probability distributions, and

U = βP + (1− β)N (4)

be a mixture of them with a certain proportion β ∈ (0, 1). The MPE problem studies how to estimate
mixture proportion β with the empirical observations sampled from U and P (not from N ). Over the
decades, various algorithms were proposed with sound theoretical and empirical studies [31, 32].

To see how the estimation of the expert ratio α is related to the MPE problem, we rewrite (2) as

pπ+
(s, a) = β1pπ−(s, a) + (1− β1)pπE and pπ−(s, a) = β2pπ+

(s, a) + (1− β2)pπNE , (5)

where β1 = 1−α
1+α and β2 = α

2−α . By taking pπ+
as U and pπ− as P , the first line of (5) shares the

same formulation as the MPE problem (4). Since pπ+
and pπ− are empirically accessible via Γ+ and

Γ+, we can estimate β1 by taking Γ+ and Γ− as the input of any MPE solver and obtain the expert
ratio by α = 1−β1

1+β1
. The same argument also holds for the second line of (5), where we can take pπ−

as U and pπ+ as P to estimate β. Then, the expert ratio can also be obtained by α = 2β2

1+β2
.

One might worry about the identifiability of the expert ratio α by estimating it with MPE tech-
niques [28]. We can show that the true parameter is identifiable if the distribution pπ+ and distribution
pπ− are mutually irreducible [16] as follows:
Proposition 1. Suppose the distributions pπE and pπNE are mutually irreducible such that there exists
no decomposition of the form pπE = (1 − η)Q + ηpπNE and pπNE = (1 − η′)Q′ + η′pπE for any
probability distributions Q,Q′ and scalars η, η′ ∈ (0, 1]. Then, the true mixture proportions β1 and
β2 are unique and can be identified by{

β1 = sup{η|pπ+ = ηpπ− + (1− η)K,K ∈ C},
β2 = sup{η′|pπ− = η′pπ+ + (1− η′)K ′,K ′ ∈ C}, (6)

where C is the set containing all possible probability distributions. Thus, α is identifiable by

α = (1− β1)/(1 + β1) or α = 2β2/(1 + β2). (7)

Proposition 1 demonstrates that the true mixture proportion β1 (resp. β2) can be identified by finding
the maximum proportion of pπ− contained in pπ+

(resp. pπ+
contained in pπ−). This idea can

be empirically implemented via existing MPE methods [28, 33]. We note that the expert ratio is
identifiable by either estimating β1 or β2 when we have infinite samples. In the finite sample case,
the two estimators coming from different distribution components could lead to different estimation
biases. Since the MPE solutions tend to have a positive estimation bias on the true value β1 and β2

as shown by [28, Theorem 12] and [31, Corollary 1], the estimation α = (1− β1)/(1 + β1) tends
to yield an underestimated α while that with β2 will lead to an overestimation. Besides, when the
number of expert data is quite small, the underlying true parameter β2 would also have a small value,
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Algorithm 1 ExpertRatioEstimation

Input: Pairwise Demonstrations Γ+, Γ−; Numbers of Iterations I .
Output: Estimated Expert’s Ratio α̂.
1: function ESTIMATION(Γ+, Γ−)
2: Initialize D+ ← Γ+ and D− ← Γ−

3: for each iteration until I do
4: Train a binary classifier fψ : S × A → [0, 1] by taking D+ as positive data and D− as

negative.
5: Assign a score for each data S+ ← {fψ(s, a) | (s, a) ∈ D+} and S− ← {fψ(s, a) |

(s, a) ∈ D−}.
6: Estimate β with a mixture proportion estimator by taking S+ as U and S− as P in (4).
7: Estimate α̂ by (7). ▷ We choose (1− β)/(1 + β) for better estimation.
8: Data selection for Γ+: D+ ← {2α̂− α̂2 fraction of Γ+ with top scores S+}.
9: Data selection for Γ−: D− ← {1− α̂2 fraction of Γ− with bottom scores S−}.

10: end for
11: return α̂
12: end function

Algorithm 2 COMPILER/COMPILER-E

Input: Pairwise Demonstrations Γ+, Γ−; Expert ratio α (Unknown for COMPILER-E); Environ-
ment env.

Output: The learner policy πθ.
1: Initialize the learner policy πθ and the discriminator Dω .
2: if α is unknown then ▷ COMPILER-E
3: Obtain the estimated expert ratio α← ExpertRatioEstimation(Γ+,Γ−).
4: else ▷ COMPILER
5: α← input(α).
6: end if
7: for each training steps do
8: Sample a batch of learner’s data (s, a) ∼ pπθ

by the interactions between πθ and env.
9: Sample a batch of demonstrations data (s, a) ∼ p̂π+ and (s, a) ∼ p̂π− from Γ+ and Γ−.

10: Update Dω by maximizing (8).
11: Update πθ with (s, a) ∼ pπθ

and the reward− logDω(s, a) using off-the-shelf RL algorithm.
12: end for

and its estimation would be highly unstable. Thus, we choose to estimate α with β1 in our algorithm.
The empirical studies in Section 6.3 also supported our choice.

The relationship (2) between the expert and non-expert data shares a similar formulation to that of the
unlabeled-unlabeled (UU) classification [34], which is a specific kind of weakly supervised learning
problem studying how to train a classifier from two unlabeled datasets and requires the knowledge of
mixture proportions. However, how to estimate these mixture proportions is still an open problem in
the weakly supervised learning literature. Although our reduction is developed for estimating the
expert ratio for IL problems, it can be applied to a UU learning setting for independent interest.

Reconstruct Expert Policy by Data Selection. To handle the MPE task for high dimensional
data, a practice is to first train a classifier with probability output and then conduct the MPE on the
probability outputs of samples [35]. However, the quality of the trained classifier turns out to depend
on the estimation accuracy of α. On the other hand, we found that it is possible to filter out the
undesired component of the pairwise datasets (p̂πE in Γ− and p̂πNE in Γ+) and keep the desired data
to enhance estimating α. Therefore, also inspired by [31, 36] of the distribution shift problem and
weakly supervised learning, we propose an iteration-based learning framework. In each iteration,
we throw away the non-expert data with higher confidence in Γ+ and the expert data with higher
confidence in Γ− after estimating α, and train a classifier with the datasets after selection. The
detailed learning process can be found in Algorithm 1.

After we obtained the estimated α̂, we can recover pπE as by Eq. (10).
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5 COMParative Imitation LEarning with Risk rewriting (COMPILER)
We have illustrated how to estimate the occupancy measure of the expert policy pπE from (Γ+,Γ−)
under known and unknown α respectively. Here we describe how to adopt these learning frameworks
into end-to-end algorithms for learning an policy. We name our algorithm for VPIL with known
α COMParative Imitation LEarning with Risk-rewriting (COMPILER), and with unknown α
COMParative Imitation LEarning with Risk-rewriting by Estimation (COMPILER-E).

Current state-of-the-art adversarial IL methods [37, 1] aim to learn a policy by matching the occu-
pancy measure between the learner and the expert policies. We fuse our methods with one of the
representative adversarial IL methods, Generative Adversarial Imitation Learning (GAIL) [1], whose
optimization problem is given as follows:

min
θ∈Θ

max
w∈W

E(s,a)∼pπθ
logDw(s, a) + E(s,a)∼pπE

log(1−Dw(s, a)),

where Dw : S × A 7→ [0, 1] parameterized by w is a discriminator. pπθ
parameterized by θ is the

occupancy measure of a policy. In our setting, the expert demonstration of pπE
is unavailable.

COMPILER. As suggested by Theorem 2, we can recover pπE
with the occupancy measures of

Γ+ and Γ−. Then, we can train the policy pπθ
by mincing pπE

= 1+α
2α pπ+

− 1−α
2α pπ− in Eq. (10).

Specifically, plugging (2) into (8) and approximating pπ+ and pπ− with their empirical versions, we
can obtain the desirable target. However, such rewriting can introduce a negative term and lead to
overfitting [38, 39]. To avoid such an undesired phenomenon, instead of training the policy πθ to
make pπθ

match 1+α
2α p̂π+ − 1−α

2α p̂π− , we twist the objective function of GAIL (8) to minimize the
discrepancy between 2α

1+αpπθ
+ 1−α

1+α p̂π− and p̂π+
, which gives the following optimization problem

without the negative term:

min
θ∈Θ

max
w∈W

2αE(s,a)∼pπθ
logDw(s, a) + (1− α)E(s,a)∼p̂π−

log(Dw(s, a))

+ (1 + α)E(s,a)∼p̂π+
log(1−Dw(s, a)). (8)

Let V̂ (πθ, Dw) be the objective function in (8) and V (πθ, Dw) be its expectation established on pπ+

and pπ− . We have the following theorem for the estimation error of the discriminator trained by (8).
Theorem 3. LetW be a parameter space for training the discriminator and DW = {Dw | w ∈ W}
be the hypothesis space. Assume the functions |logDw(s, a)| ≤ B and |log(1 −Dw(s, a))| ≤ B
are upper-bounded for any state-action pair (s, a) ∈ S ×A and w ∈ W . Further assume both the
functions logDw(s, a) and log(1−Dw(s, a)) are L-Lipschitz continuous in the state-action space.
For a fixed policy πθ, let Γθ = {τθi }

nθ
i=1 be trajectories generated from πθ. Then, for any δ ∈ (0, 1),

with probability at least 1− δ, we have

V (πθ, D
∗
w)− V (πθ, D̂w) ≤ 4L(1 + α)Rn+

(DW) + 4L(1− α)Rn−(DW))

+ 8LRnθ
(DW) + C(δ)

(
1
√
nθ

+
1
√
n+

+
1
√
n−

)
,

where D̂w = argmaxw∈W V̂ (πθ, Dw) and D∗
w = argmaxw∈W V (πθ, Dw). The constants n+ and

n− are the number of trajectories in Γ+ and Γ−. We define C(δ) = 4B
√
log(6/δ). The empirical

Radamacher complexities [40] on datasets Γ+, Γ−, and Γθ are denoted byRn+ ,Rn− , andRnθ
.

A proof is given in Appendix A. The theorem shows that the discriminator trained by (8) converges
to the one optimized with the true distribution pπ+

and pπ− at each step of the training.
COMPILER-E. For the VPIL problem with unknown α, first we estimate α̂ by Algorithm 1, then
we learn the policy by (8) with α̂.

We integrate the two algorithmic processes COMPILER and COMPILER-E into Algorithm 2.

6 Experiments
In this section, we conducted extensive experiments under the setting of VPIL. Through the experi-
ments, we want to investigate the following questions: (1) Can COMPILER and COMPILER-E solve
VPIL problems under various expert ratios in demonstrations? (2) Is COMPILER-E still valid when
using different MPE estimators to obtain α̂? (3) How is the α estimation with β1 and β2 as in (7)?
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Table 1: The detailed information of demonstrations in the empirical studies.
Dimension of S Dimension of A Non-Expert 1 Non-Expert 2 Expert α

Hopper 11 3 1142.16±159.28 1817.80±819.69 3606.11±43.95 {0.1, 0.2, 0.3, 0.4, 0.5}
Swimmer 8 2 46.28±1.87 62.64±16.82 100.63±4.69 {0.1, 0.2, 0.3, 0.4, 0.5}
Walker2d 17 6 410.98±56.91 766.67±398.85 3204.37±848.55 {0.1, 0.2, 0.3, 0.4, 0.5}

HalfCheetah 17 6 532.50±58.66 864.18±335.90 1599.06±41.97 {0.1, 0.2, 0.3, 0.4, 0.5}

6.1 Setup
To investigate the answer to the first question, we chose 20 different VPIL tasks with four MuJoCo
benchmark environments to evaluate the performance of the contenders and our approaches under
five different α levels. The detailed setups are reported as follows.

Environments and Demonstrations. We set HalfCheetah, Hopper, Swimmer, and Walker2d in
MuJoCo as the basic environments. For each experiment, the demonstration pool contains 100
trajectories with different expert ratios α = {0.1, 0.2, 0.3, 0.4, 0.5}, in which α = 0.1 is the most
difficult situation of the VPIL problem. We also trained an expert-level RL agent and two non-expert
RL agents as demonstrators by DDPG algorithm [41]. The details of the environment and the
demonstrations can be found in Table 1.

Dataset generation process. We start with the demonstration pool {τi}Ni=1, which contains αN
trajectories sampled from the optimal policy πE and (1 − α)N trajectories from the non-optimal
policy πNE. For notation simplicity, we denote by D+ the part containing expert demonstrations only
and by D− the part for the non-expert demonstrations. Then, we can generate the dataset as follows,{

Γ+ = sample(D+, (2α− α2)N)
⋃

sample(D−, (1− α)2N),

Γ− = sample(D+, α
2N)

⋃
sample(D−, (1− α2)N),

where sample(D, N) is the function that samples N trajectories from the dataset D.

Contenders. Since Γ+ contains more expert demonstrations, here we use Behavior Cloning [42],
GAIL [1], and AIRL [43] with Γ+ only as basic baselines. Also, we provide GAIL with expert-level
demonstrations (GAIL_expert) as the skyline of all methods. Besides, we set T-REX [13], a state-of-
the-art preference-based IL method, by taking that every data in Γ+ is more expert-like than that in
Γ− as a form of preference to train its reward function. We also set the variants of T-REX algorithms,
D-REX [22] and SSRR [44], that directly generate the ranking information through the imperfect
datasets. CAIL proposed a confidence-based method to imitate from mixed demonstrations [14]. In
the experiment, we provide 5% trajectory labels to meet its requirement as suggested in their paper.
Each method ran 4e7 steps. 5 trials were conducted with different seeds for each task.

Meanwhile, to investigate the answer to the second question, we conducted Best Bin Estimation
(BBE) [31] and Kernel Mean (KM) [28] algorithm to estimate β in algorithm 1 of COMPILER-E, as
COMPILER-E (BBE) and COMPILER-E (KM) respectively. We note that COMPILER-E cannot
obtain the true α during the whole experiment.

Implementation of α estimation. We implement a four-layer fully connected neural network as
the binary classifier fψ in Algorithm 1. The neurons in each layer are 1000, 1000, 100, and 50
respectively. The activation function of each layer is ReLU, and the output value will go through the
sigmoid function to obtain the score for Γ+ and Γ− as S+ and S− respectively. The optimizer for fψ
is stochastic gradient descent. We totally train fψ for 1000 epochs with bath size 1024. The initial
learning rate is 5e-4, with an exponential decay rate of 0.99 at each step.

Implementation of policy training. We choose Proximal Policy Optimization (PPO) [45] as the
basic RL algorithm, and set all hyper-parameters, update frequency, and network architectures of the
policy part the same as [46]. Besides, the hyper-parameters of the discriminator for all methods were
the same: The discriminator was updated using Adam with a decayed learning rate of 3× 10−4; the
batch size was 256. The ratio of update frequency between the learner and discriminator was 3: 1.
For T-REX algorithm [13], we use the codes with default hyperparameters and model architecture of
their official implementation.

6.2 Empirical Results

The final results are gathered in Table 2. We can see that since AIRL and GAIL are standard IL
algorithms, they cannot adaptively filter out non-expert data, so the underlying non-expert data
reduces the performance of them. T-REX did not obtain promising results on VPIL tasks, which
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Table 2: The episodic returns of each method on different tasks with five random seeds.
HalfCheetah Hopper

Algorithm α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

GAIL_expert 1194.69± 9.39 1183.79± 10.94 1149.63± 10.78 1175.55± 5.03 1178.95± 9.89 3205.43± 53.78 3357.21± 118.81 3009.00± 126.88 2520.26± 79.07 3207.89± 272.30
Behavior Cloning −252.99± 40.41 −280.13± 12.95 −259.96± 15.01 −233.14± 27.89 −248.84± 57.95 3.37± 1.00 5.03± 0.39 4.34± 1.04 3.56± 0.70 6.14± 2.47

GAIL 862.44± 11.47 638.34± 211.12 663.98± 227.04 798.94± 201.16 833.82± 199.45 2889.95± 108.94 2248.22± 738.06 2687.68± 395.29 3068.24± 184.86 3058.85± 408.20
AIRL 767.28± 14.40 749.36± 4.36 750.17± 13.53 824.88± 13.44 948.51± 20.62 1689.21± 158.41 2350.81± 602.29 2430.85± 176.82 3120.07± 146.55 2930.19± 214.47

T-REX −307.86± 84.96 −424.82± 232.80 −595.05± 30.70 −507.48± 10.59 −559.07± 47.79 2777.79± 258.43 2645.89± 148.47 2567.30± 264.91 2764.23± 23.34 2526.49± 390.17
SSRR −23.12± 432.45 636.43± 132.53 644.47± 221.43 532.41± 146.23 812.43± 346.32 812.25± 547.45 743.92± 12.43 834.14± 54.82 1632.65± 72.85 2093.16± 63.75

D-REX −36.04± 231.24 598.26± 118.27 498.92± 158.82 494.79± 132.04 750.46± 302.44 780.45± 1064.72 768.92± 35.32 783.24± 40.63 1489.07± 50.02 1775.78± 79.66
CAIL 729.30± 14.38 730.67± 46.32 727.16± 39.90 877.17± 21.70 1023.79± 18.77 1662.75± 15.43 2567.27± 30.04 2600.46± 18.12 3181.73± 30.26 3613.39± 4.96

COMPILER 922.63± 35.01 1022.26± 8.09 1108.86± 5.77 1158.81± 21.99 1176.47± 4.89 2968.06± 142.26 3140.12± 182.90 3342.82± 170.21 3318.97± 132.90 3369.32± 93.55
COMPILER-E (BBE) 893.46± 13.85 993.02± 10.54 1085.83± 19.45 1140.59± 18.41 1171.26± 16.20 3304.72± 146.63 3321.49± 71.11 3432.43± 89.40 3398.16± 164.11 3339.86± 167.70
COMPILER-E (KM) 901.67± 17.15 826.80± 123.83 911.47± 119.29 1062.98± 9.37 1075.86± 81.26 2828.93± 215.48 3459.24± 49.37 3439.01± 46.82 3175.60± 80.51 3402.89± 71.79

Swimmer Walker2d
Algorithm α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

GAIL_expert 99.55± 1.75 102.65± 1.78 100.70± 0.56 100.52± 1.70 98.82± 2.04 3469.81± 218.18 3495.31± 206.58 3424.13± 102.34 3426.62± 198.15 3328.20± 357.37
Behavior Cloning 17.13± 20.16 51.33± 11.61 19.21± 42.68 39.40± 37.49 −10.26± 23.34 −5.82± 7.54 −12.33± 2.05 19.50± 39.39 −14.07± 5.33 −6.27± 13.46

GAIL 75.11± 4.25 60.96± 11.66 88.21± 12.46 90.34± 8.28 96.21± 4.99 2883.94± 230.93 2779.58± 792.39 2751.23± 711.34 2914.64± 530.28 2936.05± 604.15
AIRL 31.66± 3.52 50.44± 5.73 73.72± 4.33 83.65± 6.77 94.55± 4.62 2003.95± 272.55 2849.55± 85.02 2914.45± 78.68 2970.29± 149.52 3009.35± 236.45

T-REX 7.07± 37.40 0.57± 0.66 14.80± 4.46 6.29± 10.48 0.70± 24.89 1007.39± 217.20 1660.39± 541.72 1845.43± 695.87 1930.96± 660.01 2091.45± 314.22
SSRR 50.44± 3.53 53.42± 6.64 76.41± 1.64 80.14± 6.52 83.15± 12.98 629.42± 8.63 943.26± 73.36 985.25± 15.68 1534.02± 86.42 1620.73± 119.80

D-REX 55.04± 3.70 41.32± 10.65 73.22± 11.72 59.92± 5.57 63.22± 11.72 558.65± 10.59 803.20± 15.15 873.89± 32.41 961.01± 25.84 779.17± 19.72
CAIL 49.53± 1.33 66.94± 12.15 78.15± 6.01 95.88± 1.87 102.12± 1.14 2023.80± 123.59 3022.30± 25.46 3260.85± 103.69 3530.55± 165.45 3164.23± 36.05

COMPILER 99.03± 0.98 101.34± 1.72 100.87± 1.21 100.86± 2.05 100.01± 0.26 3342.64± 172.10 3516.76± 132.31 3400.51± 112.84 3536.91± 166.69 3668.58± 115.10
COMPILER-E (BBE) 89.86± 5.23 102.43± 0.70 101.26± 2.09 98.78± 3.51 101.69± 0.41 3365.31± 106.52 3621.73± 69.74 3583.22± 15.59 3543.71± 66.53 3649.94± 57.41
COMPILER-E (KM) 93.30± 2.10 91.79± 10.91 100.17± 3.15 98.82± 1.52 101.88± 0.69 3467.94± 44.26 3444.01± 223.64 3514.53± 183.36 3491.87± 343.31 3629.15± 73.66

verifies that vague pairwise comparison can not be considered as full-ranking information, so the
preference-based method cannot be used to tackle such problems. In addition, both SSRR and D-REX
are updated versions of T-REX using noise to generate ranking information. They still cannot achieve
good results due to its inability to address the core challenges of the VPIL problem. This phenomenon
further demonstrates that preference-based algorithms cannot solve VPIL problems without explicit
preference information, and some assumptions may not be held in VPIL problems. As α grows, we
can see that the performances of almost all the contenders increased more or less, except for the
skyline GAIL_expert, while COMPILER and COMPILER-E got the biggest performance boost and
achieved the best performances. Even under the α = 0.1 situation, COMPILER and COMPILER-E
have achieved expert-level performance on Hopper and Walker2d environments. For CAIL, it shows
competitive performance with COMPILER and COMPILER-E under high α situations, but still falls
short in low α cases. The reason for this phenomenon is that when α is relatively low, the trajectory
quality corresponding to the provided trajectory labels may also be poor. Under such circumstances,
estimating confidence is extremely difficult. As a result, CAIL generally performs suboptimally in
low α cases. On the other hand, our algorithms can achieve comparable results with CAIL in high
alpha scenarios. This indicates that our methods reasonably utilize the structure of the VPIL problem
and can achieve results on par with the state-of-the-art algorithm without introducing additional
information. Meanwhile, COMPILER (BBE) and COMPILER (KM) both achieved promising and
comparable performances, which indicates that COMPILER-E is a general algorithm and can be
operated with any effective MPE method.

6.3 Case Study: Estimation Effect on Data Selection
Overestimation and underestimation comparisons. To investigate if the superiority of
COMPILER-E comes from precisely estimating α, and also to answer the third question about
using two different estimations in (7) in Section 6, we reported the estimation curves under different
true α on HalfCheetah with BBE and KM estimators, as shown in Figure 3. We can see that the
overestimation method obtained α̂ that far exceeded the true α, especially when α was smaller; while
the underestimation method was very accurate despite obtaining a slightly lower α̂ value compared to
the true α, for both BBE and KM estimators. The results also suggested that we indeed need to use
the underestimation method for COMPILER-E when the expert ratio α is small. It also reflects that
the power of COMPILER-E for solving VPIL problems indeed comes from accurately estimating the
α value. More environmental results can be found in Appendix B.
Thrown data effect. To further investigate what caused the performance gap between the overesti-
mation and underestimation, we analyze the effect on the proportion of data selections in Algorithm 1.
Also connected to the expert and non-expert proportions of Γ+ and Γ− in (2), we can calculate the
theoretical value of the ratio differences of thrown data under different estimations with that under
true α, as shown in Figure 3.

We can see that the overestimated method threw away more data in Γ− and fewer data in Γ+ (corre-
sponding to the upper left triangles of the red boxes in the figures); meanwhile, the underestimated
method did the opposite (corresponding to the lower right triangles). However, as analyzed in
Section 4.2, the overestimated method relied heavily on pπE of Γ− dataset, whose components, were
quite small. In the case of finite data, once pπE of Γ− were overthrown, the remaining part of pπE

became less, making the estimation further high, which led to a vicious circle. The phenomenon was
especially severe in the case of low α. This is the reason why α̂ of the overestimated method became
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Figure 3: (a, b) The comparisons of overestimated ( 2β
1+β ) and underestimated ( 1−β1+β ) methods on

various tasks with BBE and KM estimators. (c,d) The distribution map of thrown data ratio using
estimated α̂ and true α. The thrown data ratio difference on Γ+ is (1− α̂)2 − (1− α)2, while that
on Γ− is α̂2 − α2. The range marked by the red box is considered in our experiments, in which the
expert ratio is smaller than (or equal to) the non-expert one.

bigger as true α decreased. On the other hand, although the underestimated method also overthrew
the non-expert data in Γ+, the proportion of these data was relatively high. So even if more were
thrown away at the beginning, it will not affect the accuracy of the estimation. This is the reason why
using 1−β

1+β to estimate α̂ is relatively stable and accurate.

6.4 Case Study: Assessing the Robustness of the COMPILER Algorithm
To evaluate the robustness of the COMPILER algorithm, a comprehensive set of experiments were
conducted. These were carried out in four distinct environments, implementing tasks with α = 0.5.
Each experiment was repeated five times to ensure the reliability of the results. To emulate real-world
conditions, different levels of noise were introduced to the parameter α, resulting in the generation of
corresponding noisy datasets. This noise was denoted as ε, thereby resulting in α̂ = α+ ε.

Figure 4 presents the findings from these experiments. Remarkably, the COMPILER algorithm
demonstrated consistent performance, achieving at least 96% of the standard performance even in the
presence of various noise levels. This robustness, as exhibited in the results, underlines the capacity of
COMPILER to effectively handle and perform under noisy conditions, specifically when the provided
α is subject to disturbances. This emphasizes not only the resilience of the algorithm but also its
potential for deployment in real-world situations where data is seldom perfect.
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Figure 4: The performance of COMPILER under different noise levels.

7 Conclusion
In this work, we formulated the problem of Vaguely Pairwise Imitation Learning (VPIL), in which
mixed expert and non-expert demonstrations are present, and the data collector only provides vague
pairwise information of demonstrations. To solve this problem, we proposed two learning paradigms,
with risk rewriting and mixture proportion estimations (MPE), to recover the expert distribution with
the known expert ratio α and unknown one respectively. Afterward, we showed that these paradigms
can be integrated with off-the-shelf IL methods, such as GAIL, to form the algorithm COMParative
Imitation LEearning with Risk rewriting (COMPILER) and that by Estimation (COMPILER-E) to
solve the VPIL problem with known and unknown α respectively. The experimental results showed
that our methods outperformed standard and preference-based IL methods on a variety of tasks. In
the future, we hope to use our algorithms to address more challenging problems, such as VPIL with
multiple and noisy annotators.
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A Proof for the Theorems

In this section, we provide the proof for Theorem 2, Proposition 1, and Theorem 3 in the main body
of the paper.
Theorem 2. Assume the pairwise datasets (Γ+,Γ−) are generated following the procedure in Section
3.2 in the main paper. Let pπ+(s, a) = EΓ+

[
p̂π+(s, a)

]
and pπ−(s, a) = EΓ−

[
p̂π−(s, a)

]
be the

expected occupancy measures of Γ+ and Γ−, where the randomness is taken over the draws of Γ+

and Γ−. Then, we have{
pπ+

(s, a) =
(
2α− α2

)
pπE(s, a) + (1− α)2pπNE(s, a),

pπ−(s, a) = α2pπE(s, a) + (1− α2)pπNE(s, a),
(9)

{
pπE

(s, a) = 1+α
2α pπ+

(s, a)− 1−α
2α pπ−(s, a),

pπNE(s, a) = − α
2(1−α)pπ+

(s, a) + 2−α
2−2αpπ−(s, a).

(10)

Proof. We first prove the first line of (9). Considering the data collection process introduced in
Section 3.2, where a pair of trajectories (τ (1), τ (2)) is independently sampled from the demon-
strator pool. When one trajectory enjoys a better quality than another, the collector would
put the better one into Γ+. Otherwise, the two trajectories will be randomly allocated. Let
p̂+i (s, a) = (1 − γ)

∑∞
t=0 γ

t
1 [(st,i, at,i) = (s, a)] be the empirical occupancy measure for the

trajectory τi ∈ Γ+. Then, further define the even E1 = {τi is sampled from πE} and event
E1 = {τi is sampled from πNE}. We have

E[p̂+i (s, a)] = Pr[E1]EΓ+

[
p̂+i (s, a) | E1

]
+ Pr[E2]EΓ+

[
p̂+i (s, a) | E2

]
= Pr[E1]pπE + Pr[E2]pπNE . (11)

The second equality is due to τi is i.i.d. sampled from pπE under event E1 and is i.i.d. sampled
from pπ− under event E2. Then, let the even A1 = {both τ (1), τ (2) are sampled from πE}, A2 =

{both τ (1), τ (2) are sampled from πNE} and A3 = {other situation}. Then, we have

Pr[E1] = Pr[A1]Pr[E1 |A1] + Pr[A2]Pr[E1 |A2] + Pr[A3]Pr[E1 |A3]

= α2 + 2α(1− α) = 2α− α2,

where the second inequality is due to Pr[E1 |A1] = Pr[E3 |A3] = 1 and Pr[E1 |A2] = 0 according
to the data collection process. We can also show the probability of event E2 is Pr[E1] = (1− α)2,
then we have

E[p̂+i (s, a)] =
(
2α− α2

)
pπE(s, a) + (1− α)2pπNE(s, a).

Since p̂π+(s, a) =
∑n+

i=1 p̂
+
i (s, a)/n+, we have E[p̂π+(s, a)] =

∑n+

i=1 E[p̂
+
i (s, a)]/n+ =(

2α− α2
)
pπE(s, a) + (1 − α)2pπNE(s, a), which completes the proof for the first equality of (9).

The second equality of (9) can be proved following a similar arguments

Proposition 2. Suppose the distributions pπE and pπNE are mutually irreducible such that there exists
no decomposition of the form pπE = (1 − η)Q + ηpπNE and pπNE = (1 − η′)Q′ + η′pπE for any
probability distributions Q,Q′ and scalars η, η′ ∈ (0, 1]. Then, the true mixture proportions β1 and
β2 are unique and can be identified by{

β1 = sup{η|pπ+
= ηpπ− + (1− η)K,K ∈ C},

β2 = sup{η′|pπ− = η′pπ+ + (1− η′)K ′,K ′ ∈ C}, (12)

where C is the set containing all possible probability distributions. Thus, α is identifiable by

α = (1− β1)/(1 + β1) or α = 2β2/(1 + β2). (13)

Proof. We first prove the first line of (12). Since pπE is irreducible w.r.t. pπNE , such that there exists
no decomposition pπE = (1− η)Q+ ηpπNE for any η ∈ (0, 1] and distribution Q, we have pπE

is also
irreducible w.r.t. pπ− , such that pπE

can not be rewritten as a mixture pπE = (1− η′)Q′ + η′pπ− for
any distribution Q′ and η′ ∈ (0, 1]. Then, according to the relationship (5) of the main paper and
Proposition 5 of [16], we can show β1 is identifiable and β1 = sup{η|pπ+ = ηpπ− +(1− η)K,K ∈
C}. We can prove the second line of (12) by a similar argument. Then, combined with β1 = 1−α

1+α and
β2 = α

2−α in (5) of the main paper, we can obtain identifiable α estimation in (13).
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Theorem 3. LetW be a parameter space for training the discriminator and DW = {Dw | w ∈ W}
be the hypothesis space. Assume the functions |logDw(s, a)| ≤ B and |log(1 −Dw(s, a))| ≤ B
are upper-bounded for any state-action pair (s, a) ∈ S ×A and w ∈ W . Further assume both the
functions logDw(s, a) and log(1−Dw(s, a)) are L-Lipschitz continuous in the state-action space.
For a fixed policy πθ, let Γθ = {τθi }

nθ
i=1 be trajectories generated from πθ. Then, for any δ ∈ (0, 1),

with probability at least 1− δ, we have

V (πθ, D
∗
w)− V (πθ, D̂w) ≤ 4L(1 + α)Rn+

(DW) + 4L(1− α)Rn−(DW))

+ 8LRnθ
(DW) + C(δ)

(
1
√
nθ

+
1
√
n+

+
1
√
n−

)
,

where D̂w = argmaxw∈W V̂ (πθ, Dw) and D∗
w = argmaxw∈W V (πθ, Dw). The constants n+ and

n− are the number of trajectories in Γ+ and Γ−. We define C(δ) = 4B
√
log(6/δ). The empirical

Radamacher complexities [40] on datasets Γ+, Γ−, and Γθ are denoted byRn+
,Rn− , andRnθ

.

Proof. Since D̂w and D∗
w are the maximizer of the objective functions V̂ (πθ, Dw) and V (πθ, Dw),

respectively.

V (πθ, D
∗
w)− V (πθ, D̂w) = V (πθ, D

∗
w)− V̂ (πθ, D

∗
w) + V̂ (πθ, D

∗
w)− V̂ (πθ, D̂w) (14)

+ V̂ (πθ, D̂w)− V (πθ, D̂w)

≤ V (πθ, D
∗
w)− V̂ (πθ, D

∗
w) + V̂ (πθ, D̂w)− V (πθ, D̂w)

≤ 2 sup
w∈W
|V (πθ, Dw)− V̂ (πθ, Dw)|, (15)

where the inequality is due to the optimality of D̂w. The according to the definition of V (πθ, Dw)

and V̂ (πθ, Dw),

V (πθ, Dw) = 2αE(s,a)∼pπθ
[logDw(s, a)] + (1− α)E(s,a)∼pπ−

[log(Dw(s, a))] (16)

+ (1 + α)E(s,a)∼pπ+
[log(1−Dw(s, a))]

and

V̂ (πθ, Dw) = 2αE(s,a)∼p̂πθ
[logDw(s, a)] + (1− α)E(s,a)∼p̂π−

[log(Dw(s, a))] (17)

+ (1 + α)E(s,a)∼p̂π+
[log(1−Dw(s, a))],

where p̂πθ
(s, a) = 1

nθ

∑nθ

i=1 p̂
θ
i (s, a) and p̂θi (s, a) = (1 − γ)

∑∞
t=0 γ

t
1 [(st,i, at,i) = (s, a)] is the

empirical occupancy measure for the trajectory τi sampled from πθThe empirical occupancy measure
is unbiased w.r.t. πθ such that E[p̂θi (s, a)] = pπθ

(s, a) . Then, we can decompose the R.H.S. of (15)
as

sup
w∈W
|V (πθ, Dw)− V̂ (πθ, Dw)| = term (a)+ term (b)+ term (c).

In above, the first term

term (a) = 2α
∣∣∣E(s,a)∼p̂πθ

[logDw(s, a)]− E(s,a)∼pπθ
[logDw(s, a)]

∣∣∣
= 2α

∣∣∣∣∣ 1nθ
nθ∑
i=1

E(s,a)∼p̂θi [logDw(s, a)]− E(s,a)∼pπθ
[logDw(s, a)]

∣∣∣∣∣
measures the generalization gap between p̂πθ

and pπθ
. The second term

term (b) = (1− α)

∣∣∣∣∣ 1

n−

n−∑
i=1

E(s,a)∼p̂−i
[logDw(s, a)]− E(s,a)∼pπ−

[logDw(s, a)]

∣∣∣∣∣
measures the generalization gap between p̂π− and pπ− and the last term

term (c) = (1 + α)

∣∣∣∣∣ 1

n+

n−∑
i=1

E(s,a)∼p̂+i
[log(1−Dw(s, a))]− E(s,a)∼pπ+

[log(1−Dw(s, a))]

∣∣∣∣∣
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measures the gap between p̂π+ and pπ+ .

Under the condition that |logDw(s, a)| ≤ B for any (s, a) ∈ S × A and w ∈ W , the standard
analysis generalization analysis with Rademacher complexity shows (e.g. Theorem 26.5 of [47]), for
all w ∈ W , we have

term (a) ≤ 8αRnθ
(log ◦DW) + 4αB

√
2 ln(2/δ′)

nθ
,

with probability at least 1− δ′, whereRnθ
is the empirical Rademacher complexity. Then, according

to the Talagrand’s contraction inequality (Lemma 26.9 of [47]), we have

Rnθ
(log ◦DW) ≤ LRnθ

(DW),

Then, we obtain

term (a) ≤ 8αLRnθ
(DW) + 4αB

√
2 ln(2/δ′)

nθ
. (18)

Since | log(1 − Dw)| ≤ B and log(1 − Dw) is L-Lipschitz continuous, the a similar arguments
ensures,

term (b) ≤ 4(1− α)LRn−(DW) + 2(1− α)B

√
2 ln(2/δ′)

n−
. (19)

and

term (c) ≤ 4(1 + α)Rn+(DW) + 2(1 + α)B

√
2 ln(2/δ′)

n+
, (20)

with probability at least 1−δ′. Let δ′ = δ/3, we complete the proof by combining (18), (19), and (20)
with (15).

B Full Results of α Estimations

In the main body of the paper, we only reported the effect of overestimation and underestimation
on HalfCheetah environment due to the space limitation. Here we provide the full results on four
environments in our experiments, as shown in Figure 5. The experimental results demonstrated the
same conclusion as in the main body of the paper, that the underestimation method is better than the
overestimation one.
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(d) KM estimator on Hopper
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(g) BBE estimator on
Walker2d
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Figure 5: The comparisons of overestimated ( 2β
1+β ) and underestimated ( 1−β1+β ) methods on various

tasks with BBE and KM estimators.
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