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Abstract

While significant progress has been made in de-
signing algorithms that minimize regret in online
decision-making, real-world scenarios often intro-
duce additional complexities, with missing out-
comes perhaps among the most challenging ones.
Overlooking this aspect or simply assuming ran-
dom missingness invariably leads to biased esti-
mates of the rewards and may result in linear re-
gret. Despite the practical relevance of this chal-
lenge, no rigorous methodology currently exists
for systematically handling missingness, especially
when the missingness mechanism is not random.
In this paper, we address this gap in the context
of multi-armed bandits (MAB) with missing out-
comes by analyzing the impact of different miss-
ingness mechanisms on achievable regret bounds.
We introduce algorithms that account for missing-
ness under both missing at random (MAR) and
missing not at random (MNAR) models. Through
both analytical and simulation studies, we demon-
strate the drastic improvements in decision-making
by accounting for missingness in these settings.

1 INTRODUCTION

Multi-armed bandit (MAB) algorithms have emerged as
indispensable tools for decision-making under uncertainty,
balancing the trade-off between exploring different options
and exploiting the best-known action. These algorithms have
achieved success in various domains ranging from person-
alized online advertisement and recommender systems [Li
et al., 2010, Xu et al., [2020, Ban et al., [2024] to clinical
trials [[Villar et al., 2015, |Aziz et al., 2021} |Varatharajah
and Berryl, [2022]] and adaptive routing in communication
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systems [Maghsudi and Hossain, 2016, |L1 et al., |2020a].
For instance, in online advertising, advertisers need to con-
tinuously select which ad to show to a user to maximize
click-through rates. Similarly, in clinical trials, researchers
must decide which treatment to administer to patients to
optimize recovery rates. MAB algorithms guide decision-
makers in such scenarios to learn actions that minimize
regret.

Significant progress has been made in developing MAB
algorithms that minimize regret in various settings [Lai and
Robbins, |1985) |Auer et al., [2002, Bubeck et al., 2012, [Latt14
more and Szepesvari, 2020, Slivkins}, | 2019]. However, the
real world often introduces challenges that deviate from the
assumptions of the classical MAB framework or its current
extensions. One of the most critical challenges is that of
missing outcomes — situations where the results of certain
actions are not always observed. This challenge arises more
often than not in practice and can fundamentally undermine
the decision-making process if left unaddressed. To illustrate
this, consider an example of a large-scale clinical trial for
a new cancer treatment. Patients are randomly assigned to
different treatment arms, and their health outcomes are mon-
itored over time. In practice, not all patients will complete
the trial. Some may drop out early due to side effects, while
others may stop reporting outcomes for personal reasons,
and some could pass away during the trial due to reasons not
related to the treatment (competing events). Crucially, the
missingness of the outcome may not be random. Patients
experiencing severe side effects or poor health are more
likely to drop out, meaning that the missingness mechanism
is correlated with the unobserved outcome itself. This intro-
duces systematic bias into the estimation of the rewards, and
if not accounted for, would lead to poor decision-making.

The issue of missingness is not confined to healthcare. In
a recommendation system that suggests articles to users
on an online platform, if users who find the content irrel-
evant are less likely to provide feedback (e.g., they leave
the site without interacting), the system could overestimate
the value of the recommended articles, assuming that the



missing feedback is independent of user satisfaction. Here
too, missingness is correlated with the unobserved outcome,
leading to biased reward estimates and sub-optimal recom-
mendations.

The problem of missing data is a fundamental challenge in
causal inference. This issue has been extensively studied
over the past decades, with seminal works such as [Rubin|
1976, [Little and Rubin, 2019, [Bang and Robins}, 2005] lay-
ing the foundation for dealing with biased estimations in the
presence of missing data. These methods, along with more
recent developments in graphical models for handling miss-
ing data [Mohan and Pearl, 2021} |[Nabi et al., 2020], have
become standard approaches in causal inference. Missing
data has also been extensively explored in specific contexts
such as instrumental variables, [Tchetgen Tchetgen and
Wirth, [2017, [Sun et al.l 2018} [Kennedy et al., [2019] and
mediation analysis [Zhang and Wang| 2013| Zhang et al.,
2015, Kidd et al.| [2023]], among others. By contrast, the
challenge of missing outcomes has received relatively little
attention in multi-armed bandit problems, although some
progress has been made in related areas. For instance, the
problem of delayed feedback in bandits bears some similar-
ity to our setting, as both involve incomplete information
at decision time. Several works have addressed stochas-
tic bandits with unrestricted delays [Joulani et al., [2013|
Vernade et al., 2017]], and delays dependent on stochastic re-
wards [Pike-Burke et al.,| 2018, |[Lancewicki et al.,[2021]. In
contextual bandits, [Bouneffouf et al.,|2017]] studied linear
contextual bandits with missing (restricted) contexts. While
this work addresses missing data in bandits, it focuses on
missing contexts rather than outcomes and assumes a linear
reward model. Others have explored bandit problems with
variable costs or restricted observations. For example, [Ding
et al.,[2013]Seldin et al., 2014 studied MAB problems with
variable costs, where the outcome is observable only after
paying the associated cost.

There are two lines of research closely related to our work.
The first includes works such as [[Chen et al.| |2022]] and
[Bouneffouf et al.l |2020]], which consider the problem of
MAB with missing outcomes. [[Chen et al.||2022] settles for
some empirical considerations and suggestions, without for-
mally studying the problem or providing tailored algorithms.
[Bouneffouf et al., 2020] employs unsupervised learning
techniques to impute the missing rewards in a contextual
bandit setting. Both of these works assume that the missing-
ness mechanism is random, possibly after conditioning on
the context. In this paper, we do a thorough study from a
formal perspective, characterizing the best achievable regret
bounds under multiple scenarios with missing outcomes. We
also provide novel regret lower bounds and algorithms that
are guaranteed to achieve optimal regrets. The second line
of related research concerns bandits with graph feedback
[Mannor and Shamir, 201 1], where pulling an arm provides
feedback about the rewards of other connected arms, where

connections are represented by a graph structure. Typically,
these models assume that each arm has a self-loop, ensur-
ing its own reward is always observed Mannor and Shamir
[2011]], |Alon et al.| [2017], [Li et al.| [2020b], |Cortes et al.
[2020], Dai et al.| [2024]. |[Esposito et al.| [2022] extended
this framework by allowing for missing self-loops, aligning
with the missing outcome setting. However, their model as-
sumes that missingness depends only on the chosen action,
whereas we explicitly analyze cases where the missingness
mechanism is outcome-dependent. We are able to achieve
unbiased estimates of the expected rewards in this setting
through using a mediator variable as auxiliary information.

Addressing the problem of missing outcomes is both practi-
cally relevant and theoretically challenging. In applications
such as healthcare, education, and e-commerce, account-
ing for missing data could lead to better treatment policies,
more personalized learning experiences, and more effective
product recommendations, potentially affecting millions of
individuals. In this paper, we undertake the first formal study
of multi-armed bandits with missing outcomes and provide
tailored algorithms that explicitly handle different types
of missingness. Our main contributions are two-fold. First,
we provide an analysis of the impact of missing outcomes
on achievable regret (the loss of optimality). Second, we
introduce provably good upper confidence bound (UCB) al-
gorithms that are tailored to handle both missing at random
and missing not at random mechanisms. Our algorithms are
designed to adjust reward estimates based on the observed
data and the missingness mechanism, ensuring unbiased
estimation. Finally, we extend our analysis to settings where
not only outcomes but also mediators (e.g., users providing
feedback) are prone to missingness, to further broaden the
applicability of our approach.

The remainder of this paper is structured as follows. In Sec-
tion [2] we review the relevant background and formalize
the problem of multi-armed bandits with missing outcomes.
In Section [3| we present our algorithms in the settings of
missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR), respectively.
Additionally, we provide the corresponding achievable re-
gret lower bounds. The technical proofs are postponed to
Appendix [B]due to space limitations. In Section[4] we extend
our approach and present algorithms for the case when the
mediator is also prone to missingness. A discussion of the
limitations of our work and our concluding remarks appear
in Section[7}

2 FORMALIZATION AND PROBLEM
SETUP

We begin by reviewing the classic multi-armed bandit
(MAB) setup and then extend it to incorporate missing
outcomes. The MAB problem involves an agent (decision-
maker) who interacts with an environment over a sequence



of T time steps. At each time step ¢ € {1,...,T}, the agent
pulls an arm a; from a set of n available actions indexed by
A ={1,...,n}. Upon pulling this arm, the agent receives a
stochastic reward Y; € ) drawn from a fixed (but unknown)
probability distribution associated with arm a;. The goal of
the agent is to minimize the cumulative regret over the time
horizon T', which is defined as the cumulative difference
between the rewards of the optimal arm and the chosen arms.
Specifically, let u, == E[Y | A = a for every a € A. The
optimal arm, denoted by a*, is the arm that maximizes the
expected reward, i.e., a* := arg max, 4 ta. The regret at
time ¢ is defined as R; = pqo+ — E[Y | A = a4, and the
cumulative regret over 7' rounds, denoted by Ry, is the sum
of the latter instantaneous regrets over the horizon T:

Ry = (par —E[Y | A= ay]) (1)

t=1

In the classical setting, it is assumed that after pulling an
arm ay, the agent always observes the true reward Y; without
any missingness.

We extend the classic MAB model to accommodate miss-
ingness. We assume that pulling each arm a; € A, draws
a stochastic tuple (Yt, oY, M;,0M ) from a fixed but un-
known probability distribution associated with arm a;. In
this tuple, Y; € ) represents the true reward (as before),
whereas O} € {0,1} is an indicator denoting whether this
reward is observed. M; € M is a possible mediatoﬂ or an
auxiliary variable, with OM € {0,1} indicating whether
this auxiliary variable is observed.

For example, in online recommendations, auxiliary informa-
tion could include metrics such as the time a user spends
on a webpage before navigating away, or other data points
gathered from browser cookies, such as past browsing be-
havior, device type, or location. The agent has access to the
‘observed’ tuple (Y2, 0F , My, OM), where the observed
values Y,° and M are defined as follows:

vo_ {1@ ifOy =1, MP— {Mt; o} =1,
? 0.W.

7; I 0.W.

(@)

where 7 denotes a missing value. We define p, as the ex-
pected value of Y; given A; = a as before, with the crucial
difference that samples of Y; are missing when O} = 0.

Clearly, without imposing further structure, it is not possible
to construct unbiased estimators for the expected rewards of
each arm. In fact, these expectations are not ‘identifiable,

'Our use of the term ‘mediator’ is broader than in traditional
causal inference. In this context, it refers to any auxiliary vari-
able potentially correlated with the reward or the missingness
mechanism, not necessarily one on a specific causal pathway. The
inclusion of this variable is also without loss of generality, as it
can be a degenerate variable (M = 0) that carries no information.

meaning that they are not uniquely determinable functionals
of the probability measure over observable variables. In
what follows, we begin with the case where the mediator
is fully observed (OM = 1 with probability 1). We first
consider the case where the missingness mechanism of the
outcome is independent of everything else. Subsequently,
we analyze the more realistic cases where this missingness is
correlated with the missing outcome Y;. Later ind]we extend
our findings further to the case where even the mediator is
prone to missingness.

3 MAB WITH MISSING OUTCOME

Throughout, we assume that the outcomes are not ‘always
missing.’

Assumption 1 (Positivity). For every action a € A and
mediatorm € M, P(O} =1| M, =m, A, = a) > 0.
Moreover, P(M; | A:) is positive everywher

Assumption|[I]is reasonable as otherwise there exists an arm
for which the agent observes no reward samples. For the
rest of this section, we assume that the auxiliary variable
M, is always observed.

3.1 MISSING COMPLETELY AT RANDOM (MCAR)

We begin with the case where the outcome missingness
mechanism is independent of the other variables (including
the outcome itself). This case is studied for the sake of
completeness, and we acknowledge that, unlike the other
cases to follow, it can be accommodated by most existing
approaches.

Assumption 2 (MCAR). The outcome is missing completely
at random. That is, Of 1L (A4, Yy, My) fort € {1,...,T}.

This assumption holds, for instance, when data gets erased
by say an independent mechanism such as a power out-
age. The graph of Figure |l1a| represents this missingness
mechanism, whereby the missingness indicator OY is an
isolated node. As there is no information conveyed by the
missingness indicator, the missing chunk of the data can be
discarded without any need for extra care. As such, the clas-
sic upper confidence bound (UCB) algorithms are expected
to achieve (near-)optimal regret. We formalize these claims
through the next two propositions. For the sake of complete-
ness, we have included the adapted UCB algorithm (Alg.[I))
for this scenario in Appendix [E Lety = P(O} = 1) be
the probability of observing the output in each round.

2With sufficient caution, the second part of this assumption
could be omitted. However, we include it here for the sake of
simplicity in the presentation.
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Figure 1: Graphical representations of the missing data
mechanisms considered in this paper.

Theorem 1. (MCAR regret guarantee) Under Assumptior2)
for every a > 1, the cumulative regret of the adapted UCB
(Alg.[1) is bounded as follows:
Tlog(T
E[Ry] = O ( anT'log(T) )> .
Y

The proof of Theorem [T} which provides a regret bound
similar to that of the classic UCB algorithm, but adapted to
our setting, is included in Appendix [B] The following result
indicates that this regret bound is (near-)optimal.

Theorem 2. (Minimax lower bound for MCAR) For any
policy w, there exists an MCAR instance v s.t.

nT
E[Rr(m,v)] =Q <\/7> ,

where B[Ry (m,v)] represents the expected regret of policy
T in instance v.

See Appendix [B]for the proof of Theorem 2] as well as the
rest of the results of this paper.

3.2 MISSING AT RANDOM (MAR)

We now focus on more realistic settings where the miss-
ingness mechanism provides information about the missing
outcomes. This is the case, for instance, when the unsatisfied
customers are more likely to leave comments on an online
platform, or in health applications, the patients with severe
side effects are more likely to drop out of the study. We
first consider the case when missingness is at random, i.e.,
independent of Y given M and A. The graphs of Figure|[Tb|
and Figure[Ic]illustrate two possible representations of the
MAR mechanism, under which Assumption E]holds.

Assumption 3 (MAR). OF 1L Y; | (A, My) fort €
{1,...,T).

Under Assumption 3] the expected reward is identifiable as

follows:

o =E[Y; | Ay = a] =
((l)

E[E[Y; | M,d] | A, = d]
E[E[Y; | M,a,0; =1] | A; =a] (3)

QE[EY? | M,0,0Y =1]| A =d],

where (a) follows from Assumption [3|and (b) holds due to
consistency (see Equation2})

Accordingly, we will use the following estimator for pi,:

S (Y AT S ), @

teT, meM | m,e, 0| t'"€Tm, a0

fla =
|T |

where Ty, Ty 00 € {1,...,T} are the sets of iterations
where A; = a, and iterations where A; = a, M; = m
and O} = 1, respectively. In what follows, for brevity, we
define p, o == P(M; = m | Ay = a). To build intuition for
the general case, we first consider the simplified theoretical
setting where the conditional probabilities p,, . are known.
We then adapt our algorithm to the case where these proba-
bilities are unknown. Recall that n = |.A| is the number of
arms. We assume that E[Y; | m, a] € [0, 1] for all arms and
that the reward Y; is sub-Gaussian. Algorithm [2] presents
the pseudo-code for the first case. The algorithm is based on
UCB, but with an initial step where the agent pulls each arm
log(T)? times. At the subsequent rounds, both the expected
rewards and the associated confidence bounds are estimated
based on Equation (4). In order to present the regret bounds,

we need the following definitions. Let P, = ), -\, sm"’

where v, o = P(OY = 1| m, a). Further, define S and H
as the arithmetic mean and the harmonic mean of the P,
values, respectively:

ZPa H—ﬁ.

|A‘ acA Z(LEA P

Theorem 3. (Regret guarantee for Alg. [2) Under Assump-
tionB} for every a > 1, there exists a constant c such that
the following regret bound holds for T > c:

E[Ry] = O ( ol 1og(T)nS) .

Next, we show that Algorithm [2] can be adapted to the case
where the conditional probabilities p, , are not known and
must be estimated — see Algorithm 3] The following theorem
shows that this algorithm achieves the same regret bound as
Algorithm@], i.e., the estimation of p,, , does not affect the
cumulative regret.
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Figure 2: Special case of MAR.

Theorem 4. (Regret guarantee for Alg.|3) Under Assump-
tions 3] for every oo > 1, there exists a constant c such that
the following regret bound holds for T > c:

E[Ry] = O ( ol log(T)nS> .

Since P, is a weighted average of 1/, , over m € M
(with weights p,, ), the regret bounds depend not on the
cardinality of the mediator set, | M|, but rather on the hetero-
geneity of the vy, , values. The following theorem provides
the minimax lower bound, demonstrating near-optimality of
Algorithms [2and 3]

Theorem 5. (Minimax lower bound for MAR) For any pol-
icy m, there exists a MAR instance v such that:

E[Ry(m,v)] = Q (ﬂ) .

Note that when +,, , values are identical (and equal to )
then S and H coincide. Further, the upper and lower bounds
in this case match those of MCAR.

A special case of the MAR environment (depicted in Fig-
ure E]) pertains to when there is no mediator. In this case,
Assumption [3]reduces to the following:

Assumptiond. OF 1LY, | A, forallt € {1,...,T}.

Theorems [3| and [5| with a degenerate mediator (JM| = 1)
imply the following corollary.

Corollary 1. Under Assumption H| Algorithm [3] induces
cumulative regret E[Rp] = O \/aTlog(T)nS) and

the cumulative regret of any policy is lower bounded by

25
E[Rr] =Q (\/TnH) , where S = “— and H =

n
n > %"
a

Discussion 1. 'We used estimators that explicitly use the
mediator values in this section. As we pointed out earlier,
the size of M (the alphabet of M) does not affect the regret
bounds. However, one might wonder whether the use of the
mediator can be avoided, resulting in simpler algorithms
and/or estimation schemes. We show next that any such
algorithm can induce linear regret in the worst case. As
a corollary, this result implies that naively employing the
classical UCB algorithm also induces linear regret.

Theorem 6. For any mediator-agnostic policy 7 (a policy
that does not have access to mediator values), there exists a

MAR instance v which satisfies Assumption 3| and its regret
grows linearly

E[Ry(m,v)] = QT).

Discussion 2. The expected reward p, can also be es-
timated using a Horvitz-Thompson (HT) type estimator
[Horvitz and Thompson, |1952]]. Specifically, the conditional
expectation terms in Equation (3)) can be expressed as fol-
lows:

E[Y;O|m,a,02/:1]:

Ye1{M, = Y —1

Y I{M; = m, O; }\Atza
Pm,aVYm,a

]:E[ ]7

and after plugging it into Eq. (3),

Ye1{M, =m,0) =1
pa =E[ > = (M, L }|At:a]. (5)
meM Tm,a

An estimator based on the latter does not require estimating
the conditional outcome means (in contrast to Eq. E]), but
it rather needs the estimates of the missingness probabil-
ity Ypm,q. Using such an estimator is particularly beneficial
when the missingness probabilities are known in advance, or
a parametric model can be justified. However, if the missing-
ness probabilities are small or estimated imprecisely, the HT
estimator can exhibit high variance, leading to instability.
One can take a step further and construct augmented inverse
propensity weighted (AIPW) estimators for z,:

1{M;=m
pa=E[ 3 M= oy oy — 1y
meM Tm,a
(1{O) =1} = ym.o)E[Y? | m,a,0) = 1) | Ay =],

which is doubly robust (DR) in the sense that it is consistent
as long as either the missingness probabilities v, 4 or the
conditional outcome means E[Y,? | m, a, O} = 1] (but not
necessarily both) can be consistently estimated. We prove
this claim formally in Appendix [B]for the sake of complete-
ness. In this paper, we consider discrete-valued mediators,
and estimate all the quantities of interest through empirical
means. Therefore, all three estimators (outcome-based, HT,
and DR) coincide. However, the HT and DR estimators can
prove beneficial for extending our approach to incorporate
continuous mediators, or in problems with high-dimensional
actions and/or mediators where (semi)parametric models
can help improve estimation efficiency.

3.3 MISSING NOT AT RANDOM (MNAR)

Finally, we consider the case where the missingness mech-
anism directly depends on the outcome value Y. Here, we
follow the identification strategy of [Zuo et al.| 2024 for
MNAR. However, we are interested only in identifying the
expected rewards, rather than conducting mediation analysis.
We begin with the following assumption.



Assumption 5 (MNAR). O} L M, | (A, Y;) fort €
{1,....T}.

In other words, the missingness is independent of the medi-
ator when conditioned on the action and the actual outcome.
Figure[Id|graphically represents this scenario. This situation
commonly arises in environments where the reward is miss-
ing due to its value. For example, if the outcome of interest
is the income of an individual, they may not be inclined to
report it if the value is too high or too low.

We further make the following assumption, which is the
minimal assumption required for identifiability.

Assumption 6 (Completeness). The distribution
P(M,Y,0Y = 1 | a) is complete in M, that is, for
any a € A, and for any function g : Y — R,

[ B4y =5.0" 1] a)gty) dy =0

yey

implies that g(Y') = 0 with probability one.

Below we show how i, is identified under these assump-

tions. The identification strategy outlined here is akin to
[Zuo et al., [2024].

]P’(m,OY=0|a):/ P(m,y, 0 =0|a)dy
yeY

P(OY =
(0¥ =

—

O\y,am)d
1|y,a,m)

<b>/ v P(OY =0]y,a)
= P(m,y,0" =1|a)————F"—"=dy,
e B OY =1 y.a)

where (a) and (b) follow from Bayes’ rule and Assump-
tion respectively. Since P(M,Y,0Y =1 | a) is complete
in M, solving this integral equation uniquely determines

P(0Y =0ly,a) :
m, allOWlng us to

~

2/ B(m,y,0" = 1] a)
yey

the inverse odds ratio OR, o =
identify P(y | a) as follows:

Z ]P)(yvm ‘ OY :]—70')

P(y|a)=Y_ P(y,m|a)= v —
meM meM P(O _1|yaa)
=Y (14 ORy)P(y,m| 0¥ =1,a).
meM

(6)

Finally, u, = E[Y; | Ay = dq] is identified as pu, =
Jyey ¥B(y | a) dy.

In the remainder of this section, we assume Y is dis-
crete with |Y| = L, and the outcomes are normalized
so that >° |yl = 1. Define K = |[M|, and ©, =
[P(m,y,0Y = 1| a)]xxr. Additionally, we assume that
these matrices are not ill-conditioned ]

3A problem is considered ill-conditioned if small changes to
the input can cause large changes in the output solution. Bounding
the condition number ensures the problem is well-conditioned.

Assumption 7. [Bounded condition number] For each arm
a € A, the condition number of O, is bounded by:

K(04) < Co,

where k(©,) denotes the condition number of O, with re-
spect to co-norm, defined as k(04) = ||O4]00 ||OF || 0o, with
O being the pseudo-inverse of ©,.

We present Algorithm @] for minimizing cumulative regret
under the MNAR assumptions. The key intuition behind
this algorithm is to construct an estimator based on Eq. (6)
and build upper confidence bounds under Assumption |/} In
order to present the regret bound of this algorithm, define
pya =PY =y|A=a),andy,, =POY =1|Y =
y, A= a).

Theorem 7. (Regret guarantee for Alg.H) Under Assump-

tions 3 [6] and[7] for every o > 1, there exists a constant ¢
such that the following regret bound holds for T' > c:

E[Ry] = 0(\/aT log(T) Y Sg),

K

Z Py,aVy,a
yeY

with S, =max{

Yo =min .
e Yo ba=minyy.q

Remark 1. With ynin = minvy,, and Emax =
y,a

max ﬁ, Theoreml?] implies the following bound.:
a alloo

Lﬂlnax K
E[Rr] = O(\/QT log(T) N max{——, 573 }2)
min ’ymln

4 MAB WITH MISSING OUTCOME AND
MEDIATOR

So far we considered cases where the mediator was fully
observable. We now discuss how our results extend to sce-
narios involving missing data in both Y and M. Here, we
assume that the outcome is MAR, and discuss the cases
where the mediator is MAR and MNAR separately. For the
case where both outcome and mediator are MNAR, refer
to Appendix [C] We begin by outlining each scenario, pro-
viding identification schemes and estimators for p,. The
corresponding algorithms, theoretical results, and proofs
are postponed to Appendix|C| Throughout this section, we
work under Assumption 3]

41 MAR

Since the mediator values are missing, neither the condi-
tional outcome means nor the probabilities p,, , are identi-
fiable. We require further structure to make progress. One
such structure is when the mediator missingness can be as-
sumed to be at random, i.e., OM 1 (M;,Y;,0)) | A;.
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Figure 3: Graphical representations of the missing data
mechanisms with missing outcome and mediator.

This assumption is valid for instance when the missingness
mechanism for the mediator depends only on the action. A
less stringent alternative can be formalized as:

Assumption 8. OM 1L M, | A;, and OM 11 Y, |
(Ay, My, OF ) forallt € {1,...,T}.

See Fig. [3a|for a graph representation satisfying Assump-
tions [3|and[8] Under these two assumptions, analogous to
Eq. (@), ua can be identified as follows.

pta = E[E[Y; | M,a,0f =1]| A, = q]
—E[E)Y? | M,a,0f =1,0)' =1]| A, = a,0}" = 1],

where the second equation is due to Assumption 8]

4.2 MNAR

When the mediator is missing not at random, stronger as-
sumptions are necessary to identify the expected rewards.
Analogous to Section [3.3] we will use a completeness as-
sumption. Here too, the identification strategy follows the
approach of [Zuo et al.,[2024].

Assumption 9. Y;, O and O} are mutually independent
conditioned on (Ay, My) forallt € {1,...,T}.

Assumption 10. For every a € A,m € M, P(M =

m,Y,0M = 1,0Y = 1| a) is complete in Y. That is,
for any function g : Y — R,

[ B =m Y = .0M =1.0" =1 [a)g(y)dy = 0
Y
implies g(Y') = 0 with probability one.

Under Assumption[J] p, can be expressed as:

Ha = Z E[Y ‘ aam]pm,a
meM

= S EY [a,m, 0" = 1,0M = 1]ppn.a.
meM

To proceed, we need to identify p,,, , = P(M =m | A =
a). This is achieved through Assumption

P(Y =y,0M =0,0" =1]a)

=Y P(M=mY =y,0"=0,0"=1]|a)
meM
=Y PM=mY =y,0"=1,0"=1]a)
meM
XIP’(OM:O|M:m,A:a)
POM =1|M=m,A=aqa)’

where we used Assumption [9] in the last equation.

By Assumption the inverse odds ratios OR,,, =
P(OM=0|m,a)

BOM=1[m.q) Ca0 be uniquely determined. Finally,
P(M =m,0M =1| A =a)

POM =1|A=a,M =m)’

= (14+ORpo)P(M =m, 0™ =1| A=a).

Pm,a =

We use a two-step estimation process, whereby in the first
step, Pm,q 1s estimated, and in the second step, the expected
reward is estimated as

/:La - Z ﬁm,aﬂm,a
meM

where fi,, o is the empirical mean of the samples Y;, ob-
tained after pulling arm a, conditioned on M; = m with
both O™ = 1 and OY = 1. Here, we require Y; to be
finite-valued, analogous to Section

S SUMMARY OF ASSUMPTIONS AND
RESULTS

To facilitate comparison, the following table summarizes
the core assumptions and regret bounds for the MCAR,
MAR, and MNAR frameworks under the setting where the
mediator variable, M, is always observed.

Setting
MCAR

Core Assumptions

Oz/ ui (At>Yt7Mt)

Regret Bounds
Upper (Alg.[T):

o[ /=2557)

Lower:

2(y/F)

Upper (Alg.[3):

O( oT log(T)nS)
Lower:

Upper (Alg.[):
O (VaTlog(T) 32, 52)

MAR O LY | (As, My)

MNAR OF 1L M; | (A, Yz)
Completeness (6)

Condition number




6 EMPIRICAL EVALUATION

Here, we provide an empirical evaluation of our MAB al-
gorithms across different missing data scenarios — MCAR,
MAR(,ii), and MNAR. All our simulations were run on
Google Cola with Intel Xeon CPUs. Python implementa-
tions for reproducing the results of this paper are available
on GitHub?|

Python code to reproduce our results is attached as sup-
plementary material. We model the MAB environment in
all the aforementioned settings with n = 10 arms. More
comprehensive simulation results are provided in Appendix
DI

6.1 EXPERIMENT SETUP OF MCAR

Each arm a € {1,...,n} has an associated mean reward
lha, sampled independently from a uniform distribution over
the interval [0, 1]. The observation probability - is randomly
drawn from a uniform distribution over [0.5, 1.0]. At each
time ¢, when arm a is pulled, the reward Y; is generated from
a normal distribution A (114, 1). Algorithm [Is performance
is reported across 20 independent runs in the MCAR envi-
ronment over a time horizon of 7" = 10,000 iterations, with
a fixed parameter o = 2. Figure [da] depicts the cumulative
regret for different  values. As expected, when -y decreases,
the regret grows more rapidly as a consequence of lower
observation likelihood.

6.2 EXPERIMENT SETUP OF MAR

The MAB environment is modeled with n = 10 arms but
with ' = 5 possible mediator values. The expected re-
ward for all arms is determined by {4 }m.a € R™E,
where i, o represents the mean reward for arm a when the
mediator takes value m. The latter reward matrix is cho-
sen by sampling each p,, , independently from a uniform
distribution over [0, 0.4]. To ensure the first arm is the op-
timal one, an additional 0.6 is added to its corresponding
mean. The observation mechanism is defined by a matrix
{Ym.atm.a € RP*E, where each v,, , is sampled indepen-
dently from a uniform distribution over [0.8, 1].

For each arm a, a categorical probability distribution
{Pm.a}m € RE is defined over the K values of M. This
distribution is drawn from a Dirichlet distribution, i.e.,
{Pm.a}m ~ Dirichlet(1x). Upon pulling arm @ and the
mediator taking value m, reward Y} is drawn from a normal
distribution (4t o, 1), where fi,,, o is the mean reward for
arm a when mediator takes value m. The reward is observed
with probability 7, .. We ran Algorithms [3] and ] over a

*https://colab.google
Shttps://github.com/ilia-mahrooghi/Multi-armed-Bandits-
with-Missing-Outcome

time horizon of T" = 100, 000. Their cumulative regret was
averaged across 10 independent runs. As shown in Fig. [4b],
knowing conditional probabilities p,,_, in advance improves
the cumulative regret, as expected.

Fig. 4c|demonstrates the average cumulative regret of the
MAR algorithm with different probability distributions over
the mediator. In particular, two mediator value selection
strategies were tested: (i) uniform, where each mediator
value has an equal probability, and (ii) a peaked distribution,
where one mediator per arm has a higher probability, us-
ing a Dirichlet distribution biased by o = 5 for the chosen
mediator. The peaked distribution results in a higher cumu-
lative regret, which aligns with the result from Theorem 5]
since S is maximized when the probability distribution is
concentrated on the largest 7, 4.

In Figure we compare the performance of the UCB
and MAR algorithms in the MAR bandit environment. The
results illustrate that the cumulative regret of the UCB algo-
rithm is consistently higher than that of the MAR algorithm.
Notably, the regret of the UCB algorithm exhibits a near-
linear growth as a result of the bias in its estimation of the
reward. This bias is due to the failure to account for the
mediator structure. In contrast, the MAR algorithm, which
explicitly utilizes mediators to handle missingness, achieves
accurate reward estimation and a significantly lower regret.

6.3 EXPERIMENT SETUP OF MNAR

The MNAR algorithm was evaluated in an environment
with n = 10 arms, K = 5 mediators, and || = 5 possible
outcomes, over a horizon of 7' = 100,000, repeated 10
times. For each arm a and mediator m, the reward function
followed a categorical distribution sampled from a Dirichlet
distribution, except for one arm which was sampled from
a biased Dirichlet distribution. The bias was applied to the
largest y € ), ensuring that this arm had a higher expected
reward. The observation probabilities vy, , were drawn from
a uniform distribution over [0.5,1.0], while the mediator
probabilities were sampled from a Dirichlet distribution.
Fig. 4efshows that the algorithm successfully adapts to the
MNAR setup, effectively minimizing the cumulative regret.

7 LIMITATIONS AND CONCLUDING
REMARKS

We studied multi-armed bandits with missing outcomes and
adapted UCB algorithms to incorporate missingness. Our
approaches extend the applicability of MAB algorithms to a
wider range of real-world online decision-making problems.
We expect that the insights given by this paper will help
researchers to develop and adapt other existing decision-
making algorithms to take missingness into account. We
assumed that the auxiliary (mediator) M takes values in


https://colab.google
https://github.com/ilia-mahrooghi/Multi-armed-Bandits-with-Missing-Outcome
https://github.com/ilia-mahrooghi/Multi-armed-Bandits-with-Missing-Outcome
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Figure 4: Results corresponding to MCAR, MAR, and MNAR settings. The shaded regions represent the error bars, showing

one standard deviation across multiple runs of the simulations.

a finite set. Parametric (or semiparametric) models can be
adopted to relax this assumption in the future. We further
acknowledge that estimating the odds ratios through inte-
gral equations in the MNAR setting presents significant
challenges, both in terms of computational complexity and
sample efficiency. Hence, we have postponed the problem
of MAB with continuous outcomes missing not at random
to future work.

A practical challenge arises when choosing between sev-
eral plausible settings for the missingness mechanism. To
address this model selection problem, dynamic balancing
offers a principled solution |Cutkosky et al.| [2021]. The tech-
nique involves running an instance of our algorithm for each
candidate setting and using a meta-algorithm to dynami-
cally arbitrate between them based on performance. This
approach is analogous to recent methods for handling model
uncertainty in causal bandits|Liu et al.| [2024]]. Its inclusion
extends our framework to a more robust version capable of
automatically selecting the most appropriate model, enhanc-
ing its practical applicability
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Appendix

This appendix is organized as follows. Section[A]includes the omitted algorithms referred to in the main text. Section [B]
includes the technical proofs of our results. Section [C] provides our algorithm for the case where both the outcome and
the mediator are missing not at random (MNAR) along with the regret analysis and proofs. Finally, Section [D|includes
additional empirical evaluation results.

A  MAIN ALGORITHMS

Algorithm 1 MCAR algorithm

1: Imput: Number of arms n, time horizon 7', o > 1

2: Initialize: i, = 0 forallarmsa =1,2,....,n > initial mean reward estimate for each arm
3: Set: T, , =0forallarmsa = 1,2,...,n > number of times each arm is pulled and reward is observed
4: for eachroundt =1,2,...,7T do

for cacharma =1,2,...,n do
UCBA(1) = fiu + /25
Select arm a; = arg max, UCB, (¢)

5
6
7. end for
8.
9 Pull arm a; and observe reward 7

10: if reward is observed then
11: Update T, and fi,,
12: end if

13: end for

Algorithm 2 MAR Algorithm with known p,;,

1: Input: Number of arms 7, time horizon 7', exploration parameter o
2: Initialize:
3: for each arm a € [n] and m € M do
4 fim.a =0 > estimated mean reward for arm a when M = m
5: Tm,a0=0 > number of times arm a is pulled with M = m and reward observed
6 Tma=0 > number of times M = m was observed for arm a
7: end for
8: for each arm a € [n] do
9:  for log(T")? rounds do

10: Pull arm a, observe m and reward r

11: Update T,  for observed M = m

12: if reward is observed then

13: Update Th, 4,0 and fiy,

14: end if

15: end for

16: end for

17: Ty = nlog(T)%, T =T — T
18: for eachroundt =1,...,75 do

19: for each arm a € [n] do
20: Compute i, = > Pm.aflm.a > estimated mean reward for arm a
me[K)
2
21: Compute UCB,,(t) = fi, + \/ a log(T) EM - > Upper Confidence Bound for arm a
me '
22: end for
23: Select arm a; = arg max, UCB,(¢)
24: Pull arm a;, observe m and reward r;
25: Update T, 4, and, if reward is observed, update T3, 4,.0 and jip,.q,

26: end for




Algorithm 3 MAR Algorithm with unknown p,y, ,

Input: Number of arms n, time horizon T, exploration parameter «

Initialize:

for each arm a € [n] and m € M do
fim,a =0 > estimated mean reward for arm a when M = m
Tma0=0 > number of times arm a is pulled with M = m and reward observed
Tha=0 > number of times M = m was observed for arm a

for each arm a € [n] do

for log(7")? rounds do
Pull arm a, observe m and reward r
Update T, , for observed M =m

—_ =
TR IIUNAELDD 2

(]

=

(=%

[~

=

-

12: if reward is observed then

13: Update Ty, 4,0 and fiy, o

14: end if

15: end for

16: end for

17: T1 = TLlOg(T)z, T2 =T — Tl

18: for eachroundt =1,...,75 do

19: for each arm a € [n] do

20: Estimate p,, , = T;a’“ foreachm € M

21: Compute fiq = 7= >, > e aq fim,a 1{M; = m}1{A; = a}

22: Compute UCB,(t) = ji, + 8 \/ o‘log(T) > Ti"”a"'o
meM T

23: end for

24: Select arm a; = arg max, UCB,(¢)

25: Pull arm a;, observe m and reward r;

26: Update T, o, and, if reward is observed, update T}, 4, o, and fiy, q,
27: end for




Algorithm 4 MNAR Algorithm

1: Input: Number of arms n, time horizon T, exploration parameter «

2
3

10

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21
22

23:

24:
25:
26:
27:

28:

29:

30:

31:
32:
33:
34:
35:
36:
37:
38:
39:

40

R A

: Initialize:

: for eacharm a € [n] and m € M do
Set bm,O\a =0
Set 0, = [O]ka
Set dm,y|1,a = 0
SetT, =0
SetTy, =0

end for
: for each arm a € [n] do

for log(7")? rounds do
Pull arm a, observe mediator m and reward y
Update Ty,
if reward is observed then
Update T, , 0, [m,y], and Gy, 41,4
else
Update by, 0|4
end if
end for
end for
: SetTy =nlog(T)?and To =T — T
: foreachroundt =1,...,75 do
for each arm a € [n] do

Solve z, = F)AaTba
Update 2, = 24 + [1]nx1
Compute ﬁ(m7 y) = xa[y} X qm,y|1,a
Compute ji(y) = EMﬁ(m,y)
me
Compute i, = > y X p(y)
yeyY )

max(za[y])

Compute 7y, =

Compute UCB, (t) = fi, + 8—2C alog(T)

16alloo¥a Ta

end for
Select arm a; = arg max, UCB, (%)
Pull arm a;, observe m and reward v,
Update 15,
if reward is observed then

Update T4, o, 04, [m, y], and Gy, (1,4,
else

Update by, g|q,
end if
: end for

K

’?a

& Estimation of P(M = m,0Y =0 | a)

> Estimation of matrix 0,[m,y] = P(m,y,0Y =1 | a)

> Estimation of P(M =m,Y =y | a,0Y =1)
> Count of pulls of arm a
> Count of pulls of arm a with observed reward

alog(T)
Ta,o




B TECHNICAL PROOFS

Double Robustness of the AIPW estimator. Following [Discussion 2]in Section [3.2} let 4y, and fi,n,o be models for
Ym.a and E[Y; | m,a, O} = 1], respectively. Define

1{M,; =
ia=E[ ) {;””’(Wn{oz/ﬂ}—(n{o =1}~ Ama)iima) | A = al, )
meM ma

as an estimator for p, of Eq. (3:2). Herein, we prove that /i, is doubly robust, in the sense that if either of the missingness
probability models (y,,q) or the outcome regression models (f,,, 4), but not necessarily both, are correctly specified, then
fia of Eq. (7) is consistent for j,, of Eq. (3.2). We discuss the two cases separately:

Case (i): the missingness probabilities are correctly specified; i.e., ¥pm,q = Ym,q. In this case,

By MO =Y s =m) | A=

meM Tm.a

a 1{OY =1 .
@ s gMO =y 1M = m) | A=)
meM TYm,a

®) 1{O} = .
: Z ]E { } 1) | At = a7Mt = m},um,apm,a

/rnEM 77"1 a

(o) Ym, N

= Z (ﬂ - 1)Mm,apm,a
meM Tm,a

where (a) is due to 4,,, o being correctly specified, (b) is an application of the law of total expectation, and (c) is by definition
of Ym.a = E[O} | Ay = a, M; = m]. As a result, we get

. H{M; =m}_,,
uaZ]E[ Z {ti}yt 1{oy =1} |At:a]7
meM Ym,a
which matches Eq. (), and therefore /i, is consistent for y.
Case (ii): the outcome regression models are correctly specified; i.e., fiy,,q = E[Y? | m,a, OY = 1]. Then,

E[ Y W(Y ~ fima)1{OF =1} | 4, = d]
meM m,a

(a {0}y =1
) Z E { }( _,U/ma)|At—af Mt ]pm,a

meM 'Ym @
(b)
LRl
mem "M
C) ’Ym a Yo A Y _ Iy
| t = a, Mt m,Ot = 1] - Nm,a)pm,a
mEM
d
@ 0,

where (a) and (b) are due to the law of total expectations, (c¢) is by linearity of expectation, and (d) follows from the
correctness of [, . From Eq. (7),

ﬂm,a = E[ Z ]]-{Mt = m}ﬂm,a | At = a]
meM
=E[ Y 1{M, =m}E[Y | m,a,0f =1]| A, = q
meM
E[E[Y? | M,a,0f =1]| A; = ],

which matches Eq. (]3[), and therefore fi,, q is consistent for (i, q. O



Theorem 1. (MCAR regret guarantee) Under Assumptior2) for every a > 1, the cumulative regret of the adapted UCB
(Alg.[]) is bounded as follows:

E[R;] = O anT log(T)
S :

Proof. Let a* = arg max pu, be the optimal arm. Using Hoeffding’s inequality, we can derive the following bounds for any
timestep1 <t <T:

- If a = a; = argmax (UCB,, ), we have:

alog(t)

i, — <
‘Na Hal| < 2Ta707

with probability 1 — 2¢t~%. Name this “good event" A;.
Now, define ¢, = 1/(”21;7%). For a = a; = argmax (UCB,,), we get the following inequality:
0 P

Ha + 2€q > /la + ¢, = UCB, > UCBgy+ = /la* + €ax 2 fhax = €q >

A,
77 (8)

where A, = pgr — g

Now, if F; represents the “good events" at time step ¢, then under £ = () E;, using (8) we obtain:
t
To.o < 4alog(T)AL2.

Thus, we have:

T
E[T..0] =Y E[(I; =a,0} =1)]

’
t=1

T
< 4dalog(T)A,? + ZE[]I(EE)]
t=1

= dalog(T)A;% + Y E[I((A]))]
t=1

T
<dalog(T)A;?+Y 2t~
t=1

2
< 4dalog(T)A,? + - ill. )

Since we observe the reward with probability «, and OY L (A,Y), we have E[T,, ,] = yE[T,]. Therefore:

- 4alog(T)A; 2 + %

E[T.] < 5



Letx = 1/%. Then, we have:

E[RT] = Z AaIE[Ta]

= > AE[T]+ > AE[T]

Ay <z Ay>x
2, 2
dalog(T)AZ* + =5

< Tx+ Z A,

Ay>x v
dnalog(T 2
N g(T) 4 2na
Ty (a—1)y

_o dnaT log(T) n 2na (10)
gl v(a—1)

:0( omTlog(T)) an

=Tx

v

Theorem 2. (Minimax lower bound for MCAR) For any policy 7, there exists an MCAR instance v s.t.

nT
E[Rr(m,v)] =Q <\/7> ,

where B[Ry (7, v)] represents the expected regret of policy  in instance v.
Proof. Consider the following n + 1 bandit instances, with n arms labeled a1, a9, . . ., a,,. The reward distribution for each
arm follows a Normal distribution with a variance of 1.

Bandit instance 0:
* E[Y(a)]=0foralla = ay,...,a,.
Bandit instance k£ for k =1,...,n:
* E[Y (ag)] = A for a = a.
* E[Y(a)] = 0 for a # a.
Next, we present key lemmas adapted from |Lattimore and Szepesvari|[2020] to complete our analysis.

Divergence Decomposition: Let v = (P(1),..., P(k)) and v/ = (P'(1),..., P'(k)) represent the reward distributions
for two k-armed bandits. For a fixed policy 7, let P, = P, , and P, = P,/ , be the probability measures induced by the
n-round interaction with v and v/. Then:

k
KL(PV,PV’) = ZEV[Tv(n)]KL(P(Z)vP/(Z))

i=1

Pinsker’s Inequality: For measures P and () on the same probability space (2, F), the total variation distance is bounded

by:
div(P,Q) = Sup |P(A) = Q(A)] < \/%-

Total Variation Bound: Let (2, ) be a measurable space, and let P and ) be probability measures on F. For any
JF-measurable random variable X : Q — [a, b], we have:

< (b—a)drv(P, Q).

| Xwire) - [ Xwiqw)




Now, in our setup with missing observations, so (OY,Y') represent the observation tuple. Hence, we have:

A

KL(Po, P;) = Eo[Ti|KL(Po(7), Pi(i)) = Eo[T}] 3

From this, we can bound E;[T;(T)] as follows:

E;[T3(T)] < Eo[Ti(T)] + Tdrv(Po (i), Pi(i))

< Eo[Ty(T)] + T\/ 1KL(Po (1), Pi(1))

2
= Eo[Ti(T)] + T\/; : ,YTNEO[Ti(T)]

= Eo[Ti(T)] + 5 VA ATEGT (T,

Let R, = Ry (m;4) denote the regret of applying policy 7 on the i-th bandit instance up to time 7', where ¢ refers to the i-th
bandit instance.

Summing over all bandit instances, we have:

n n

> AT - B [T(T))

i=1 i=1

>ATn— A <E0[Ti(T)] + % ’YAzIEO[Ti(T)]>

N

=

2
I

i=1

A’T

> ATn — AT — T\/’yTn

ATn  A?T n

> — = — T ing A =

=9 g VI WA= T

S Tn? ~n [Tn

~8/Tn 8\ ~

Thus, there exists an instance where E[R;] > 2 (, / %) O

Theorem 3. (Regret guarantee for Alg.[2) Under Assumption 3] for every oo > 1, there exists a constant ¢ such that the
following regret bound holds forT' > c:

E[Ry] = O ( ol 1og(T)ns) .

Proof. As before, let a* = arg max 1, denote the optimal arm, and define 77 = ) T1,q as the total number of times the
a

agent samples each arm during the initial rounds. After the first 77 rounds, we can derive the following bounds at any time
stepl <t <To =T —T7.

For each arm a, let the reward samples observed when M = m be denoted by Y7 (1),...,Y; (T a,0). Applying
Hoeffding’s inequality, we obtain:

Pra
mE[K] Tm,u,.o

Ym,a(J) ig Pm.a

This result holds because the sub-Gaussian norm of the random variable py, o - 7 .



By setting ¢, = \/ alog(®) Zm e[k Tp 2 we obtain the following inequality, which holds with probability at least 1 —2¢ =<

. alog(t) P2 q
_ < | 22N —m,a
|/’La /’I’a‘ — 2 Z Tm a.o
me[K]| ”
Name the above “good event" A; ,.
Also, like before for a = a; = arg max (UCB,,), we get the following inequality:
A,
2 b

Ha + 2€, > ,&a + ¢, = UCB, > UCB,- = ,&a* + €qr > Hax* = €q 2> (12)

where A, = figr — flg-

Next, let T, o represent the number of times arm a is pulled and M = m is observed, and let T}, represent the total
number of times arm a is pulled. Using Hoeffding s inequality, we can bound the deviation between p,,, , (the probability of

m,a

“Ta

b Tua _ [olos(n) _ [alos(r)
’ T 2T, 2T,

with probability at least 1 — ¢~“. Name this “good event” B 1, q-

observing M = m) and the empirical ratio as follows:

TTVL a,o

Similarly, we bound the deviation between v, , and , where T}, 4, is the number of times reward is observed for

arm a and M = m:
o — Tna0 < alog(t) < alog(T),
’ Tm,a 2Tm,a 2Tm;a

again with probability 1 — ¢~“. Name this “good event" C} ,, q.

For sufficiently large 7', we have:

1
log(T)? > 2alog(T) =,
D

which implies T,, > log(T)? > 2« log(T) . This allows us to use inequality \/%ET) < Pzt to derive a lower bound
for Thy, o

Tup
Tm7a Z a 2m,a )

Furthermore, since T}, , > T“p?’” = and For sufficiently large T', we know that T, > T , = log(T)? > 2alog(T )%

m, ap.
This gives us 4/ M < 7’" *, which allows us to establish a lower bound for T, 4.,:

TYm,a
Tm,a,o >

- Tm a-
2 )

Tapm,a

5", We derive:

Combining this with 75, ; >

Topm,ay
Tm,a,o > %

Let E; represent the intersection of "good events" at time step ¢. Under E' = ] E}, we obtain:
t



o | los®) Prn.a
2 me[K] Tm.a.0
alog(T) Ap3, a
S Z apm a’7m a
me[K]
| 2a log Z DPm.a
ity
2
alog( )Pa
T,
Using inequality (T2), we have:
8alog(T)P,
T, < A2
Thus, we get:
T
E[T,) =Y E[I(I, = a)]
t=1
1
< 8 og a ZE 1(E)]
8arlog(
L— g ZE U tmauctcma)UAt,a)]
1
< 8 Og + Z4Kt—
8o log( )P, 4Ka
. 13
< A2 a1 (13)

To conclude, note that the regret of second part of algorithm is E[Ry] = Z ALE[T,]. We now split the arms into two groups:

A, </ w and A, > 4/ w. Let Ry be the regret for the second part, and let z = 4/ w. To

> Pa
conclude, note that E[R] = >~ A E[T,]. Since S = *“— Then:

Ryl =Y AE[T] = Y AE[T]+ Y AE[T

Ag<z Az
<7 S0loeD) g ARan e (Ting + AKan.
x a—1 a—1
Finally, for the total regret R = Ry + R, we have:
E[R] < 2+/8aT log(T)nS +
< 2¢/8aT log(T)nsS + % + nlog(T)?
=0 ( oT log(T)nS) . (14)



Theorem 4. (Regret guarantee for Alg.[3) Under Assumptions[3] for every oo > 1, there exists a constant c such that the
following regret bound holds for T > c:

E[R7] = O ( ol log(T)nS) .

Proof. We follow the same approach as the previous proof. From the previous result, we know the following inequality
holds with probability 1 — 2¢7<:

Z pm,aﬂm,a — Ha
meM

alog(t) ha
< —
S T2 X7

m,a,0

meM

Let this “good event" be denoted as Ay ,.

Now, we consider:

Z ﬁm,a,&m,a — Ha| = Z (ﬁm,a - pm,a),a'rn,a + Z pm,aﬂ’m,a — Ha (15)
meM meM meM
S Z |ﬁm,a - pm,a| /lm,a + Z pm,a,&/m,a — Ma| - (16)
meM meM

From the previous proof, since p,, , = % we have:
alog(t)

2T,

|pm,a - ﬁm,a| S

with probability at least 1 — 2¢~. Denote this "good event" as By, . Under this event for T}, > log(7")? and sufficient big

T we will have mea S ﬁm,,a § 2pm,a
< alog(t) < alog(T)’
B 2Tm,a o 2Tm;(1

again with probability 1 — 2¢~%, denoted as "good event" C 1, 4.

Additionally, we have:

Tm,a,o

Tm,a

'Ym,a -

If these “good events" hold, we know:

T.
Tm,a,o = Vm,apin,a a.

We also know:

alog(t)
2Tm,a,o ’

fima < fima + alog(t) .y, [alog(t)
' 2Tm,a,o 2,Tm,a,o

with probability at least 1 — 2¢7<, denoted as "good event" Dy , q.

|/Lm,a - ﬂ7n,a| S

which leads to:

Under all these “good events," we have:

alog(t)
2Tm,a,o

> bma — Pmal fima <D ma — Pmal + Y [Pmia — Pmaal %
meM meM meM

) alog(T) 2alog(T)
S Z |pm7a _pm7a| + Z o X .

meM meM p7n,a7m,aTa




Using Lemma 7 from |[Kamath et al.|[2015]], we get:

NG

—1) 4k3(k—1
3 I —pmal < 22 4 HEE D

meM T‘a4

Now, combining everything with the initial inequality (T3), we have:

o 2k —1) 4k2(k—1)3
Z pm,aﬂm,a — Ha S T + 3
meM Tlqg Ta4

@ log 2alog(T) alog(T) Pia
+ Z \/pm,a’)/m,aTa * 2 Z Tm,a,o.

meM meM

For sufficiently large 7T, since T, > log(T)?, we have:

alog(T) Z pm a Z « 1og 2alog(T)
2 pm@’}/m,aTa .

meM mao

and

2 o 1 - 1

alog(T) Dim.a > 2(k—1) and akz (k - 1)1
2 Trao Ty, T
meM n a

Thus, we conclude:

2
<4 « IOg(T) pm,n,

B 2 meM Tnao

Z Zam,aﬂm,a — Ma

meM

Finally, since —“ < Dm,a» We have:

alog(T) Drn.a
<8 5 > .

mEM Tm,a,o

Z ﬁm,aﬂm,a - ,U(L

meM

Following the exact reasoning in the proof of Theorem 3} and using the fact that p,,, , < 2py, o We conclude:

E[R] = O (a\/T 1og(T)nS) .

O
Theorem 5. (Minimax lower bound for MAR) For any policy 7, there exists a MAR instance v such that:
E[Ry(m,v)] = Q (\/TnH) .
Proof. Consider the following n 4 1 bandit instances, with n arms labeled a1, a9, . . ., a,,. The reward distribution for each

arm follows a Normal distribution with variance one, and mean specified as follows.
Bandit instance 0:

® lm,q =0forallarmsa = ay,...,ay andforallm =1,..., K.
Bandit instance j for j = 1,...,n:

°uma:P,yA forarma = aj, and forallm =1,..., K.



* fim,q =0forallarms a # a;,and forallm =1,..., K.

For each instance j € {1,...,n}:
e Ifa=j:pu, = Zme[K] Pm,albm,a = A.
o If a # j: pg = 0.

For instance 0:
e Foralla € [1,...,n]: py, = 0.

Now like the previous we use the mentioned lemmas from Lattimore and Szepesvari| [2020] to complete our proof.

Like before for every a = 1, ..., n we have:
KL(P07 Pa) = ]EO[Ta]KL(PO(a)a Pa(a’))
AQ
= E m,aYm,a
0 Z p Y 2P2’ym “

me[K]
A? Pma

— ]EO[TQ]P—G2 > -

me[K]|

AQ

= EO[TG]E

From this, we can bound E, [T, (T")] as follows:

Eo[To(T)] < Eo[To(T)] + Tdrv(Fo(a), Pu(a))

< BT, (1)) + T/ SKL(R (@), Pula)

Let R,, = Ry (m; ) denote the regret of applying policy 7 on the i-th bandit instance up to time 7', where i refers to the i-th
bandit instance.

Summing over all bandit instances 1, ..., n, we have:
Z =Y AT - EJ[T.(T))
i=1 a€n]
T A2
> — _ -
> ATn — A Z Eo[T(T)] + B Eo[Ta] P,
a€n]
> ATn — AT — AT EolTa(T)]
2 P,
a€[n]
AT 1

> ATn — AT —




Thus, there exists an instance where E[R;] > §2 ( ZT”QI) =0 (\/T H) O

Pq
a€gn]

Theorem 6. For any mediator-agnostic policy 7 (a policy that does not have access to mediator values), there exists a MAR
instance v which satisfies Assumption[3|and its regret grows linearly

E[Rp(m,v)] = QUT).
Proof. We construct two bandit problems, each with two arms, such that in the second bandit, the arms are swapped. The

key observation is that the distributions of the observed outputs, when there is no mediator, are identical, but, the actual
means of the arms differ, with u; — us = A.

First, let us assume that we have constructed two arms with distributions P; and P», and identical distribution PP when there
is no mediator. Now, let for instance 1, arms 1 and 2 have distributions P; and P, respectively, while for instance 2, arms 1
and 2 have distributions P, and P, respectively.

Now, consider the scenario without a mediator. Building on the ideas from previous proofs, we obtain:

Eo[T5(T)] < By [To(T)] + Tdyy (P, P) = Eq[T>(T)],
By symmetry, we similarly have:
Eqi[T2(T)] < Eo[To(T)] + Tdry (P, P) = Eo[To(T))].
Therefore, we conclude that:
Eq[T5(T)] = Eo[To(T)].
Applying the same symmetry argument again, it follows that:

Eq[T1(T)] = Eo[T1(T)].

Thus, the expected number of pulls for both arms in both cases remains identical.

But now with the actual means we would have:

E[Rr(1)] + E[Rr(2)] = EA[T2(T)]A + Eo[T1(T)]A = Eo[T(T)]A + Eo [Ty (T)|A = TA = (T)

Therefore, there exists ¢ € {1, 2} such that:
E[Rr(1)] = (T)

Now lets construct arms with mentioned property. We assume that the rewards for each arm follow a discrete distribution. If
fv (y) represent the probability mass function of Y. We have:

fry]a,0" =1) =S Bm|a,0" = 1) fy(y | am,0" =1) = P(m|a,0" = 1)fy(y | a,m),
and

_ P(m,a, oY = 1) _ Tm,aPm,a
- Z]P(mv a, oY = 1) B Z'Ym,apm,a '

P(m | a,0Y =1)

1
Pm,a

%

1
m,a

, we have:

Now, if we let v, o =



> fy(y|a,m)

fr(y|a, O =

|
=

This expression is independent of p,, .. Additionally, we have:

K
P( _1|a mea’)/ma:z y

pm,a

Now, for any choice of p,, , such that both the set P, = {py,o | Vm € M} and fy (y | a,m) remain identical for both
arms, the resulting arm distributions in the absence of a mediator are still identical. Now, we choose appropriate p,, , such
that p1 — po = A.

Since p, = me,aumﬂ, we let all yi,,, , be zero except for one, which we set to 1. Now, forarma = 1, letp,,, , = 1 — ¢
m

for the m such that i,, , = 1, and set the others equal to z~;. For arm a = 2, let py, o = 1 — € for the m such that
Im,q 7 1, and set the others equal to

€
K-1

In this way, p1 — p2 = 1 — € — 55 = A, completing the construction for small e.

O

Theorem 7. (Regret guarantee for Alg.[d) Under Assumptionsd} [6] and[]] for every a > 1, there exists a constant ¢ such
that the following regret bound holds for T > c:

E[Ry] = O(\/aT log(T) Y sg),

with S, =max{

Yo =min Y0
e V\/Z,,yﬂw}’ lin 7,

Proof. We follow the same approach used in previous upper bound proofs to derive a lower bound on the estimation error of
Ha-

At each time step 1 < t < T, define:

ba = [P(m,OY =0 | a)]le
@a = [P(m7y7oy =1 | a)]KXL
P(OY =0]y,a)

Tg = [m]LXI

Since we know that ©,z, = b,, we now invoke Theorem 2.2 from Higham) [[1994], which states:

Theorem 2.2. Let Az = b and (A + AA)y = b+ Ab, where ||AA|| < ¢||E| and |Ab|| < €|/ f||, and assume that
e|| A=Y|||E|| < 1. Then:

lz =yl € (IIA‘lllfll

< +A—1||E>, (17)
el SToaamer \ Jep AT IE

and this bound is attainable to first order in €.

For each entry of b, or ©,, we have T, samples. By applying Hoeffding’s inequality and following the same approach as in
the proofs of previous theorems, we set € = 4/ = 12O§',;(T) . Consequently, we obtain the following bounds (all norms are ||.||oo):




”Ba - ba” <€
”éa - ®a|| < Le,

with probability at least 1 — 2K x (L + 1)t~

Now, under the event described above and using (]ﬂ[), we have:

Lo — Zq € (Sl _
Iz = 2l _ (1921 o).
[l 1—eL|® | \ llzall

We have z, = {1;&} -t and therefore ||z,| = 1;7“. For sufficiently large T" and for T,, > log(T)?, it follows that
y,a X a

L]0 < 3. leading to:

11—, _ L L __
[Ta — Zall < 2€ <||9le +Ljo; | — ) = 2|0, ( —(L— 1)) <2e—0.].
Ya Ya Ya

Now, since [|©, — O, || < Le, for sufficiently large T" and T}, > log(T')?, we have Le < @. Hence:

< [[©all < 2[[©al],

[Oall
2

which implies

K(04) _ 2(04) _ 2C,
< th <L
1©all = |©a]l T (104l

ozl =

Thus:

LC,

|0 — Bal| < de—=22.
’Ya”@a”

(18)

For sufficiently large 7" and T, > log(T)?, we will have:
0 — all <
Tg — Tal| S
2
S0:

Ll - e = o
- = Lx1|| — - .
274 Yy 2%, 27

1 R
5. = MZa+ Moall 2 flza + [Meal =

Using (18), we have:

LC,
|zq — Zal| < 8e——F—.
'Ya”@aH
Since x4, + [1]nx1 = [v;ah“’ for every y, we have:
1 1 LC,
— = e———.
Yy,a  Vy.a YallOall

Now let p,,, (1,0 = P(m,y | OY = 1, a). By applying Hoeffding’s inequality, we have the following inequality for all m, y:



alog(T)
|Gm,yi1,0 = Prylt,al < o,

with probability at least 1 — 2K Lt~. Using the fact that % =P(m,y|a) = Prm,y|a> WE have:
y,a ’

Pm,yla dm,yla

st — ] = 222

Yy,a Yy,
< 1 1 ‘ 1 |
< Pgla|— — — |+ = |Gmulr.a — Pmayp,
m,y|a Vya Aya Ya m,y|l,a m,y|l,a
LC, 1 Jalog(T)
> 8pm,y|a _— ~ AT

Yall©all  Fa Tao
Summing up over m, we have:

LC, | K [|alog(T)
AalOall Ao Tao
LC, K [alog(T)
FallOull e\ Tae

Pyla _ﬁy|a| < 8py\a€

Thus, using > |y| = 1:
y

. ) K alog(T) LC, K [alog(T)
|ta = fial < ) 1Yl [Pyja — Pyla| < |y|< =) =8t — [ —
zy: e Z a||@ i Tao FalOall ~ Yo\ Tawo

Hence, UCB(a) = i, + €4, and using previous proofs, we conclude that ¢, > %. To finalize the proof:

19l . -
s Ya =

0. > .
18a 2 50

?7

and we have P(OY =1 | a) = 3" py.a7Vy,qa- Applying Hoeffding’s inequality gives:
Yy

<

- Zpy,a’)’y,a
Yy

which for sufficiently large T and T, > log(T')?, states:

Too>To (Zpy,wy,a> .

Y
Finally, we have:
alog(T) . LC,

< 8
T, al@dl

alog(T) LC, K
T, ’YaH@aH,'Ya

which, following the exact steps of previous proofs, leads to:



E[Rr] = O \/aT log(T) ) ~ 52

C THEORETICAL RESULTS ON MISSING OUTCOME AND MISSING MEDIATOR

In this section, we present our theoretical results on Missing at Random (MAR) and Missing Not at Random (MNAR)
environments for both Missing Outcome and Missing Mediator cases.

C.1 MISSING AT RANDOM (MAR)

As discussed earlier, the identification of u, = E[Y | a] is given by:
pa= Y P(M=m]|a,0M=1E}Y | M=m,ae0" =1,0"=1].
meM

Using this identification, we will prove the following theorem. We define p,, o = P(M = m, a),Ym.o = P(OY =1 | M =
m,a), \q = P(OM = 1| a). Our algorithm is exactly likewhere if M is missed we don’t update anything.

Theorem 8. (Regret bound for MAR with missing mediator and outcome) Under Assumption [8} for every oo > 1, the
following regret bound holds for sufficiently large T':

E[Ry] = O ( ol 1og(T)ns) :

_ Pm,a = 1
where Pa - ZmEM Ym,aNa and § = W EZA Pa.
a

Proof. The proof follows a similar approach to the proof of Theorem E} Using the same reasoning, we have (where T, 4 o,
is the number of times M = m and the reward are observed when pulling arm a):

Z ﬁm,aﬂm,a — Ha
meM

alog(T) P2, .
< 2 .
<8 | D7

m,a,o
meM ,&,0Yy

Similarly, we also have the following inequality (where 75, ,,,, is the number of times M = m is observed when pulling arm
a):

R alog(t
|pm,a - pm,a| S A
2T onr
Additionally, we have:
Ta,on alog(t)
T, o= 2T,

Under this event, for sufficiently large 7', we have T, > log(T)2 and p”# < Pm,a < 2Pm,q. Following similar steps, we
get:

Tm,a,o;/ > pm,a'Ynzl,aAaTa.

Therefore, using the same definition of ¢,, we obtain:

8alog(T) Dia 8alog(T') Pm,a
< : = 4
=8 2 Z s 2 Z ,Ym,a)\aTa

meM Pm.a¥m.aAaTa meM




Finally, following the same steps as in previous proofs, we conclude:

E[Ry] = O ( oT log(T)nS> .
P.S.: By "sufficiently large" 7', we mean a 7T that is large enough to satisfy log(7T") > C for some constant C'. O

C.2 MISSING NOT AT RANDOM (MNAR)

In this section, we use the identification formula discussed earlier to develop an algorithm and establish an upper bound

for this environment. Assume that P(m | a) = pp,.a, P(OM =1 |m,a) = Mo, P(OY = 1| m,a) = Yp.q. Also define

Aq = min A, o. We assume a similar condition to Assumption but for a different matrix. Let ©, = [P(m,y, OM =
m

1L,OY =1|a)xxr:
Assumption 11 (Bounded condition number). For each arm a € A, the condition number of the matrix ©, is bounded by:
K(0q) < Cq,
where k(0,,) denotes the condition number of ©, with respect to the co-norm, defined as
£(0a) = [Oalloo 1O oo,

with ©} being the pseudo-inverse of ©,,.

In our algorithm we use the the given identification formula and

. alog(T) C, K 1 alog(T) 4p2, ,
UCB(a) = jig + 2 8———+ = + —.
(a) = fu 2T, 1Oall Aa Ao 2 TEMTQM,OY

we will prove the following theorem.

Theorem 9. (Regret bound for MNAR with missing mediator and outcome) Under Assumptions [9) and|[I1] for every
a > 1, the following regret bound holds for sufficiently large T':

E[Ry] = O ( oT 1og(T)ns) .

PR
where S, = max <(32|g‘ra )\5 %) > )\3217’" a >, S ==

m,aYm,a

meM

Proof. The proof closely follows the reasoning from Theorem|[7] Let:
b [ (y,OM_O OY—1|a]LX1,
@ :[ (mvyaOM:LOY:1|a)]K><La

- [Fer=timy]

_ . . . L . _ [alog(T).
We know that ©,z, = b,. Using the same approach as in Theorem we derive the following inequality for e = 2%1 :
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a
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104l Aa [©all Aa

1 K
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5 } , we have:
ma | Kx1

Additionally, since x = [




Furthermore, for p,, 1), = P(M = m, OM =1 a), we have:

|pm,1|a _pm,l\a| <e

Using a similar approach to the proof of Theorem[7] we obtain:

- <8 Ca K>+1 (8 CaK+1>
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Therefore, we can conclude:

Additionally, we have the following bound for T, ,,, - (the number of times both M/ and Y are observed):

alog(T)
T

a,0n ,0Y

mm,a - Nm,a| <

Using P(OY =1,0M =11]a) = Y Pm.aVm.aAm.a» We have:
meM

T alog(T
% - Z pm,a’Ym,a)\m,a S %7
@ meM @

which gives Tg 0,4, .0y > % < > pm7afym7a)\m7a). Thus, for sufficiently large T and T,, > log(T)?, we have fi,;, o <

meM
2pm,a < 2.
Therefore:
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meM meM meM
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Using the same technique as before, we have the following inequality for T}, ,, ,,- (the number of times M = m and the
reward are observed when pulling arm a):

- alog(T 4p2,
Z Pm,aftm,a = Ha| < @) —.
2 Ta m,oy
meM meM M,
Therefore:
Co, K 1 log(T 452
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meM H@(ZH )‘a )\a 2 meM Ta,m,OY

which proves our UCB upper bound.



Similarly, we know that T}, ,, o > %pm .aAm,aYm,a, Which gives:
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Following the same reasoning as in previous proofs, we conclude:

E[Ry] = O \/aT log(1)Y 52| =0 ( ol 1og(T)nS) .




D ADDITIONAL EMPIRICAL EVALUATION
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(a) MNAR and UCB algorithms in the MNAR bandit (b) MAR and UCB algorithms in a real-world MAR
environment. bandit environment.

Figure 5: Complementary evaluation results for our proposed algorithms.

In Figure [5a} we compare the performance of the UCB and MNAR algorithms in the MNAR bandit environment. The
results clearly demonstrate that the cumulative regret of the UCB algorithm is consistently higher than that of the MNAR
algorithm. Additionally, the y-axis is displayed on a logarithmic scale, further highlighting the considerable difference in the
performance of our algorithm compared to the UCB algorithm. The environment is generated as before, with a horizon of
T = 100,000, and the experiment is repeated 10 times.

D.1 REAL-WORLD SIMULATION

The dataset used in this study is the Primary Biliary Cirrhosis (PBC) dataset from the Mayo Clinic E], containing 418
observations and 19 variables. Collected over a 10-year span (1974—1984), it focuses on a randomized, placebo-controlled
trial of D-penicillamine for treating PBC, and includes both trial participants and observational data from non-participants.

To simulate a real-world setting, we structured the data as follows: the Z1 variable (1 for D-penicillamine, 2 for placebo) was
treated as the arms of the bandit, representing treatment groups. The X variable, denoting the time in days from registration
to death, liver transplantation, or censoring, was used as the outcome. The D variable, indicating whether X measures time
until death (1) or censoring (0), served as the mediator.

The D mediator captures whether the time interval X is associated with death or censoring, offering key insights into the
progression of the disease and the effect of treatment. This setup allows us to model the pathways from treatment to outcome,
where Z1 represents the action taken, X is the reward (days survived), and D explains the intermediate state between
treatment and survival or death.

Applying the MAR algorithm to this MAR bandit environment yielded results consistent with those seen in synthetic data,
as shown in Figure [5b]
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