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ABSTRACT

Mainstream model-based offline reinforcement learning, which aims to learn ef-
fective policies from static datasets, often employs conservatism to prevent poli-
cies from exploring out-of-support regions. For example, MOPO penalizes re-
wards through uncertainty measures from predicting the next states. Prior context-
based approaches use meta-learning to infer latent dynamics, enabling a pol-
icy to adapt its behavior when deployed in out-of-support regions. This offers
the potential for more robust decision-making compared to traditional model-
based methods. However, current adaptive policy learning methods still lever-
age traditional conservative penalties to mitigate the compounding error of the
model, which can overly constrain policy exploration. In this paper, we propose
MOdel-Based Offline Reinforcement Learning with Adaptive Contextual Penalty
(MOBA), which introduces a context-aware penalty adaptation mechanism that
dynamically adjusts conservatism based on trajectory history. Theoretically, we
prove that MOBA maximizes a tighter lower bound on the true return compared
to methods with fixed conservative penalties, achieving a more effective trade-off
between risk and generalization. Empirically, we demonstrate that MOBA out-
performs state-of-the-art model-based and model-free approaches on NeoRL and
d4rl benchmark tasks. Our results highlight the importance of adaptive uncertainty
estimation in model-based offline RL.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable success in domains where agents can
learn through active trial-and-error interaction with an environment [Sutton et al.| (1998)); Wang et al.
(2018)); Zhao et al.| (2018)); Shi et al.| (2018). However, many real-world applications in areas like
robotics, healthcare, and city management require learning from pre-existing, static datasets, as on-
line exploration can be costly, unsafe, or impractical [Luo et al.| (2024)); [Zhang et al.| (2019); Zhou
et al.| (2020); Vazquez-Canteli et al.[(2019). Offline reinforcement learning|Lange et al.|(2012)Hein
et al.[(2017) |Levine et al.| (2020) |Siegel et al.|(2020) Jiang et al.[(2015)) Kumar et al.[|(2019)learns a
policy directly from a pre-recorded dataset, thereby enabling a safer training paradigm compared to
conventional online RL methods. Within offline RL, model-based approaches Wang et al.| (2019));
Kidambi et al.| (2020); |Yu et al|(2020)have gained significant attention. These methods explicitly
learn a dynamics model from the offline dataset and subsequently use it to generate synthetic tra-
jectories or to perform planning, thus improving data efficiency and enabling policy evaluation and
optimization without further interaction with the environment. Model-based offline RL holds the
promise of mitigating the sample inefficiency that plagues model-free methods, while also offering
the potential for better generalization through model-based reasoning. Nevertheless, its performance
is fundamentally limited by distributional shift, where errors in the learned model compound dur-
ing policy optimization, leading to catastrophic overestimation of returns in out-of-support regions
Fujimoto et al.| (2019).

Previous model-based approaches address this challenge by penalizing rewards based on model un-
certainty estimates. For example, MOPO |Yu et al.| (2020) penalizes rewards through the aleatoric
uncertainty from predicting the next states, while MOBILE Sun et al.| (2023)) quantifies uncertainty
via Bellman inconsistency. Although effective, these methods employ context-agnostic penalties
that penalize all out-of-support transitions, limiting the potential of leveraging dynamics models.
Access to states and actions outside the support region is more likely to be constrained by suppres-
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Figure 1: A depiction of our method compared with previous methods. In Figure 1(b) and 1(c),
multiple policy trajectories are shown because the meta-learning policy adapts its behavior based on
the inferred dynamics model.

sion, thereby restricting the learned policy to confine the agent within regions similar to those of the
behavioral policy.

In contrast, context-aware offline RL methods Rakelly et al.|(2019) |Chen et al.|(2023) has emerged
that leverage meta-learning to infer latent dynamics patterns and guide policy adaptation. By ex-
tracting latent representations of dynamics from prior experience, these methods enable policies to
adapt more effectively in out-of-support regions during deployment. This approach allows for more
robust decision-making compared to strictly conservative strategies, since it facilitates controlled
exploration rather than overly restricting it. Nevertheless, despite employing context-aware policies
to generalize beyond the training distribution, such methods typically still rely on reward penalties
which leads to an inherently conservative bias that can limit overall performance.

In this work, we introduce MOBA, a novel model-based offline reinforcement learning framework
that incorporates an adaptive contextual penalty mechanism to address the limitations of existing
methods. Unlike traditional approaches that rely on context-agnostic uncertainty penalties to mit-
igate model errors in out-of-support regions, MOBA dynamically adjusts conservatism based on
trajectory history. The proposed adaptive penalty mechanism operates through two synergistic com-
ponents: a context-recognition estimator that quantifies the confidence of the policy given the
inferred context and a model-coverage estimator that estimates the discrepancy between the real
environment and the model environment. The difference between the aforementioned model-based
methods and MOBA is shown in Figurd]I] In contrast to prior methods that either constrain the pol-
icy or use fixed penalties for adaptable policies, our method dynamically adjusts the penalty learning
high adaptation confidence policy in out-of-support regions as well as constraining low adaptation
confidence policies to out-of-support regions. Theoretically, we prove that MOBA’s adaptive penalty
tightens the lower bound on the true return compared to MOPO’s context-agnostic baseline. This
improvement stems from our method’s ability to distinguish context-based uncertainty, a capabil-
ity absent in prior work. Empirically, we evaluate MOBA on NeoRL and d4rl benchmark. Our
resulting policy yields better performance than SOTA algorithms on 11 out of the 15 tasks. It is
particularly noteworthy that MOBA surpassed MAPLE |Chen et al.|(2023)) , which also employs an
adaptable policy architecture, by and on two benchmarks seperatly. This demonstrates that under
the adaptable policy architecture framework, the context-aware penalty coefficient method proposed
in MOBA can effectively enhance algorithmic performance.

2 RELATED WORK

Model-free offline RL. Model-free offline RL methods constrain policies to the dataset’s support
to avoid exploiting out-of-distribution (OOD) states. Techniques include conservative Q-learning
(CQL) |Kumar et al.|(2020), which penalizes Q-values for OOD actions, and TD3+BC |Fujimoto &
Gu! (2021), which regularizes policies toward the dataset’s behavior. While effective, these methods
are inherently limited by the dataset’s coverage for the learned policies are usually conservative
since the dataset itself always limits the appropriate generalization of the learning policy beyond the
offline dataset. Wang et al.|(2021) |Peng et al.|(2019) [Kostrikov et al.|(2021) [Xu et al.| (2020)

Model-based offline RL. (MBRL). Model-based offline RL addresses these limitations by learning
a dynamics model from the dataset to generate synthetic transitions |Xu et al.| (2018)) Janner et al.
(2019) [Sun et al.| (2018). Early approaches like MOPO |Yu et al|(2020) penalize rewards using
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model uncertainty estimates, while MOBILE |Sun et al.| (2023)) quantifies uncertainty via Bellman
inconsistency. The most recent works focus on designing better conservative strategies |Kidambi
et al. (2020) Rigter et al. (2022) |Yu et al.| (2021) Lu et al.| (2021) to unleash the full potential
of the model. MOREC [Luo et al.| (2023) learns a generalizable dynamics reward function from
offline data, which is subsequently employed as a transition filter in any offline MBRL method.
However, existing methods face compounding model errors, especially when policies explore OOD
regions during long rollouts. MAPLE Chen et al.|(2023)) introduced contexture meta-policy learning
in models to enable generalization to unseen situations.

3 PRELIMINARIES

Markov Decision Processes and Offline RL We consider a Markov Decision Process (MDP)
defined by the tuple M = (S, A,T,r, po,7y) with state space S, action space A, transition
dynamics T'(s'|s,a), reward function r : S x A — R, initial state distribution po, and dis-
count factor v € (0,1). In offline RL, the agent learns a policy 7(a|s) from a static dataset
D = {(si,ai,ri,5:)} ¥, collected by an unknown behavior policy 75, without environment in-
teraction.

The objective is to maximize the expected return: Sutton et al.|(1999)

o0
’17]”(7'() =E 50~ [0 [Z vtr(shat)] (l)
ag~(-]s) =0
st+1~T(¢|se,at)

Adaptable Policy Learning Adaptable policy learning constructs an ensemble of plausible dy-
namics models {p;} to represent all possible transition patterns in out-of-support regions. A meta-
learned, context-aware policy leverages trajectory history to infer a latent environment context, dy-
namically adjusting its behavior to the inferred dynamics. The environment context is a latent
vector, z € Z, that aims to capture the specific characteristics of an underlying dynamics model
p € {p;}. This is achieved using an environment-context extractor, denoted by the mapping
¢ : T — Z, which infers the context z. In practice, this extractor is modeled as a recurrent neural
network (RNN) that processes the history of interactions. At each timestep ¢, it updates the context
based on the current state s;, the previous action a;_1, and the previous context z;_1, according to
the relation z; = ¢(sy, a;—1, 2¢—1). The policy, now context-aware, is conditioned on both the state
and this inferred context: m(als, z). The extractor ¢ and the policy 7, are trained jointly to max-
imize the expected return across the entire ensemble of dynamics models, guided by the objective
function:

¢, Ty = arg Iff}fEﬁW[Jﬁ(%)] 2)

This optimization ensures that the extractor learns to produce informative contexts and that the policy
learns to utilize these contexts to adapt its behavior effectively to any of the dynamics models it
might encounter. During deployment, the agent engages in a probing and reducing phase: it executes
actions in uncertain regions, collects real transition data, and iteratively refines its belief about the
true dynamics until it converges to a single, well-adapted policy, ensuring safe generalization beyond
the dataset’s support.

4 METHODS

4.1 REFLECTION ON ADAPTABLE POLICY LEARNING’S LIMITATIONS

Adaptable policy learning, as exemplified by frameworks like MAPLE |Chen et al.| (2023), offers
a principled approach to offline reinforcement learning by enabling policies to infer and adjust to
uncertain dynamics in out-of-support regions during deployment. However, its practical efficacy
is inherently limited by two key factors: the finite ensemble of learned dynamics models and the
generalization capacity of the context extractor. To formalize these constraints, we introduce the
probing-reducing paradigm, the framework that decomposes the deployment process into distinct
phases and identifies the resultant error sources.
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In this paradigm, policy deployment begins with a probing phase, where the policy explores a set
of potential behaviors corresponding to the ensemble of dynamics models, gathering observations
to infer the true underlying dynamics. This is followed by a reducing phase, where incompatible
models are progressively eliminated, narrowing the policy set toward the optimal behavior under the
inferred dynamics. The context extractor plays a central role in this reduction, iteratively encoding
observed transitions into a latent context z, which clusters consistent dynamics models and guides
policy adaptation.

Formally, consider an oracle context z* that modulates the policy 7(a | s, 2*) to match the optimal
policy ﬂ%(a | s) under the closest model T in the ensemble to the ground-truth dynamics 7*:

T = argmin E(; o)~pr [DkL (T7(- | 5,a)|T(- | 5,a))],
TeT

where T is the ensemble of models, and p™ denotes the state-action occupancy under policy 7.

During deployment, a critical transition horizon N, exists such that for timesteps £k > NN, the

inferred context zj, converges sufficiently to z*, reducing the policy set to the optimal one:

w(al|s,zy) =mlals,z"), Yk>N,.

This paradigm reveals two primary error sources in out-of-support operations: (1) probing-phase
recognition error, arising from delays in accurate context inference due to the extractor’s limited gen-
eralization, which prolongs suboptimal actions during probing; and (2) dynamics-gap error, stem-
ming from the ensemble’s incomplete coverage of the continuous dynamics manifold, quantified
by the minimal KL divergence between 7™ and the closest model in 7. Stronger context recogni-
tion accelerates reduction, minimizing probing error, while denser ensemble sampling reduces the
dynamics gap.

This analysis highlights a need to rethink uncertainty penalization in offline model-based RL. Tra-
ditional methods apply static penalties based solely on model prediction errors, which rigidly con-
strain exploration and fail to account for adaptive inference. In contrast, our approach introduces
a context-aware mechanism that dynamically modulates penalties based on probing efficiency and
model discrepancy, enabling more robust adaptation.

4.2 CONTEXT-AWARE PENALTY IN OFFLINE MODEL-BASED ADAPTABLE POLICY
LEARNING

Motivated by the probing-reducing paradigm, we derive a novel context-aware uncertainty penal-
ization mechanism that characterizes the performance gap between policy execution in the true en-
vironment and the learned models. This represents a significant innovation in adaptable offline RL,
as we are the first to integrate contextual adaptation directly into the penalty formulation, yielding
a tighter theoretical bound on true returns compared to prior static approaches. We begin with a
lemma establishing the relationship between policy returns under ground-truth dynamics 7 and

model dynamics T.

Lemma 4.1 (Context-based Telescoping Lemma). Let M and M be two MDPs sharing the reward
function r but differing in dynamics T and T'. Define the one-step model error as

GTI{?(S, a) = E5’~f(~\s,a) [VJ\Z(S/)] — Es’~T(~|s,a) [VJ\Z(S/)] .

Then,
Nyp(m) —nu(m) = 27j+1Esjaaj~7ff [/\(sj, a;) G (s aj)} ,
§=0

where

0 < A(s,a) =1—¢€(s,a)w(s,a) < 1.
Here, 1 () denotes the expected return of policy 7 in MDP M, V[ (s) is the value function, and -y
is the discount factor. The coefficient A(s, a) decomposes the performance gap into two interpretable
components, each addressing one of the error sources identified in the probing-reducing paradigm:
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* ¢(s,a) represents the context extractor’s efficiency in recognizing the true dynamics during
the probing phase. Specifically, it approximates the probability that the inferred context zy,
has converged to the oracle context z* (i.e., k > NN, where NN, is the transition horizon).
A higher € value indicates that the policy has quickly reduced its set of potential behaviors
to the optimal one, thereby minimizing suboptimal actions taken while “probing” the envi-
ronment. In essence, e captures how well the context extractor generalizes from observed
transitions to eliminate incompatible models early, directly mitigating probing-phase recog-
nition error.

* w(s,a) = 1—k(s, a), where (s, a) quantifies the relative accuracy of the closest individual
model in the ensemble (post-context inference) compared to the full ensemble average in
approximating the ground-truth dynamics 7. Derived from a ratio of expected value errors
(see Appendix , k(s,a) is smaller when the selected model closely matches T, leading
to a lower w and thus a smaller dynamics-gap error. This term reflects the irreducible
discrepancy due to the ensemble’s finite coverage of the dynamics space—lower w means
the inferred model is a strong approximation, reducing the risk of persistent errors even
after probing.

Theoretical advantage analysis Under the assumption of Gaussian-distributed predictions from
the ensemble models—a standard practice in model-based RL for quantifying uncertainty through
predictive variance —the approximation error of the closest individual model is at most that of the
full ensemble average. This implies (s, a) < 1, thereby ensuring the bound 0 < A(s,a) < 1 holds
(see Appendix [A for proof). To operationalize this, we adopt an admissible error estimator (s, a)
that upper-bounds the model error: u(s,a) > |G7](7(s, a)|. We use the max aleatoric error

UMOPO(Sa a) = m?x ||219(S,G)HF

where {3 (s,a)}
penalty as p(s,a)

fil are the variance heads of the ensemble models. We define the context-aware

= A(s,a) - upropo(s, a), yielding the uncertainty-penalized reward 7 (s, a) =
r(s,a) — p(s, a). The corresponding penalized MDP is M = (S, A, T, 7, 10, 7). We use 77 (1) to
represent the expected discounted return (i.e., the long-term cumulative reward) of policy = when
executed in the true Markov Decision Process (MDP) M. This is the actual performance metric
in the ground-truth environment, defined as: nas(7) = Er 7[> 0 v'7(st, ar)], where T is the
true transition dynamics, v € (0,1) is the discount factor, and the expectation is over trajectories
generated by starting from g, taking actions from 7, and transitioning via 7.

To compare our adaptive contextual penalty method with mainstream conservative methods, we
use 7moro (7) to represent the expected discounted return of policy 7 in MOPO’s penalized MDP,

defined as: nmoro(m) = E_ 7, [3°,20 7 Pymoro(st, ar)] where fvopo(se, ar) = r(se,ar) —
umopo (5S¢, at) is the penalized reward, Similarly, nz;(7) represents the expected discounted re-
turn of policy m when executed in the uncertainty-penalized MDP M, defined as: nyp(m) =
E, 7207 7 (se, ar)]
Theorem 4.1 (Adaptive Penalty Lower Bound). For any policy 7, the true return is lower bounded
by:

() > nyp(m) > Mvopo () 3)

The proof, based on Lemma[4.1] and the triangle inequality, is provided in Appendix [A] This bound
is strictly tighter than those from static penalties, as A(s,a) < 1 adapts to contextual confidence,
reducing conservatism in regions where probing has succeeded or the dynamics gap is small.

4.3 PRACTICAL IMPLEMENTATION

We implement this framework by extending ensemble-based dynamics modeling with the adaptive
penalty. An ensemble of m probabilistic models {ﬁ}:’;l is trained via supervised learning on the
offline dataset D, where each model predicts T;(s’ | s,a) ~ N (ui(s, a), S:(s, a)) under the Gaus-
sian assumption. A recurrent context extractor e (z | st,a¢—1,2¢—1) infers the context variable z;
from trajectory history.
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The policy mg(a | s¢, 2¢) conditions on both the state s; and context z;. The penalty term is defined
as pr = A(S¢, ar) - u(Se, ar), with u(se, at) as defined above.

For (s, a;), we use the normalized entropy of the action distribution:
e(st,ar) =1 — H(mo(- | 8¢, 2¢)),
where higher confidence (lower entropy) indicates the post-probing phase.

For w(s:, at), we define:

Var; [ (st, at)]

E[|Z:(st, ae)l]
This ratio captures optimal model discrepancy by emphasizing inter-model disagreement (numer-
ator) relative to average intra-model uncertainty (denominator). It better quantifies the dynamics
gap than raw variance, as it normalizes for intrinsic model noise, highlighting regions where the
closest model deviates significantly from the ensemble mean—indicative of poor approximation to
ground truth. Training proceeds as in Algorithm using SAC to update 6 and & on D U D;gjioy, With
penalized rewards in rollouts.

w(se, ar) =

Algorithm 1 MOBA: Model-Based Offline RL with Adaptive Contextual Penalty

1: Input: Offline dataset D, ensemble size m, rollout horizon H
2: Initialize ensemble {7}/, policy g, context extractor )¢, rollout buffer Dygjoy < 0

i=1>
3: for each training iteration do
4: Rollout Generation:
5 for k = 1to K do N .
6: Sample initial state s ~ D, select T; ~ {T;},
7: fort =0to H — 1do
8: Compute context z; <— ¢ (2¢ | s¢,ae—1, 2¢—1)
o: Sample action a; ~ my(a | s¢, 2¢)
10 Predict next state s;y1 ~ T;(s' | s¢,ar)
11: Compute reward ry < r(s¢, at)
12: Compute €(s¢, at), w(st, at)
13: Compute A(s¢, ar) < 1 — e(sg, ar) - w(se, ar)
14: Adjust reward 7} <y — A(S¢, ar) - u(se, ar)
15: Store (St+1a 7427 dt+1, Sty At Zt) in Drollout
16: if termination then
17: break
18: end if
19: end for
20: end for
21: Parameter Updates:

22: Update 0, £ using SAC on D U Digjione to maximize expected return
23: end for
24: Output: Optimized policy 7y, context extractor ¢

5 EXPERIMENTS

We assess the effectiveness of the adaptive contextual penalty mechanism in enhancing policy per-
formance, particularly in scenarios requiring generalization to out-of-support regions. In this sec-
tion, we first compare MOBA against state-of-the-art model-based and model-free offline RL meth-
ods to answer how does MOBA compare to previous methods in standard offline RL benchmarks.
We then conduct ablation studies to isolate the impact of the adaptive penalty, thereby demonstrat-
ing the critical role of our proposed dynamic penalty coefficient in effectively balancing constraint
satisfaction and optimization performance throughout the training process. Next, we will present a
demonstration by tracking the performance of parameters during the training process to justify our
selection of €(s, a), w(s,a). Also, we present a comparative analysis of uncertainty penalties across
different contexts to demonstrate how our context-based penalty method, through its integration with
environmental identification, yields penalty estimation that are better aligned with adaptable policy
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requirements. Finally, we will demonstrate the performance variation of the MOBA algorithm with
the increase of the rollout horizon to a certain extent. Traditional adaptable policies exhibit perfor-
mance degradation when the rollout horizon is extended, which limits the algorithm’s capability. We
will show that our algorithm mitigates this issue to some degree and provide analyses to the mech-
anism behind this improvement. During the submission period, we temporarily hosted the code on
an anonymous GitHub repository

5.1 BENCHMARK RESULTS

Comparative Evaluation on NeoRL Benchmark. We evaluate MOBA on on the NeoRL bench-
mark |Qin et al.[(2021) |Gao et al.| (2025)). We compare MOBA against six baseline robot locomotion
control tasks. Table [I] shows normalized scores. MOBA outperforms previous SOTA methods in
most of the tasks and achieves the highest average score among all methods. The success achieved
in the challenging NeoRL benchmark strongly demonstrates the potential of our algorithm in real-
world scenarios. The detailed baselines and hyper-parameters are listed in AppendixB]

Table 1: Performance comparison on NeoRL tasks. Normalized scores (mean + standard deviation)
are reported at the final training iteration. Bold denotes the best mean performance.

Task Name BC CQL TD3+BC EDAC MOPO MOBILE MAPLE MOBA

HalfCheetah-L  29.1 38.2 30.0 31.3 40.1 54.7 36.2 51.3 £0.37
Hopper-L 151 16.0 15.8 18.3 6.2 17.4 22.7 32.97 £0.27
Walker2d-L 28.5 447 43.0 40.2 11.6 37.6 33.8 70.46 £0.77
HalfCheetah-M 49.0 54.6 52.3 54.9 62.3 77.8 75.5 86.2 £1.32
Hopper-M 513 645 70.3 44.9 1.0 51.1 27.7 74.56 £ 18.3
Walker2d-M 487 573 58.5 57.6 39.9 62.2 40.7 78.63 £2.23
Average 37.0 459 45.0 41.2 26.9 50.1 394 65.7

Comparative Evaluation on d4rl Benchmark. We evaluate MOBA on on the d4rl [Fu et al.|(2020)
benchmark,which includes Gym and Adroit domains.Table E] shows normalized scores. MOBA
demonstrates superior or competitive performance across the majority of tasks. The results demon-
strate that the policy induced by adaptive penalty coefficients outperforms that derived solely from
the uncertainty measure associated with predicting the subsequent state.

Table 2: Performance comparison on d4rl tasks,Normalized scores (mean = standard deviation) are
reported at the final training iteration. Bold denotes the best mean performance.

Task Name CQL TD3+BC EDAC MOPO COMBO TT RAMBO MOBILE MAPLE MOBA

hfctah-rnd 31.3 11.0 284 385 388 6.1 39.5 39.3 384 383+£1.23
hopper-rnd 53 8.5 253 317 179 69 254 31.9 106 33.2+0.1
walker-rnd 54 1.6 16.6 7.4 7.0 59 0.0 17.9 21.7  24.1+0.67

hfctah-med 469 483 659 730 542 469 779 74.6 504 79.8+1.23
hopper-med 619 593 101.6 62.8 972 674 870 106.6 21.1  105.6 £0.1
walker-med 79.5  83.7 925 84.1 819 813 849 87.7 56.3  92.24+2.06
hfctah-med-rep 453  44.6 61.3 721 55.1 441 687 71.7 590  69.7+0.1

hopper-med-rep 86.3  60.9 101.0 103.5 895 994 995 103.9 875 110.8+04
walker-med-rep 76.8  81.8 87.1 856 560 82.6 892 89.9 76.7 95.1+3.7

Average 487 444 644  62.1 553 490 63.6 69.3 46.9 72.5

5.2 ABLATION STUDIES

To evaluate the effectiveness of the adaptive penalty mechanism in MOBA, we conduct three tar-
geted experiments. These studies isolate the contributions of the adaptive components and validate
the design choices for €(s, a) and w(s, a), as well as the overall uncertainty estimation strategy.

'https://anonymous.4open.science/r/MOBA-DGAB
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To quantify the contribution of adaptive penalties, we compare MOBA with variants with fixed
penalty coefficients: 1) € fixed to 1.0, 2) w fixed to 1.0, and 3) both fixed to 1.0 scenarios. We
select Walker2d-low to verify the argument. Figure[2]demonstrates that MOBA consistently outper-
forms these variants across training epochs. The adaptive adjustment of both € and w enables better
handling of trajectory-dependent uncertainties, confirming the advantage of context-aware penalty
adaptation over context-unaware approaches.

100 —— both-used
both-fixed

— epsilon-fixed
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—— Epsilon Fixed
—— Omega Fixed

o 200 800 0 200 800

400 60 a0 60
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(a) learning curve for walker-low (b) learning curve for walker-med

Figure 2: Uncertainty penalty compared over different context

Second, we justify the chosen formulations for €(s, a) and w(s, a) by analyzing their behaviors. For
a properly selected €(s, a), it is hypothesized that the value of €(s, a) will monotonically increase
during the rollout process. This theoretical prediction stems from the inherent property of €(s, a)
as an estimator of discriminative capability: as the rollout length extends, the divergence between
distinct environmental trajectories amplifies, thereby enabling the policy to progressively enhance
its discriminative capacity in environmental identification. Figur illustrates €(s, a) across rollout
steps averaged over 100 epochs. This metric reflects the policy’s contextual awareness, showing a
stable trend with minor fluctuations, validating its suitability as a probing phase recogniton error
indicator.

For an appropriately chosen w(s, a), we hypothesize that as the number of models increases, the
average value of w(s, a) during training remains relatively high. This is attributed to the fact that
w(s, a) serves as an estimator of model coverage capability, where a greater number of models inher-
ently enhances the collective coverage capacity of the ensemble. Figur depicts w(s, a), defined
as the ratio of ensemble variance to expected covariance magnitude, across different model sizes.
The analysis reveals that w(s,a) decreases with larger ensembles, indicating improved dynamics
approximation, thus supporting our choice of this metric for capturing dynamics gap error.
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(a) € behavior in a rollout procedure (b) w behavior in different model size

Figure 3: A depiction of the dynamic changes in parameters € and w throughout the training process

To verify the effectiveness of MOBA in terms of context recognition, we assess uncertainty estima-
tion by comparing its behavior under 1) learned context 2) learned context with a gaussian noise
perturbation 3) random context. All experiments are done in the walker2d-low environment, with
same penalty coefficient. As shown in figurdd] The uncertainty penalty remains lowest and most
stable with real context, increases with noise perturbation, and exhibits the highest variability with
random context. This confirms that the context-aware uncertainty estimator effectively leverages tra-
jectory history. With a well learned context, the uncertainty penalty drops to avoid overly restriction
on policy exploration.
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Figure 4: Uncertainty penalty compared over different context

In traditional adaptable policy learning methods, as reported by MAPLE, the asymptotic perfor-
mance gradually deteriorates as the rollout horizon H increases. This phenomenon stems from the
progressive accumulation of compounding errors with increasing H, where the adaptable policy
overfits the finite dynamics models and consequently fails to infer a correct environmental context
for policy adaptation when deployed. In contrast, our methodology demonstrates a certain degree
of performance improvement with a limited range of increment in H, as shown in Figurd5|. This
indicates that our algorithm can mitigate the overfitting issue of the adaptable policy to a certain
extent. For deployment environments that significantly differ from the model environment, the
policy exhibits poor contextual identification capability, while the model’s coverage of the environ-
ment remains low. Such scenarios are constrained during training by a large uncertainty penalty.
Consequently, our algorithm can tolerate a longer rollout horizon, thereby enhancing its overall
performance.

80 0 200
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Figure 5: Performance Under different horizon

6 DISCUSSION AND FUTURE WORK

In this paper, we propose MOBA, a novel model-based offline reinforcement learning framework
with an adaptive contextual penalty mechanism, which addresses the limitations of existing meth-
ods by dynamically adjusting conservatism based on trajectory history. Our theoretical analysis
proves that MOBA maximizes a tighter lower bound on the true return compared to prior methods
like MOPO, and empirical results on the NeoRL and d4rl benchmarks demonstrate its superior per-
formance over state-of-the-art model-based and model-free approaches. These findings highlight the
critical role of adaptive uncertainty estimation in enhancing policy generalization to out-of-support
regions.

Despite these advancements, MOBA’s practical implementation reveals significant scope for im-
provement. The choice for €(s, a) and w(s, a)—currently based on empirical justification—could
be refined through automated hyperparameter tuning or theoretical optimization. Although our ab-
lation studies justify these choices, a principled derivation of €(s, a) and w(s, a) from first principles
could further enhance robustness, potentially leading to a more generalized framework.
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A  PROOFS

A.1 PROBLEM FORMALIZATION

We formalize the problem under the Markov Decision Process framework, where the true en-
vironment is denoted as M* = (S, A, T*,r, uo,vy) with T*(s|s,a) representing the ground-
truth transition dynamics. To approximate this system, we employ an ensemble of proba-
bilistic models {fd,(s’ |s,a)}, that collectively form a mixture distribution T¢( 'Is,a) =

2N N, (5,0), S, (s, a)).

We denote 7 9(s'|s, a) as the model in the ensemble that is closest to the ground truth environment.
A trainable context extractor ¢ (z|70.+) generates latent context variables z € Z from trajectory
history 7o.+ = (S0, ao, --., St), enabling temporal adaptation.

A.2 PROOF OF TELESCOPING LEMMA

We now provide a proof for Lemma . T|from the main text.

Lemma A.1 (Telescoping Lemma for Adaptive Model Switching). The difference in returns be-
tween the learned policy in the model and the true environment can be expressed as:

n3z(m) — v (0 Z VIR, gn [/\(Sj, a;)GT(s5, aj)} )
where \(s, a) is an adaptive wezghtmg function.

Proof. We begin by defining the value difference function:
G (5.0) =7 (By o) VAT ()] = Bt (o) Vi ()] 5)

Using the telescoping lemma from MOPO |Yu et al.| (2020), the performance difference can be ex-
pressed as a sum over horizon steps. In our adaptive framework, we employ different transition
models at different stages:

Np

+1
771\7( - THV[* Z% ,-YJ s ajNﬂ,f¢ [GN[(SJ’ aj):|
J:

+1
+ Z 7J+ Es_;‘7aj~7f,f9 {G%(sj,aj)}
Jj=Np+1

(6)

where IV, represents the transition step where we switch from the ensemble model f¢ to the single
best model Tp.

To unify these expressions, we apply importance sampling to relate the expectations under different
models. First, we rewrite GTAJZ(S, a) using importance sampling:
] )

T(s'|s;, ;)

’ 1|V
(T*(8’|Sjaaj) )
For the two transition models fz, (ensemble) and fg (single best), we define their respective contri-
bution functions:

7T‘ _ A+l N
Gﬁ(37 a’) =7 ESj,ajNﬂ’,T ES,NT*(SJ7‘IJ)

Go(sj:a5) = Egynrs(s;,a5)

3)
GQ(Sj, aj) = ]ES’NT*(Sj,aj)
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The relationship between expectations under different models can be expressed through the ratio:

B, ardy |Co(55:0)| =By ooz, [K055,05) G (55,0 9)
where R
E Dolelea) 1)y (s')
G@(s,a) . s'~T*(s,a) T*(s'|s,a) M

k(s,a) = = = (10)
Ty(s'|s,a T
G¢(S7a) ES/NT*(S:U') [(T{:ES"S»G% o 1) VM(S/):|
Combining both parts of the performance difference:
NP
77]’@(77) — N+ (77) = 7]+1E8j,aj~7r,f“¢ [GEJ\Z(SW aj)}
j=0
Y AE, g, [R50 4G (5, 05)] (n
J=Np+1
= Z ’Yj+1Esj,aj~7l',T\¢ |:/\($j, aj)G%(sj, aj)}
j=0
where A(s, a) is the piecewise weighting function:
1 | < N,
As,a) =<7 J="p
k(s,a), j>N,
O

A.3 PROPERTIES OF THE ENSEMBLE MODEL

For a Gaussian ensemble model, the ratio term can be analyzed as follows:

~ N 7
Tslsa) | 45N Tulslsa) }vZ(T@ >_1 1)

T+(s'|s,a) T+(s'|s,a) <\ T~ s’\s a)
Defining the error of a single model as e;(s") = Egwr+(s,a) [m — 1] , the ensemble error

becomes e4(s') = vazl ei(s'). Since Tj is the model closest to the real dynamics, we have
eg < eg, which implies:

k(s,a) <1 (13)

A.4 PRACTICAL APPROXIMATION

In practice, the exact transition step INV,, is unknown. We therefore introduce €(s, a) as the estimated
probability that j > N, (i.e., the probability that we have switched to the single model). The
weighting function A(s, a) can then be approximated as:

A(5,0) = (1 — (5,)) - 1+ €(5,a) - 5(5,)
= 1— (s,0)(1 — (5,a) (14)
=1—€(s,a)w(s,a)

where w(s,a) = 1 — k(s,a) > 0 represents the relative advantage of the single model over the
ensemble.

This formulation provides a practical way to implement the adaptive weighting scheme described in
the main text.

14
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A.5 PROOF OF ADAPTIVE PENALTY LOWER BOUND

We now provide a proof of theorem 4.1

Proof. Start from telescoping decomposition:
() = nyp(m) — E[A(s, a)G%(s, a)] (15)
Apply triangle inequality :

nu () = n37(m) — A(s, a)E[umoro (s, a)]
=E[r — A(s, a)umopo(s, a)] (16)
> E[r — umoro(s, a)] = mmopo ()

Theorem.1|show that our adaptive coefficient Avopa = 1—¢(s, a)w(s, a) provides a strictly tighter
lower bound on the true return.

B IMPLEMENTATION DETAILS

B.1 BENCHMARK

Here we introduce the baselines used in our experiments, including model-free offline RL and
model-based offline RL. The offline RL benchmarks include :

1. CQL |Kumar et al.|(2020), which penalizes Q-values on OOD samples
2. TD3+BC Fujimoto & Gu|(2021)), which adopts a BC constraint when optimizing policy

3. EDAC An et al.[(2021),which leverages clipped Q-learning to penalize based on the uncer-
tainty degree of the Q-value

4. COMBO |Yu et al,| (2021),which applies CQL in dyna-style enforces Q-values small on
OOD samples

5. RAMBO Rigter et al.|(2022),which trains the policy and the dynamics model adversarially

6. MOPO |Yu et al| (2020),which learns a pessimistic value function from penalty-adjusted
rewards due to uncertainty in dynamic model predictions.

7. MOBILE |Sun et al.| (2023)),which penalizes the rewards with uncertainty quantified by the
inconsistency of Bellman estimations

B.2 HYPERPARAMETER

The hyper-parameters for MOBA is derived from the default parameters of MOBILE. The major
modification we did is lengthen the rollout horizen to 100, for all experiments, and use a larger
model ensemble. The details are listed in table[3]

15
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Table 3: Common Hyper-parameters of MOBA

Attribute Value
Actor learning rate 3e-4
Critic learning rate 3e-4
Dynamics learning rate le-3
Model ensemble size 50
Number of the selected models 35

The number of critics 2

Hidden layers of the actor network [256, 256]
Hidden layers of the critic network [256, 256]

Hidden layers of the dynamics model
Discount factor ~

Target network smoothing coefficient 7
Max Rollout horizon H.ojjout

Optimizer of the actor and critics
Rollout number per epoch

Batch size of optimization

Batch number of inferring reward
Total gradient steps

Actor optimizer learning schedule

[200, 200, 200, 200]
0.99

5x 1073

100

Adam

2000

256

4

1 x 108

Cosine learning schedule

16
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