
Saving 100x Storage: Prototype Replay for
Reconstructing Training Sample Distribution in

Class-Incremental Semantic Segmentation

Jinpeng Chen1, Runmin Cong2∗‡, Yuxuan Luo1, Horace Ho Shing Ip1†, and Sam Kwong3‡
1Department of Computer Science, City University of Hong Kong, Hong Kong

2School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
3Lingnan University, Hong Kong

jinpechen2-c@my.cityu.edu.hk, rmcong@sdu.edu.cn, yuxuanluo4-c@my.cityu.edu.hk,
horace.ip@cityu.edu.hk, samkwong@ln.edu.hk

Abstract

Existing class-incremental semantic segmentation (CISS) methods mainly tackle
catastrophic forgetting and background shift, but often overlook another crucial
issue. In CISS, each step focuses on different foreground classes, and the training
set for a single step only includes images containing pixels of the current foreground
classes, excluding images without them. This leads to an overrepresentation of these
foreground classes in the single-step training set, causing the classification biased
towards these classes. To address this issue, we present STAR, which preserves the
main characteristics of each past class by storing a compact prototype and necessary
statistical data, and aligns the class distribution of single-step training samples
with the complete dataset by replaying these prototypes and repeating background
pixels with appropriate frequency. Compared to the previous works that replay
raw images, our method saves over 100 times the storage while achieving better
performance. Moreover, STAR incorporates an old-class features maintaining
(OCFM) loss, keeping old-class features unchanged while preserving sufficient
plasticity for learning new classes. Furthermore, a similarity-aware discriminative
(SAD) loss is employed to specifically enhance the feature diversity between similar
old-new class pairs. Experiments on two public datasets, Pascal VOC 2012 and
ADE20K, reveal that our model surpasses all previous state-of-the-art methods.
The official code is available at https://github.com/jinpeng0528/STAR.

1 Introduction

Typically, neural networks [6, 15, 16] are trained in a one-time fashion.When data updates occur,
retraining on the entire dataset is often necessary, as finetuning solely on new data leads to catastrophic
forgetting [21] of previously learned knowledge. However, frequent retraining is time-consuming and
requires the storage of all past data. Consequently, there is a growing interest in enabling networks to
achieve continual learning, which aims to attain performance comparable to one-time training by
progressively learning from new data.

*Runmin Cong is also with the Key Laboratory of Machine Intelligence and System Control, Ministry of
Education, Jinan, Shandong, China.

†Horace Ho Shing Ip is also with the Centre for Innovative Applications of Internet and Multimedia
Technologies, City University of Hong Kong, Hong Kong.

‡Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/jinpeng0528/STAR

While most continual learning research has focused on image classification, the growing expectation
for computers to perform various tasks has driven the expansion of research into other domains. One
such domain that has gained considerable attention is class-incremental semantic segmentation (CISS).
In CISS, the training process involves multiple steps, with each step focusing on different classes.
During each step, only a part of the classes is considered foreground and assigned ground-truth labels,
while foreground classes from past or future steps are labeled as background. Compared to other
continual learning tasks, CISS must address not only catastrophic forgetting but also background
shift [2]. The latter refers to the fact that the background in the current step may include pixels from
past or future foreground classes, causing its semantics to change across steps. Without specific
countermeasures, this can greatly confuse the network and result in poor performance.

Previous CISS methods [1, 2, 3, 9, 22, 23] effectively addressed catastrophic forgetting and back-
ground shift, but they often neglect another critical issue: the discrepancies in class distributions
between single-step training sets and the complete dataset. Single-step training sets include only
images with pixels from corresponding foreground classes, resulting in an increased proportion of
these classes compared to the complete dataset. For instance, under a CISS protocol on the Pascal
VOC 2012 dataset [11], overlapped 19-1, 19 foreground classes are trained in the first step, and only
tv/monitor is in the second step. In this protocol, tv/monitor constitutes 16.5% of pixels in the second
step’s training set but only 0.8% in the complete dataset. Hence, the network may become biased
towards tv/monitor, causing numerous false positives, where pixels not belonging to tv/monitor are
misclassified as such. Though adjusting class weights in the loss function can mitigate this issue, the
limited quantity and richness of negative samples (pixels not tv/monitor) impede a full grasp of their
potential characteristics.

To tackle this issue, we propose a method called STAR (STorage sAving Replay for CISS). After
each training step, STAR stores key information, including a compact prototype for each current
foreground class, which is derived from the features of this class, and statistical data related to the
prototypes or class proportions. Using this information, STAR replays past foreground classes and
repeats background pixels at appropriate frequencies during subsequent steps, enabling a thorough
reconstruction of single-step training sample distributions with minimal storage cost. Compared to
methods that save and replay raw images [1, 3], STAR significantly reduces storage requirements
(using only ~1% of space) while achieving better performance. It also avoids ethical concerns, as
the stored data does not contain personal information. Note that although previous replay-based
CISS works [1, 3, 20] consider the main function of replay to be combating forgetting, we argue
that its more crucial role is in learning new classes, as confirmed by [1, 3], where the versions
with replay improve the performance on new classes more than old classes. Since new classes are
typically trained individually or with few other new classes, there is a larger overrepresentation in the
single-step training set, leading to a noticeable bias in the new-class classifiers that cannot access
enough negative samples. The replayed samples, however, can alleviate this problem by serving as
negative samples. Extending this idea, we propose to thoroughly align the class distributions of each
single-step training set with the complete dataset up to that step by controlling the replay frequency.

In addition, to coordinate with our replay strategy as well as reduce forgetting, it is important to
maintain old-class features during subsequent steps. Otherwise, old-class features will deviate from
the saved prototypes, rendering the replay ineffective. To address this, we propose an old-class
features maintaining (OCFM) loss, which is a spatially-targeted knowledge distillation that constrains
the change of old-class features while allowing sufficient flexibility to learn new classes. Moreover,
we introduce a similarity-aware discriminative (SAD) loss to selectively enhance discriminability
between similar new and old class features, making it easier for the classifiers to distinguish them.

In summary, this paper presents the following contributions: (1) We propose STAR, a method that
stores necessary statistical data and compact prototypes for learned foreground classes, enabling a
comprehensive reconstruction of single-step training sample distributions to align with the complete
dataset, thus eliminating the bias towards specific classes. (2) We introduce an old-class features
maintaining (OCFM) loss that retains learned knowledge in a spatially targeted manner, preserving
old-class features while ensuring sufficient flexibility for learning new classes. We also design a
similarity-aware discriminative (SAD) loss to specifically enhance the discriminability of features
between similar old-new class pairs, facilitating the classification. (3) On two public datasets, Pascal
VOC 2012 [11] and ADE20K [34], our STAR achieves state-of-the-art performance in CISS.

2

2 Related work

2.1 Continual learning

Continual learning aims to enable models to incrementally learn new knowledge while avoiding
catastrophic forget old knowledge. In computer vision, most continual learning research focuses
on image classification and falls into three categories: regularization-based, rehearsal-based, and
structure-based methods. Regularization-based methods [17, 8, 10, 4] apply constraints to parameter
updates to preserve crucial learned knowledge. Rehearsal-based methods [26, 27, 24] store a small
amount of past data or generate additional old-class data for replay during subsequent steps to
minimize forgetting. Structure-based methods [19, 28, 18] allocate extra parameters for new classes
and keep parameters related to old classes unchanged to preserve knowledge for both.

Similar to our approach, several previous continual learning studies have also aimed at enhancing
memory efficiency [14, 30, 32]. For example, [14, 30] utilize compact prototypes to retain old class
information and have delved into addressing prototype ineffectiveness caused by shifts in the feature
space during incremental training. [32] leverages low-fidelity exemplars rather than prototypes, with
a focus on narrowing the domain gap between these low-fidelity exemplars and raw images. Our
method distinguishes itself in four aspects: (1) We save a single compact prototype per class for better
memory efficiency, unlike some prior works [14, 32] which store multiple prototypes or exemplars.
(2) We incorporates class distribution during replay, effectively rectifying the classification bias. (3)
We store feature statistics beyond prototypes, offering more comprehensive cues of past classes. (4)
All these studies concentrate on continual image classification, but our focus is CISS.

2.2 Class-incremental semantic segmentation

In recent years, a growing number of methods have focused on the CISS task. ILT [22] employs
knowledge distillation on both output and intermediate features to reduce catastrophic forgetting.
MiB [2] addresses background shift for the first time, using operations on predicted probabilities
to eliminate semantic contradictions between steps. SDR [23] leverages prototype matching and
contrastive learning to enhance discrimination between features of different classes while applying
feature sparsity techniques to reserve space for future knowledge. PLOP [9] preserves old-class
knowledge using pseudo labels generated by the previous model for supervision and a spatially-aware
variant of POD [10]. SSUL [3] introduces an extra unknown class aided by salient object detection
models to tackle background shift. DKD [1] adopts decomposed knowledge distillation to maintain
not only the output logit but also its positive and negative components.

RBC [33] is the only prior method that has examined the differences in class distributions between
single-step training sets and the complete dataset. During incremental training, it employs pairs of
input images, one normal and the other with new-class pixels erased. Additionally, it enhances the
weight of old-class pixels in the loss function. These strategies do help mitigate the bias of classifiers
towards new classes. However, they do not take into account the actual class proportions within the
complete dataset when rectifying the bias, offering no assurance that that the classifier’s bias can be
adjusted to an appropriate level. In contrast, our approach, which replays old-class prototypes based
on the recorded class proportion in all past training samples, holds an advantage.

3 Proposed method

3.1 Problem definition and basic setup

In CISS, a model incrementally learns among T steps. For each step t ∈ {1, . . . , T}, the training
set Dt is consisted of N t images {xt

i}N
t

i=1 ⊆ RH×W×3 and corresponding labels {yti}N
t

i=1 ⊆ RH×W ,
where H ×W indicates the image size. During step t, only a subset of classes, Lt, is regarded as
foreground classes with ground-truth labels in yti . All other pixels, including the actual background,
past classes L1:t−1, and future classes Lt+1:T , are labeled as background. Note that the sets of
foreground classes for different steps are disjoint, i.e., Lt ∩ L1:t−1 = ∅ and Lt ∩ Lt+1:T = ∅.

The model at step t is denoted as M t, consisting of a feature extractor Ψθt with parameters θt and
classifiers Φωt with parameters ωt. Φωt includes the classifier for each past or current foreground
class l ∈ L1:t, represented as Φωt

l
. Before training at step t, θt and {ωt

l}l∈L1:t−1 are initialized by

3

compute feature center(s)

ℒ!"#
ℒ$%&'

Classifiers Φ!!

Feature Extractor Ψ"!"#

Feature Extractor Ψ"!Input Images 𝑥#

Input Images {𝑥#$%}%&'#$' Feature Extractors
{Ψ"!"$}%&'#$'

𝜇̇(%

ℒ(&)$

filter old-class regions

filter old-class regions

similarize

co
m

pu
te

 fe
at

ur
e

ce
nt

er
(s

)
w

ith
in

 th
e

ba
tc

h

replay

Prototypes {𝜇(}(∈*#:!"#

Output 𝑝#

Features {𝑓#$%}%&'#$'

Features 𝑓#,#$'

Features 𝑓#
Background repetition

filter background

Figure 1: Overview of the proposed STAR. In earlier steps, prototypes for past foreground classes
have been saved. At the current step, prototypes are replayed, and background pixels are repeated for
classifiers. The OCFM loss maintains similarity between old-class region features from current and
previous feature extractors, while the SAD loss differentiates features for similar old-new class pairs.

θt−1 and {ωt−1
l }l∈L1:t−1 , and {ωt

l}l∈Lt is randomly initialized. For an input image xt
i, the output

of M t is denoted as pti ∈ RH×W , which can be computed by pti = M t(xt
i) = Φωt ◦Ψθt(xt

i). The
extracted features are denoted as f t

i ∈ Rh×w×c, which can be computed by f t
i = Ψθt(xt

i). Here,
h × w and c represent the spatial size and the number of channels, respectively. When feeding
a current image xt

i to a previous model M t−τ or feature extractor Ψθt−τ , the output is given by
pt,t−τ
i = M t−τ (xt

i), and the features are given by f t,t−τ
i = Ψθt−τ (xt

i).

3.2 Overview of the method

The overview of the proposed STAR is shown in Fig. 1. After training at each step t−τ , the prototype
of each foreground class l ∈ Lt−τ and essential statistics are computed and saved. At a subsequent
step t, the input to the classifiers includes not only the features extracted from the input image but also
proportionally replayed prototypes of all past foreground classes as well as repetitions of the features
in the background region, aligning the sample distribution with the training set accumulated up to
this step, D1:t. Moreover, we employ the OCFM loss, Locfm, between the features f t

i and f t,t−1
i to

preserve old-class features and apply the SAD loss, Lsad, to differentiate the features between similar
old-new class pairs. Consequently, our total loss function is:

L = Lmbce + αLocfm + βLsad. (1)

Here, Lmbce denotes a multiple binary cross-entropy (mBCE) loss with a positive weight of γ as in
[1, 3], which is proved to be more suitable for CISS than a multi-class cross-entropy loss. Locfm and
Lsad denote the OCFM and SAD losses, respectively, balanced by hyperparameters α and β.

3.3 Prototype preservation and replay

As previously stated, in a single-step training set, the proportion of pixels from current foreground
classes is excessively high, resulting in biased predictions. To address this issue, we aim to com-
prehensively reconstruct the class distribution of training samples at each step t, aligning it with
the distribution in the union of all training sets up to this step D1:t. This distribution represents the
achievable limit, as it is not possible to know the data from future steps in practice, and it should
also be close to the distribution in the complete dataset accumulated up to this step. The most
straightforward solution to this problem is to save and replay all past images, but this does not meet
the requirements of continual learning, necessitating an alternative solution.

We argue that the feature extractor is relatively generalized in extracting features and does not contain
information strongly correlated with the classes. The ability of SSUL [3] to learn new classes even

4

if the feature extractor parameters are frozen supports this claim. As a result, the network’s bias
primarily stems from the classifiers. Therefore, we propose creating a prototype for each learned
foreground class and replaying these prototypes in subsequent steps, allowing them to go through
the classifiers together with the features extracted from input images. This process can correct the
foreground class distribution accessed by the classifiers, eliminating its bias. Meanwhile, we have
to ensure that each prototype contains the most representative characteristics of its corresponding
foreground class with minimal storage cost, thereby efficiently maximizing the correction for the
classifiers.

Specifically, after training at each step t− τ , we calculate the number of pixels from each current
foreground class l ∈ Lt−τ in the single-step training set Dt−τ :

ηl =

Nt−τ∑
i=1

h×w∑
j=1

1{ỹt−τ
i,j = l}. (2)

Here, j indicates the spatial location, 1 denotes the indicator function. ỹt−τ
i ∈ Rh×w represents

the downsampled label aligned with the spatial size of the features f t−τ
i that fed into the classifiers.

It is given by ỹt−τ
i = DS(yt−τ

i), where DS denotes a downsampling operation. Since each class
is treated as a foreground class in only one step, ηl is the count of pixels from class l appearing as
foreground throughout the entire dataset, which determines the frequency of replaying the prototype
of class l in subsequent steps. Still, due to the possible presence of a small number of l pixels
appearing in other steps’ training sets as background, we utilize the previous model to estimate the
number of l pixels in the current training set to fine-tune ηl. Yet, as this aspect has minimal influence
on the final outcomes, we deem it optional and provide clarification in the supplementary material.

Next, in order to build replay samples of class l in future steps, we calculate the feature center of l to
capture its primary characteristics by:

µl =

∑Nt−τ

i=1

∑h×w
j=1 (f̂ t−τ

i,j × 1{ỹt−τ
i,j = l})∥∥∥∑Nt−τ

i=1

∑h×w
j=1 (f̂ t−τ

i,j × 1{ỹt−τ
i,j = l})

∥∥∥
2

∈ Rc, (3)

where ⊗ denotes the element-wise multiplication, ∥·∥2 computes the L2-norm, and f̂ t−τ
i,j refers to the

L2-normalized feature vector given by f̂ t−τ
i,j =

ft−τ
i,j

∥ft−τ
i,j ∥

2

. µl indicates the mean direction of all feature

vectors for l, serving as a prototype of it that embodies the typical characteristic. However, relying
solely on this prototype during the replay in subsequent steps may result in inadequately robust
training outcomes, as a prototype only provides a single representation of class features without
encompassing any variability. Therefore, we also compute the standard deviation of the feature
vectors to introduce noise during the replay process. The calculation is given by:

σl =

√√√√ 1

ηl

Nt−τ∑
i=1

h×w∑
j=1

[
(f̂ t−τ

i,j − µl)2 × 1{ỹt−τ
i,j = l}

]
∈ Rc. (4)

In addition, since we remove the length information of feature vectors through L2-normalization,
we need to restore it during replay. Hence, we also store the mean and standard deviation of the
L2-norms of all features for class l, denoted as µl,norm and σl,norm, which are formulated by:

µl,norm =
1

ηl

Nt−τ∑
i=1

h×w∑
j=1

(
∥∥∥f̂ t−τ

i,j

∥∥∥
2
× 1{ỹt−τ

i,j = l}) ∈ R1, (5)

σl,norm =

√√√√ 1

ηl

Nt−τ∑
i=1

h×w∑
j=1

[
(
∥∥∥f̂ t−τ

i,j

∥∥∥
2
− µl,norm)2 × 1{ỹt−τ

i,j = l}
]
∈ R1. (6)

With ηl, µl, σl, µl,norm and σl,norm saved, robust replay in future steps will be available.

At a subsequent step t, the classifier would originally be fed only the features extracted from the input
image, f t

i . To correct the ratio between old and new foreground classes, we also input replayed old

5

class samples into the classifier. For an old class l ∈ L1:t−1, we use a random variable rl to represent
the replayed sample, which is the product of two Gaussian-distributed random variables, the feature
vector direction κ ∼ G(µl, σl

2) and the L2-norm λ ∼ G(µl,norm, σl,norm
2):

rl = κ× λ. (7)

For each old class l, we replay rl for ηl times per training epoch, which represents the number of
pixels from l that appear outside Dt. In each epoch, all foreground class pixels in Dt also appear
once, so replaying ηl times can align the ratio of old and new foreground class samples with the ratio
in D1:t. Assuming each epoch contains e iterations, we distribute the ηl times evenly among these
iterations. This implies sampling rl for ηl

e times in each iteration and concatenating these random
samples with f t

i to feed the classifiers for calculating the total gradient to update parameters. In this
way, the bias towards any foreground classes is eliminated. Simultaneously, as each sampling of rl
yields different features, and the distribution is controlled by stored standard deviations, the classifiers
can capture sufficient potential characteristics of old classes, achieving robust discriminability.

3.4 Background repetition

Apart from the ratio between samples of old and new foreground classes, we have to also restore
the proportion of background samples to fully rectify the distribution. However, due to the richer
semantics contained in the background and the background shift across different steps, condensing
its meaning through a single prototype is impossible. Therefore, we choose to repeat background
pixels in the current training set Dt with a proper frequency to restore their proportion.

Similar to the strategy in Sec. 3.3, to control the number of background repetitions in future steps, we
calculate the number of appeared background pixels at each step t− τ . As numerous background
pixels exist in all steps, we not only count the number of background pixels in the single-step training
set but also add the background pixel counts saved in previous steps, given by:

ηt−τ
bg =

{ ∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ = 1

ηt−τ−1
bg +

∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ > 1,
(8)

where 0 in ỹt−τ
i,j indicates the label background. In fact, since there may be overlapping background

pixels between the training sets in different steps, we scale down ηt−τ
bg based on some prior assump-

tions. However, similar to the case of foreground class counts, the impact is minimal, so it is optional
and described in the supplementary material.

At each incremental step t, we restore the proportion of the background by repeating background
pixels in the current training set Dt by a certain time. Specifically, we consider a pixel in f t

i as a
background pixel if it meets two conditions: 1) its label is background, and 2) the model at the last
step M t−1 also predicts it as background. Ideally, these requirements ensure the pixel is neither
a current nor past foreground pixel and can be currently categorized as background. Using these
criteria, we obtain the set of background pixels Bt:

Bt = {f t
i,j | ỹti,j = 0 and p̃t,t−1

i,j = 0}, (9)

where p̃t,t−1
i,j = DS(pt,t−1

i,j) is the downsampled prediction of M t−1. During training, we repeat

pixels in Bt by
ηt
bg

|Bt| times per epoch, where | · | denotes set cardinality, to integrate ηtbg additional
background pixels, with ηtbg representing the count of background pixels outside Dt. This aligns
the background pixel proportion with that in D1:t. By merging prototype replay and background
repetition strategies, we rectify the distribution of both foreground classes and background in single-
step training samples for the classifier.

3.5 Old-class features maintaining loss

The prototype replay strategy introduced in Sec. 3.3 can correct the proportion of old-class samples
while conserving storage space. However, its feasibility relies on the premise that feature extraction
for old-class regions does not change significantly between steps. If this condition is not met, there
will be a discrepancy between the old-class features extracted by the current feature extractor and
the replayed old-class prototypes, as the prototypes are created from features generated by previous

6

feature extractors. In this situation, the replay becomes ineffective because the features that the
prototypes represent have become outdated. Furthermore, since there are no constraints on parameter
updates, the feature extractor may suffer from uncontrolled catastrophic forgetting of old knowledge.
Consequently, our goal is to develop a strategy that maintains old-class features, cooperating with our
replay strategy and resisting catastrophic forgetting. At the same time, we do not want the network
to lose plasticity for learning new classes. By balancing these objectives, we design the OCFM
loss, which selectively maintains features of old-class regions in a spatially targeted manner while
simultaneously allowing flexibility for learning new classes.

OCFM maintains old-class features by penalizing the changes from the features extracted by the
previous feature extractor, f t,t−1

i , to the features extracted by the current feature extractor, f t
i , in

old-class regions. For a pixel, we consider it belongs to old-class regions by two requirements: 1) its
current label is background, and 2) the previous model M t−1 predicts it as a foreground pixel. For
these old-class pixels, the OCFM loss punishes the mean squared error between f t

i and f t,t−1
i by:

Locfm = MSE(f t
i × 1{ỹti,j = 0} × 1{p̃t,t−1

i,j = 0},

f t,t−1
i × 1{ỹti,j = 0} × 1{p̃t,t−1

i,j = 0}),
(10)

in which MSE signifies the mean squared error.

Compared to distillations that operate on the entire spatial region [1, 9, 31], our OCFM loss specifically
targets old-class regions, preserving these features to collaborate with our replay strategy and
combat catastrophic forgetting. Simultaneously, the features in other regions can be updated without
constraints, ensuring that the flexibility to learn new classes remains uncompromised.

3.6 Similarity-aware discriminative loss

The previous sections address the bias resulting from distribution differences between single-step
training sets and the complete dataset. Despite the bias being eliminated, some similar class pairs
may still be prone to confusion, as the feature extractor might not generate sufficiently discriminative
features for them. When these similar classes are trained in the same step, the situation may be less
severe since the mBCE loss drives their features to exhibit adequate differences. However, when they
are trained in different steps, the mBCE loss alone is not enough to encourage the feature extractor
to generate discriminative features. This is because the old-class features are constrained by the
OCFM loss, and most old-class representations that eventually flow to the mBCE loss are derived
from prototypes, which, although close to the authentic features, are slightly inferior in richness.

To address this problem, a straightforward solution is to introduce a differentiation loss to all old-new
class feature center pairs, seeking to maximize their divergence. However, this lacks targeting, as
some feature pairs are already widely separated, and we should focus on those similar pairs. To this
end, we refine this strategy to form our SAD loss: for each current class, we only penalize the distance
between its feature center and the nearest old-class feature center, thereby directing the differentiation
effort to where it is most needed. At step t, the feature center of an old class lo ∈ L1:t−1 is the
previously saved prototype, µlo , and the feature center of a current class lc ∈ Lt is computed within
the batch being processed, given by:

µ̇lc =

∑
i∈U

∑h×w
j=1 (f̂ t

i,j × 1{ỹti,j = l})∥∥∥∑i∈U

∑h×w
j=1 (f̂ t

i,j × 1{ỹti,j = l})
∥∥∥
2

, (11)

where U represents the set of indices of images belonging to the current batch. After computing the
feature centers for all current foreground classes, we can achieve the SAD loss as:

Lsad =
1

|Lt|
∑
lc∈Lt

min
lo∈L1:t−1

∥µlo − µ̇lc∥2 . (12)

With Lsad, the features of each new class will be distanced from the most similar old-class prototype.
When the distance between a new-class feature center and its closest old-class prototype is far enough,
surpassing the distance to another old-class prototype, that old-class becomes the new closest one,
and Lsad turns to penalize the distance between this new pair. Ultimately, the features of the new
class will be far enough away from all old class prototypes.

7

Table 1: Quantitative comparison on Pascal VOC 2012 between our STAR and previous non-replay
methods (top half) and replay-based methods (bottom half) under the overlapped setting.

Model 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps) 10-1 (11 steps) 5-3 (6 steps)

old new all old new all old new all old new all old new all

MiB [2] 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7 12.3 13.1 12.7 57.1 42.6 46.7
SDR [23] 69.1 32.6 67.4 75.4 52.6 69.9 44.7 21.8 39.2 - - - - - -
PLOP [9] 75.4 37.4 73.5 75.7 51.7 70.1 65.1 21.1 54.6 44.0 15.5 30.5 17.5 19.2 18.7
SSUL [3] 77.7 29.7 75.4 77.8 50.1 71.2 77.3 36.6 67.6 71.3 46.0 59.3 72.4 50.7 56.9
RCIL [31] - - - 78.8 52.0 72.4 70.6 23.7 59.4 55.4 15.1 34.3 - - -
RBC [33] 77.3 55.6 76.2 76.6 52.8 70.9 69.5 38.4 62.1 - - - - - -
DKD [1] 77.8 41.5 76.0 78.8 58.2 73.9 78.1 42.7 69.7 73.1 46.5 60.4 69.6 53.5 58.1
UCD [29] 75.9 39.5 74.0 75.0 51.8 69.2 66.3 21.6 55.1 42.3 28.3 35.3 - - -
AWT [12] - - - 78.0 50.2 71.4 77.0 37.6 67.6 73.1 47.0 60.7 71.6 51.4 57.1

Ours 78.0 47.1 76.5 79.5 58.9 74.6 79.5 50.6 72.6 73.1 55.4 64.7 71.9 61.5 64.4

RECALL [20] 68.1 55.3 68.6 67.7 54.3 65.6 67.8 50.9 64.8 65.0 53.7 60.7 - - -
SSUL-M(100) [3] 77.8 49.8 76.5 78.4 55.8 73.0 78.4 49.0 71.4 74.0 53.2 64.1 71.3 53.2 58.4
DKD-M(100) [1] 78.0 57.7 77.0 79.1 60.6 74.7 78.8 52.4 72.5 74.0 56.7 65.8 69.8 60.2 62.9

Ours-M(50) 77.8 56.4 76.8 79.7 61.8 75.4 79.5 55.6 73.8 74.3 57.9 66.5 71.9 62.9 65.5

Table 2: Quantitative results on ADE20K under the overlapped setting.

Model 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)

old new all old new all old new all

MiB [2] 37.9 27.9 34.6 31.8 14.1 25.9 35.5 22.9 27.0
PLOP [9] 41.9 14.9 32.9 40.5 13.6 31.6 48.8 21.0 30.4
RCIL [31] 42.3 18.8 34.5 39.3 17.6 32.1 48.3 25.0 32.5
RBC [33] 42.9 21.5 35.8 39.0 21.7 33.3 49.6 26.3 34.2
UCD [29] 42.1 15.8 33.3 40.8 15.2 32.3 47.1 24.1 31.8
AWT [12] 40.9 24.7 35.6 39.1 21.3 33.2 46.6 26.9 33.5

SSUL-M(300) [3] 42.8 17.5 34.4 42.9 17.7 34.5 49.1 20.1 29.8
DKD-M(300) [1] 42.4 23.0 36.0 41.7 20.1 34.6 48.8 26.3 33.9

Ours 42.4 24.2 36.4 42.0 20.6 34.9 48.7 27.2 34.4

4 Experiments

4.1 Experimental setups

Datasets and evaluation metric. We evaluate our method on two common public datasets: Pascal
VOC 2012 [11] and ADE20K [34]. Pascal VOC 2012 comprises 10,582 training images and 1,449
validation images, covering 20 classes. ADE20K includes 20,210 training images and 2,000 validation
images, spanning 150 classes. Following previous works [1, 2, 3], we use mean Intersection-over-
Union (mIoU) as our evaluation metric, representing the average IoU across all classes.

Experimental protocols. Following previous works, we evaluate our model with various class splits
among multiple steps. Each split is denoted as N1-N2, where N1 and N2 refer to the number of
classes in the first step and in each incremental step, respectively. We have 19-1, 15-5, 15-1, 10-1,
and 5-3 splits for Pascal VOC 2012, and 100-50, 100-10, and 50-50 splits for ADE20K. Furthermore,
we consider two CISS settings: disjoint and overlapped. The difference between them is that the
disjoint excludes images with future class pixels in Dt, while the overlapped includes them (future
class pixels are labeled as background). Since the overlapped is closer to real-world scenarios, we
report the results of it in this paper and put the results of the disjoint in the supplementary material.

Implementation details. Following [1, 2, 9], we use DeepLabv3 [5] with a ResNet-101 [13]
backbone pre-trained on ImageNet [7] as our segmentation network. In line with [1, 2, 3, 9], training
strategies differ for the two datasets. For Pascal VOC 2012, we train for 60 epochs with an initial
learning rate of 0.001 for the first step and 0.0001 for incremental steps, and empirically set γ to 4.
For ADE20K, we train for 100 epochs with an initial learning rate of 0.00025 for the first step and
0.000025 for incremental steps, and set γ to 30. For both datasets, we use an SGD optimizer with a
momentum of 0.9. The batch size is set to 24, and α and β are set to 5 and 0.05, respectively. We
implement our model using PyTorch [25] and employ two NVIDIA RTX 3090 GPUs for acceleration.
We have also implemented our network using the MindSpore Lite tool1.

1https://www.mindspore.cn/

8

https://www.mindspore.cn/

Figure 2: Qualitative comparison on Pascal VOC 2012 between STAR and previous methods.

4.2 Comparisons

We compare STAR with previous CISS methods both quantitatively and qualitatively. Among them,
MiB [2], SDR [23], PLOP [9], SSUL [3], RCIL [31], RBC [33], DKD [1], UCD [29], and AWT [12]
are non-replay-based, while RECALL [20], SSUL-M [3], and DKD-M [1] are replay-based methods.

Quantitative comparison. The quantitative comparison results for Pascal VOC 2012 and ADE20K
datasets are presented in Table 1 and Table 2, respectively, where "old" indicates the mIoU of classes
in the first step while "new" indicates the mIoU of incremental classes. Compared to previous
non-replay-based models, our STAR consistently achieves leading performance across various class
splits. Particularly in more challenging 15-1, 10-1, and 5-3 splits that contain more steps, our method
outperforms others by at least 2.9, 4.0, and 6.3 mIoU, respectively. Notably, although STAR requires
additional storage space for prototypes and statistics, the space needed is minimal (~41KB), causing
no significant unfairness compared to non-replay-based models. Meanwhile, even compared with
other replay-based models, STAR remains highly competitive, achieving performance on par with the
best-performing DKD-M while requiring less than 0.5% of its storage space (DKD-M cost ~10MB
to save 100 raw images from past steps). If we add 50 extra raw images to provide more realistic
features (Ours-M), the performance of our model can be further improved, surpassing DKD-M in
four out of five class splits. Remarkably, even in this scenario, the required storage is just about half
of that needed by DKD-M.

On the ADE20K dataset, our model performs even better, outperforming all previous non-replay-
based and replay-based methods without storing any extra raw images. Despite the larger class count
on ADE20K necessitating the storage of more prototypes, the required storage remains a mere ~2%
of that demanded by DKD-M and SSUL-M, both of which store 300 raw images.

In summary, our model achieves outstanding performance while requiring, on average, only ~1%
of the storage needed by other replay-based models, and it requires no extra image beyond the
datasets. Moreover, privacy concerns tied to storing raw images are avoided. These demonstrates the
significance of our approach to reconstruct class distribution through prototype replay.

Qualitative comparison. Fig. 2 provides a qualitative comparison using the challenging overlapped
15-1 protocol on Pascal VOC 2012, highlighting our method’s superiority over previous state-of-the-
art CISS methods [1, 3, 9]. The prevalent errors in other methods are false positives for new classes.
For instance, in the first two examples, some pixels of old classes bus and bird are identified as new
classes train, sheep, or tv/monitor. In the third example, some background pixels are misclassified as
new classes sofa or tv/monitor. Such errors stem from the underrepresentation and limited diversity
of old-class or background samples in the single-step training set when training new classes, resulting
in a bias towards them. In contrast, our method effectively addresses these problems by rectifying
the distribution of single-step training samples and providing new-class classifiers with access to
old-class prototypes as negative samples.

9

Table 3: Ablation study results of our method in the Pascal VOC 2012 dataset.

Replay BR OCFM SAD overlapped 15-1 (6 steps)

old new all

✓ ✓ ✓ 79.3 41.8 70.3
✓ ✓ ✓ 78.3 35.5 68.1
✓ ✓ ✓ 37.3 12.8 31.4
✓ ✓ ✓ 79.3 48.2 71.6
✓ ✓ ✓ ✓ 79.5 50.6 72.6

4.3 Ablation study

Table 3 shows our ablation study results for STAR under the challenging overlapped 15-1 protocol,
assessing its four core components: prototype replay (Replay), background repetition (BR), old-class
features maintaining loss (OCFM), and similarity-aware discriminative loss (SAD). Each component
is individually removed from the full model to evaluate its contribution to the overall performance.

Effectiveness of the prototype replay strategy (Replay). The first row of Table 3 presents the results
without Replay. Compared to the full model’s results shown in the last row, it is clear that Replay
boosts the performance by 2.3 mIoU. Although Replay involves replaying old-class prototypes, it
primarily enhances the accuracy of new classes, demonstrating an 8.8 mIoU improvement. This
effect arises from Replay reducing the proportion of new-class samples flowing into the classifiers
and providing new-class classifiers with sufficient access to old-class features. This dual effect
mitigates classifier bias and lessens the chance of misclassifying non-new-class pixels, especially
those old-class pixels, as new-class pixels. Consequently, we observe a significant increase in the
mIoU of new classes and a slight improvement in the mIoU of old classes.

Effectiveness of the background repetition strategy (BR). As displayed in Table 3, excluding BR
(second row) leads to a performance drop compared to the full model (last row). Specifically, BR
brings a 4.5 mIoU improvement overall and notably boosts the mIoU of new classes by 15.1. Despite
simply repeating background pixels from the current training set, BR effectively corrects the classifier
bias due to the high proportion and diversity of background pixels, even within a single-step training
set. Likewise, because of the high proportion of background pixels, BR introduces more additional
samples than Replay, making its removal lead to a more noticeable performance degradation.

Effectiveness of the old-class features maintaining loss (OCFM). The significance of OCFM can
be recognized when comparing the third and final rows of Table 3. Upon removal of OCFM, the
results experience a complete breakdown, with a dramatic 41.2 mIoU drop compared to the full
model. OCFM is a crucial mechanism in our model for maintaining prior knowledge. Its absence not
only makes replay ineffective but also triggers uncontrolled network parameter updates, leading to
intense catastrophic forgetting. Thus, the performance of both new and old classes suffers greatly.

Effectiveness of the similarity-aware discriminative loss (SAD). The final component under
validation is SAD, designed to differentiate the features of similar old-new class pairs. The penultimate
row in Table 3 illustrates the performance without SAD, registering a 1.0 mIoU reduction. This attests
to the efficacy of SAD in augmenting feature differences between similar old-new class pairs, thereby
making them more distinguishable to the classifiers, leading to improved prediction accuracy.

5 Conclusion

In this paper, we present a novel class-incremental semantic segmentation (CISS) method named
STAR that addresses the bias towards part of classes due to distribution discrepancies between single-
step training sets and the complete dataset. STAR incorporates two key strategies: prototype replay
and background repetition, aiming to correct the proportions of foreground classes and background,
respectively. By saving and replaying prototypes instead of raw images, STAR reduces storage costs
to ~1% of other replay-based methods, without requiring extra data. Furthermore, we propose an old-
class features maintaining loss to keep old-class features unchanged while preserving the flexibility
to learn new classes and a similarity-aware discriminative loss to selectively differentiate features
of most similar old-new class pairs, making them distinguishable for the classifiers. Comparisons
with previous state-of-the-art CISS methods and our ablation study demonstrate the superiority of our
overall design and the importance of each individual component in our model.

10

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant
2021ZD0112100, in part by the Hong Kong Innovation and Technology Commission (InnoHK Project
CIMDA), in part by the Hong Kong GRF-RGC General Research Fund under Grant 11209819 and
Grant 11203820, in part by the National Natural Science Foundation of China under Grant 62002014,
in part by the Taishan Scholar Project of Shandong Province under Grant tsqn202306079, in part by
Young Elite Scientist Sponsorship Program by the China Association for Science and Technology
under Grant 2020QNRC001, in part by CAAI-Huawei MindSpore Open Fund.

References
[1] Donghyeon Baek, Youngmin Oh, Sanghoon Lee, Junghyup Lee, and Bumsub Ham. Decomposed knowl-

edge distillation for class-incremental semantic segmentation. In NeurIPS, 2022.

[2] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara Caputo. Modeling the
background for incremental learning in semantic segmentation. In CVPR, 2020.

[3] Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. SSUL: Semantic segmentation with unknown label
for exemplar-based class-incremental learning. In NeurIPS, 2021.

[4] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In ECCV, 2018.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[6] Runmin Cong, Yumo Zhang, Leyuan Fang, Jun Li, Yao Zhao, and Sam Kwong. RRNet: Relational
reasoning network with parallel multiscale attention for salient object detection in optical remote sensing
images. IEEE Trans. Geosci. Remote Sens., 60:1–11, 2021.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, pages 248–255, 2009.

[8] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning without
memorizing. In CVPR, 2019.

[9] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. PLOP: Learning without forgetting for
continual semantic segmentation. In CVPR, 2021.

[10] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet: Pooled
outputs distillation for small-tasks incremental learning. In ECCV, 2020.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis., 88:303–338, 2010.

[12] Dipam Goswami, René Schuster, Joost van de Weijer, and Didier Stricker. Attribution-aware weight
transfer: A warm-start initialization for class-incremental semantic segmentation. In WACV, 2023.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, pages 770–778, 2016.

[14] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient incremental
learning through feature adaptation. In ECCV, 2020.

[15] Chongyi Li, Runmin Cong, Junhui Hou, Sanyi Zhang, Yue Qian, and Sam Kwong. Nested network with
two-stream pyramid for salient object detection in optical remote sensing images. IEEE Trans. Geosci.
Remote Sens., 57(11):9156–9166, 2019.

[16] Chongyi Li, Runmin Cong, Sam Kwong, Junhui Hou, Huazhu Fu, Guopu Zhu, Dingwen Zhang, and
Qingming Huang. ASIF-Net: Attention steered interweave fusion network for RGB-D salient object
detection. IEEE Trans. Cybern., 51(1):88–100, 2020.

[17] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell.,
40(12):2935–2947, 2017.

11

[18] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In ECCV, 2018.

[19] Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative
pruning. In CVPR, 2018.

[20] Andrea Maracani, Umberto Michieli, Marco Toldo, and Pietro Zanuttigh. RECALL: Replay-based
continual learning in semantic segmentation. In ICCV, 2021.

[21] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. 1989.

[22] Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques for semantic segmentation. In
ICCVW, 2019.

[23] Umberto Michieli and Pietro Zanuttigh. Continual semantic segmentation via repulsion-attraction of sparse
and disentangled latent representations. In CVPR, 2021.

[24] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning to remember:
A synaptic plasticity driven framework for continual learning. In CVPR, 2019.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[26] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incre-
mental classifier and representation learning. In CVPR, 2017.

[27] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NeurIPS, 2017.

[28] Shipeng Yan, Jiangwei Xie, and Xuming He. DER: Dynamically expandable representation for class
incremental learning. In CVPR, 2021.

[29] Guanglei Yang, Enrico Fini, Dan Xu, Paolo Rota, Mingli Ding, Moin Nabi, Xavier Alameda-Pineda, and
Elisa Ricci. Uncertainty-aware contrastive distillation for incremental semantic segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 45(2):2567–2581, 2023.

[30] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation for class-incremental learning. In CVPR, 2020.

[31] Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong Chen, and Ming-Ming Cheng. Representation
compensation networks for continual semantic segmentation. In CVPR, 2022.

[32] Hanbin Zhao, Hui Wang, Yongjian Fu, Fei Wu, and Xi Li. Memory-efficient class-incremental learning for
image classification. IEEE Trans. Neural Netw. Learn. Syst., 33(10):5966–5977, 2021.

[33] Hanbin Zhao, Fengyu Yang, Xinghe Fu, and Xi Li. RBC: Rectifying the biased context in continual
semantic segmentation. In ECCV, 2022.

[34] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ADE20K dataset. In CVPR, 2017.

12

	Introduction
	Related work
	Continual learning
	Class-incremental semantic segmentation

	Proposed method
	Problem definition and basic setup
	Overview of the method
	Prototype preservation and replay
	Background repetition
	Old-class features maintaining loss
	Similarity-aware discriminative loss

	Experiments
	Experimental setups
	Comparisons
	Ablation study

	Conclusion

