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ABSTRACT

We introduce a unified generative framework for solving partial differential equa-
tions (PDEs) and quantifying predictive uncertainty across forward, inverse, and
partial-observation tasks. In contrast to prior approaches that design separate strate-
gies for each setting, we recast PDE solving as a generalized video inpainting
problem, where future or missing spatiotemporal states are inferred from arbitrary
patterns of observed data. Our method employs a pixel-space transformer diffusion
model that directly operates on physical fields, avoiding the accuracy degradation
observed with latent-space representations in scientific domains. To enhance effi-
ciency, we incorporate a hierarchical transformer strategy that balances resolution,
fidelity, and computational cost. This design enables fine-grained, high-quality
reconstructions together with per-pixel uncertainty estimates that capture spatial
and temporal variability. Extensive experiments on five representative synthetic
PDE benchmarks and a real-world ERA5 dataset demonstrate that our framework
consistently outperforms state-of-the-art baselines, offering a versatile and robust
approach to scientific and engineering applications.

1 INTRODUCTION

Computational science communities have proposed numerous learning-based approaches for solving
PDE-governed systems for simulation, optimization, and scientific discovery. These methods provide
trade-offs across accuracy, applicability, and speed. Physics-informed neural networks (PINNs)
(57; 58) flexibly handle forward or inverse predictions from sparse differential measurements, but
often converge to poor local minima, sacrificing accuracy. Neural operators (40; 42; 45) offer fast
approximate solvers, yet struggle under the partial observations typical in real-world scenarios.
Generative methods (8; 65; 82) accommodate incomplete data, but are computationally expensive
and have limited ability to model dense temporal evolution. These limitations hinder the practical use
of learning-based PDE approaches for real-world state reconstruction and forecasting.

In this work, we introduce VideoPDE, a unified framework for PDE solving that is accurate, efficient,
and broadly applicable. Our key insight is to cast diverse PDE tasks as a generative video inpainting
problem, where missing spatiotemporal fields are inferred from arbitrary patterns of observed data.
For example, forward simulation corresponds to predicting missing frames conditioned on initial
states, while partial reconstructions map to inpainting under spatiotemporal sparse observations. This
formulation naturally unifies different PDE tasks, supports uncertainty-aware predictions in chaotic
systems, and offers a single network that adapts across sensor configurations.

Our framework builds on transformer-based inpainting models (30), but departs from prior work
in three crucial ways. First, we employ generative diffusion models rather than regression-based
methods, enabling calibrated uncertainty estimates and recovery of high-frequency details. Second,
unlike most video diffusion models (VDMs) that operate in latent space (3; 23; 25; 81), we perform
pixel-space denoising and conditioning, which is essential for scientific fields where fine-grained
accuracy matters more than perceptual realism. Third, we introduce a hierarchical architecture with
3D neighborhood attention that preserves high-resolution structure while improving computational
efficiency. Together, these innovations yield accurate, high-fidelity reconstructions and per-pixel
uncertainty quantification through multiple generative samples.

Our contributions include:

• Unified formulation: We recast forward, inverse, and partial-observation PDE solving as a single
generative video inpainting task, enabling one model to adapt seamlessly across diverse scenarios.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Architectural innovation: We design a hierarchical pixel-space diffusion transformer with 3D
neighborhood attention, showing that direct pixel-level modeling avoids the accuracy loss of latent
approaches and delivers high-fidelity, efficient solutions.

• Uncertainty and validation: Our framework naturally provides spatiotemporal uncertainty and
achieves state-of-the-art results on five synthetic PDE benchmarks and a real-world ERA5 case
study, reducing error by up to an order of magnitude over prior methods.

2 RELATED WORK

Neural PDEs Solving partial differential equations (PDEs) is a fundamental problem in physical
sciences. Traditional numerical methods such as the Finite Element Method (56; 67) and Boundary
Element Method (1; 32) have long been the backbone of PDE solving but are computationally
expensive and inflexible for complex systems. Neural approaches offer data-driven alternatives:
physics-informed neural networks (PINNs) (57; 58) enforce PDE constraints via the loss function
and have been applied to a wide range of PDEs (5; 6; 20; 24; 47; 49; 54; 72; 73). While PINNs
can work on sparse measurements, in practice they often face optimization instability and poor
scalability. Neural operators, such as FNO (40), DeepONet (45), and PINO (42), learn mappings
between function spaces to avoid expensive optimization and achieve resolution-invariance. These
models have been extended to various forward (4; 10; 37; 38; 41; 53; 63; 76) and inverse (43; 50)
PDE tasks, but remain limited in flexibility for handling arbitrary and sparse input patterns.

Solving PDEs Under Sparse Measurements Recently, neural methods have gained attention for
solving PDEs under sparse measurements, reflecting the challenge of acquiring full spatiotemporal
data. DiffusionPDE (31) addresses this by modeling the joint distribution over coefficients and
solutions, allowing flexible inputs, but its DPS (12) backbone requires PDE-specific tuning and
struggles with dynamic PDEs. Spatially-aware diffusion models (82) use cross-attention to handle
partial observations but lack temporal modeling. Temporal PDEs are especially important for
modeling nonlinear fluid and gas dynamics (17; 19; 34; 74; 83). Super-resolution frameworks
(21; 22; 36) reconstruct full fields from coarse data. Recent methods (39; 64; 65) combine physics-
informed losses with diffusion models or transformers for high-fidelity turbulent flow reconstruction.
Despite past successes, existing methods often rely on strong assumptions about PDEs, boundary
conditions, or sensor layouts. We propose a unified generative framework that requires no prior
knowledge and generalizes well across forward, inverse, and partial observation problems.

Inpainting Diffusion Models Diffusion models (29; 66; 69; 71; 78) have emerged as particularly
suited for image and video inpainting due to their capability to model complex, high-dimensional
distributions effectively. Training-free methods guide the sampling trajectory to satisfy the conditions
at inference time through noise inference (48), resampling (46), or latent alignment (11). It can also be
studied as a linear inverse problem (12; 14; 35; 68; 77). However, these methods often struggle with
extremely sparse or ambiguous observations. Another class of methods directly trains a conditional
diffusion model. These methods typically modify the network architecture to inject conditioning
information, such as channel concatenation (61; 62), cross-attention (2; 55; 59), or ControlNet (79).
We adopt channel concatenation in this work since it is simple and effective. These conditioning
techniques have been extended to video diffusion models (30) for video inpainting (44; 75; 80).

3 METHODS

3.1 PRELIMINARIES: DIFFUSION MODELS AND GUIDED SAMPLING

Diffusion models learn data distributions by reversing a gradual noising process. Starting from a
clean sample x0 from a data distribution p(x), a forward stochastic process progressively adds noise
ϵ ∼ N (0, I) to produce xt = x0 + σ(t)ϵ and hence a family of distributions p(xt;σ(t)), where σ(t)
denotes the standard deviation of the noise at diffusion time t, following the noise schedule of the
Elucidating Diffusion Models (EDM) (33) framework we adopt in this work. The goal is to learn the
reverse process to recover x0 from xt by training a denoising neural network Dθ(xt, σ(t)) with loss

LEDM = Ex0∼p(x)Eϵ∼N (0,I)

[
|Dθ(xt, σ(t))− x0∥2

]
(1)

This gives us an estimate of the score function (70), a vector field pointing to higher data density,

∇x log p
(
x;σ(t)

)
= (D(x, σ(t))− x)/σ(t)2, (2)
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Figure 1: VideoPDE pipeline. We cast PDE solving as a video inpainting task. Our Hierarchical
Video Diffusion Transformer (HV-DiT) denoises initial noise into a full video, conditioned on pixel-
level sparse measurements. Its ability to handle arbitrary input patterns enables flexible application to
diverse PDE scenarios, including forward, inverse, and continuous measurement tasks.

from which we can apply numerical ODE solvers to iteratively denoise from a complete noise
xT ∼ N (0, I) following

dx = −σ̇(t)σ(t)∇x log p
(
x;σ(t)

)
dt. (3)

Conditional Sampling with Diffusion Models A central challenge in diffusion models is how
to incorporate external conditions during sampling. Broadly, approaches fall into two categories.
The first are guidance-based methods, such as classifier guidance (18) or Diffusion Posterior Sam-
pling (DPS) (13), which steer the reverse process toward satisfying a condition by modifying the
score estimate with an auxiliary gradient or correction terms. While powerful, these approaches
require additional inference-time optimization or careful hyperparameter tuning, which can increase
computational cost and sensitivity.

The second family are architectural conditioning methods, where the conditioning signal is directly
provided to the network. Examples include Palette (60) for image-to-image translation, where
conditioning images are concatenated with the noisy input at every denoising step. Our method
follows this strategy: we concatenate the available spatiotemporal observations with the diffusion
input, enabling the model to flexibly adapt to arbitrary observation masks (Fig. 1). This simple design
avoids inference-time optimization, eliminates guidance hyperparameters, and naturally supports
partial, sparse, or irregular observation patterns common in scientific PDE problems.

3.2 SPATIOTEMPORAL PDE SOLVING AS VIDEO INPAINTING

We cast the problem of spatiotemporal PDE solving as a video inpainting task, enabling a unified
and flexible framework for handling a wide range of prediction scenarios (Figure 2). Like prior
data-driven PDE approaches, our goal is to learn a neural network that can infer unknown system
states across a family of equations. However, unlike existing methods that typically design separate
models for forward, inverse, or partially observed cases, our approach treats all such tasks as instances
of conditional video inpainting.

In this formulation, we cast PDE solving as the task of filling in missing regions of a video representing
the evolution of physical states over time and space. For example, forward prediction corresponds
to inpainting future frames based on an initial condition; partially observed setups correspond to
inpainting from sparse spatiotemporal sensor data. Our proposed architecture, described in detail
in Section 3.3, is a transformer-based diffusion model explicitly designed to condition on arbitrary
patterns of observed data and generate coherent, accurate completions.

PDE Formulation While our formulation accommodates both static (time-independent) and dy-
namic (time-dependent) PDEs, we focus on dynamic systems, e.g., Navier–Stokes:

f(c, τ ;u) = 0, in Ω× (0,∞),

u(c, τ) = g(c, τ), on ∂Ω× (0,∞),

u(c, τ) = o(c, τ), on O ⊂ Ω× (0,∞)

(4)
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Figure 2: Inverse simulation from partial observation. VideoPDE formulates general PDE solving
as a video inpainting problem, where unknown pixels are denoised conditioned on sparse inputs.
Here, given 3% observation at time T , VideoPDE accurately recovers the whole trajectory T −1→ 1.

Here, c and τ denote the spatial and temporal coordinates, respectively, and u(c, τ) is the solution
field. The boundary condition is given by u|∂Ω×(0,∞) = g. We aim to recover the full solution uτ

at any time τ ∈ [0, T ] from sparse spatiotemporal observations O, where u|O = o. We make no
assumptions about the structure of these observed locations.

Diffusion-based Video Inpainting We cast PDE-solving as a spatiotemporal inpainting task, where
missing regions of the solution field u(c, τ) are inferred from sparse observations O. To solve this
inpainting problem, we leverage the powerful generative capabilities of diffusion models. Specifically,
we train a conditional diffusion model to learn the distribution of physically consistent video-like
solution trajectories, while conditioning on arbitrary known subsets of the spatiotemporal domain.

We represent each PDE solution as a video x ∈ RH×W×T×C , where H ×W is the spatial grid, T is
the number of time steps, and C the number of field channels. The conditioning signal is defined by a
binary mask m ∈ {0, 1}H×W×T and corresponding observed values y = x⊙m. During training,
we sample random spatiotemporal masks and supervise the model to reconstruct the full video from
these partial views. The model learns the conditional score function:

∇x log p(x|y;σ(t)) ≈ (Dθ(xt,y,m;σ(t))− xt)/σ(t)
2, (5)

where Dθ is a transformer-based denoising network conditioned on y and m, and xt is a noisy
intermediate sample at diffusion time t. During inference, we take sparse observations y and m as
inputs, initialize xT with pure Gaussian noise, and denoise it using the learned score function.

By casting PDE-solving as conditional video generation, we unify a broad class of spatiotemporal
problems under a generative modeling task. Importantly, our formulation enables conditioning the
same model on different observation patterns, e.g. forward and inverse predictions, or interpolation
from arbitrary observed subsets. Section 3.3 details the model design and training process.

3.3 HIERARCHICAL VIDEO DIFFUSION TRANSFORMER (HV-DIT)

While most recent state-of-the-art diffusion models (59) operate in a learned latent space to reduce
computational cost, we design our architecture to perform diffusion directly in pixel space, as shown
in Figure 1. This choice is motivated by our observation that pixel-space diffusion yields significantly
more accurate and physically consistent reconstructions, which is particularly important in PDE
settings where fine-grained field values matter more than perceptual qualities.

To manage the high dimensionality of pixel-space video data, we tokenize each input video x ∈
RH×W×T×C by merging small spatiotemporal neighborhoods, for example, N ×N ×N patches,
into single tokens. This results in a structured token sequence over which we design an efficient
variant of the Video DiT architecture (52), which we refer to as HV-DiT, inspired by the hierarchical
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Method Type Partial
obs.

Flexible
inference

Dense
temporal

Inf.
Time (s)↓

Forward
Error↓

PINN (57) PDE loss ✓ ✓ ✓ 66 27.3%
FNO (40) Neural Operator ✓ 2.0 2.7%
DeepONet (45) Neural Operator ✓ 1.7 11.3%
PINO (42) Neural Operator+PDE ✓ 2.2 4.9%
DiffusionPDE (31) Generative+PDE ✓ △ 4480 5.8%
Shu et al. (65) Generative+PDE ✓ 5760 X
Zhuang et al. (82) Generative ✓ 4860 X
VideoPDE (Ours) Generative ✓ ✓ ✓ 9.3 0.45%

Table 1: Conceptual comparison of PDE-solving methods. Neural operator methods struggle with
partial inputs. Only PINN and VideoPDE handle forward, inverse, and continuous measurements
flexibly. Generative baselines focus on reconstructing one or two frames (instead of dense temporal
frames) and are often not designed for forward prediction, where VideoPDE excels.
image model HDiT (15). Unlike standard transformers with global self-attention, HV-DiT employs
localized attention, restricting each token’s receptive field to nearby spatiotemporal neighbors. This
reduces computational complexity and allows the model to focus on local PDE dynamics.

Our transformer architecture is hierarchical (15; 51): tokens are progressively downsampled by
merging neighboring tokens, creating a multi-scale representation. This downsampling path is paired
with an upsampling path with skip connections in the style of U-Net, enabling both local detail
preservation and global context integration. At each layer, we apply spatiotemporal neighborhood
attention. At the coarsest resolution (bottleneck), we use global attention layers to capture long-range
spatiotemporal dependencies.

A key architectural innovation is the way we condition the model on known observations. For each
token, we concatenate its associated binary mask (indicating observed pixels) and the corresponding
observed values. This allows our model to condition at the individual pixel level, enabling fine-
grained, spatially varying guidance during the denoising process. Concatenating the binary mask
resolves ambiguity between observed and unobserved pixels. This formulation supports flexible
conditioning across a wide range of scenarios, including forward prediction, inverse recovery, and
inpainting from arbitrary subsets of observations. The concatenated final input to Dθ(x

cond
t ) is:

xcond
t ≡ concat(xt,m,y), # of tokens is H/N ×W/N × T/N (6)

Note that only the solution field x part of the input token contains the diffusion noise.
Overall, our HV-DiT combines the expressiveness of pixel-space modeling with the efficiency
of localized and hierarchical attention, forming a powerful and versatile backbone for generative
PDE-solving through conditional video inpainting.

4 EXPERIMENTS

We comprehensively evaluate VideoPDE’s ability to solve a range of temporal PDEs across diverse
inference scenarios. Specifically, we assess its performance in (i) reconstructing from continuous spa-
tiotemporal sensor measurements (Table 2), (ii) predicting future or past system states (Table 3), (iii)
handling partial observations during forward and inverse prediction (Table 4) , and (iv) generalizing
across multiple inference tasks, including forward, inverse, and reconstruction.

Baselines We compare VideoPDE against a representative set of learning-based PDE solvers. For
standard forward and inverse prediction under full initial or final conditions, we include FNO, PINO,
DeepONet, and DiffusionPDE, each representing a distinct modeling paradigm (see Table 1). For
partial observation settings, we compare only against DiffusionPDE, which has demonstrated superior
performance and shown that prior baselines struggle with sparse conditioning. For the continuous
measurement reconstruction task, we evaluate against state-of-the-art generative methods, including
those proposed by Shu et al. (65), Zhuang et al. (82), and DiffusionPDE (31). We also extend
DiffusionPDE for improved temporal message passing. See the supplementary for more details.

4.1 PDE PROBLEM SETTINGS

We evaluate VideoPDE on five representative PDEs plus one real-world dataset, spanning wave
propagation, fluid dynamics, reaction–diffusion, and elliptic problems. This diversity demonstrates
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Figure 3: Uncertainty visualization. From a sparse first
frame (a), VideoPDE predicts future states (b). By running
diffusion inference with multiple random seeds, we obtain
per-pixel uncertainty estimates (c).

Figure 4: ERA5 temperature data.
VideoPDE can predict accurate real-
world atmospheric temeprature field
from 3% sparse sensors.

the flexibility of our unified framework across forward, inverse, and partial-observation scenarios.
Full dataset construction details are provided in the supplementary.

Wave-Layer A variable-speed wave equation with absorbing boundary conditions, following
Poseidon (26), modeling seismic propagation through layered media: ∂2

t u(c, τ)+q(c)2∆u(c, τ) = 0.

Navier–Stokes Two-dimensional incompressible Navier–Stokes in vorticity form with weak, static
forcing (31), producing diffusive decay: ∂tω + v · ∇ω = ν∆ω + q(c).

Kolmogorov Flow A forced Navier–Stokes system with dynamic feedback, yielding sustained
quasi-turbulent regimes (65): ∂tω + v · ∇ω = ν∆ω − 4 cos(4c2)− 0.1ω.

Allen–Cahn and Helmholtz We also test on the Allen–Cahn reaction–diffusion equation and the
static Helmholtz equation to demonstrate adaptability to nonlinear and elliptic PDEs. We include
experiment results for these equtions in the supplementary document.

ERA5 Reanalysis Data We evaluate on a real-world atmospheric dataset (27) providing full-field
spatiotemporal measurements from which we use 2m temperature scalar field. We crop North
American region and downsample into 256× 256 video-like slices for training and evaluation.

4.2 EXPERIMENT DETAILS

Training was conducted on 4 NVIDIA L40S GPUs (batch size 8/GPU) for about 24 hours per model,
using Adam with a fixed learning rate of 5 × 10−4. Our HV-DiT architecture operates in pixel
space, tokenizing videos into 4 × 4 × 2 patches. The model consists of 2 transformer layers with
7× 7× 2 neighborhood attention and downsampling via patch merging (factor 2). Additional dataset,
architecture, and hyperparameter details are provided in the supplementary.

4.3 EXPERIMENT RESULTS

Continuous Partial Observation We evaluate the ability of VideoPDE to reconstruct full spa-
tiotemporal PDE trajectories from sparse, fixed-point observations. Specifically, we randomly sample
a very small percentage of spatial coordinates (1% or 3%) and provide the solution values across all
time steps at those locations. This setting mimics real-world sensor deployments, where measure-
ments are collected continuously at fixed spatial positions. Our model is conditioned on these sparse
yet temporally continuous observations.

As shown in Table 2, we report the relative ℓ2 error across 100 held-out trajectories for three PDEs:
Wave-Layer, Navier–Stokes, and Komolgorov Flow. In Figure 5 we visualize the error map for
the Navier–Stokes. Our method significantly outperforms existing generative baselines, including
DiffusionPDE (31), Shu et al. (65), and Zhuang et al. (82), up to an order of magnitude, demonstrating
robustness under extreme observation sparsity. We also demonstrate real-world temperature field
reconstruction on the ERA5 dataset (27), using only 3% continuous sensor observations (Fig. 4).

Forward/Inverse Full Observation We evaluate VideoPDE on reconstructing full PDE trajectories
given a single frame at either the start (forward prediction) or end (inverse inference) of the sequence.
The full conditioning frame is provided while the remaining frames are masked. This setup reflects
practical simulation scenarios where dense initial conditions are available and parallels image-to-video
tasks in generative modeling.
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Wave-Layer Navier–Stokes Kolmogorov Flow
1% 3% 1% 3% 1% 3%

DiffusionPDE 48.3% 17.4% 4.7% 3.7% 20.3% 11.9%
DiffusionPDE (Ext.) 45.2% 15.6% 4.1% 3.4% 19.5% 10.3%
Shu et al. 49.7% 17.7% 8.6% 6.2% 19.7% 11.8%
Zhuang et al. 29.9% 10.3% 12.7% 4.8% 13.9% 6.1%

Ours 2.62% 1.57% 0.80% 0.44% 6.48% 2.71%
Ours (unified) 3.97% 2.05% 1.13% 0.48% 7.59% 2.55%

Table 2: Continuous partial observation reconstruction. We quantitatively measure the perfor-
mance of different methods using average ℓ2 relative errors on Wave-Layer, Navier–Stokes, and
Kolmogorov Flow benchmarks with 1% and 3% observation points.
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Figure 5: Continuous measurement reconstruction comparison. We compare relative error
maps for reconstructing dense spatiotemporal fields from fixed sensors providing 1% continuous
observations on Navier–Stokes. Our results are the most accurate with minimal error. In contrast,
baseline methods are significantly slower and not suitable for forward prediction (Zhuang & Shu).

Figure 6 shows the final/initial frames of the fully observed forward/inverse processes on the Kol-
mogorov Flow dataset, demonstrating that VideoPDE consistently produces results that are closer
to the ground truth. Table 3 reports the relative ℓ2 error across 100 held-out trajectories for three
PDEs. VideoPDE consistently outperforms baselines in both forward and inverse tasks, except for the
low-frequency inverse setting. We attribute this to aleatoric uncertainty: in the NS dataset, diffusive
dynamics lead to low-frequency end states that may originate from many high-frequency initial
conditions. In such cases, pixel-wise ℓ2 loss penalizes plausible reconstructions and favors blurry
averages. We leave exploration of distribution-based evaluation metrics for future work.

In Fig. 7 we showcase long-horizon forward prediction, where we autoregressively run multiple
20-frame predictions conditioned on previously generated frames. Refer to supplementary for details.

Forward/Inverse Partial Observation We extend the forward and inverse prediction tasks to the
partially observed setting by conditioning on a single frame—either at the start or end of the trajectory,
with only 3% of spatial points revealed. The model must reconstruct the full trajectory from these
observations, reflecting real-world scenarios where sensors provide limited data at a single timepoint.

In Figure 2, we present the inverse simulation of a Wave-Layer sample, where VideoPDE recovers
all time steps in reverse given only 3% of observation points from the final frame. As shown in
Table 4, VideoPDE outperforms DiffusionPDE, the current SOTA for this task, by a significant
margin across all settings, except for inverse prediction on the Navier–Stokes case, where aleatoric
uncertainty remains high due to the diffusive loss of high-frequency information. We note that
VideoPDE performs similarly on this task to the forward/inverse full observation task, particularly for
Wave-Layer forward prediction, and both Navier–Stokes forward and inverse prediction.
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Wave-Layer Navier–Stokes Kolmogorov Flow
Forward Inverse Forward Inverse Forward Inverse

FNO 35.34% 65.43% 2.71% 7.62% 56.43% 59.42%
PINO 10.8% 19.7% 4.9% 6.9% 7.4% 7.6%
DeepONet 47.68% 53.32% 11.29% 12.63% 46.61% 46.92%
DiffusionPDE 6.7% 14.2% 6.1% 8.6% 9.1% 10.8%

Ours 1.21% 5.24% 0.45% 9.87% 2.95% 4.90%
Ours (unified) 1.53% 12.65% 1.52% 10.37% 4.60% 4.99%

Table 3: Forward/inverse full observation. Average ℓ2 relative errors of baseline methods for
forward and inverse subtasks across datasets.

Wave-Layer Navier–Stokes Kolmogorov Flow
Forward Inverse Forward Inverse Forward Inverse

DiffusionPDE 19.5% 24.3% 3.9% 10.2% 28.2% 32.6%

Ours 1.40% 11.81% 0.71% 10.41% 11.66% 13.50%
Ours (unified) 1.89% 18.56% 1.61% 11.45% 16.11% 25.75%

Table 4: Forward/inverse 3% observation. Average ℓ2 relative errors of baseline methods for
forward and inverse subtasks across datasets.

Figure 6: Comparison of forward/inverse predictions on Kolmogorov Flow. Our predictions are
perceptually indistinguishable from ground truths, whereas other baseline results exhibit deviations.
Significant errors of PINO and DiffusionPDE are squared in black.

Figure 7: Long-horizon prediction. We autoregressively roll out 100 frames from the initial input
using our and baseline methods, where VideoPDE produces the most accurate long-term predictions.

Unified Model We evaluate whether a single model can jointly learn multiple inference tasks within
our video inpainting framework. For each dataset, we train one unified model on six tasks: continuous
partial observation (3% and 1%), forward and inverse prediction under full/partial observation. As
shown in Tables 2, 3, and 4, the unified model matches the performance of task-specific variants and
outperforms prior baselines in most settings. In contrast, all baselines require separate models per
task, highlighting VideoPDE’s potential to be a unified framework for flexible PDE solving.

4.4 UNCERTAINTY QUANTIFICATION

A key advantage of our generative formulation is that it naturally provides uncertainty estimates
alongside point predictions. Unlike regression-based approaches that output a single deterministic

8
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Navier–Stokes

DiT with mixed noise and conditioning tokens 50.77%
DiT with each token concatenated on sparse observations 1.46%
+ Latent diffusion 7.13%
+ 3D Neighborhood attention and downsampling 0.73%

+ concatenating binary mask (Ours, HV-DiT) 0.44%

Table 5: Ablation study. We ablate our design choices, beginning with a latent space DiT. We report
average relative ℓ2 errors for all configurations on Navier–Stokes with 3% observation rate.

trajectory, our diffusion model defines a full distribution over conditional spatiotemporal fields. By
sampling ten trajectories with different random seeds, we estimate per-pixel predictive standard
deviation (std), and normalize it by the mean absolute value to obtain a relative std map. This allows
us to quantify and visualize spatiotemporal uncertainty (Fig. 3), particularly important for chaotic
dynamics where small perturbations can yield diverging outcomes.

4.5 ABLATION STUDY

We conduct an ablation study to assess the impact of key architectural choices, evaluated on the
continuous partial observation task for low-frequency Navier–Stokes with a 3% observation rate.
Relative ℓ2 errors are reported in Table 5.

We begin with a video DiT architecture adapted from VDT (44), originally designed for natural
video inpainting. The model input is x⊙ (1−m) + y ⊙m, where x is Gaussian noise, m a binary
mask, and y the ground truth. This model performed poorly, likely due to confusion between sparse
observations and noise.

Replacing the conditioning method with channel-wise concatenation of noise and masked ground
truth, i.e., concat(xt,y), significantly improves performance. Building on this, we train a latent
diffusion version using a task-specific VAE. However, due to the precision requirements of PDEs, the
latent model performs poorly, highlighting the need for pixel-space modeling in scientific applications.
Next, we introduce a hierarchical variant of the DiT with 3D neighborhood attention and temporal
downsampling inspired by HDiT (16), which further reduces error. Finally, conditioning on the
binary mask itself yields the best performance in our setup, indicating that the binary mask resolves
ambiguity between masked and unmasked pixels: the input is concat(xt,y,m).

4.6 SUPPLEMENTARY

We provide extended experimental results and analysis, including additional PDEs, long-horizon
predictions, and solution videos in the supplementary. Moreover, we provide further details on our
training hyperparameters, datasets, and model architecture. We urge readers to review the additional
images and videos in the supplementary.

5 CONCLUSION

In this work, we introduced VideoPDE, a unified framework for PDE solving by reframing forward,
inverse, and partial observation problems as video inpainting with diffusion models. Our hierarchical,
pixel-level architecture leverages flexible conditioning to adapt seamlessly to arbitrary observation
patterns, and consistently outperforms state-of-the-art baselines. Notably, a single model trained
jointly across tasks achieves higher accuracy and generalization than existing task-specific approaches.
We also demonstrate that our framework can naturally quantify uncertainty and show cutting-edge
performance across five representative PDEs and a real-world dataset.

Looking ahead, we plan to extend VideoPDE toward more challenging long-horizon prediction
regimes, where compounding uncertainty poses a key challenge. We will also investigate evaluation
metrics that better capture stochastic, multimodal generative behavior, and explore 3D extensions for
volumetric spatiotemporal systems. A discussion of current limitations is provided in the supplemen-
tary material.
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A OVERVIEW

This supplementary material provides additional experiments and analyses to support the findings
presented in the main paper. In Section B, we evaluate VideoPDE on additional datasets involving
both static and dynamic PDEs to highlight its generalization capability. Section D presents an
extension of DiffusionPDE for spatio-temporal PDEs. Section E assesses the model’s robustness to
random noise and its inherent stochasticity. In Section F, we analyze the relationship between overall
error rates and the observation ratio. Section G investigates the long-range generalization ability of
models trained on short-range data. Section H explores the performance of VideoPDE under various
video settings. Finally, Section I includes VideoPDE’s architectural and training details.

A.1 HTML WEBPAGE

We provide a project page in HTML format with embedded video resources for additional video
results showcasing a variety of tasks and PDE families. These visualizations further illustrate the
versatility and effectiveness of VideoPDE across diverse problem settings. We strongly encourage
readers to view the supplemental webpage to fully appreciate the quality of our predictions visually.

B ADDITIONAL PDE EXPERIMENTS AND EXPERIMENT SETTINGS

In this section, we further evaluate VideoPDE on additional datasets, including one dynamic (Allen-
Cahn) and another static equations (Helmholtz). We also provide detailed explanations of the settings
for the three PDEs addressed in the main paper (Wave-Layer, Navier-Stokes, Kolmogorov Flow).

VideoPDE can be trivially extended to handle static PDEs by interpreting the coefficient field and
the corresponding solution as two distinct time steps within a temporal framework. This perspective
enables the application of our dynamic modeling approach to inherently time-independent problems,
such as the Helmholtz Equation described below.

Inhomogeneous Helmholtz Equation Further, we evaluate the static Helmholtz equation as
described in DiffusionPDE (31).

∇2u(c) + α2u(c) = a(c), c ∈ Ω

u(c) = 0, c ∈ ∂Ω,

where α = 1.

Moreover, to compensate the dynamic PDEs in the main paper, which mostly feature highly dy-
namic propagations, we test VideoPDE on another PDE (Allen-Cahn) that models reaction-diffusion
described below. As shown in Fig. 8, the slow-moving nature of the solution fields makes them chal-
lenging to capture from fixed sensors, resulting in higher overall errors compared to more dynamic
datasets in the main paper.

Allen–Cahn Equation We study the time-dependent Allen-Cahn equation (ACE) task using the
dataset prepared by Poseidon (26).

∂tu(c, τ) = ∆u(c, τ)− γ2u(c, τ)(u(c, τ)2 − 1), c ∈ Ω, τ ∈ (0, T ]

u(c, 0) = u0(c), c ∈ Ω

where γ = 220 is the reaction rate.

ERA5 Additionally, we study the ERA5 dataset of global climate and weather (28). Current climate
observations are combined with previous forecasts to estimate the state of the atmosphere. This
dataset contains hourly data for many variables for over 80 years. For evaluation, we selected the 2m
temperature variable, which measures the temperature 2 meters above the surface of the planet. We
used the observations from January 2024, and cropped a fixed 128× 128 subset of the global data.
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Wave-Layer We evaluate our method on the Wave-Layer task following Poseidon (26). This task
is based on the wave equation with spatially varying propagation speed and absorbing boundary:

∂2
t u(c, τ) + (q(c))2∆u(c, τ) = 0, (c, τ) ∈ Ω× (0, T ).

Here, u : Ω × (0, T ) → R is a scalar field representing displacement, and q : Ω → R represents
propagation speed. The initial condition is the sum of 2-6 Gaussians with random location and scale:
The propagation speed coefficient c is generated by creating 3-6 layers with piecewise constant
propagation speeds. The layers are separated by reandomly generated frontiers. The dataset contains
10,512 trajectories, each with 21 time steps at 128× 128 resolution. The final 100 trajectories are
used for validation and the rest for training. This task arises from propagation of seismic waves
through a layered medium. See the supplementary for more details on this problem.

Navier–Stokes Equation We study the two-dimensional incompressible Navier–Stokes equations
in vorticity form, following the setup introduced in DiffusionPDE (31):

∂tw(c, τ) + v(c, τ) · ∇w(c, τ) = ν∆w(c, τ) + q(c), c ∈ Ω, τ ∈ (0, T ],

∇ · v(c, τ) = 0, c ∈ Ω, τ ∈ [0, T ],

w(c, 0) = w0(c), c ∈ Ω.

(7)

Here, w = ∇ × v denotes the vorticity field, and v(c, τ) is the velocity field at spatial location
c and time τ . We fix the viscosity coefficient to ν = 10−3, corresponding to a Reynolds number
of Re = 1/ν = 1000. Initial conditions w0 are sampled from a Gaussian random field as in
DiffusionPDE. Each datapoint is composed of 20 frames of a 128× 128 vorticity field w.

The external forcing q(c) determines the long-term behavior of the system. In this setting, we adopt
a static, time-independent forcing term:

q(c) = 0.1 (sin(2π(c1 + c2)) + cos(2π(c1 + c2))) ,

which introduces smooth, low-frequency energy into the system without any feedback from the flow
itself. Due to the weak magnitude of this forcing and the absence of dynamic coupling, the system
exhibits diffusion-like decay: initial high-frequency vorticity structures dissipate over time as the
system evolves under viscous damping.

Kolmogorov Flow To study more complex and persistent flow dynamics, we also evaluate our
method on the Kolmogorov flow (KF) (7), a classical setup used in (65) to simulate forced, quasi-
turbulent regimes in 2D fluid dynamics. The same Navier–Stokes formulation applies, but with a
different forcing term of the KF form:

q(c, τ) = −4 cos(4c2)− 0.1w(c, τ).

This forcing is composed of a strong, anisotropic spatial component (cos(4c2)) that continuously
injects energy into the system, and a linear drag term (−0.1w) that stabilizes the flow by removing
energy at small scales. Crucially, the forcing depends on the evolving state w(c, τ), introducing
dynamic feedback that enables sustained motion.

Unlike the decaying dynamics of the previous setup, Kolmogorov flow exhibits persistent, swirling
structures and high-frequency vorticity patterns over time. This makes it a challenging and real-
istic benchmark for generative PDE modeling, particularly in capturing long-term, high-fidelity
spatiotemporal behavior. Finally, each datapoint is a 20-frame 256× 256 vorticity field.

Similar to the main paper, we assess the performance of various models across three distinct tasks.

Continuous Partial Observation Based on the settings from the main experiments, we recon-
struct complete spatiotemporal and static PDE trajectories using sparse, fixed-point observations.
Specifically, we evaluate the average error of the coefficient and solution for static PDEs. Table 6
demonstrates that VideoPDE consistently produces more accurate reconstructions than all baseline
methods on the dynamic PDE task, as shown in Figure 8 as well, reinforcing the findings reported
in the main paper. Furthermore, VideoPDE achieves performance comparable to state-of-the-art
methods on static PDE reconstruction when there are observations on both coefficients and solutions.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Allen–Cahn Helmholtz ERA5
1% 3% 1% 3% 3% 10%

DiffusionPDE 30.65% 7.45% 9.75% 6.30% X X
DiffusionPDE (Ext.) 29.05% 6.93% X X X X
Shu et al. 30.71% 8.10% X X X X
Zhuang et al. 27.43% 7.07% X X X X

Ours 23.95% 6.15% 10.14% 6.41%
Ours (Unified) 27.11% 7.20% 10.72% 6.92% X X

Table 6: Additional continuous partial observation reconstruction. Quantitative ℓ2 relative errors
of various methods on the dynamic Allen–Cahn equation and the static Helmholtz equation.

Allen–Cahn Helmholtz
Forward Inverse Forward Inverse

DiffusionPDE 1.43% 3.41% 2.3% 4.0%
PINO 1.39% 2.70% 4.9% 4.9%

Ours 0.55% 1.18% 0.47% 3.87%
Ours (Unified) 0.90% 1.42% 1.07% 4.84%

Table 7: Additional forward/inverse full observation. Average ℓ2 relative errors of baseline methods
for forward and inverse subtasks on ACE and Helmholtz datasets.

Forward/Inverse Full Observation Similarly, we evaluate the results of both forward and inverse
problems for these additional datasets. In the context of static PDEs, the forward problem involves
predicting the solution space given the coefficient space, whereas the inverse problem entails inferring
the coefficient space from the observed solution space. Table 7 shows that VideoPDE outperforms all
baselines on fully observed forward and inverse problems across all PDE families, including both
dynamic and static cases.

Forward/Inverse Partial Observation We further investigate the forward and inverse problems
using 3% observation points on the respective side. In Table 8, we show that VideoPDE has a lower
error regarding both forward and inverse processes compared with DiffusionPDE. VideoPDE tends
to generate more accurate results, as present in Figure 9.

Experiment Details We provide additional details on the datasets and their processing in the
supplementary. Training is performed on 4 NVIDIA L40S GPUs with a batch size of 8 per GPU,
taking approximately 24 hours per model. All models are trained until convergence using the Adam
optimizer with a constant learning rate schedule (initial LR 5 × 10−4). Our HV-DiT architecture
operates directly in pixel space. Videos are tokenized into 4× 4× 2 patches, forming a 32× 32× 10
token grid with embedding dimension 384 for WL and NS. The model uses 2 transformer layers
with neighborhood attention (window size 7 × 7 × 2) and a downsampling operation via patch
merging with factor 2. We provide more details on the model architecture and hyperparameters in the
supplementary.

C UNCERTAINTY QUANTIFICATION

We illustrate uncertainty estimation on a single scene. Starting from a partial first frame, we ran
diffusion inference ten times with different random seeds. Per-pixel uncertainty was computed as the
standard deviation across samples, normalized by the absolute mean (relative std) and clipped for
stability. Figure 10 shows relative std maps at t = 5, 10, 15, 20, where uncertainty grows over time
and concentrates in dynamically complex regions.
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Allen–Cahn Helmholtz
Forward Inverse Forward Inverse

DiffusionPDE 15.29% 15.83% 8.8% 22.6%

Ours 14.68% 13.48% 2.32% 11.02%
Ours (Unified) 13.27% 12.64% 2.45% 8.97%

Table 8: Additional forward/inverse 3% observation. Average ℓ2 relative errors of baseline
methods for forward and inverse subtasks on ACE and Helmholtz datasets.

Figure 8: Reconstruction results of ACE dataset with 1% observation points. Visualizations of
all methods for the continuous partial observation task.

D DIFFUSIONPDE EXTENSION

In this section, we explain how we extend the DiffusionPDE framework (31) to address dense
temporal predictions by introducing a two-model architecture tailored for the continuous partial
observation setting, as illustrated in Figure 11. Specifically, we employ a step model and a leap
model to learn the joint distributions over adjacent timesteps, P (t− 1, t), and between the initial state
and an arbitrary timestep, P (1, t), respectively, where t = 2, 3, . . . , T is the index of the timestep.
Both models are explicitly conditioned on the timestep t. The final score for P (t) is computed by
averaging the denoised estimates from the two pre-trained models, as demonstrated in Algorithm 1,
thereby integrating both local and long-range temporal information.

This method can also be extended to both forward and inverse problems where the only observation is
on the initial or final frame. However, rather than denoising all frames simultaneously, these tasks re-
quired an autoregressive approach to operate reasonably, which significantly increases computational
cost. As a result, we do not include forward/inverse predictions with this extended model.
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Figure 9: Comparison of partially-observed forward/inverse predictions on Helmholtz equation.
Results of different methods for forward/inverse from partial observations (3%) are compared along
with the ground truth fields. Notable errors produced by DiffusionPDE are highlighted with black
squares for emphasis.

Figure 10: Relative uncertainty visualization. Starting from a sparse first frame (a), we run
10 stochastic diffusion predictions and compute per-pixel relative standard deviation (std/|mean|).
Panels (b–e) show clipped uncertainty maps at t = 5, 10, 15, 20, highlighting growing uncertainty in
dynamically complex regions.

E MULTI-MODALITY AND ROBUSTNESS EVALUATION

To study the stochasticity and robustness of VideoPDE, we present reconstructions generated using
different initial noise realizations of the diffusion model in Figure 12. Given a fixed observation mask,
VideoPDE produces diverse reconstructions, particularly in regions lacking observations, which
aligns with the physics property. Despite this variability, the model demonstrates strong robustness,
as the reconstructed solutions and corresponding error metrics remain consistent across different
noise seeds.
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Figure 11: Extension framework of DiffusionPDE. The step model for distributing two adjacent
frames and the leap model for distributing the initial state alongside one random timestep jointly
denoise all time steps in a simultaneous manner.

Algorithm 1 DiffusionPDE (Ext.) Joint Denoising Algorithm.

1: input StepDenoiser DS(t), LeapDenoiser DL(t), VideoLength T , Timestep t = 1, 2, . . . , T ,
TotalIterationCount N

2: for i ∈ {0, . . . , N − 1} do
3: for j ∈ {2, . . . , T} do
4: xj−1

S , xj
S ← DS(j) ▷ Denoise the step model at timestep j

5: x1
L, x

j
L ← DL(j) ▷ Denoise the leap model at timestep j

6: xj ← (xj
S + xj

L)/2 ▷ Average the scores
7: xj−1 ← (xj−1

S + xj−1
L )/2

8: {. . . Further guided sampling steps. . . }
9: end for

10: end for
11: return x1, . . . , xT

Figure 12: Helmholtz reconstructions with different initial noise seeds. Results and corresponding
ℓ2 relative errors obtained under identical 1% observation on both the coefficient and solution domains.
Significant differences are emphasized with black squares.
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F ERROR RATE VERSUS OBSERVATION RATE

We present a chart illustrating the relationship between the error rate and observation rate for the
continuous partial observation task, as shown in Figure 13. The results demonstrate that our methods
are can achieve relative ℓ2 errors below 10% using only 3% of observation points across all PDE
families. For PDEs with high spatial information, e.g., KF, or diffusive behavior, e.g., Allen-Cahn,
the performance degrades relatively steeply as the observation ratio decreases.

Wave-Layer

Navier–Stokes

Kolmogorov flow

Allen–Cahn

Helmholtz
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Figure 13: Continuous partial observation comparison. We report relative ℓ2 errors for VideoPDE
at 0.5%, 1%, and 3% observation rates.

G LONG RANGE PREDICTION

We further assess the performance of all models over an extended time horizon. Specifically, we
employ autoregressive prediction to generate 100 future frames of the KF dataset using a 20-frame
forward model. The sole input provided is the complete observation of the initial frame. Each
20-frame window is conditioned on the final frame of the previous window. The windows are
concatenated to produce the final long trajectory.

In Fig. 14, we report the overall average errors as well as the single-frame errors for all evaluated
models. The results indicate that VideoPDE achieves better predictive performance compared to
baseline approaches. Nonetheless, a notable accumulation of error is observed for all methods, which
may be attributed to the inherent uncertainty and difficulty of predicting long-range future and the
absence of explicit PDE constraints for our method. Addressing this limitation remains an important
direction for future research. We refer readers to the attached HTML file to view the videos of the
100-frame predictions.

H FURTHER ABLATIONS

We revisit the Wave-Layer dataset to conduct detailed ablations that study the sensitivity and impact
of individual parameter choices on the model’s overall performance. Specifically, we examine the
influence of varying the number of frames, timestep sizes, and frames per second (FPS) within fixed
physics intervals.
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(a) Average errors of the first n frames. (b) Errors of each single frame.

Figure 14: Long-range prediction results. The ℓ2 relative errors of all methods plotted against the
total number of frames.

Number of frames We first investigate how the number of frames affects our model’s performance.
From the available 20 frames in our raw data, we select subsets consisting of 5, 10, and 20 consecutive
frames. All other experimental settings, including model configuration, remain consistent. The
results summarized in Table 9 demonstrate that increasing the number of frames leads to improved
performance, highlighting the effectiveness of our method in capturing temporal dependencies and
longer temporal PDE dynamics. Additionally, since the error is averaged over all time frames, it
suggests that utilizing longer temporal sequences improves the model’s capability to accurately
inpaint initial frames by providing richer temporal context.

5 frames 10 frames 20 frames

Ours 0.62% 0.52% 0.49%

Table 9: Number of frames.

Timestep size Next, we explore how variations in the timestep size between frames impact the
model’s performance. Specifically, we fix the total number of frames to 5 and alter the interval
between frames to step sizes of 1, 2, and 4, corresponding respectively to physical simulation intervals
of 0.05s, 0.1s, and 0.2s within the total 1-second simulation duration. Table 10 summarizes the
observed model errors across these different timestep sizes: smaller timesteps lead to reduced errors
as expected.

step=1 step=2 step=4

Ours 0.49% 0.57% 0.94%

Table 10: Timestep size.

Frames per second (FPS) Finally, we study the effect of FPS by varying both the number of
frames and the timestep sizes to represent the same total physics duration of 1 second. Specifically,
we compare scenarios using 5 frames with a timestep of 4, 10 frames with a timestep of 2, and 20
frames with a timestep of 1. As shown in Table 11, increasing the FPS improves the model’s accuracy,
showing the importance of temporal granularity in accurately modeling PDE dynamics.

FPS = 5 FPS = 10 FPS = 20

Ours 0.94% 0.60% 0.49%

Table 11: Frames per second.
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I ARCHITECTURE AND TRAINING DETAILS

We report our architectural and training hyperparameters in Table 12.

Hyperparameter Ours Ours (Unified)

Parameters 118M 74M
Training steps 50k 100k
Batch size 48 64
GPUs 2 × L40S 4 × L40S
Mixed Precision bfloat16 bfloat16

Patch Size (T ×H ×W ) [2, 4, 4] [2, 4, 4]
Neighborhood Attention Levels 1 1
Global Attention Level 1 1
Neighborhood Attention Depth 2 2
Global Attention Depth 11 6
Feature Dimensions [384, 768] [384, 768]
Attention Head Dimension 64 64
Neighborhood Kernel Size (T ×H ×W ) [2, 7, 7] [2, 4, 4]
Mapping Depth 1 1
Mapping Width 768 768
Dropout 0 0

Optimizer AdamW AdamW
Learning Rate 5× 10−4 5× 10−4

[β1, β2] [0.9, 0.95] [0.9, 0.95]
Epsilon 1× 10−8 1× 10−8

Weight Decay 1× 10−2 1× 10−2

Table 12: Training and inference hyperparameters.

J ADDITIONAL BASELINE RESULTS

We further evaluate the performance of the ECI sampling framework (9), which is an effective method
for handling hard-constrained systems, particularly under various boundary conditions. However, as
illustrated in Figure 15, the model encounters difficulties when working with sparse observations.
This issue may arise from inconsistent guidance within the domain, leading to challenges in global
reconstruction, especially with extremely sparse input points. Furthermore, since the data does not
have strong boundary conditions, this method has significant limitations for the tasks we discuss.

Input ECI Sampling GT

1%
 O

bs
er

va
tio

n

Figure 15: ECI sampling results. Reconstruction results with 1% observation points of the Navier-
Stokes equation.
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K LIMITATIONS AND FUTURE WORK

Our current evaluation relies on pixel-wise reconstruction loss, which may not fully reflect the
physical accuracy of PDE solutions. Investigating more appropriate, PDE-specific evaluation metrics
is an important direction for future work.

The present VideoPDE framework operates on 2D videos. Extending to 3D spatiotemporal domains
would significantly broaden applicability, but will require more efficient architectural designs to
handle the increased computational demands.

We also observe error accumulation in long-time-horizon predictions, which is common across all
methods. This is likely due to the inherent uncertainty in extrapolating chaotic dynamics and the
absence of explicit PDE constraints in our model. Mitigating this remains a key challenge.

Finally, our model currently operates on discrete, single-scale grid structures. While widely used in
practice, enabling multi-scale or irregular discretization support, such as for adaptive or unstructured
meshes, would further enhance the flexibility of our approach.
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