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Abstract

Lithography orchestrates a symphony of light, mask and photochemicals to
transfer the integrated circuit patterns onto the wafer. Lithography simulation
serves as the critical nexus between circuit design and manufacturing, where
its speed and accuracy fundamentally govern the optimization quality of down-
stream resolution enhancement techniques (RETs). While machine learning
promises to circumvent computational limitations of lithography process through
data-driven or physics-informed approximations of computational lithography,
existing simulators suffer from inadequate lithographic awareness due to in-
sufficient training data capturing essential process variations and mask correc-
tion rules. We present LithoSim, the most comprehensive lithography simula-
tion benchmark to date, featuring over 4 million high-resolution input-output
pairs with rigorous physical correspondence. The dataset systematically incor-
porates alterable optical source distributions, metal and via mask topologies
with optical proximity correction (OPC) variants, and process windows reflect-
ing fab-realistic variations. By integrating domain-specific metrics spanning
Al performance and lithographic fidelity, LithoSim establishes a unified evalu-
ation framework for data-driven and physics-informed computational lithography.

The data ( )s
code ( ), and pre-trained models
( ) are released openly to

support the development of hybrid ML-based and high-fidelity lithography simula-
tion for the benefit of semiconductor manufacturing.

1 Introduction

Simulation stands as a cornerstone of modern artificial intelligence (Al), enabling data-driven emula-
tion of complex physical system, from protein folding dynamics [1] to climate modeling [2, 3, 4].
These Al-powered simulation not only accelerate computational cost [5, 6] but also unlock closed-
loop optimization paradigms by bridging synthetic data simulation with differentiable physical
models [7, 8]. A critical application of this paradigm is in semiconductor manufacturing, specifically
lithography simulation [9, 10]. Lithography is a optical and chemical system of transferring intricate
circuit patterns IM onto silicon wafers using light J with a fixed projector H depicted in Figure
1(b). However, at nanometer scales, fundamental physics of optical diffraction and unavoidable
manufacturing variations (a.k.a. process variations) distort the intended patterns. Techniques called
resolution enhancement technologies (RETs) [1 1, 12, 13], such as optical proximity correction (OPC)
and source mask optimization (SMO) shown in Figure 2, are used to pre-distort the design masks to
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Figure 1: (a). Lithography simulation tools by combining source and defocus on a fixed projector to
create an optical model (TCC in Appendix A.1), then using mask and dose inputs to generate resist.
(b). Physical lithography setup comprises 5 primary elements: @ An adjustable illumination system J.
@ The mask setup M with a basic binary design made of see-through and non-see-through sections.
® An aligned and fixed projection module H. @ An exposure mechanism with 2 critical process
variation («, 5). ® A resist station to yield the end producted resist R. (c). Previous benchmark
[14] at 45nm node considering source and process variations as constants, using DNNs for limited
surrogate models M — R.. (d). Our benchmark at sub-28nm node considers simulation across larger
mask ranges with source and process variations, using data-driven or physics-informed generative
models for holistic simulation M x (J, «, ) — R with all the elements @ to ®.

Table 1: Comparison of Lithography Simulation Benchmarks.

Items ‘ CAD13[15] ISPD19[16] N14[17] LithoBench [14] LithoSim
source X X X X 620
# of Var. dose 3 X X X 13
defocus 2 X X X 5
Type M \% \% M/V M/OPC-M/V/OPC-V
Mask Config. | Num. 5k 21k 1.6k 16k/115k 1210 for each
Size 4 4 4 4/1 16 for all
Metal 32 - - 32 14 ~ 28
Tech. Node ) v, - 40 14 45 14 ~ 40
# of Output | resist | 30k 21k 1.6k 131k > 4M

Mask size and Tech. node measurements in ym® and nm, respectively. k = 1,000, M = 1, 000, 000.
In mask type, M: Metal, V: Via, OPC: mask optimization for compensating optical diffraction.

compensate for these effects, aiming to print the desired pattern accurately. RET workflows heavily
rely on simulating the lithography process.

Traditional lithography simulators use complex physical models like Figure 1(a) that are computa-
tionally extremely expensive with > 10% CPU-hours per square millimeter. This bottleneck makes
simulation and RET optimization slow and impractical. Machine Learning (ML) offers a promising
path by learning differentiable image-to-image translation between the input mask design M and
the final printed resist pattern R in Figure 1(c), bypassing the costly physics solvers to create fast
surrogate models [18].

However, current public datasets for ML-based lithography such as CAD13 [15], ISPD19 [16],
N14 [17], and LithoBench [14] listed in Table 1 are inadequate for developing models that meet
RET requirements, suffering from 3 key limitations. First, datasets are outdated scaling, primarily
covering older 32 ~ 45nm technology nodes, not the cutting-edge sub-28nm nodes used in advanced
lithography. Second, mask scales, typically < 4;m?, are too small to capture crucial optical proximity
effects. Third, They lack 4 essential variations that RET must handle: different types of mask M with
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Figure 2: Overview of RETs (OPC and SMO).

or without OPC [19], variations in the light source shape and intensity J, fluctuations in exposure dose
. deviations in defocus f of fixed projector H shown in Figure 1(b). This lack of realism severely
limits the practical lithography of models trained on current datasets for differentiable optimization
applications [11, 12, 13, 19, 20, ,23,24,25,26,27] in Figure 2, where accurately simulating
the interaction of all these physical variables is essential.

bl

For real semiconductor manufacturing, Lithography simulation forms the computational backbone
of modern RETs. As illustrated in Figure 2, RET relies on iterative, physics-aware feedback from
the simulator to optimize mask M and illumination source J listed in Appendix A.2. The goal is
to minimize a composite loss function that includes the contour fidelity under nominal conditions
and robustness across process variations. This necessitates a simulator that is not only fast but also
accurately models the interaction of all physical variables, a capability absent in existing benchmarks.

To address those critical gaps, we introduce LithoSim illustrated in Figure 1(d), a comprehensive
benchmark designed to enable the development and evaluation of ML models for practical lithography
simulation and differentiable RET optimization. LithoSim provides:

* Masks at sub-28nm nodes, both with and without OPC, covering larger scales with 16xm?
to capture proximity effects.

» Extensive parametric combinations listed in Table 1 covering over 600 distinct source
configurations with annular, quadrupole, and dipole illuminations, 13 dose variation
levels spanning from —12% to +12% of the nominal value, and 5 defocus offsets over a
range of £80nm, mirroring the key variables in RET flow.

* The first unified benchmark and evaluation framework to assess modern deep learning
architectures (CNNs [28], Vision Transformers [29], physics-informed models like FNO-
based flows [21, 17], and SOCS [30, 10]) on their ability to simulate lithography patterns
with metrics both in ML and lithography domain.

* A unique out-of-distribution (OOD) evaluation for model generalization under varying mask
conditions, a core requirement for RET. Specifically, it allows testing models trained on
OPC’ed masks on completely non-OPC’ed masks, as well as the reverse. This directly
mimics the flow where mask M is iteratively modified during differentiable optimization
like OPC and SMO, while a robust simulator must remain accurate even as the input mask
changes significantly between iterations.

2 Related Work

The advancement of ML-based lithography simulators is hampered by the limited scope of exist-
ing metal [15] and via [16, 17] datasets. Current metal layer data, such as CAD13 [15], relies
predominantly on only 10 base patterns at the 32nm node, artificially augmented via rotation and
reflection to generate 4, 875 synthetic variants under identical design rules [ I]. Similarly, via layer
datasets comprise fragmented sub-regions of full-chip layouts [16, 17], simulated under idealized
and fixed process conditions. While these resources have facilitated initial research into data-driven
architectures [28, 31, 32] and physics-informed models [17, 30], they fundamentally lack critical
manufacturing parameters, especially notably, realistic source illuminator profiles and process varia-
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Figure 3: LithoSim Dataset Collection Pipeline. (a). Source & Optical Model Generation: (a.l)
generates sources J with normalized intensity distributions, (a.2) applies defocus levels per source,
(a.3) output >1,800 optical models via simulation tool. (b). Mask Preparation: (b.1) extracts layout
clips from full-chip M1 design. (b.2) synthesizes via layouts with foundry design rules. (b.3)
processes original designs with OPC to generate OPC’ed masks. (c). Resist Synthesis: simulates
resists R via simulation tool. (d).Out-of-Distribution (OOD) Benchmark: generates for testing model
generalization to unseen conditions.

tions used in rigorous simulation [9, 10, 33]. This omission ultimately renders the resulting models
unsuitable for RET-oriented optimization.

Recent advances in fabrication-aware neural lithography, such as bilevel optimization [26, 13] and
end-to-end differentiable neural pipeline [24, 34], highlight the critical role of manufacturing-digital
twins in closing design-to-fabrication gaps. While these approaches [26, 24] excel at modeling post-
lithography 3D topography, LithoSim addresses a complementary challenge: it focus on predicting
resist contours under optical and process variations directly supports emerging differentiable ILT
like [20, 23, 22]. By providing standardized evaluation of PV-band generalization critical for mask
optimization in [25, 35, 27], LithoSim bridges the gap between high-fidelity physical emulation and
optimizers requiring differentiable surrogates.

3 LithoSim Dataset Construction

3.1 Experiment Qutline

The experimental framework formulates lithography simulation as a high-dimensional regression
problem with four complementary input modalities: source, mask, dose, and defocus. Mask inputs

M e {0, I}WXH represent binary patterns at sub-28nm resolutions, with dimensions scaling as
16pm? (W = H = 4096) to capture proximity effects. Source configurations J € R >3 describe
particular light source distribution through N discrete source points j; (i € [0, N)), each defined

by normalized intensity v; € [0, 1] and Cartesian coordinates (z;,;) € [—1, 1]°. Dose and defocus
parameters («, ) introduce controlled process variations, where dose modulates exposure energy
a € [—0.12,0.12] while defocus emulates lens aberrations /5 € [—80, 80], conforming commonly
used variations in real simulations.

All the experiments is trained and tested with 4 H100 Graphics cards with Intel Core Xeon Platinum
8462Y+ processors with Adam optimizer and a 10~* learning rate of 10~° weight decay. Either a
linear combination of BCE and Dice loss, or only MSE is used as loss fuction.

3.2 Dataset Collection

The dataset is generated through a scalable lithography simulation pipeline executed on 100 par-
allelized CPUs, following the simulation flow illustrated in Figure 1 (a). To ensure diversity and
physical fidelity, the source and mask integrates manufacturing-specific design rules and rigorous
computational lithography principles. Following advanced lithography, we set NA is 1.35 and wave-
length is 193nm, incorporating Zernike lens aberrations up to 37 terms. Optical model needs to
be built before the simulation and each requires approximately 40 minutes to complete the process.



Table 2: Details of LithoSim Benchmark.

Dataset Train Val Test |  Total
OPC-Metal 693,330 99,000 198,000 | 990,330
Metal 903,672 129,096 258,423 | 1,291,191
OPC-Via 655,842 93,654 187,341 | 936,837
Via 607,365 86,757 173,514 | 867,636
OO0D - - 1,580 ‘ 1,580

Subsequent resist simulations consume 15 seconds per pattern, generating final 4096 x 4096 images
with 1nm/pixel resolution.

Source and Optical Model Generation. A total of more than 600 annular illumination sources
with 0 ~ 1 normalized intensity distributions are first synthesized based on the central symmetry of
off-axis illumination as well as the classical values of the inner and outer radium. For each source,
three defocus values (—40nm, Onm, +40nm) are applied to simulate process variations, yielding
more than 1, 800 unique optical models using the rigorous lithography simulator following Figure 3

(a).

Mask Preparation. As illustrated in Figure 3 (b), two types of mask are constructed: (1) Metal
Layer: 1, 200 layout clips (16nm? each) are extracted from a full-chip M1 layer design. These clips
are processed through optical proximity correction (OPC) using the optical models, generating paired
Metal (original) and OPC-Metal (corrected) mask sets; (2) Via Layer: 1, 200 via layouts adhering
to foundry design rules are synthesized and similarly corrected via OPC, producing Via and OPC-Via
mask sets.

Resist Synthesis. 4 types of mask datasets (Metal, OPC-Metal, Via, OPC-Via) are combined with
+10% normalized dose variations and calculated through corresponding optical model to simulate
resist profiles. This cross-condition sampling strategy produces a comprehensive in-distribution
dataset capturing multi-physics interactions across source distributions, mask types, and process
variations shown in Figure 3 (c).

Out-of Distribution (OOD) Dataset. To evaluate model generalization, 20 additional illumination
sources (10 dipole, 10 quasar) are designed. These sources with +80 defocus and +12% dose are
paired with 20 layout clips from M3 and via layers of a distinct CPU design illustrated in Figure 3.
The OOD dataset is generated using identical simulation pipelines but exhibits structural and process
condition disparities compared to the primary dataset.

Following the above data collection guidelines, LithoSim benchmark in Table 2 combines high-
throughput computational lithography with Al-oriented data diversity, producing widely distributed
multi-parameters (source, mask, dose, defocus) to resists mappings. Figure 4 visualizes all the
datasets with different lithography conditions in LithoSim. OPC’ed masks (OPC-Metal and OPC-Via)
yield resists with smaller edge placement error compared with non-OPC’ed masks. Compared to
nominal dose, a positive deviation expands resist area while a negative deviation induces the undercut
of resist. Defocus perturbations introduce subtler but critical effects, inducing < 1nm resist contour
shifts that ML-based models must capture to enable robust RET. A slight bias also occupies in the
correction of the same mask by different light sources. The systematic variation of optical models,
mask corrections, and essential process parameters establishes a robust foundation for data-driven
and physics-informed lithography modeling.

3.3 Dataset Split

LithoSim benchmark in Table 2 is partitioned to evaluate simulation performance across in-
distribution and out-of-distribution (OOD) scenarios. For each mask category (Metal, OPC-Metal,
Via, OPC-Via), the corresponding data samples are stratified into training (70%), validation (10%),
and testing (20%) subsets. The validation set serves for hyperparameter tuning and early stopping,
while the test set quantifies in-distribution predictive accuracy. Crucially, splits are performed
independently per mask type to prevent cross-contamination between original (Metal, Via) and OPC-
corrected (OPC-Metal, OPC-Via) layouts, mitigating biases in learning mask-correction synergies.
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Figure 4: The splits of LithoSim benchmark and comparison of different lithography conditions.

To assess generalization beyond training distributions, the OOD dataset, comprising M3/via layer
clips and unconventional illumination (dipole, quasar), is reserved exclusively for testing. This
separation ensures that OOD evaluation reflects real-world scenarios where models encounter unseen
design rules, optical conditions, or process variation drifts.

4 Experiments

4.1 Baseline Architectures

We establish six baseline architectures for lithography simulation, comprising 2 data-driven models
(ED-CNN, ED-Trans) and 4 physics-informed variants (RFNO, CFNO, MFNO, SOCS). We also
add an electromagnetic (EM) approximation method as an upper bound. ML models should
asymptotically approach this white-box results. Crucially, a viable ML model must demonstrate
robust performance not only on in-distribution data but also on out-of-distribution cases. This
requirement stems from the industry’s stringent criterion that edge placement error (EPE) should
remain below 1nm in lithography simulation regardless of mask variations to qualify for small-scale
industrial testing. Implementation details appear in Appendix A.4.

All baselines share unified conditional encoding schemes: 2D continuous positional encoding
and chunk-based compression with dynamic query generation as well as hierarchical attention
(intra-chunk local attention followed by cross-chunk global aggregation) for source coordinates
([B,N,3] = [B,N,D] — [B, K, D], K < N) while 1D encoding for dose and defocus variations
([B,1] — [B, D]). All condition is embedded into backbones using chunked litho-aware attention,
which enables memory-efficient cross-attention between masks and lithography parameters (source,
dose, defocus) through compressed conditions and chunk-wise computation. Implementation details
appear in Appendix A.3.

Encoder-Decoder CNN (ED-CNN). It implements hierarchical encoder-decoder processing follow-
ing CNN-based [28, 31, 36] flow. The encoder employs cascaded ResNet blocks with channel-wise
multipliers and non-local attention at specified resolutions. Chunked cross-attention fuses physical
parameters (source, dose, and defocus) at the bottleneck. The decoder uses transposed convolutions
and residual attention blocks for detail-preserving upsampling.

Encoder-Decoder Transformer (ED-Trans). It introduces spatial-domain transformers [37] through
patch embedding and sequence processing. Input masks are projected and reshaped to enable standard



Figure 5: Illustration of EPE calculation.

transformer operations in sequence. Then, sequence-based masks are processed by four transformer
layers with learnable positional encoding. Following cross-attention fusion of source, dose, and
defocus, depth-wise transformers enable hierarchical abstraction before spatial reconstruction via
inverse projection.

Reduced FNO (RFNO). It employs a reduced Fourier neural operator [17, 38] in Figure 6 that
operates masks in the frequency domain through parameterized low-rank kernel convolutions in
Fourier space, utilizing truncated mode interactions to capture global low frequency. The architecture
explicitly bridges spectral (RFNO) and spatial (CNN) representations, then fuses physical parameters
to reconstruct final resists.

Convolutional FNO (CFNO). It introduces a convolutional Fourier neural operator [21] in Figure
7 that synergizes spectral transformations with spatial convolutions for efficient operator learning.
CFNO first decomposes high-dimensional masks into localized patches, projects them into the Fourier
domain via FFT, and applies a parameterized linear transformation to capture global interactions.
These spectral features are then mapped back to the spatial domain through inverse FFT and restruc-
tured into geometric masks. The architecture also cat spectral CFNO and spatial CNN, then fuses
physical parameters and generate resists via a decoder.

Mixed FNO (MFNO). It leverages both global frequency-domain correlations [39] through CFNO
and spatial locality via RFNO [17]. MFNO in Figure 8 processes masks through spectral decom-
position in localized chunks, employing separate parameterized weights for low-frequency and
high-frequency components to enable multiscale frequency modulation. Masks are partitioned into
spatial chunks where Fourier transforms extract frequency features, with truncated modes reducing
computational complexity while preserving dominant spectral patterns. A CNN enhances local
feature interactions after inverse Fourier reconstruction.

Sum of Coherent Sources (SOCS). It introduces a physics-inspired framework, drawing parallels to
the optical lithography process [30, 10] (see Appendix A.1). SOCS first transforms masks into fre-
quency domain through FFT, followed by a dedicated complex-valued encoder comprising cascaded
complex-ResNet blocks and complex-attention mechanisms to preserve phase-aware representations.
Lithography parameters are adaptively integrated through chunked complex litho-aware attention, en-
abling parameter-conditioned feature fusion. Spatial details are subsequently recovered via a complex
decoder architecture that synergistically combines complex transposed convolution operators with
complex-ResNet. The final resist profile prediction is achieved through inverse FFT (IFFT) followed
by sum of mask decomposition to reconstruct the spatial-domain results.

4.2 Evaluation Metrics

We provide popular deterministic metrics in the machine learning and lithography simulation on
semiconductor manufacture, including MSE, PA, mIOU, EPE,,,,, and EPE,,,. Details of metrics
are list in Appendix A.5.

* Mean Squared Error (MSE) is sensitive to penalize outliers, which is critical for evaluating
generalization ability of lithography simulation (Eq. 19).

* Pixel Accuracy (PA) is used to evaluate overall accuracy of resists (Eq. 20).

* Intersection Over Union (IOU) is used to evaluate detailed pixel differences of resists (Eq.
21).



Table 3: Comparison of multi-scale ML-based lithography simulation.

<
D«a Method MSE PA 10U EPE., ax EPE.vg TAT
<107 %) %(1)  nm(})  om(d)  ms(l)

ED-CNN 11.51 +839 98.85 +o0s84 91.06 +630 1.75+049 1.47+028 8.94+024

= ED-Trans 19.67+932 98.03 +133 85.12 +915 2.03+060 1.81+072 11.64+025

S RFNO 9.72+649 99.03 +065 92.42 +500 1.70+056 1.12+038 9.91 +031

El CENO 20.15+924 97.98 +142 84.84 +142 2.96+072 2.36 059 10.00 +0.42

B MFNO 6.28 +384 99.37 +038 95.29+244 1.29 1028 1.02 +027 9.98 +031

© socs 7.94+430 99.18 051 93.17 567 1.55+032 1.07+058 8.51 +0.20
EM 5.83 99.51 97.32 1.02 0.74 289.62 x 103
ED-CNN 8.06 +517 99.09 +052 92.32+462 1.64 +024 1.30 040 9.12+027
ED-Trans 9.89 +514 99.01 +os51 91.69 +514 1.71+030 1.37=+o025 11.30=+024

—= RFNO 13.59 +894 98.64 +osy 88.58 +£729 1.84+036 1.53+039 9.49+o29

3 CFNO 13.08 £7.13  98.69 +071 89.11 +581 1.71+o048 1.50+048 10.00=+025

= MFNO 8.39+538 99.03 +054 92.18 +362 1.654+033 1.33+020 10.55+034
SOCS 9.35+73 99.01 070 91.95 +631 1.82+038 1.35+038 8.20 +o0.22
EM 7.05 99.33 96.05 1.31 0.99 281.07 x 103
ED-CNN  5.36+39 99.46 +040 90.68 £565 1.96+037 1.59+042 9.03 o024

< ED-Trans  5.56 +£363 99.44 +o036 89.99 +572 1.94+030 1.67+033 11.14+022

< RFNO 3.91 £228 99.61+o023 92.68+432 1.85 o027 1.42 +o028 9.70+o031

v CFNO 6.87+514 99.31 +051 87.67 809 2.10+041 1.84+035 10.19+027

% MFNO 6.04 £397 99.40 +039 90.99 +454 1.99+025 1.50+023 10.72+034
SOCS 5.28 +£361 99.49 +o052 91.12 702 1.98+063 1.79+058 8.02 +0.27
EM 3.52 99.71 95.65 1.15 0.92 276.19 x 103
ED-CNN 4.65 +295 99.54+030 81.39 +895 1.07+020 0.93+034 8.92+024
ED-Trans  5.69 +420 99.43 o042 77.93 +954 1.36+053 0.97+049 11.30+023

< RFNO 4.77+402 99.54 +040 83.10+330 1.03 +011 0.89 o010 9.23 +o028

< CFNO 5.94 +442 99.41 044 76.19 970 1.37+038 1.01+040 9.58 +0.24
MENO 6.39 124 99.36 +484 73.52 +473 1.47+013 1.02+012 9.97 +024
SOCS 5.09 420 99.58 +033 80.47 +446 1.24+041 0.99+040 7.82 +022
EM 341 99.79 89.20 0.75 0.64 274.40 x 103

Edge Placement Error (EPE.,,/EPE,,) is a critical indicator for assessing alignment
discrepancies in semiconductor manufacturing. As illustrated in Figure 5, it evaluates the
reliability of the lithography simulation by calculating the distance between the predicted
resist contour and the ground truth after selecting evaluation points on the layout.

Turn Around Time (TAT) is the total amount of time spent by simulation process from
coming in the ready state for the first time to its completion.

4.3 Baseline Model Results

Table 3 summarizes the lithography simulation efficiency of all 6 baseline models across 4 mask cate-
gories of LithoSim. Each metric in Table 3 is followed by the standard deviation of the corresponding
dataset. More experimental settings is list in Appendix A.6.

Overall simulation accuracy and speed. While Transformer-based baseline (ED-Trans) incur the
highest turnaround time (TAT) due to hybrid global attention operations, resulting in substantial
computational and memory requirements. SOCS achieves minimal latency by strictly adhering to the
Hopkins-based frequency-domain encoding-decoding paradigm. Physics-informed models generally
exhibit comparable TATSs, with data-driven approaches (ED-CNN, ED-Trans) demonstrating overall
competitive lithographic awareness when trained on the large scale of LithoSim, a testament to the
dataset’s capacity to compensate for inductive biases of lithography through sheer data volume.

Data-driven baseline comparison. ED-CNN, leveraging its CNN backbone enhanced with spatial-
channel attention mechanisms, marginally outperforms ED-Trans across all metrics, particularly
excelling on Metal datasets (i.e. OPC-Metal: 91.06% IOU, Metal: 92.32% IOU). This superiority
stems from hierarchical capacity of ED-CNN to resolve local mask critical features while modeling
long-range optical interactions via attention-based context aggregation. In contrast, the global



Table 4: Generalization ability comparison of baseline models.

Train Test Method MSE(x10~%) PA(%) 1I0U(%) EPEmax(nm)  EPEge(nm)
_ ED-CNN  33.99(+ 25, 93) 96.60(y 2.49) T4.58(y 17.74) 3.52(+ 1.88) 2.79(1 1.49)
g _ ED-Trans  40.89(+ 31.00) 95.91(y 3.1) 69.89( 21.80) 3.76(+ 2.05) 2.95(+ 1.58)
EI g RFNO 30.45(+ 16.86) 96.95(4 1.69) 76.98(y 11.60) 3.20(+ 1.36) 2.52(1 0.99)
8 = CFNO 39.30(+ 26.22) 96.07(y 2.57) 70.63(y 18.48) 3.72(+ 2.01) 2.94(+ 1.44)
o MFNO 39.28(+ 30.89) 96.07(y 2.96) 70.64(y 21.54)  3.66(1 32.01)  2.89(1 1.56)
SOCS 20.31(+ 10.95) 97.03(y 1.98) 85.57(16.38) 2.82(1+1.000 2.22(10.87)
ED-CNN 11.62(1 6.97) 98.84(4 0.70) 62.58(y 18.81) 1.46(+ 0.39) 1.05(1 0.12)
= ED-Trans 12.04(1 6.35) 98.80(4 0.63) 62.18(y 15.75) 1.47(1 0.11) 1.10(1 0.13)
= < RFNO 11.15(+ 6.38) 98.88(4 0.66) 63.39(y 19.71) 1.44(+ 0.41) 1.07(1 0.18)
8 > CFNO 14.23(+ 0.11) 98.58(4 0.11) 59.45(4 0.11) 1.52(1 0.15) 1.21(+ 0.20)
o MFNO 12.75(+ 6.36) 98.73(4 0.63) 60.75(y 12.77) 1.50(+ 0.03) 1.16(1 0.14)
SOCS T.7T1(4 2.62) 99.43(,0.15) 66.39() 14.08) 1.29(10.05) 1.02(10.03)
ED-CNN 5.97 99.40 74.13 1.39 0.90
ED-Trans 6.81 99.32 73.04 1.51 1.04
= g RFNO 5.34 99.47 74.71 1.35 0.87
< o CFNO 13.89 98.61 63.12 2.03 1.55
MENO 6.27 99.37 73.43 1.43 0.94
SOCS 4.13 99.79 80.24 0.91 0.60

self-attention of ED-Trans prioritizes mask-wide pattern correlations, achieving suboptimal edge
placement error (EPE) compared with ED-CNN in dense layout regions.

Physics-informed baseline comparison. MFNO dominates OPC-Metal simulations (95.29% IOU,
0.69nm EPE) by synergistically capturing global low-frequency optical kernels and local mask topol-
ogy modulations, a critical requirement for modeling OPC-induced mask feature. The performance
of MFNO degrades on OPC-Via and Via layers with 90.99% and 73.52% IOU respectively, where
localized low-frequency scattering dominates, favoring RFNO’s reduced Fourier domain focus with
92.68% and 83.10% IOU on OPC-Via and Via. The exclusive global spectral processing of CFNO
proves least effective for lithography, particularly on OPC-Metal with 20.15 x 10~2 MSE and > 2nm
EPE, as well as only 97.98% PA and 84.84% IOU, as it disregards detailed mask-level edge variations.
SOCS delivers stable performance across all mask categories by rigorously encoding Hopkins’ partial
coherent imaging principles in Appendix A.l, matching top baselines performances.

The baseline results of LithoSim highlight dataset-specific architectural preferences: Metal/OPC-
Metal simulations demand concurrent global-local frequency feature learning, while Via layers
benefit from localized frequency-space constraints. Also, the parity between data-driven and physics-
informed models on LithoSim underscores the dataset’s role as an equalizer, providing sufficient
physical constraints through data diversity to compensate for missing litho-aware information.

4.4 Baseline Model Generalization Capabilities

The out-of-distribution (OOD) evaluation in Table 4 rigorously assesses baseline models’ ability to
generalize across various mask distribution. Models trained exclusively on OPC’ed datasets (OPC-
Metal and OPC-Via) are tested on uncorrected counterparts (Metal and Via), simulating real-world
scenarios where optimized masks must predict uncorrected lithographic outcomes firstly. Additionally,
models trained on the full LithoSim dataset are evaluated on the OOD benchmark, which introduces
different illumination (dipole/quasar), mask (M3 metal and regular via layer), and process variation
distributions.

Data-driven model generalization capabilities. They exhibit significant sensitivity to OPC-induced
topology changes on Metal. ED-Trans suffers a 31.00% MSE increase and 17.74% IOU decrease.
In contrast, ED-CNN’s hybrid architecture, combining convolutional locality with channel-spatial
attention, achieves marginally better robustness (MSE +25.93%, IOU —17.74%), outperforming all
physics-informed models except RFNO and SOCS. This suggests chunked mask feature extraction,
when augmented with attention-based optical context modeling, can partially compensate for missing
physics constraints in data-driven approaches.



physics-informed model generalization capabilities. SOCS achieves superior stability with minimal
performance degradation: MSE increases by only 10.95 x 1073 (vs. ED-CNN’s 25.93 x 10~3) and
IOU drops by 6.38% when trained on OPC-Metal and tested on Metal. Its physics-grounded Hopkins
formulation inherently compensates for mask distribution shifts, maintaining < 3nm maximum edge
placement error (EPE) even under OOD conditions. RFNO achieves the second best performance
on both Metal and Via datasets with more low frequency aware in a local range of masks. The full-
dataset training paradigm further highlights the OOD supremacy of SOCS, achieving 4.13 x 1073
MSE, 80.24% 10U, and 0.6nm average EPE on novel M3/via layouts with a 0.44nm margin under
ED-Trans.

These results collectively affirm that while data-driven models benefit from LithoSim’s diversity,
physics-constrained architectures such as RFNO and SOCS remain indispensable for reliable OOD
generalization, which is a critical requirement for production-grade RET integration.

5 Limitations

Idealizations. LithoSim leverages rigorous lithography simulator to achieve comprehensive litho-
graphic variation coverage, with two approximations: fixed chemical kinetics assuming ideal resist
chemistry modeling during PEB/development illustrated as fixed resist model in Figure 1 (a), and
homogeneous resist-substrate optical constants (neglecting wavelength-dependent refractive indices
n and interfacial reflectivity k). Despite these simplifications, LithoSim preserves dominant physics
governing optical imaging—notably the coupled impacts of source polarization, defocus-dependent
aberration, and OPC-induced mask modifications on resist exposure. Future extensions could integrate
resist chemistry models while maintaining compatibility with foundational optical-mask-process
variability of LithoSim. Currently, we are collaborating with fab partners to conduct LithoSim
verification utilizing actual production line data.

Downstream testing. A critical challenge is to integrate learned lithography simulators as modular
components into downstream RET flows, such as optical proximity correction (OPC) [1 1, 27], source
mask optimization (SMO) [12, 13], and sub-resolution assist feature (SRAF) insertion [22]. While
LithoSim provides foundational losses (e.g. Lo, process variation bands in Appendix A.2) and
co-optimizable source-mask pairs essential for differentiable optimization, its current formulation
remains a standalone tool, lacking the systems-level engineering required for seamless integration
into tool chains. Future work could merge its variation-resilient predictions with topography-aware
models [26, 23] to co-optimize manufacturability across the lithography stack. Our ultimate goal is to
embed LithoSim within these RET flows, wherein it bridges the first critical gap: enabling ML models
to supply all differentiable losses outlined in Figure 2 through CUDA-accelerated computations.

6 Conclusions

LithoSim establishes a comprehensive and physically-grounded benchmark for advancing Al-driven
lithography simulation in semiconductor manufacturing. By integrating diverse optical sources, mask
rules, and realistic process variations, it enables robust training and evaluation of both data-driven
and physics-informed models. The benchmark not only bridges critical gaps in existing datasets but
also provides a unified framework for assessing model accuracy, generalization, and readiness for
downstream resolution enhancement techniques. Through open access to data and code, LithoSim
lays a foundational step toward scalable, high-fidelity, and differentiable computational lithography,
essential for next-generation design for manufacturing flows.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: LithoSim introduces lithography simulation benchmark with more than 4
million rigorously curated input-output pairs, integrating optical variations, mask corrections,
and process variations to establish a unified evaluation flow for ML-based simulation.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: LithoSim discusses limitations in Section 5, covering idealized assumptions
and downstream integration challenges. For idealizations, LithoSim employs two approxi-
mations: fixed chemical kinetics and homogeneous resist-substrate optical constants, though
it retains core physics governing optical imaging. Future work could incorporate dynamic re-
sist chemistry models. Regarding downstream testing, while LithoSim provides multi-scale
representations and source-mask pairs critical for RET workflows (e.g., OPC/SMO/SRAF),
it currently lacks systems-level engineering for seamless integration into EDA toolchains.
The authors emphasize the need of LithoSim to bridge this gap through CUDA-accelerated
RET operationalization.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: LithoSim describes theoretical formulations for optical lithography in Section
A.1 and FNO-based architectures Section A.4. For the SOCS approximation in lithography
modeling, assumptions include decomposing source/projector/mask interactions via TCC
with SVD truncation (retaining dominant eigenvalues) and approximating the imaging
integral via Eq. 5. The FNO framework assumes learnable spectral weights (V) can
approximate lithography kernels by truncating high-frequency modes (e.g., |k| < m in
RFNO). The validity of these approximations is implicitly supported by alignment with
lithography physics (e.g., frequency-domain interactions) and benchmarking results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: LithoSim introduce experiment settings briefly in Appendix A.6. The
has been divided into opc_mtal, opc_via, metal, and via with a
train_val_test split. In , LithoSim also gives a detailed guideline.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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https://huggingface.co/datasets/grandiflorum/LithoSim
https://huggingface.co/datasets/grandiflorum/LithoSim
https://dw-hongquan.github.io/LithoSim/

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: LithoSim provides open access to the dataset, code, and pre-trained models
via Hugging Face ( ;
) and a project website (
), including pre-trained models for reproducibil-

ity.
Guidelines:
* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (

) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data splits are list in Table 2. The hyperparameters and type of optimizer
are announced in A.6.

Guidelines:

16


https://huggingface.co/datasets/grandiflorum/LithoSim
https://huggingface.co/grandiflorum/LithoSim
https://dw-hongquan.github.io/LithoSim
https://dw-hongquan.github.io/LithoSim
https://nips.cc/public/guides/CodeSubmissionPolicy
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: LithoSim report error bars in Table 3, which is the standard deviation of each
metric in the certain dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In A.6, LithoSim introduces computer resources on 4 H100 Graphics cards
with Intel Core Xeon Platinum 8462Y 4 processors.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

17


https://neurips.cc/public/EthicsGuidelines

Justification: LithoSim follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: LithoSim dose not have societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: LithoSim dose not provide any data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code of LithoSim uses framework, which is based on Apache
2.0 license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The data, code, and pre-trained models are released (see in Abstract).
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: LithoSim does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: LithoSim does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LithoSim does not involve LLMs as research methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( )
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Optical Lithography Approach

Typical optical lithography model comprises 3 essential components: source, mask, and projector, as
illustrated in Figure 1 (b). The light rays propagate through the projector and the mask and produce
diffracted light with layout pattern information. The intensity of optical imaging can be formulated

(z,y) ////// M) (f, ¢') FOM)" (£, 9")

H(f+f9+d)H (f+["9+4") : M
exp (—j27((f" = f")z +(¢" — g")y))
df dg df/ dg/ df// dg//
where I is the imaging intensity, J is the source, H is the optical transfer function (OTF) of projector,
and F (M) is the frequency of the mask M; (f, g), (f’,¢’), and (f”, g"") represent the normalized

frequency-domain coordinates of H, (M), and F(M)*. This formulation does not have an
analytical solution but only an approximate solution.

A fast approach method, SOCS approach separating source J and projector H from mask M as,

1(r, 1) //// T 9" FOM) () FOM) (. 9") o

exp (—j2m((f' = f")x + (¢ — g")y)) df'dg'df"dg"
where 7T is the transmission cross-coefficients (TCC) given by,

TCC(f /3", = [ IEDH (S + Fagt ) (4194 Sy, @)
Applying SVD decomposition, Eq. 3 can be approximated by Sum of coherent source (SOCS),
TCC(f.g's f".9") Zﬁq (f'.9") ®; (f".9"), @

where, k4 and ®, are g-th eigenvalue and eigenvector of TCC. For fast calculation, we can keep the
@ largest eigenvalues and obtain final SOCS approach as,

Q
I(‘T7y):ZH(I||(I)Q(z7y)®M(‘T7y)||27 (5)

q=1

where ¢4 (x,y) and M (z, y) are the spatial distribution of ®, and F (M) respectively.

A.2 Relationship between lithography simulation and RET

As illustrated in Figure 2, lithography simulation forms the computational backbone of modern
resolution enhancement techniques (RET) [19], enabling the optimization of sources J and masks M
through iterative physics-aware feedback.

The simulator maps (J, M) to resists R, which are evaluated via two critical metrics: L2 contour
fidelity (geometric deviation from target layout T under normalized condition) and process variation
band (PVB) robustness across dose («) and focus 3 conditions as,

Ly = ||Rnorm - TH%
?
EPVB = ||Rmax - Rmian

where Ryom is the resist under (a, 8) = (0,0), Ry and Ry, are resists under (o, 8) =
(—0.1,—40) and (v, 8) = (0.1,40) respectively.

Consequently, the comprehensive RET loss is formulated as,

(6)

Lrer = Lopc = Lsvo = VL2 +nLpvB, @)
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where v and 1 are weighting factors for the respective loss components.

In optical proximity correction (OPC) mode, the illumination source J is fixed, and the simulator
guides mask optimization through gradient-based updates:

M* = argminﬁopc(.], M) (8)
M

Source mask optimization (SMO) extends this framework by co-optimizing J and M in a coupled
parameter space as,
(J*,M") = argminLgpo(J, M). ©)
(J,M)

LithoSim contains all the input parameters required by Eq. 7, not only the source and mask as the
optimization subjects, but also dose and defocus involved in the loss calculation. This makes it
possible to train lithography simulation using LithoSim and thereby achieve CUDA-accelerated RET.

A.3 Litho-condition Embedding

Process Variations Embedding:. LithoSim incorporates critical process variations (PV) through a
physics-informed positional encoding scheme. For dose and defocus inputs (normalized to [-1, 1]),
we employ a continuous positional encoding that transforms scalar PV into a spectral representation
through logarithmic frequency bands. For a given PV v € [—1, 1], the encoding generates d,,,/2
frequency components with wavelengths logarithmically spaced following,

PE(v)ay, = sin(v - e (10" /dpe)

) (10)
e—k-ln(104/dpv)

PE(v)ak4+1 = cos(v -

Source Positional Embedding:. The source spatial characteristics are encoded through a multi-
frequency 2D positional encoding that preserves optical reciprocity and illumination coherence

properties. For source coordinates (z,y) € [—1, 1]2 and backbone mdoel dimention d,

PE(z,y)ax = sin(x - e Fn(107/do))
PE(x,y)ax+1 = cos(x - e*k'ln(lo“/ds))
PE(2,y)an42 = cos(y - e~ F1n(107/d))’ (11)
PE(x,y)axrs = cos(y - e Fin(10%/de)y

Source Compression:. LithoSim implements a multi-scale attention mechanism that preserves
critical optical characteristics while enabling efficient processing of high-dimensional source patterns.
The compression occurs through 3 physics-aware stages.

(1). Coherent Chunk Processing splits source J into C' = 64 chunks matching optical cross-effect
size,
A41)C
By, = {Ji}gidté') € CcoxP, (12)

where positional encoding in Eq. 11 maintains inter-pixel phase relationships critical for diffraction
modeling of every chunks.

(2). Intra-chunk Self-attention models local interference within coherence area as,

QlocalKgi

Vd

where M, ;4 represents the valid position of source (e.g. radium o € [0.68, 0.83 for annular source),
Kp, and Vp, is the key and value of ¢-th chunked source, ();ocq; is local learnable query.

Cs, = softmazx ( ® Mvalid) - Vs, (13)

(3). Inter-chunk Self-attention captures global source contribution blending as,

K
C= Zwﬂh w; o e<le°b““C">, (14)
i=1
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Figure 8: Mixed Fourier Neural Operator (MFNO).

where C is final compressed source feature, Q41004 is global query of total chunked source, w; is the
weight of i-th chunked source.

Chunked Litho-aware Cross-attention:. LithoSim implements condition embedding into mask

feature M € {0, 1}HXW for source and process variations (PV) respectively based on chunked

cross-attention. M is partitioned into N = dxzw local chunks of size d,,, X d,,

(1). PV cross-attention: For i-th chunked mask region M; € {0, 1}dm *dm and embedded process

variations V = PE(v) after positional embedding, the PV cross-attention is given by,

N ) T
= gsoftmaaz <Qz/fg > Vv, (15)

where Q; = WoM;, K = WgV,and V = Wy V. Wg, Wk, and Wy is learnable projection
parameters for each chunked mask and process variation. By decomposing the mask into d,,, X d,,
optical proximity correction (OPC) regions and computing multi-head attention between chunked
mask features (queries) and process-encoded variations (keys/values), it models dose-dependent resist
thresholding and defocus-induced blur as spatially varying modulation operators.

A X dm

(2). Source cross-attention For j-th chunked mask region M; € {0,1} and compressed

source C in Eq. 14, the source cross-attention is given by,

N
KT
= E softmax <Q'7 ® Mvalid) v, (16)
= vd

where Q; = WoM;, K = WiC,and V = Wy C. Wg, Wk, and Wy is learnable projection
parameters for each chunked mask and compressed source, M,4;;4 is the valid region of source.

A.4 Baseline Architecture

The fusion between FNOs, including RFNO, CFNO, and MFNO, and lithography simulation from
their shared reliance on spectral representations for efficient physical process approximation. In
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optical lithography, Eq. 5 can be simplified to formulate as,

2
I

I=|F'FM)® F(K) (17)

where K is the lithography kernel which is dependent on source and defocus (Figure 1 (a)). FNOs
natively operate in the spectral domain through learnable truncated mode interactions Wy € C™*™
approximating optical kernel by,

FNO(k) = F~' Wa(k) - F(M)(k)], (18)

where W is local learnable complex-valued spectral weights truncated at modes |k| < m in RFNO
(Figure 6), is a patched global complex-valued linear layer in CFNO (Figure 7), is patched learnable
complex-valued spectral weights in MFNO (Figure 8), which aligns with lithography’s inherent
frequency-space physics in Eq. 17.

FNO-based models typically requires the combination of FNO with an CNN encoder-decoder struc-
ture [38, 21, 17] to achieve the purpose of extracting low-frequency mask features at different scales.
Unlike FNO, SOCS rigorously adheres to the methodology of Eq. 5. The mask is first transformed
into the frequency domain via FFT, with all encoding, decoding, and condition interactions executed
exclusively in the spectral domain, before directly outputting the resist profile through IFFT.

A.5 Evaluation Metrics Details

Al performance metrics: Given the predicted resist R and the ground truth resist R, the pixel
number is N, MSE, PA, IOU is defined respectively as,

1 ~ 2
MSE = —||[R - R 19
LR R (19)
RNR
PA = 20
= 20)
RNR
1oU = 15 @1
RUR

Lithographic fidelity metrics: As illustrated in Figure 5, given the predicted resist contour Cp, the
ground truth resist Cg, and original layout countour C. First, sample evaluation points P at regular
intervals (typically 20nm) along Cr. For each point P; € P, construct a perpendicular line that
intersects both Cr and Cg at points P; g and P, » respectively. The edge placement error (EPE)
at P; is then defined as the length of the vertical segment Pi,RPi,R- The maximum EPE across all
evaluation points P is denoted as EPE,,, 4, while the average EPE is calculated as EPE,4.

A.6 Experiment Settings

LithoSim is trained and tested with 4 H100 Graphics cards with Intel Core Xeon Platinum 8462Y+
processors. All the baselines is trained with Adam optimizer and a 10~* learning rate of 10~° weight
decay.

LithoSim uses a linear combination of BCE and Dice loss in Eq. 22 for ED-CNN, ED-Trans, RFNO,
CFNO, and MFNO, as well as MSE loss for SOCS.

L = aLliice + BLBCE, (22)
where LithoSim sets « = = 1.

In condition embeddings (A.3), LithoSim uniformly sets output dimension of source positional
embedding d; = 8, compressed factor K = 16, and chunk size 256 for each source. In process
variation embedding, the output dimension of value positional embedding is also set as d,, = 8. Mask
chunk size is set as 64 to capture proximity optical effects.
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